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Abstract
Recent causal probing literature reveals when
language models and syntactic probes use simi-
lar representations. Such techniques may yield
“false negative” causality results: models may
use representations of syntax, but probes may
have learned to use redundant encodings of the
same syntactic information. We demonstrate
that models do encode syntactic information
redundantly and introduce a new probe design
that guides probes to consider all syntactic in-
formation present in embeddings. Using these
probes, we find evidence for the use of syntax
in models where prior methods did not, allow-
ing us to boost model performance by injecting
syntactic information into representations.

1 Introduction

Recent large neural models like BERT and GPT-
3 exhibit impressive performance on a large va-
riety of linguistic tasks, from sentiment analysis
to question-answering (Devlin et al., 2019; Brown
et al., 2020). Given the models’ impressive perfor-
mance, but also their complexity, researchers have
developed tools to understand what patterns mod-
els have learned. In probing literature, researchers
develop “probes:” models designed to extract infor-
mation from the representations of trained mod-
els (Linzen et al., 2016; Conneau et al., 2018;
Hall Maudslay et al., 2020). For example, He-
witt and Manning (2019) demonstrated that one
can train accurate linear classifiers to predict syn-
tactic structure from BERT or ELMO embeddings.
These probes reveal what information is present in
model embeddings but not how or if models use
that information (Belinkov, 2021).

To address this gap, new research in causal anal-
ysis seeks to understand how aspects of models’
representations affect their behavior (Elazar et al.,
2020; Ravfogel et al., 2020; Giulianelli et al., 2018;
Tucker et al., 2021; Feder et al., 2021). Typically,
these techniques create counterfactual representa-
tions that differ from the original according to some

Figure 1: In a 2D embedding space, a model might re-
dundantly encode syntactic representations of a sentence
like “the girl saw the boy with the telescope.” Redun-
dant encodings could cause misalignment between the
model’s decision boundary (blue) and a probe’s (red).
We introduce dropout probes (green) to use all informa-
tive dimensions.

property (e.g., syntactic interpretation of the sen-
tence). Researchers then compare outputs when
using original and counterfactual embeddings to
assess whether a property encoded in the represen-
tation is causally related to model behavior.

Unfortunately, negative results — wherein re-
searchers report that models do not appear to use a
property causally — are difficult to interpret. Such
failures can be attributed to a model truly not us-
ing the property (true negatives), or to a failure of
the technique (false negatives). For example, as de-
picted in Figure 1, if a language model encodes syn-
tactic information redundantly (here illustrated in
two-dimensions), the model and probe may differ-
entiate among parses along orthogonal dimensions.
When creating counterfactual representations with
such probes, researchers could incorrectly conclude
that the model does not use syntactic information.

In this work, we present new evidence for the
causal use of syntactic representations on task per-
formance in BERT, using newly-designed probes
that take into account the potential redundancy in
a model’s internal representation. First, we find
evidence for representational redundancy in BERT-
based models. Based on these findings, we propose



a new probe design that encourages the probe to
use all relevant representations of syntax in model
embeddings. These probes are then used to assess
if language models use representations of syntax
causally, and, unlike prior art, we find that some
fine-tuned models do exhibit signatures of causal
use of syntactic information. Lastly, having found
that these models causally use representations of
syntax, we used our probes to boost a question-
answering model’s performance by “injecting” syn-
tactic information at test time.1

2 Related Work

2.1 Language Model Probing

Probing literature seeks to expose learned patterns
of a neural language model by training small neu-
ral networks to map from model representations
to human-interpretable properties (Alain and Ben-
gio, 2017; Conneau et al., 2018; Reif et al., 2019).
For example, Hewitt and Manning (2019) pro-
pose single-layered neural nets that map from em-
beddings to syntactic representations of sentences.
Such probing methods are correlative rather than
causal because they depict what information is
present in representations instead of how that infor-
mation is used (Hall Maudslay et al., 2020; Pearl
and Mackenzie, 2018). Understanding when lan-
guage models use structural information causally is
an important question given the central role struc-
ture appears to play in human understanding of
natural language (Chomsky, 1965). In this work,
we perform causal analysis by combining causal
methods with a new probe design.

2.2 Causal Analysis of Language Models

Recently, researchers have begun applying causal
analysis to language models to understand if and
how they use human-interpretable properties in
their decision making. While direct text manip-
ulations are sometimes possible (e.g., modifying
“The man works as a...” to “The woman works as a
...”), several methods rely on constructing counter-
factual representations to measure model behavior
(Kaushik et al., 2020; Ravfogel et al., 2020). Prior
art has often found that standard models learn unde-
sirable causal relationships by encoding unwanted
biases or by not learning to rely upon syntactic
principles (Feder et al., 2021; Elazar et al., 2020).

1Code at https://github.com/mycal-tucker/
mlm_dropout_probes

Our work is most closely related to Tucker et al.
(2021), so we explain their technical approach
here. Tucker et al. (2021) train non-linear struc-
tural probes (based on those designed by Hewitt
and Manning (2019)) to predict aspects of a sen-
tence’s syntactic structure from model embeddings.
That is, a probe p maps from an embedding, z, to
a representation of syntax, s. Trained probes are
used to create counterfactual embeddings, z′, by
updating z′ from z via gradient descent to minimize
a loss function, L, evaluated on the probe’s output
and a desired output based on an alternative syntac-
tic interpretation, s′: ∇z′L(p(z

′), s′). Intuitively,
these z′ are meant to represent “what z would have
been if the structure of the sentence were s′.” Us-
ing suites of syntactically ambiguous sentences, the
authors measured how a model’s outputs differed
when using z′ generated from different syntactic
interpretations.

While Tucker et al. (2021) find that a pretrained
BERT model does use representations of syntax
causally (i.e., model outputs change when us-
ing different syntactic interpretations), the authors
find that a BERT model fine-tuned on a question-
answering task does not show similar behavior.
Identifying causal mechanisms in models is impor-
tant not only for fairness and robustness measures,
but also for improving model performance. In spe-
cific cases of subject-verb agreement, Giulianelli
et al. (2018) found that changing representations of
a subject’s plurality affected the plurality of verbs
predicted by an LSTM.

In this work, we use the gradient-descent method
proposed by Tucker et al. (2021), but we use a new
probe design. We identify several cases in which
their method fails to uncover a causal relationship,
whereas ours does. Furthermore, compared to Giu-
lianelli et al. (2018), we use more general represen-
tations of syntax instead of only plurality.

3 Technical Approach

Here, we identify a limitation of prior causal prob-
ing art in which redundant information in embed-
dings could lead to probes and models using differ-
ent representations of the same information, which
in turn could lead to uninformative causal analysis
results. We propose a new probe architecture that
addresses this limitation by encouraging probes to
use all sources of information in embeddings.

https://github.com/mycal-tucker/mlm_dropout_probes
https://github.com/mycal-tucker/mlm_dropout_probes
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Figure 2: If a model encodes the dependency structure of a sentence twice its embedding, a probe, p, may learn to
ignore one copy of the information (indicated by learned weight 0) and only use the other (via learned weight 1) to
predict s (a). In such cases, the gradient of s with respect to the embedding (dashed orange) only flows from one of
the copies, so only that copy will be updated in counterfactual embeddings (b). However, by introducing a dropout
layer that masks random inputs to the probe, dropout probes learn to use all informative parts of embeddings, which
distributes the gradient across the whole embedding (c).

3.1 Limitations from Redundancy

We show by example how prior art in causal prob-
ing may fail to reveal causal uses of syntactic infor-
mation in language models. Here, we use a simpli-
fied example; in later experiments we demonstrate
that trained models exhibit similar phenomena.

In neural network probing literature, a probe, pθ,
is a neural network parametrized by weights, θ, that
maps from representations, z, to a predicted prop-
erty, ŝ: ŝ = pθ(z). Hewitt and Manning (2019)
define two types of structural probes that map from
z to representations of a sentence’s syntax. The
“depth” probe predicts words’ depths in a parse
tree; the “distance” probe predicts the distance be-
tween pairs of words in a parse tree. In this paper,
we assume s refers to syntactic information, but
probing techniques are general. Given a corpus
comprising (z, s) pairs, probes are trained using
supervised learning to minimize some loss.

Suppose that there exists a trained model, M ;
Mk− (the first k layers of M ) encodes an input,
x, into an embedding z. The layers of M after
k, dubbed Mk+, produce a prediction, ŷ, from z.
For the purposes of this example, we state that M
uses syntactic information, and specifically that z
is informative of the syntactic structure of x.

Let us assume that the dependency structure of
x may be represented by within a vector, zdep,
and that Mk− produces embeddings, z, which
are two identical copies of zdep. Using pythonic
notation, z = [zdep] + [zdep]. Thus, z contains
syntactic information and, when we state that M
“uses” syntactic information, we formally mean that
∇zdepMk+(z) ̸= 0.

Building upon this example, let us label the two
copies of zdep as zdep1 and zdep2 , although the two
vectors remain identical. If we train a probe to
predict syntactic forms from z, it may arbitrarily

learn to use any aspects of z that are informative
of its prediction, s. Let us say that the probe learns
to use only zdep2 , again defined as ∇zdep2

p(z) ̸= 0.
However, Mk+ may only use zdep1 : the copy that
the probe does not use.

We claim that this example, while simplified,
demonstrates a potential scenario in which causal
probing techniques could return a false negative.
Specifically, if one generates counterfactual embed-
dings, z′, by changing z according to the activa-
tions that change the probe’s outputs, only zdep2
will change. Because Mk+ uses only zdep1 for
predictions, the model’s output will not change.
This example is depicted in Figure 2. Ultimately,
without considering the redundancy in a model’s
internal representation, prior methods will fail to
uncover the fact that M actually does use represen-
tations of syntax causally.

3.2 Dropout Probes

In this section, we propose a neural probe archi-
tecture to address the limitations of prior art by
encouraging probes to use all syntactic information
present in z. The desired behavior is depicted in
Figure 2c: if the probe uses all activations that are
informative of syntax, that will necessarily be a
superset of the activations that the model uses for
downstream processing (if the model uses syntax).
Therefore, when generating counterfactual embed-
dings using such probes, every activation encoding
syntactic information would be updated, which in
turn would change the model’s output.

Our approach was inspired by an idea of creating
a mixture of probes, each trained to use a differ-
ent masked subset of activations in z. The full set
of such probes would have to learn to use all ac-
tivations in z that are informative of s. One may
approximate creating such a set by introducing a



dropout layer as the first layer to a single probe. At
training time, the dropout layer masks a random
subset of the input; the mask itself changes with
every training batch. We dub such probes “dropout
probes.” This probe design, and our resulting find-
ings when using them, are the main contributions
of our work. We note that adding a dropout layer to
probes introduces a new hyperparameter but, in ex-
periments, we found consistent results over a wide
range of positive dropout values.

4 Experiments

Here, we report the results from three experiments
establishing the benefits of dropout probes. First,
we found evidence supporting our hypothesis of
redundantly-encoded syntactic information by cal-
culating the mutual information between various
activations in trained networks. Second, we com-
pared dropout probes to standard probes in a set of
syntactically-ambiguous test domains. We found
that our method revealed evidence supporting the
causal use of syntax in models where other meth-
ods did not (Tucker et al., 2021). Lastly, given
our findings that models used syntax causally, we
demonstrated how one could “inject” syntactic in-
formation into models to improve performance in
syntactically-challenging tasks.

Experiments were conducted on four models, all
based on huggingface’s bert-base-uncased
(Wolf et al., 2019). The Mask model was the origi-
nal model, trained on a masked language modeling
task and next-sentence prediction (Devlin et al.,
2019). The QA model was fine-tuned on the Stan-
ford Question Answering Dataset 2.0 (Rajpurkar
et al., 2016).2 Lastly, we trained two models,
dubbed NLI and NLI-HANS, that were finetuned
on the Multi-Genre Natural Language Inference
dataset or that dataset augmented with the Heuristic
Analysis for NLI Systems (HANS) dataset, respec-
tively (Williams et al., 2018; McCoy et al., 2019).

The Mask model was used to compare our
method to Tucker et al. (2021), who found that
such models used syntactic information causally.
The QA model was used to study a finetuned model;
prior art did not find evidence of causal use. Lastly,
the NLI models were used because Natural Lan-
guage Inference is recognized as a difficult linguis-
tic task that models appear to “cheat” on by leverag-
ing spurious correlations in datasets (McCoy et al.,

2The QA model was downloaded from huggingface model
repository under “twmkn9/bert-base-uncased-squad2”

I(Z1, D) I(Z2, D) I(Z,D)

Mask 2.2 2.6 2.7
QA 2.7 2.8 2.8
NLI 2.3 2.7 2.8

Table 1: The mean in nats of I(Z,D) is less than
I(Z1, D)+ I(Z2, D), indicating that information about
D is redundantly encoded in embeddings. Standard de-
viation under 0.2 for all values over 5 trials.

2019; Naik et al., 2018; Sanchez et al., 2018).

4.1 Measuring Redundancy in Embeddings

First, we found that language models redundantly
encoded syntactic information in their embeddings,
which motivated using dropout probes.

We used a technique from prior art, Mutual In-
formation Neural Estimator (MINE), which is a
neural-network based approach for estimating the
mutual information between two random variables
(Belghazi et al., 2018). It does so by computing a
lower bound of mutual information and training a
neural network to maximize that value. This pro-
vides a conservative but tight estimate of mutual
information. We refer readers to Appendix A for
further details of our implementation.

We defined four random variables of interest.
The first, D, was the depth of each word in a sen-
tence’s parse tree; in other words, the labels used
to train depth probes in prior literature (Hewitt
and Manning, 2019). The second random vari-
able, Z, was the 768-dimensional embeddings gen-
erated by a language model for each token in an
input sentence. Lastly, the third and fourth ran-
dom variables (Z1 and Z2) corresponded to the
first and second halves of Z for each token. That
is, these variables comprised the starting and end-
ing 384 units for each token’s embedding. By
measuring the mutual information between differ-
ent pairs of these variables, one may formalize
our redundancy hypothesis into the following test:
I(Z,D) < I(Z1, D) + I(Z2, D). Intuitively, if
the test holds, there is shared syntactic information
between Z1 and Z2.

We trained a MINE neural network on the first
5000 examples from the Penn TreeBank to esti-
mate mutual information between random variables
(Marcus et al., 1993). Embeddings were taken from
the fourth layer of the MASK, QA, and NLI mod-
els, although they may be generated elsewhere. Our
results are presented in Table 1. For all models,
I(D,Z) < I(D,Z1) + I(D,Z2); i.e., one gains



Mask Model Likelihood of Plural Candidates in Coordination Suite
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Figure 3: Mean and standard deviation probabilities over 5 trials for plural candidates using the original embeddings
(green) or counterfactual embeddings favoring plural (dashed red) or singular (solid blue) parses. Counterfactual
embeddings generated by both depth- and distance-based probes caused the greatest shift in model predictions.

little to no information for predicting D from the
full Z instead of from just Z1 or just Z2. This is
evidence of redundant syntactic information in Z.

In these experiments using MINE, we demon-
strated how Z1 and Z2 could be defined as the sub-
sets of redundant activations depicted in Figure 2.
One could define other Z1 and Z2 to better char-
acterize redundancy; here, we merely claim that
at least some redundancy is present in the model
embeddings.

4.2 Ambiguity Suite Experiments

The prior section established that language mod-
els encode syntactic information redundantly; here,
we showed that dropout probes overcame the chal-
lenges introduced by this redundancy by better
aligning with models’ true causal usage of syntax.
We compared dropout probes to the probes used in
prior art via counterfactual experiments inspired by
those used by Tucker et al. (2021).

We trained both distance- and depth-based
probes, the two types of syntactic probes proposed
by Hewitt and Manning (2019). We trained a new
probe for each layer of each model, conducting 5
trials with random seeds 0 through 4. All probes
were implemented as 3-layer, non-linear neural nets
that mapped from model embeddings (of dimen-
sion 768) through 2 ReLU layers of dimension
1024, to a final layer to predict a word’s depth or
distance in the parse tree from other words. Probes
were trained for up to 100 epochs, with early stop-
ping based on validation set loss, using the Penn
TreeBank dataset (Marcus et al., 1993). We found
that this produced more accurate probes than prior
art, which capped training at 30 epochs, and that
these resulting probes did better than prior reported
results, even without using dropout. Each probe
was prefixed by a dropout layer with a parameter,

α, that specified the proportion of inputs that were
masked before being fed to the probe. By setting
α = 0, we recreated prior art of standard probes.
We additionally investigated positive values of α to
measure the benefit of dropout. Counterfactual em-
beddings were created via gradient descent through
trained probes (with dropout disabled), as in prior
art (Tucker et al., 2021). That is, new embeddings,
z′, were generated to decrease the loss between
p(z′) and a desired parse. We called this loss the
counterfactual loss.

In these experiments, we reported two types of
results. First, we visualized the effect of interven-
tions, by layer, for a particular dropout rate and
counterfactual loss. This revealed that, typically,
earlier layers in models were more susceptible to
interventions. Second, we devised an aggregate
metric for the average difference, across all layers,
in model outputs for counterfactuals generated with
different parses. This showed how lower counter-
factual losses (i.e., more interventions) and higher
dropout typically revealed larger effects.

Additionally, we note that the probes were
trained to parse single sentences, but two of the
models (QA and NLI) accepted two sentences as in-
puts. For both models, counterfactual embeddings
were creating by only updating the syntactically-
ambiguous sentence and then concatenating it to
the unaltered other embeddings.

4.2.1 Masked Language Model

In testing the Mask model, we largely reproduced
patterns in prior results that such models use rep-
resentations of syntax causally, although we found
new results with dropout depth probes. We tested
the model with ambiguity test suites inspired by the
Coordination and NP/Z suites from Tucker et al.
(2021). For example, in the Coordination suite,
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Figure 4: For the Coordination (left) and NP/Z (right) suites, interventions to a lower counterfactual loss (x axis)
and with higher-dropout probes (different curves) revealed the greatest causal effects. Means and standard errors.

one sentence reads, “The man saw the girl and
the dog [MASK] tall.” One may plausibly insert
either a plural or singular noun in the masked lo-
cation, depending upon the syntactic interpretation
of the sentence. We generated sentences using
a template-based method; details of the prompts
(and all prompts in this work) are included in Ap-
pendix B.

The results of passing z′ generated from differ-
ent parses in the Coordination suite through the
rest of the Mask model are plotted in Figure 3. The
three plotted lines correspond to the model output
using the normal embeddings (green), using z′ gen-
erated according to a parse favoring plural verbs
(red dashed), or using z′ generated using parses
implying singular verbs (blue solid). The y axis
corresponds to the probability the model assigned
to words implying a plural interpretation (“were,”
“are,” and “as”) fitting in the masked location, nor-
malized by the sum of probabilities assigned to
those plural words or singular words (“was” and
“is”). If the Mask model uses syntactic representa-
tions correctly, counterfactuals from plural parses
should increase the probability of plural words.

We indeed found that effect, although it is clear-
est when using dropout probes. The causal effects
using standard probes are plotted in the left col-
umn; we reproduced the findings from prior art
that distance-based probes create the desired effect,
but depth-based probes had little to no effect. Con-
versely, when using dropout probes with α = 0.4
(right column), we found much larger effects.

Averaging across all layers, we also measured
the mean difference in output when using counter-
factual embeddings generated according to differ-
ent parses. Intuitively, this generated a single num-
ber that captured the average difference between
the red and blue lines in the plots in Figure 3.

For a range of dropout values and counterfactual
losses, we plotted the mean causal effect for the
Coordination and NP/Z suites in Figure 4, using dis-
tance probes. For a given counterfactual loss, using
higher dropout probes produced larger effects. In
addition, lower counterfactual losses (correspond-
ing to more gradient steps) induced greater effects.
These trends also held true for depth-based probes
(Appendix D). Overall, using the Mask model, we
recreated prior art and found new evidence that
models also use a depth-based representation of
syntax.

4.2.2 QA Model
We also found that the QA model used representa-
tions of syntax causally, contrary to prior findings,
through a series of similar causal analysis experi-
ments using syntactically-ambiguous inputs. The
QA model is a BERT-based model fine-tuned on a
question-answering task to map from context and
a question to a continuous span of the context that
answered the question (Rajpurkar et al., 2016).

We performed experiments using depth- and
distance-based probes, using dropout values at in-
crements of 0.1 from 0 to 0.9. We used three test
suites for analyzing the causal use of syntax in
the QA model: “Coordination”, “Relative Clause”
(RC), and a “Noun Phrase/Verb Phrase” (NP/VP)
suite. The Coordination suite consisted of 256
prompts with coordination ambiguity like, “I saw
the men and the women were tall. Who was tall?”
The RC suite consisted of 193 prompts with attach-
ment ambiguity of a relative clause like, “I saw the
women and the men who were tall. Who was tall?”
The NP/VP suite consisted of 256 prompts like,
“The girl saw the boy with the telescope. Who had
the telescope?” Prompts were designed such that
answers were dictated by syntactic interpretations.

Findings for the Coordination suite are plotted
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Figure 5: Causal effects for the QA model using depth- (top row) and distance- (bottom row) based probes with
dropout of 0 (left column) or 0.4 (right column) on the Coordination corpus to counterfactual loss 0.05. Dropout
probes produce more stable and larger effect sizes. Means and standard deviations over 5 trials plotted.

0.1 0.2 0.3
0.00

0.05

0.10

0.15

Counterfactual Loss

M
ea

n
C

au
sa

lE
ff

ec
t

QA Coordination

0.1 0.2 0.3
0.0

1.0

2.0

3.0
·10−2

Counterfactual Loss

QA NP/VP

0.1 0.2 0.3
0.0

1.0

2.0

3.0
·10−2

Counterfactual Loss

QA RC

α = 0.0
α = 0.2
α = 0.4
α = 0.6
α = 0.8

Figure 6: Mean causal effects when using depth-based probes for the QA test suites. Smaller counterfactual losses
and higher dropout rates typically induced greater effects, although the scale of the effects varied by suite (note
different axis scales). Means and standard deviations over 5 trials.

in Figure 5. On the y axis, we plotted the model’s
prediction of words in the first noun phrase (NP1)
starting the answer. Correct causal use of repre-
sentations of syntax would move the red line (cor-
responding to parses indicating NP1) above the
original outputs, in green, and the blue line (for the
other parse) below.

Unlike prior art, we found evidence that QA
models use representations of syntax causally. In
the left column of Figure 5, we found similar results
to prior art: using standard depth-based probes pro-
duced noisy results, and distance-based probes had
a small effect. (In fact, this effect size shrank if we
only trained the distance probe for 30 epochs, as in
prior art, instead of the 100 epochs we used, indi-
cating the importance of well-trained probes.) In
contrast to the standard probes, the dropout probes,
plotted in the right column, revealed much larger
effects of syntactic interventions.

More systematic analysis for all dropout rates,
using distance and depth-based probes for all 3
test suites confirmed these trends. We plotted the
aggregate metrics for all suites using depth probes

in Figure 6. The causal effects were smaller in
the RC and NP/VP suites than in the Coordination
suite, indicating that the model may have learned
a weaker causal link for these syntactic relations.
Nevertheless, all suites demonstrate the importance
of using dropout in probes: without dropout (solid
black curve), the causal effects were smaller than
for any positive dropout rate.

We note briefly that the causal effects uncovered
by dropout probes may not be solely attributed to
dropout probes performing better at their parsing
task. In fact, adding dropout worsened probe per-
formance according to typical probe performance
metrics (Appendix E).

4.2.3 NLI Model
Lastly, we performed similar causal analysis on the
NLI and NLI-HANS models and, in contrast to the
Mask and QA models, we found no evidence for
the causal use of syntax using any of our probes for
either model. The NLI model was finetuned on just
the MNLI corpus, and the NLI-HANS model was
finetuned with both the MNLI and HANS corpora,



QA F1 via Interventions

Figure 7: Using dropout probes over a range of dropout
values (different curves) and counterfactual stopping
losses improved model performance, and dropout typ-
ically improved performance. Medians and quartiles
plotted over 5 trials.

based on code from Gao et al. (2021). The NLI
model had a test set accuracy of 86%, and the NLI-
HANS model had test set accuracy of 93%.

We used a test suite based on the Coordination
suite already introduced in this work: an example
prompt was “The person saw the keys in the cab-
inets which are green. The keys are green.” The
models had to classify these inputs among three
classes of entailment, contradiction, or neutrality.

Ultimately, we failed to find any evidence that
either the NLI or the NLI-HANS model used syn-
tactic information causally. The models always
predicted entailment for all prompts, whether using
original embeddings or counterfactuals generated
for different parses. We used distance probes with
dropout values from 0 to 0.9 and created counterfac-
tuals for losses from 0.05 to 0.3 and never observed
a shift in predicted probability mass of more than
1% when using counterfactuals. Unfortunately, this
suggests that simply augmenting the MNLI dataset
with HANS may not be enough to produce a model
that uses syntactic information causally.

4.3 Boosting Performance with Probes

Earlier, we demonstrated that the QA model
causally used representations of syntax for pre-
dictions; here, we showed that we could improve
QA model performance at test time by “injecting”
syntactic information into embeddings. Because
prior art had not found that QA models used syntax
causally, such interventions were not previously
pursued, as far as we are aware.

We designed a new, syntactically challenging
“Intervene” test suite of 288 prompts for the QA
model. Example prompts are “The person saw
the keys by the cabinet which was green. What
was green?” and “The person saw the keys by the
cabinet which were green. What was green?” An-

swering correctly (“the cabinet” first and “the keys”
second) depends upon using noun-verb agreement.
We used template-generated parse trees for each
sentence and distance probes to create counterfac-
tual embeddings for each sentence at layer 4 of the
QA model. Layer 4 was chosen based on perfor-
mance on a validation dataset (Appendix C).

We passed the original and counterfactual em-
beddings through the QA model and measured per-
formance on a test suite. F1 performance is plot-
ted in Figure 7; exact match metrics had similar
trends. Typically, higher-dropout probes improved
performance more, although the highest-dropout
probes deteriorated for the lowest counterfactual
losses. We hypothesize that this deterioration cor-
responded to generating out-of-distribution embed-
dings, but this topic warrants further study.

Lastly, we performed a similar experiment us-
ing the NLI and NLI-HANS models using 486
prompts drawn from the HANS dataset like “The
doctor near the actor danced. The actor danced”
(McCoy et al., 2019). The NLI model achieved
50% accuracy (always predicting entailment) and
the NLI-HANS model achieved 99% accuracy. Nei-
ther model’s accuracy changed significantly when
using counterfactuals with the correct parse for the
first sentence, yet again indicating that these mod-
els may not use representations of syntax causally.

5 Contributions and Conclusion

In this work, we designed and evaluated “dropout
probes,” a new neural probing architecture for gen-
erating useful causal analysis of trained language
models. Our technical contribution — adding a
dropout layer before probes — was inspired by a
theory of redundant syntactic encodings in mod-
els. Our results fit within three categories: we
showed that 1) models encoded syntactic informa-
tion redundantly, 2) dropout probes, unlike stan-
dard probes, revealed that QA models used syn-
tactic representations causally, and 3) by injecting
syntactic information at test time in syntactically-
challenging domains, we could increase model per-
formance without retraining.

Despite our step towards better understanding of
pretrained models, future work remains. Natural
extensions include studying pretrained models be-
yond those considered in this work, further research
into redundancy in embeddings, more investigation
into inserting symbolic knowledge into neural rep-
resentations, and new methods for training models



to respond appropriately to interventions.

6 Ethical and Broader Impacts

While the majority of this paper details the tech-
nical contributions of our work, here, we briefly
consider some of the possible consequences of our
findings based on transparency and causal model-
ing.

Fundamentally, we believe that causal analysis
of models is a powerful tool towards more ethical
AI. Our dropout probes enable better inspection of
models, providing possible mechanisms for regula-
tors, ethicists, and even the general public to better
understand AI systems with which they interact.
By injecting information into models at test time,
as demonstrated in Section 4.3, we provide another
mechanism for people to control model behavior.
Thus, our tool may reinforce values of transparency
and value-alignment in AI, contingent upon access
to the model for probing.

While we hope that our probing mechanism will
be used for good, misuse of the tool is certainly
possible. In particular, the very causal rules that
our tool uncovers may be used to reinforce biases.
For example, people may attempt to argue that a
gender bias exhibited by a model are evidence of
the “correctness” of that bias. We urge readers to
remember that models likely reflect biases present
in human-generated data and certainly not “true”
stereotypes.

We also note that the transparency benefits of our
technique are not universally accessible. Training a
single probe on a single layer took approximately 2
minutes on an NVIDIA GeForce 3080; generating
counterfactuals took approximately 1 second per
counterfactul on similar hardware. Although these
operations individually are relatively lightweight
(and certainly less computationally intensive than
finetuning a whole model), systematic evaluation of
models for many layers, multiple probes, and many
counterfactuals is more challenging. Furthermore,
all analysis assumes access to the internals of the
pretrained model itself.

Lastly, while our work is limited to diagnosis of
existing models, we hope that it will enable impor-
tant future research in causally-motivated models.
We hope to ultimately develop models that blend
causal rules based on human guidance with emer-
gent learned patterns from data. Our work can
complement such research by certifying that mod-
els have indeed learned the desired rules.
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The mutual information between two vari-
ables is defined via the KL Divergence be-
tween the joint distribution of the variables and
the product of their marginals: I(X,Y ) =
DKL(P (XY )||P (X)P (Y )). For notational sim-
plicity, we describe the joint distribution as P and
the product of the marginals as Q. Let us further
state that P and Q define outputs that are jointly in
RD.

A lower-bound for the KL divergence is as fol-
lows, setting F as any class of functions that maps
from RD to R:

DKL(P ||Q) ≥ supT∈F EP [T ]− (EQ[e
T ]) (1)

In other words, one can lower bound the mutual
information by finding a function, T , that max-
imizes the difference between the two terms in
Equation 1. Belghazi et al. (2018) do so with func-
tions parametrized as a neural net that maps from
the concatenation of two inputs (one for each ran-
dom variable) to a single-valued output. Training
the neural net is conducted to maximize the value
described by Equation 1.

In our experiments, we create neural networks
with separate, linear layers of size 64 for each input.
The embeddings from those two layers are concate-
nated, passed through two 1024-dimensional layers
with ReLU activations, and then passed through a
linear layer with a single output. We thus mapedp
from the two inputs to a single, real-valued output.

Training was performed using batch size 32 over
50 epochs, at which point the mutual information
estimates appeared to have converged.

B Test Suite Creation

Here, we specify the details of the test suites used
to evaluate models for reproducibility.

The Mask model Coordination test suite com-
prised sentences like “The man saw the girl and
the dog [MASK] tall.” More generally, sentences
followed the following template: “The NN1 V the
NN2 and the NN3 [MASK] ADJ.” We created all
sentences by iterating through the combinations
of the words described in Table 2. This generated
243 sentences, and each sentence was associated
with 2 parses: one described as a conjunction of
sentences (e.g., “(The man saw the girl) and (the
dog [MASK] tall.)”) and one as a single sentence
with a conjunction of noun phrases (e.g., “The man
saw (the girl and the dog) [MASK] tall.”).

Category Words
NN1 man, woman, child
NN2 boy, building, cat
NN3 dog, girl, truck

V saw, feared, heard
ADJ tall, falling, orange

Table 2: Words used for sentence generation in the Mask
Coordination test suite.

The mask model NP/Z test suite comprised
sentences like, “When the dog scratched the vet
[MASK] ran.” More generally, sentences followed
the following template: “When the NN1 V1 the
NN2 [MASK] V2.” Each sentence was associ-
ated with two parses, favoring either adverbs (e.g.,
”When the dog scratched the vet quickly ran” or
nouns, “When the dog scratch the vet she ran”).
We used the word tuples described in Table 3, in-
spired by prior art, to generate 150 sentences.

The QA model Coordination test suite comprised
prompts like “Who was tall? The happy stranger
saw the angry men and the angry women were tall.”
More generally, the prompts followed the following
template: “Who was ADJ1? The ADJ2 NN1 V the
ADJ3 NN3 and the ADJ4 NN4 were ADJ1.” We
created 256 prompts by iterating through combina-
tions of the words in Table 4. “None” adjectives
were excluded from the text.

The QA model NP/VP suite comprised prompts
like “Who had the telescope? The girl saw the
boy with the telescope.” The prompts followed
the following template: “Who had the NN1? The
ADJ1 NN2 ADV V the ADJ2 NN3 with the ADJ3
NN4.” In this suite, the choice of V and NN4 was
tightly coupled - one may see with a telescope but
not see with a stick, for example. Table 5 details the
combinations of words used to fill out the template,
including V-NN4 pairs. Overall, we generated 256
prompts.

The QA model RC suite comprised prompts like
“Who was desperate? The women and the men
who were desperate bribed the politician.” The
prompts followed the following template: “Who
was ADJ1? The ADJ2 NN1 and the ADJ3 NN2
who were ADJ1 V the NN3.” We generated 192
example prompts by iterating over combinations
of the words listed in Table 6, excluding sentences
in which NN1 and NN2 or ADJ2 and ADJ3 would
have been the same.

The Intervention suite for the QA model com-



NN1 V1 NN2 V2
(dog/child) (scratched/bit) (vet/girl/boy) (ran/screamed/smiled)
author wrote book grew
(doctor/professor) lectured student listened
(girls/boys) raced (kids/children) (watched/cheered)
(people/spectators) watched (show/movie) (stopped/paused)
(lawyers/judges) (studied/considered) case (languished/proceeded)
(people/viewers) (notice/spot) actor (departs/stays)
(band/conventions) left (hotel/stalls) closed

Table 3: Words used for sentence generation in the Mask NP/Z test suite.

Category Words
ADJ1 tall, short
ADJ2 happy, None
ADJ3 angry, None
ADJ4 angry, None
NN1 stranger, child
NN2 men, women
NN3 women, men

V saw, believed

Table 4: Words used for sentence generation in the QA
Coordination test suite.

Category Words
V - NN4 (saw, telescope), (poked, stick)

ADJ1 tall, None
ADJ2 short, None
ADJ3 special, None
NN1 man, woman
NN2 boy, girl

Table 5: Words used for sentence generation in the QA
NP/VP test suite.

prised prompts like “What was green? The human
saw the keys by the cabinet which were green.”
More generally, prompts were created via the fol-
lowing template: “What was ADJ1? The NN1 V
the NN2 by the NN3 which was/were ADJ1.” By
changing the plurality of NN2 or NN3 and replac-
ing “was” with “were,” the correct answer should
change. Overall, we generated 288 sentences by
iterating over all combinations of the words listed
in Table 7, such that exactly one of NN1 and NN2
was plural at a time.

C Hyperparameter Selection

In the intervention experiments in Section 4.3, we
performed interventions at layer 4, based on results
of a validation study shown below. We reported

Category Words
ADJ1 corrupt, desperate
ADJ2 tall, smart, rich
ADJ3 tall, smart, rich
NN1 men, women
NN2 men, women
NN3 judge, politician

Table 6: Words used for sentence generation in the QA
RC test suite.

Category Words
ADJ1 green, large, dirty
NN1 human, stranger, child
NN2 key, keys, gadget, gadgets
NN3 cabinet, cabinets, vase, vases

Table 7: Words used for sentence generation in the QA
intervention experiments.

the results for probes with different dropout rates
and for varying counterfactual losses, but we had
to choose the layer of the QA model at which to
perform interventions.

Therefore, we created a validation suite based on
the Intervention template, using new nouns, verbs,
and adjectives. For dropout rates from 0.0 to 0.3,
ranging over counterfactual losses, and layers from
1 to 7, we computed the QA model’s F1 and Exact
Match scores on the validation suite. These results
are included in Table 8, and strongly suggested that
performance, for all probes, was most increased
via interventions at layer 4.

D Varying Dropout Rates

In the main paper, we reported included only some
of the results for distance- and depth-based probe
interventions. Here, we first show, in more detail,
how increasing the dropout rate grows the causal
effect with the QA attachment suite and distance



α/Loss Layer 0.05 0.1 0.2 0.3

Dist. 0.0

1 71.9/59.4 72.7/60.9 73.4/60.9 73.4/60.9
2 69.5/56.3 71.9/60.9 71.9/60.9 71.9/59.4
3 71.1/60.9 71.1/59.4 71.9/59.4 71.9/59.4
4 71.9/62.5 72.6/60.4 71.9/59.4 73.4/60.9
5 68.8/57.8 68.8/56.3 72.7/60.9 73.4/62.5
6 68.8/57.8 69.5/59.4 71.9/60.9 72.7/62.5
7 70.3/60.9 70.3/60.9 72.6/62.5 72.6/62.5

Dist. 0.1

1 69.5/56.3 71.1/59.4 71.9/59.4 71.9/59.4
2 68.8/60.9 70.3/60.9 69.3/59.4 71.1/59.4
3 67.2/56.4 69.5/60.9 72.7/60.9 73.4/62.5
4 75.8/64.1 72.7/60.9 72.7/60.9 72.7/60.9
5 68.8/56.3 70.3/59.4 71.9/57.8 71.1/56.3
6 75.0/59.4 72.7/60.9 73.4/62.5 73.4/62.5
7 72.7/60.9 72.7/62.5 72.7/62.5 72.7/60.9

Dist. 0.2

1 69.5/54.7 70.3/56.3 72.7/59.4 73.4/60.9
2 73.4/60.9 74.2/59.4 74.2/62.5 74.2/62.5
3 70.3/59.4 69.5/56.3 71.1/57.8 71.9/57.8
4 74.2/65.6 75.0/65.6 75.8/65.6 75.0/64.1
5 71.1/62.5 71.9/64.1 71.1/62.5 71.9/60.9
6 73.4/62.5 71.8/59.4 74.2/62.5 74.2/62.5
7 71.9/59.4 73.4/62.5 72.7/62.5 72.7/60.9

Dist. 0.3

1 67.2/54.7 70.3/59.4 73.4/62.5 72.7/60.9
2 68.8/60.9 71.1/60.9 72.7/62.5 71.9/60.9
3 61.7/53.1 64.8/56.3 71.9/64.1 72.3/65.6
4 67.2/59.4 71.9/64.1 75.0/65.6 75.8/65.6
5 62.5/56.3 68.8/59.4 70.3/62.5 70.3/62.5
6 71.1/62.5 711/64.1 70.3/60.9 71.1/60.9
7 75.0/64.1 72.7/62.5 71.9/62.5 73.4/62.5

Table 8: Validation Coord. suite results (F1/Exact Match) using distance probes. For each probe type, we iterated
over intervention layer and counterfactual loss value. The small validation suite was useful for rapid identification
of good hyperparameter settings. All probes had the best performance at layer 4 (in bold).

probes of varying α. Next, we include the mean
causal effect plots for Mask and QA models using
both types of probes on the 5 total suites.

First, we plotted an example of how increas-
ing the dropout rate grew the causal effect in the
QA attachment quite in Figure 8. We found that
positive dropout values consistently outperformed
probes with no dropout. Furthermore, for α rang-
ing from 0.1 to 0.4, increasing the dropout rate
seemed to increase the effect size. Considering
only interventions at layer 2, for example, vanilla
probes shifted model predictions by at most 2%
for different parses; for probes with dropout 0.5,
probabilities shifted by roughly 20%.

Finally, we included results for all dropout rates
and counterfactual losses in Figures 9 and 10.

E Probe Performance Metrics

In the main paper, we demonstrated the benefits
of using dropout probes for creating counterfac-
tual embeddings. One could hypothesize that the
dropout enables better counterfactuals because the
probes are prevented from overfitting to the training
data. We found that that was not the case.

In Figure 11, we plotted probe performance met-
rics for the distance- and depth-based probes. For
the distance probe, we reported the spearman cor-
relation coefficient between predicted and actual
pairwise distances between words in a sentence’s
parse tree. For the depth probe, we reported the
accuracy of the probe in predicting the word at the
root of the syntax tree. Both metrics were used
in prior probing literature (Hewitt and Manning,
2019).
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Figure 8: Dropout distance probes with dropout rates from 0.0 to 0.5 showed how, to a point, increasing the dropout
rate increased the effect size for QA models on the Coord. suite.

We found that, while using non-linear probes
boosted probe performance compared to linear

probes, adding dropout actually worsened probe
performance. This suggests that the benefits from
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Figure 9: Mask mean causal effects using depth- (top) or distance-based (bottom) probes. Depth probes revealed
smaller effects than distance-based probes, but a similar pattern of benefiting from lower counterfactual loss and
higher dropout.
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Figure 10: QA mean causal effects using depth-based (top) or distance-based (bottom) probes.

dropout in counterfactual generation arose from a
phenomenon other than higher-performing probes.

F Scientific Artifacts

In this work, we built upon pre-existing scientific
artifacts, including datasets and publicly-avaible
code. Here, we briefly list their licenses and in-

tended use cases. We used all artifacts for purely
academic purposes.

The Penn TreeBank is licensed under the “LDC
User Agreement for Non-Members” (Marcus et al.,
1993). The dataset is commonly used in many aca-
demic settings (e.g., Hewitt and Manning (2019);
Tucker et al. (2021)).
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Figure 11: Metrics for the distance (left) and depth (right) probes showed that introducing dropout worsened probe
performance as measured on the probe prediction tasks. Means over 5 trials plotted. All standard deviations less
than 0.01.

The Stanford Question Answering Dataset 2.0 is
under a creative commons license and is commonly
used in academic settings (Rajpurkar et al., 2016).

The MNLI dataset is under an OANC license,
“which allows all content to be freely used, modi-
fied, and shared under permissive terms” (Williams
et al., 2018). The HANS dataset is under an MIT
license (McCoy et al., 2019). Both datasets are
commonly used in academic settings (McCoy et al.,
2019).

The code we used to train the NLI and NLI-
HANS models is under an Apache License 2.0
(Gao et al., 2021) and was developed for academic
use.


