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ABSTRACT

Performance of recommender systems (RecSys) relies heavily on the amount of
training data available. This poses a chicken-and-egg problem for early-stage
products, whose amount of data, in turn, relies on the performance of their RecSys.
In this paper, we explore the possibility of zero-shot learning in RecSys, to enable
generalization from an old dataset to an entirely new dataset. We develop, to
the best of our knowledge, the first deep generative model, dubbed ZEro-Shot
Recommenders (ZESREC), that is trained on an old dataset and generalize to a new
one where there are neither overlapping users nor overlapping items, a setting that
contrasts typical cross-domain RecSys that has either overlapping users or items.
We study three pairs of real-world datasets and demonstrate that ZESREC can
successfully enable such zero-shot recommendations, opening up new opportunities
for resolving the chicken-and-egg problem for data-scarce startups or early-stage
products.

1 INTRODUCTION

As machine learning models, the performance of RecSys relies heavily on the amount of training
data available. This might be feasible for large e-commerce or content delivery websites such as
Overstock and Netflix, but poses a serious chicken-and-egg problem for small startups, whose amount
of data, in turn, relies on the performance of their RecSys. On the other hand, zero-shot learning Xu
et al. (2020); Snell et al. (2017) promises a certain degree of generalization from an old dataset to an
entirely new dataset. In this paper, we investigate the topic of zero-shot learning in RecSys and start
by formally identifying four key properties of this problem: (1) cold users, (2) cold items, (3) domain
gap, and (4) no access to target data (see section 2 for details).

In this paper, we propose, to the best of our knowledge, the first deep generative model, dubbed
ZEro-Shot Recommenders (ZESREC), to address this problem. Combining the merits of sequential
RecSys (solve cold users), the idea of universal continuous ID space (solve cold items), and a novel
deep generative model (mitigate domain gap), our ZESREC successfully enables recommendation
in the zero-shot setting where all users and items in the target domain are unseen during training.
Essentially ZESREC tries to learn transferable user behavioral patterns in a universal continuous ID
space. To summarize our contributions:

• We identify the problem of zero-shot recommender systems and introduce the notion of
universal continuous identifiers that makes recommendation in a zero-shot setting possible.

• We propose ZESREC as the first deep generative model for addressing this problem, and
derive two Bayesian inference schemes based on our vanilla ZESREC.

• We provide empirical results, demonstrating the effectiveness of both the vanilla and the
two Bayesian versions of ZESREC in the zero-shot recommendation setting.

• We provide case studies showcasing that ZESREC can learn interpretable user behavioral
patterns that can generalize across datasets.

2 ZERO-SHOT RECOMMENDER SYSTEMS

In this section we introduce our ZESREC which is compatible with any sequential model. Without
loss of generality, here we focus on NL descriptions as a possible instantiation of universal identifiers,
but note that our method is generalizable to other modalities such as images and videos.
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Definition of Zero-shot Learning in RecSys. Our zero-shot setting includes four unique properties:
(1) Cold Users: No overlapping users between the training data and the test data. (2) Cold Items:
No overlapping items between the training data and the test data. (3) Domain Gap: The training and
test data come from different domains (i.e., a source domain and a target domain). (4) No Access to
Target Data: Target-domain data is available only during inference, and it only allows online access.

Problem Setup. A model is trained using user-item interactions from the source domain and then
deployed for personalized recommendation in the target domain given user’s history. Note that in
practice we append a dummy item at the beginning of each user session, so during inference we could
recommend items even for users without any history by ingesting the dummy item as context. In our
zero-shot setting, the model is not allowed to fine-tune on any data from the target domain.

2.1 FROM CATEGORICAL DOMAIN-SPECIFIC ITEM ID TO CONTINUOUS UNIVERSAL ITEM ID

Current RecSys models learn item embeddings through interactions. These embeddings are indexed
by categorical domain-specific item ID, which is transductive and not generalizable to unseen items.
In this paper, we propose to use item generic content information such as NL descriptions to produce
item embeddings, which can be used as continuous universal item ID. Since such content information
is domain agnostic, the model trained on top of it would be transferable across domains, therefore
making zero-shot RecSys feasible. Based on universal item embeddings, one can then build sequential
models to obtain user embeddings by aggregating embeddings of items in user histories. Therefore
we introduce universal embedding networks (UEN), which use continuous universal embeddings to
index items (item UEN) and users (user UEN); these will be the backbones of our generative models.

2.2 MODEL

We propose a deep generative model with a probabilistic encoder-decoder architecture. The encoder
ingests items from user history to yield the user embedding, while decoder computes recommendation
scores based on similarity between user embeddings and item embeddings.

Generative Process. The generative process of ZESREC (in the source domain) is as follows (see
figure 1 for the corresponding graphical model):

1. For each item j:
• Compute the item universal embedding: mj = fe(xj).
• Draw a latent item offset vector ϵj ∼ N

(
0, λ−1

v ID
)
.

• Obtain the item latent vector: vj = ϵj +mj .
2. For each user i:

• For each time step t:
– Compute the user universal embedding: nit = fseq([viτ ]

t−1
τ=1).

– Draw the latent user offset ξit ∼ N
(
0, λ−1

u ID
)
.

– Obtain the latent user vector: uit = ξit + nit.
– Compute recommendation score Sitj for each tuple (i, k, j), Sitj = fsoftmax(u

⊤
itvj)

and draw the t-th item for user i: Rit∗ ∼ Cat([Sitj ]
J
j=1).
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Figure 1: Graphical model for ZESREC. The item
side (left) and the user side (right) share the same
λv and v’s. The plates indicate replication.

Here fsoftmax(·) is the softmax function:
fsoftmax(u

⊤
itvj) = exp(u⊤

itvj)/
∑

j exp(u
⊤
itvj).

Cat(·) is a categorical distribution. fe(·) is item
UEN, fseq(·) is user UEN. iτ in viτ indexes
the τ -th item that user i interacts with. λu and
λv are hyperparameters. The latent item offset
ϵj = vj −mj provides the final latent item vec-
tor vj with the flexibility to slightly deviate from
the content-based item universal embedding mj .
Similarly, the latent user offset ξit = uit − nit

provides the final latent user vector uit with the
flexibility to slightly deviate from the user uni-
versal embedding nit. Intuitively, ϵj and ξit
provide domain-specific information on top of
the domain-agnostic information from mj and
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nit. In the target domain we will remove ϵj from vj , and ξit from uit, which can be seen as an
attempt to remove the bias learned from the source domain.

Training. The MAP estimation in the source domain can be decomposed as following:

P (U(s),V(s)|R(s),X(s), λ−1
u , λ−1

v ) ∝ P (R(s)|U(s),V(s)) · P (U(s)|V(s), λ−1
u ) · P (V(s)|X(s), λ−1

v ),

where U(s), V(s), R(s) and X(s) denote the collection of all users, items, user-item interactions, and
NL descriptions of items in the source domain, respectively.

Maximizing the posterior probability is equivalent to minimizing the joint Negative Log-Likelihood
(NLL) of U(s) and V(s) given R(s), X(s), λ−1

u , and λ−1
v :

L =

Is∑
i=1

Ni∑
t=1

− log(fsoftmax(u
⊤
itvit )) +

λu
2

Is∑
i=1

Ni∑
t=1

||uit − fseq({viτ }
t−1
τ=1)||

2
2 + λv

2

Js∑
i=1

||vj − fe(xj)||22. (1)

Training on the source-domain data produces MAP solutions with corresponding UENs:

(UMAP,VMAP) = argmax
U,V

p(U,V|X) ≈
(
fseq(fe(X)), fe(X)

)
. (2)

Inference and Recommendation in the Target Domain. Once the model is trained using source-
domain data, it can recommend unseen items j ∈ Vt (where Vt ∩ Vs = ∅) for any unseen user i ∈ Ut

(where Ut ∩ Us = ∅) from the target domain based on the approximate MAP inference below:

p(R(t)|X(t)) =

∫
p(R(t)|U(t),V(t),X(t))p(U(t),V(t)|X(t))dU(t)dV(t)

≈
∫

p(R(t)|U(t),V(t),X(t))δ
U

(t)
MAP

(U(t))δ
V

(t)
MAP

(V(t))dU(t)dV(t),

where δ(·) denotes a Dirac delta distribution. U(t)
MAP and V

(t)
MAP are the MAP estimate of U(t) and

V(t) given X(t) in the target domain, using the learned functions fseq(·) and fe(·). The reason for
the approximation is that ZESREC has no access to interactions R(t) in the target domain, making
the posterior collapse to the prior. The user and item latent matrices U(t)

MAP,V
(t)
MAP in the target domain

enable us to perform zero-shot recommendation by computing recommendation scores based on inner
products and recommend item argmaxj fsoftmax(u

⊤
itvj).

Full Bayesian Treatment. Besides MAP inference, we have derive a full Bayesian treatment for
ZESREC. Experiments show that our full Bayesian version could further improve the performance
of zero-shot recommendation (see section A.6 for details).

Item UEN and User UEN. The generative process above relies on the item UEN fe(·) to obtain
the item universal embedding mj and the user UEN fseq(·) to obtain the user universal embedding
nit. In practice, these UENs instantiated using a pretrained BERT network coupled with a sequential
model, e.g., an RNN. See section A.8 for implementation details.

3 EXPERIMENTS

In this section, we evaluate our ZESREC against various in-domain and zero-shot baselines on three
source-target dataset pairs, with the major goals of addressing the following questions:

Q1 How accurate (effective) is ZESREC compared to the baselines? (section 3.2)
Q2 If one allows training models using target-domain data, how long does it take for non

zero-shot models to outperform zero-shot recommenders? (section A.3)
Q3 Does ZESREC yield meaningful recommendations for users with similar behavioral patterns

in the source domain and target domain? (section A.4)

Simulated Online Scenarios. In our experiments, ZESRec accesses target-domain data only during
inference (but not during training) to simulate online scenarios, where new businesses just open and
the customers are using service in real-time. This online access setting is substantially different from
batch access ahead of time as it prevents us from training a RecSys in target domains before serving.

Datasets. We use three different real-world dataset pairs with item NL descriptions, one from
Amazon McAuley et al. (2015) and two from MIND (Wu et al., 2020). (1) Amazon: We consider
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Table 1: Zero-shot results on three dataset pairs: (1) Amazon: ‘Grocery and Gourmet Food’ →
‘Prime Pantry’, and (2) MIND: ‘News’ → ‘Finance’, and ‘Lifestyle’ → ‘Finance’. Methods such as
HRNN, HRNN-Meta, and POP are oracle methods trained on target-domain data. The top 3 zero-shot
results are shown in bold. N@20 represents NDCG@20 and R@20 represents Recall@20.

Method AMAZON G → P MIND N → F MIND L → F
N@20 R@20 N@20 R@20 N@20 R@20

HRNN (ORACLE) 0.038 0.073 0.063 0.136 0.063 0.136
HRNN-META (ORACLE) 0.045 0.089 0.046 0.117 0.046 0.117
GRU4REC (ORACLE) 0.042 0.081 0.060 0.135 0.060 0.135
GRU4REC-META (ORACLE) 0.044 0.088 0.042 0.111 0.042 0.111
TCN (ORACLE) 0.038 0.073 0.061 0.136 0.061 0.136
TCN-META (ORACLE) 0.045 0.088 0.048 0.120 0.048 0.120
POP (ORACLE) 0.007 0.018 0.004 0.013 0.004 0.013

EMB-KNN (BASELINE) 0.024 0.042 0.022 0.057 0.022 0.057
RANDOM (BASELINE) 0.001 0.002 0.008 0.019 0.008 0.019
ZESREC-H (OURS) 0.027 0.051 0.029 0.079 0.025 0.075
ZESREC-G (OURS) 0.027 0.050 0.027 0.080 0.037 0.122
ZESREC-T (OURS) 0.028 0.052 0.028 0.073 0.025 0.076

pair ‘Grocery and Gourmet Food’ → ‘Prime Pantry’. (2) MIND: In our experiments, we use the
1-week interaction data to simulate zero-shot learning by transferring knowledge from one category
to another in MIND. We consider two pairs: (1) ‘News’ → ‘Finance’ and (2) ‘Lifestyle’ → ‘Finance’.

Experiment Setup. We adopted a rigorous experiment setup to ensure (1) no overlapping users
and items and (2) no temporal leakage. We performed temporal train-test split in the ratio of 8:2 for
the target domain and prevent temporal leakage from the source domain. See section A.1 for more
details about the data and section A.2 for more details about the data preprocessing).

Evaluation Protocol. For evaluation, we adopted Recall (R@20) and the ranking metric Normalized
Discounted Cumulative Gain (NDCG) Shani & Gunawardana (2011) (N@20). We removed all the
repetitive interactions (e.g., user A clicked item B two times in a row) to only focus on evaluating the
model’s capability of capturing the transition between user history to the next item.

3.1 BASELINES AND ZESREC VARIANTS

We compare ZESREC against two groups of baselines: in-domain methods and zero-shot methods.

In-Domain Methods. We compare variants of our model ZESREC against a variety of state-of-the-
art session-based recommendation models including GRU4Rec Hidasi et al. (2015), TCN Bai et al.
(2018), and HRNN Ma et al. (2020). We also consider their extensions, HRNN-Meta, GRU4Rec-
Meta, and TCN-Meta, which use items’ NL description embeddings to replace item ID hidden
embeddings. We also introduce POP which recommends based on item popularity. All the above 7
methods are trained directly on target-domain data and therefore are considered ‘oracle’ methods.

Zero-Shot Methods. Since no previous work has been done on this thread, we consider two intuitive
zero-shot models (1) EmbeddingKNN: a K-nearest-neighbors algorithm based on the inner product
between the user embedding (average of embeddings of interacted items) and item embedding (BERT
embedding from text), and (2) Random: random item selection without replacement.

ZESREC Variants. We evaluate three variants of our ZESREC, including ZESREC-G, ZESREC-T,
and ZESREC-H which use GRU4Rec, TCN and HRNN as base models, respectively.

3.2 ZERO-SHOT EXPERIMENT AND RESULTS

Zero-Shot Experiments. We trained in-domain baselines on target domain training set, while our
ZESREC is trained on source domain. All models are tested on the testing set of the target domain
for an apples to apples comparison.

Zero-Shot Experimental Results Table 1 shows the NDCG and Recall of different methods on three
dataset pairs. Overall, our ZESREC outperforms zero-shot baselines Embedding-KNN and Random
by a large margin in most cases; it can also achieve performance comparable to in-domain baselines.
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A APPENDIX

A.1 DATASETS

Amazon McAuley et al. (2015): A publicly available dataset collection which contains a group
of datasets in different categories with abundant item metadata such as item description, product
images, etc. In our experiments, we consider two datasets: (1) ‘Prime Pantry’, which contains 300K
interactions, 10K items, and 76K users, and (2) ‘Grocery and Gourmet Food’, which contains 2.3M
interactions, 213K items, and 739K users.
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MIND (Wu et al., 2020): A large-scale news recommendation dataset collected from the user click
logs of Microsoft News. It includes 1-week user-item interactions and provides 4-week user history
as context. In our experiments, we use the 1-week interaction data to simulate zero-shot learning by
transferring knowledge from one category to another in MIND. We consider two pairs: (1) ‘News’
→ ‘Finance’ and (2) ‘Lifestyle’ → ‘Finance’. ‘News’ contains 434K interactions, 4.3K items, and
133K users; ‘Lifestyle’ contains 155K interactions, 0.8K items, and 55K users; ‘Finance’ contains
175K interactions, 1.1K items, and 61K users.

A.2 DATA PREPROCESSING

We adopted a rigorous experimental setup for zero-shot learning to ensure (1) no overlapping users
and items and (2) no temporal leakage. Specifically, we ensure that there are no overlapping users
and items between the source domain and the target domain; meanwhile we temporally split the
two domains such that all training interactions in the source domain must happen before all testing
interactions in the target domain.

Datasets in all pairs are split using a time stamp threshold ts. For target domain, we choose ts such
that the data is divided into training (80%) and test (20%) sets. In order to prevent temporal leakage,
we use the threshold ts from the target domain to split source-domain data. For all datasets, We
further split 10% of the training sets by user as validation sets.

A.3 INCREMENTAL TRAINING EXPERIMENTS

To measure how long it takes for non-zero-shot models to outperform zero-shot recommenders, we
conducted incremental training experiments on in-domain base models GRU4Rec, TCN, HRNN as
well as GRU4Rec-Meta, TCN-Meta, HRNN-Meta. Note that the variants of our ZESREC are NOT
retrained on target domain. It is also inevitable that non-zero-shot models eventually outperform
ZESREC because ZESREC does not have access to target-domain data.

For all the source-target dataset pairs, we group the interactions by user and sort interactions within
each user based on interaction timestamps. We randomly select users until we get enough interactions
and build three datasets containing 2.5K, 5K, and 10K interactions, respectively.

Note that the two MIND pairs have the same target domain ‘Finance’; therefore we plot their
incremental training results for the same metric in one figure (see figure 2 (a) and (b)).

Incremental Training Experimental Results. We plot the incremental training results in figure 2.
We combined the results of two MIND pairs into figure 2 (a) and (b) since they have the same target
domain ‘Finance’, where ’L ZESREC-H’ and ’L ZESREC-T’ represent ZESREC variants trained
on the source domain ‘Lifestyle’ while ’N ZESREC-H’ and ’N ZESREC-T’ represent ZESREC
variants trained on the source domain ‘News’. The results of the Amazon pair are shown in figure 2
(c) and (d). Overall, all the in-domain baselines are unable to outperform ZESREC by retraining on
at most 10K interactions in the target domain; the gap between retrained in-domain baselines and
ZESREC is prominent on Amazon Prime Pantry, showcasing the critical importance of conducting
zero-shot learning in RecSys. For new business operating an early-stage RecSys, it’s hard to train a
good RecSys with limited interactions. This is a chicken-and-egg problem, as training good RecSys
requires sufficient interactions, while in turn, collecting sufficient interactions requires a satisfactory
RecSys to attract users. Therefore the first 10K interactions are crucial to get the RecSys started.

A.4 CASE STUDIES

Experiment Procedure To gain more insight what ZESREC learns, we perform several case studies.
Specifically, we randomly select users from the test set of the target domain Amazon Prime Pantry
(where we evaluate ZESREC) and only keep users for whom ZESREC correctly predicts the 6-th
items in the sequence given the first 5 items as context, as we want to focus on sequences where
ZESREC works. We use these users as queries to find users with similar behavioral patterns from
the source domain Amazon Grocery and Gourmet Food (where we train ZESREC) based on user
embeddings from ZESREC. User embeddings are generated based on the first 5 items of the sequence.
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Figure 2: Incremental training results for baselines using target domain data compared to ZESREC
using no training data on ‘Finance’ (left two) and ‘Prime Pantry’ (right two). To prevent clutter, we
only show results for TCN-based and HRNN-based ZESREC, since HRNN has a similar architecture
with GRU4Rec. Results show that even without using target-domain data, ZESREC can still
outperform models trained directly using target-domain data for substantial amount of time.
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Figure 3: Case Study 1. The purchase history of a user in the source domain (top) and the purchase
history of an unseen user in the target domain, where all items are unseen during training (bottom).
We select two users with similar universal embeddings according to section A.4. This case study
demonstrates ZESREC can learn the user behavioral pattern that ‘users who bought sugary snacks
and tea tend to buy caffeine-free herbal tea later’.

The goal of our case studies is to demonstrate our ZSR could learn relevant dynamics of users’
purchase history from the source domain and successfully recommend unseen products to an unseen
user in the target domain.

figure 3 shows the purchase history of a user in the source domain (top), ‘Amazon Grocery and
Gourmet Food’, and the purchase history of an unseen user in the target domain (bottom), ‘Amazon
Prime Pantry’, where all items are unseen during training. The user in the source domain bought
‘Tension Tamer Tea’, which is a type of herbal tea, after buying some sugary snacks (KitKat) and
other tea. Such a pattern is captured by ZESREC, which then recommended ‘Lemon Zinger Herbal
Tea’ to an unseen user after she bought some sugary snacks (‘Energy Bars from Clif Bar’) and some
black tea. This case study demonstrates ZESREC can learn the user behavioral pattern that ‘users
who bought sugary snacks and tea tend to buy caffeine-free herbal tea later’. More interestingly,
another case study in figure 4 demonstrates that ZESREC can learn the user behavioral pattern that
‘if users bought snacks or drinks that they like, they may later purchase similar snacks or drinks with
different flavors’. Specifically, in the source domain, the user purchased ‘Vita Coconut Water’ with
four different flavors; such a pattern is captured by ZESREC. Later in the target domain, an unseen
user purchase ‘V8 Splash’ with a tropical flavor, ZESREC then successfully recommends ‘V8 Splash’
with a berry flavor to the user.
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Vita Coco Coconut Water, Tangerine Vita Coco Coconut Water, Pineapple

Target Domain: Amazon Prime Pantry

Source Domain: Amazon Grocery and Gourmet Food

Nestle Carnation Vitamin D 
Added Evaporated Milk

Mug Root Beer Cans 
(12 Count, 12 Fl Oz Each)

V8 Splash Tropical Blend,
64 oz. Bottle

V8 Splash Berry Blend, 
64 oz. Bottle

ZESRec
Recommends

Vita Coco Coconut Water, Lemonade Vita Coco Coconut Water with 
Acai & Pomegranate

• Antioxidant vitamins A & C 
• 70 calories per serving 
• Gluten Free 
• Delicious fruit flavors the whole family can enjoy 
• Contains a blend of 2 juices from concentrate 
with other natural flavors 

• Antioxidant C & B vitamins 
• 70 calories per serving 
• Gluten Free 
• No artificial flavors 
• Delicious fruit flavors the 
whole family can enjoy 

Flavor Root Beer 

Ingredients Carbonated Water…

Brand Mug 

Serving Description 1 cans ( ) 

Item Volume 144 Fluid Ounces

Ingredients Milk…

Brand Carnation 

Weight 15.2 Ounces 

Serving Description 2 Tbsp. (30mL) 

Protein 2 Grams

• Ingredients: Purified Water 
• Safety warning: This product is labelled to 
United States standards and may differ from 
similar products sold elsewhere in its 
ingredients, labeling and allergen warnings 

• Pack of 12, 17- ounce (totally 204 ounces) 
• Convenient re-sealable packs
• A tamper-evident screw cap.
• Environment friendly tetra packs
• Serve chilled or mixed in a cocktail 

• Pack of 12, 17- ounce (totally 204 ounces) 
• Convenient re-sealable packs
• A tamper-evident screw cap.
• Environment friendly tetra packs
• Serve chilled or mixed in a cocktail 

• Taste of the tropics
• Natural hydration
• Refresh yourself
• Fat-free, Gluten-free, and non-GMO
• One 12-pack case of 16.9 ounce bottles

Figure 4: Case Study 2. The purchase history of a user in the source domain (top) and the purchase
history of an unseen user in the target domain, where all items are unseen during training (bottom).
We select two users with similar universal embeddings according to section A.4. This case study
demonstrates ZESREC can learn the user behavioral pattern that ‘if users bought snacks or drinks
that they like, they may later purchase similar snacks or drinks with different flavors’.

A.5 ABLATION STUDIES ON OUR BAYESIAN MODEL

To verify the domain debiasing effect of our Bayesian framework, we performed ablation studies
on all three dataset pairs. In the experiments, we implemented a vanilla version of ZESREC where
item offset vectors and user offset vectors are removed; in this case the item embedding will collapse
to the prior text embedding. Table 2 shows the results for the vanilla ZESREC and the Bayesian
ZESREC. On almost all cases the Bayesian ZESREC outperforms the vanilla ZESREC by a large
margin, verifying the effectiveness of our Bayesian ZESREC.

Table 2: Ablation studies on the Bayesian framework. ‘G → P’ represents ‘Grocery and Gourmet
Food’ → ‘Prime Pantry’, ‘N → F’ represents ‘News’ → ‘Finance’, and ‘L → F’ represents ‘Lifestyle’
→ ‘Finance’. N@20 and R@20 represent NDCG@20 and Recall@20, respectively. The best results
for each ZESREC variant (ZESREC-H/G/T) are shown in bold.

Method AMAZON G → P MIND N → F MIND L → F
N@20 R@20 N@20 R@20 N@20 R@20

ZESREC-H (BAYESIAN) 0.027 0.051 0.029 0.079 0.025 0.075
ZESREC-G (BAYESIAN) 0.027 0.050 0.027 0.080 0.037 0.122
ZESREC-T (BAYESIAN) 0.028 0.052 0.028 0.073 0.025 0.076
ZESREC-H (VANILLA) 0.027 0.052 0.025 0.062 0.014 0.033
ZESREC-G (VANILLA) 0.026 0.050 0.022 0.049 0.011 0.027
ZESREC-T (VANILLA) 0.027 0.051 0.023 0.061 0.011 0.024

A.6 FULL BAYESIAN TREATMENT WITH INFERENCE NETWORKS AND ABLATION STUDIES

Besides MAP estimates, we could also develop a full Bayesian treatment of ZESREC using varia-
tional inference networks as in typical variational autoencoders (VAE) Kingma & Welling (2014).
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Specifically, using Jensen’s inequality we have the following evidence lower bound (ELBO):

log p(R|X, λu, λv) ≥ Eq[log p(R,U,V|X, λu, λv)]− Eq[log q(U,V|X)], (3)

where the expectation is over q(U,V|X). For the variational distribution q(U,V|X) we have the
following factorization:

q(U,V|X) = q(V|X)q(U|V,X) = q(V|X)q(U|V), (4)

where U = [ui]
I
i=1, V = [vj ]

J
j=1, and X = [xj ]

J
j=1.

q(vj |X) = q(vj |xj) = N
(
vj ; fe,µ(xj), fe,σ2(xj)

)
,

q(ui|V,X) = N
(
ui; fseq,µ({vjt}

ni
t=1), fseq,σ2({vjt}

ni
t=1)

)
. (5)

In other words, the inference network runs a similar Generative Process as the MAP approach, but
replaces the prior vj and ui generators with q(vj |X) and q(ui|V,X), respectively.

The training philosophy of VAE is different from MAP, but we will show that the end results look
remarkably similar. To begin with, the first part of the ELBO wraps the original likelihood under the
expectation over the variational distribution q(U,V|X):

Eq[log p(R,U,V|X, λu, λv)] = Eq[log p(R|U,V) + log p(V|X) + log p(U|V)],

omitting dependencies when obvious. While the reconstruction likelihood for p(R|U,V) stays the
same, the other factors in the first part of the ELBO, p(U|X) and p(V|U), can be paired with the
inference networks, q(U|X) and q(V|U), in the second part of the ELBO to produce a form of
Kullback-Leibler (KL) divergence, e.g.,

− Eq[log p(vj |xj)− log q(vj |xj)] = DKL(q(vj |xj)∥p(vj |xj))

= DKL(N (fe,µ(xj), fe,σ2(xj))∥N (fe(xj), λ
−1
v ID)), (6)

and similarly for the user-variable distributions. Since we choose Gaussian distributions, the KL-
divergence yields explicit solution

(6) = 1
2

[
λv∥fe,µ(xj)− fe(xj)∥22 + λv1

⊤fe,σ2(xj)− 1⊤ log(λvfe,σ2(xj))−D
]
.

Putting everything together, we may rewrite the negation of the ELBO (NELBO) as:

Le = Eq

[
−

Is∑
i=1

Ni∑
t=1

log(fsoftmax(u
T
itvit))

]
+Const.

+ 1
2Eq(V|X)

Is∑
i=1

Ni∑
t=1

[
λu∥fseq,µ({viτ }t−1

τ=1)− fseq({viτ }t−1
τ=1)∥22

]
+ 1

2Eq(V|X)

Is∑
i=1

Ni∑
t=1

[
λu1

⊤fseq,σ2({viτ }t−1
τ=1)− 1⊤ log(λufseq,σ2({viτ }t−1

τ=1))
]

+ 1
2

∑
j

[
λv∥fe,µ(xj)− fe(xj)∥22 + λv1

⊤fe,σ2(xj)− 1⊤ log(λvfe,σ2(xj))
]

See Appendix A.10 for detailed derivation.

Additionally, if one assumes latent user vectors with zero variance, ignoring all related regularization
terms, we may arrive at a simplified NELBO:

Le = Eq

[
−

Is∑
i=1

Ni∑
t=1

log(fsoftmax(u
T
itvit))

]
+ λv

2 ∥fe,µ(xj)− fe(xj)∥22

+ 1
2

∑
j

[
λv1

⊤fe,σ2(xj)− 1⊤ log(λvfe,σ2(xj))
]
+Const., (7)

where fe(xj) is the universal item embedding as part of the prior.
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Table 3: Ablation studies on the full Bayesian treatment.

Method MIND N → F MIND L → F
N@20 R@20 N@20 R@20

ZESREC-H (BAYESIAN, MAP) 0.029 0.079 0.025 0.075
ZESREC-H (BAYESIAN, FULL) 0.030 0.082 0.026 0.079

Finally, if we further ignore the variance for both the users and items, choosing deterministic
uit = fseq,µ({viτ }t−1

τ=1) and vj = fe,µ(xj), we may connect NELBO to the MAP objective, as
promised.

Ablation Studies on the Full Bayesian Treatment. Table 3 shows the NDCG@20 and Recall@20
for our ZESREC-H variant under two different Bayesian inference schemes, MAP and the full
Bayesian treatment. These results verify that our full Bayesian treatment for ZESREC can further
improve zero-shot performance.

A.7 IMPLEMENTATION DETAILS

We use pre-trained google/bert_uncased_L-12_H-768_A-12 BERT model from Huggingface Wolf
et al. (2020) to process item description and generate item embedding. The dimension of BERT
embedding is 768. We use BERT embedding as input to a single-layer neural netwrok (NN) and the
output dimension for the NN is set to D, which equals to the hidden dimension of the sequential
model.

For ZESREC variants we use the default optimal setting: we set the hidden dimension D as 300, the
dropout rate as 0.2, and the number of training epochs as 20. We use Adagrad Défossez et al. (2020)
as the optimizer with a learning rate of 0.1, and train ZESREC variants in the source domain with
early stopping based on validation loss. We set the hyperparameter λv as a relatively large value 100
to restrain the variance of the item offset vector ϵj .

For base models (HRNN, TCN, GRU4Rec) and corresponding base-meta models (HRNN-Meta,
TCN-Meta, GRU4Rec-Meta), we set the dropout rate as 0.2 and the number of training epochs as
20; we choose Adagrad Défossez et al. (2020) as the optimizer. We train base models and base-
meta models in the target domain with early stopping and perform hyperparameter tuning, both
are based on the validation loss. We tried the hidden dimension D in {128, 300} and the learning
rate η in {0.01, 0.1, 1}, and choose to use the configurations {D : 128, η : 1} for base models and
{D : 128, η : 0.1} for base-meta models.

For all datasets, we treat the rating as implicit feedback (interactions between user and item). Since
we are considering session-based recommendation and using sequential model, we filter out users
with only 1 interaction as the sequential model need to ingest at least one item from user history as
context to perform next-step prediction.

SEQ

SEQ

SEQ… User Universal
Embedding

1-Layer NN

Pretrained BERT 
Model

X

1-Layer NN

Pretrained BERT 
Model

…

0.36

0.29

…

0.09

0.02

Prediction 
Score

Item Universal
Embedding

Pretrained BERT 
Model

1-Layer NN

Item Universal
Embedding

Pretrained BERT 
Model

1-Layer NN

Item Universal
Embedding

Item Universal
Embedding

Item Universal
Embedding

…
…

Latent Item 
Offset Vector+ Latent Item 

Offset Vector+ Latent Item 
Offset Vector+

Latent Item 
Offset Vector

… Latent Item 
Offset Vector

+

+ Latent User 
Offset Vector

Figure 5: Model architecture for the simplified ZESREC (without Bayesian inference).
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All experiments were ran on a GPU machine with Nvidia Tesla V100 16G memory GPU.

A.8 MODEL ARCHITECTURE

The graphical model for ZESREC is shown in figure 1. In the MAP estimation version of ZES-
REC, we set λu → ∞ to remove latent user offset vector, thereby preventing ZESREC from
over-parameterization. figure 5 shows a simplified deterministic model architecture from the neural
network point of view. Below we elaborate on the process in terms of two stages: training in source
domain and inference in target domain.

Training in Source Domain. During training, on the encoder side, we generate BERT embeddings
from items’ NL descriptions as item universal embeddings and then add the learnable item offset
vectors to them, which yield the final item embeddings (item latent vectors). The sequential model
will aggregate item embeddings of items in user history to generate user embeddings. On the decoder
side, we compute item latent vectors the same way we do on the encoder side. Here we share item
latent vectors on both encoder and decoder sides to reduce number of parameters. Empirically we
find this prevent overfitting and improve performance.

Inference in Target Domain. In this phase, we will remove the item offset vectors on both the
encoder and decoder sides. We use item universal embeddings directly instead as the final item latent
vectors since we have no access to interactions in the target domain, and therefore the model is unable
to estimate the item offset vectors.

Item Universal Embedding Network (Item UEN). Item universal embedding network fe(·) extracts
item j’s embedding mj based on its NL description xj , while mj is generalizable across domains.
The network consists of a pretrained BERT network fBERT followed by a single-layer neural network
fNN(·) which is used to adapt the pre-trained BERT for recommendation tasks: mj = fe(xj)
= fNN(fBERT(xj)). Note that we use the ‘CLS’ token embedding as the output of fBERT(.) and item
UEN is jointly trained with the sequential model using the objective function in Eqn. 1.

User Universal Embedding Network (User UEN). The user UEN fseq(·) is built on top of the item
UEN above which is an aggregation function (RNN, CNN, etc.) over universal item embeddings in
user history. Note that this user UEN is used during both training and inference.

A.9 DATA USAGE AND PRIVACY DISCUSSIONS

Data Usage. For real-world scenarios, new business owners who hope to do zero-shot recommenda-
tion need to check the dataset policy before usage. On the other hand, if multinational corporations
hope to establish a branch in a new region they could use their own data from other existing regions.

Privacy. To protect the privacy of user data, we encourage people who want to adopt our methods
to train the model using source-domain data with differential privacy embedded. Some related
references include (Abadi et al., 2016; Chen et al., 2019; Wang et al., 2019).

A.10 MORE DETAILED DERIVATION FOR THE FULL BAYESIAN TREATMENT WITH
INFERENCE NETWORKS

Training. Using Jensen’s inequality we have the following evidence lower bound (ELBO):

log p(R|X, λu, λv) ≥ Eq [log p(R,U,V|X, λu, λv)]− Eq [log q(U,V|X)],

where the expectation is over q(U,V|X). For the variational distribution q(U,V|X) we have the
following factorization:

q(U,V|X) = q(V|X)q(U|V,X) = q(V|X)q(U|V), (8)

where U = [ui]
I
i=1, V = [vj ]

J
j=1, and X = [xj ]

J
j=1

q(vj |X) = q(vj |xj) = N
(
vj ; fe,µ(xj), fe,σ2(xj)

)
,

q(ui|V,X) = N
(
ui; fseq,µ({vjt}

ni
t=1), fseq,σ2({vjt}

ni
t=1)

)
. (9)
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With these variational distributions, we can then expand the ELBO, denoted as Le, as:
Le = Eq[log p(R,U,V|X, λu, λv)]− Eq[log q(U,V|X)] (10)

= Eq[

Is∑
i=1

Ni∑
t=1

log(fsoftmax(u
T
itvit))]

+ Eq[log p(V|X)] + Eq[log p(U|V)]− Eq[log q(U,V|X)] + C,

where the expectation is over q(U,V|X) in Eqn. 8, and C is a constant.

Below we discuss how to compute the three terms Eq[log p(V|X)], −Eq[log q(U,V|X)] and
Eq(U,V|X)[log p(U|V)] in detail.

Computing Eq[log p(V|X)]. We can compute Eq[log p(V|X)] in closed form as (we omit the
constant log

√
2π for clarity):

Eq[log p(V|X)] = 1
2D log λv − λv

2 [
∑
j

∥fe,σ2(xj)∥1 + ∥fe,µ(xj)−mj∥22],

where mj is the item university embedding and also the mean of p(vj |X), as defined in section 2.2.
Computing Eq[log q(U,V|X)]. The term −Eq[log q(U,V|X)] is the entropy of q(U,V|X), de-
noted as H[q(U,V|X)] below. We have

H[q(U,V|X)] = −Eq(V|X)Eq(U|V)[log q(V|X) + log q(U|V)]

= −Eq(V|X)Eq(U|V)[log q(V|X)]− Eq(V|X)Eq(U|V)[log q(U|V)]

= −Eq(V|X)[log q(V|X)]− Eq(V|X)

[
Eq(U|V)[log q(U|V)]

]
= 1

2

∑
j

[1⊤ log fe,σ2(xj)] +
1
2

∑
i

Eq(V|X)

[ Ni∑
t=1

1⊤ log fseq,σ2({viτ }
t−1
τ=1)

]
+ C

≈ 1
2

∑
j

[1⊤ log fe,σ2(xj)] +
1

2Nv

∑
i

∑
V

[ Ni∑
t=1

1⊤ log fseq,σ2({viτ }
t−1
τ=1)

]
+ C, (11)

where in the last line V is sampled for Nv times to get a Monte Carlo estimate of
Eq(V|X)[log fseq,σ2(viτ }t−1

τ=1)]. In practice, it is found that one sample is usually sufficient due
to the use of SGD-based optimization process Kingma & Welling (2014).

Computing Eq(U,V|X)[log p(U|V)]. Similar to the processing of computing Eq[log p(V|X)] above
and omitting the constants log

√
2π and D log λu for clarity, we have

Eq[log p(U|V)]

= Eq(V|X)

[
Eq(U|V)[log p(U|V)]

]
= − λu

2 Eq(V|X)

[ Is∑
i=1

Ni∑
t=1

[∥fseq,σ2({viτ }t−1
τ=1)∥1 + ∥fseq,µ({viτ }t−1

τ=1)− nit∥22]
]

≈ − λu

2Nv

∑
V

Is∑
i=1

Ni∑
t=1

[∥fseq,σ2({viτ }t−1
τ=1)∥1 + ∥fseq,µ({viτ }t−1

τ=1)− nit∥22], (12)

where nit is the user i’s universal embedding at time t and also the mean of user latent vector
distribution p(uit|{viτ }t−1

τ=1), as defined in section 2.2. Similar to Eqn. 11, V is sampled for Nv

times from q(V|X) to get a Monte Carlo estimate of Eq(V|X)[∥fseq,σ2(vik}
ni

k=1)∥22].
Latent User Vectors with Zero Variance. If one assumes latent user vectors with zero variance, i.e.,
λu = ∞, the variational distribution for ui can be set to zero variance as well. Specifically, Eqn. 9
becomes

q(ui|V,X) = N
(
ui; fseq,µ({vjt}

ni
t=1),0

)
.

Correspondingly, the term Eq[log q(U,V|X)] in Eqn. 11 becomes

Eq[log q(U,V|X)] = 1
2

∑
j

[1⊤ log fe,σ2(xj)],
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Similarly, in Eqn. 12 the term Eq(U,V|X)[log p(U|V)] becomes 0, and fseq,µ({viτ }t−1
τ=1) = nit. The

ELBO in Eqn. 10 then becomes

Le = Eq[

Is∑
i=1

Ni∑
t=1

log(fsoftmax(u
T
itvit))]− λv

2 [
∑
j

∥fe,σ2(xj)∥1 + ∥fe,µ(xj)−mj∥22] + 1
2

∑
j

[1⊤ log fe,σ2(xj)]

Inference. Inference can be done via Monte Carlo estimates of p(R|X, λu, λv). Specifically,

p(R|X, λu, λv) = Eq(p(R|U,V)) ≈ 1
NvNu

∑
V(n)

∑
U(n)

p(R|U(n),V(n)),

where V(n) ∼ q(V|X) and U(n) ∼ q(U|V(n),X).

One could also use MAP inference to trade accuracy for speed.

p(R|X) =

∫
p(R|U,V,X)p(U,V|X)dUdV

≈
∫

p(R|U,V,X)δUMAP(U)δVMAP(V)dUdV,

where δ(·) denotes a Dirac delta distribution. UMAP and VMAP are the MAP estimate of U and V
given X:

(UMAP,VMAP) ≈ argmax
U,V

q(U,V|X) =
(
fseq(fe,µ(X)), fe,µ(X)

)
.
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