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ABSTRACT

Diffusion models have emerged as powerful generative priors for high-dimensional
inverse problems, yet learning them when only corrupted or noisy observations are
available remains challenging. In this work, we propose a novel method for training
diffusion models with Expectation-Maximization (EM) from corrupted data. Our
proposed method, DiffEM, utilizes conditional diffusion models to reconstruct
clean data from observations in the E-step, and then uses the reconstructed data
to refine the conditional diffusion model in the M-step. Theoretically, we provide
monotonic convergence guarantees for the DiffEM iteration, assuming appropriate
statistical conditions. We demonstrate the effectiveness of our approach through
experiments on various image reconstruction tasks.

1 INTRODUCTION

Diffusion models (Song and Ermon, 2019; Ho et al., 2020; Song et al., 2020) have emerged as
powerful tools for learning high-dimensional distributions, achieving remarkable success across a
broad range of generative tasks. Their effectiveness as learned priors has led to significant advances
in solving inverse problems (Kawar et al., 2021; Choi et al., 2021; Saharia et al., 2022), including
image inpainting, denoising, and super-resolution. However, in many real-world scenarios, acquiring
clean training data remains difficult or costly, and can raise significant concerns, as training on clean
data might lead to memorization (Somepalli et al., 2023a; Carlini et al., 2023; Somepalli et al., 2023b;
Shah et al., 2025), posing privacy and copyright risks. While data with mild or moderate corruption is
often more readily available, particularly in domains like medical imaging (Wang et al., 2016; Zbontar
et al., 2018) and compressive sensing, training diffusion models effectively using only corrupted or
noisy observations presents substantial technical challenges.

The fundamental difficulty lies in the fact that standard techniques for training diffusion models are
designed for settings with access to clean data from the prior distribution. When only corrupted or
noisy observations are available, these techniques become inapplicable, and training diffusion models
effectively reduces to learning a latent variable model from corrupted observations—a problem
well-known for its theoretical and practical challenges.

Recent work (Rozet et al., 2024; Bai et al., 2024) has proposed addressing this challenge by applying
the Expectation-Maximization (EM) method with diffusion models as priors. However, this approach
faces a critical difficulty: in each E-step, the algorithm must sample from the posterior distribution
given the corrupted observations, whereas it only has access to the score function of the diffusion
prior. To overcome this, these works adopt ad hoc posterior sampling schemes that rely on various
approximations of the posterior score function that explicitly incorporate the corruption process. Such
approximation schemes, however, are based on implicit structural assumptions about the true prior
and the corruption process, making their approximation errors difficult to quantify.

In this work, we propose a novel approach that combines diffusion models with the EM framework.
Our key insight is that instead of learning a diffusion prior and then performing approximate sampling,
we can directly model the posterior distribution using a conditional diffusion model (Saharia et al.,
2022; Daras et al., 2024a). The primary advantage of our approach is its independence from specific
approximate posterior sampling schemes. Notably, it can handle any corruption channel, as it makes
no assumptions about the prior and corruption channel beyond requiring that the posterior score
function can be expressed by the denoiser network. Furthermore, we provide theoretical analysis
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of the proposed EM iteration, demonstrating its convergence under appropriate conditions on the
approximation error of the denoiser network. We validate our approach through extensive experiments
on both synthetic and real-world datasets with various types of corruption, including low-dimensional
manifold learning and image reconstruction on CIFAR-10 and CelebA.

Related work. Due to space limitations, we discuss further related work in Appendix A, and
provide more detailed discussions of the closest works to ours in the next couple of sections.
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Figure 1: todo Top: Qualitative illustration of how the CelebA dataset is transformed in our setup.
Bottom: Illustration of the training process within a single EM iteration.

1.1 PRELIMINARIES

Problem setup. Formally, we consider the following setup. The prior P% is a distribution over the
space X of latent variables. The forward channel (or corruption process) Q(-| X ) maps each point
X € X to adistribution over the observation space ). The observation is generated as

Y ~Q(:|X), where X ~ P}, (1
and we denote P* to be the joint distribution of (X,Y") and P5 to be the marginal distribution of Y.

This formulation encompasses classical inverse problems, which arise from a forward channel of the
form Q(-|X) = N(A(X), 0% I) where A : X — R% is a known forward operator.

In our setting, the learner only has access to a dataset {Y !, ... Y [N} consisting of i.i.d. observa-
tions from Py;. The forward channel Q is also known. The goal is two-fold:

* Prior reconstruction: to generate new samples from the ground-truth prior Py approximately.
* Posterior sampling: to sample X ~ P*(:|Y") given an observation Y.

With this setup, the primary focus of recent work (Daras et al., 2023b;a; Rozet et al., 2024; Bai et al.,
2024; Daras et al., 2024b) has been on prior reconstruction under the linear corruption process.
In such settings, the latent space is X = R% (consisting of “clean images™), and there is a known
distribution P, of corruption matrices A € R% *9=_ The observation is drawn as

Y = (AX +¢€A), where X ~ P, A~ Py,e~N(0,0¢1), 2)

i.e., the observation Y is a (corrupted image, corruption matrix) pair, with the image corrupted
by the matrix A ~ P4 and the additive Gaussian noise €. By choosing different distributions P4
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for the corruption matrix, the linear corruption process (2) can model problems including random
masking (Daras et al., 2023b; Rozet et al., 2024; Bai et al., 2024) and blurring (Bai et al., 2024).

Diffusion models. Given samples from a data distribution py over R4, diffusion models aim to
learn how to generate new samples from pg. Following Song et al. (2020), we consider the diffusion
process (X¢)¢ejo,1) With Xo ~ po, and X;|Xg ~ N (Xo7 O'?I). Formally, the diffusion process can
be described by the following stochastic differential equation (SDE):

dXt = g(t)dBt7 XO ~ Do, (3)
where g(t)? = %‘2, and (B¢);e[o,1] is the standard Brownian motion. Let p;(z) be the density

function of X; € R? Tt is well-known that the reverse of process (3) can be described by the
following reverse-time diffusion process:

dX; = —g(t)*Vepe (X)dt + g(t)dBy, X1~ pr. )

With o being sufficiently large, we have p1; ~ N(0, 07I). The score function (x,t) — V, log p(z)
is typically parametrized by a neural network sy(x,t). By Tweedie’s formula, V, logp:(x) =
E[Xo|Xi=z]—z
of
s¢(x,t) can be learned by optimizing the score-matching loss.

, where the expectation is taken with respect to the diffusion process (3). Hence,

2 EXPECTATION-MAXIMIZATION APPROACH

For a class of parameterized latent variable models {qy(z,y)}9 where x is the value of the latent
variable and y is that of the observable one, the Expectation-Maximization (EM) method aims to find
a parameter ¢ that maximizes the population log-likelihood of the observable variable, where gs(y)
below refers to the marginal of model gq(x, i) with respect to the observable variable:

maxy L(0) 1= Ey.p; logga(Y).

This optimization problem is equivalent to minimizing the KL divergence between Py and ¢y (y).
However, direct optimization is computationally intractable for most problems. To overcome this
computational challenge, each step of the EM method optimizes the following ELBO lower bound

with a parameter 6:

L(0) 2 Ey~pyEx g (x|y) log Z;§§§§~

In particular, the EM algorithm can be succinctly written as: Starting from an initial point #(?), iterate

P+ — a,rg;naX]Ey,\,p;]EXqu(k) (X|Y) 10g qg()(7 Y)

In our setting, since the forward channel Q is known and simple, the parametrized model should
satisfy go(z,y) = QY = y|X = x)gg(x). In this case, the EM iterations reduce to

0%+ = argmaxy By py Exg ) (x|v) 10g g0 (X). )

This specialization of EM has been studied in (Aubin-Frankowski et al., 2022; Rozet et al., 2024;
Bai et al., 2024), and it is also the basis of our framework. To simplify the notation, we consider the
mixture posterior distribution T with density 7 () = Ey~p; [gg (¢[Y")], which is a mixture
with respect to the observation distribution P55 of the posteriors gy (X |Y) (Rozet et al., 2024).
Then, the EM update (5) can be rewritten as

0% = arg ming Dk, (7 () || go(x)), ©

i.e., the model ¢yx+1) minimizes the distance to the mixture posterior distribution 7). Crucially, to
implement this update, we need to be able to sample from the conditional distribution gy (X |Y).

2.1 PRIOR APPROACH: EM WITH DIFFUSION PRIORS

In this section, we briefly review how prior work (Rozet et al., 2024; Bai et al., 2024) performs
posterior sampling with diffusion models as priors. Their methods are restricted to the linear
corruption model (2), where the observation is Y = (AX + ¢, A), where € ~ N(0, 0% 1) is the noise
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and A ~ P, is a random corruption matrix. For simplicity, to describe these results, we focus on the
case where A is fixed, i.e. the forward channel is Q(:|X) = N(AX, 0} 1).

In the EM approach of Rozet et al. (2024); Bai et al. (2024), the latent variable models are described
by diffusion models. More precisely, each 6 parametrizes a score function sg(z,t), and go(x)
corresponds to the distribution of X obtained by running the backward diffusion process with the
score function sg. However, to sample from gy (X|Y), one needs to approximate the conditional
score function V, log ¢s(X; = z|Y = y). Following previous work on posterior sampling with
diffusion priors (Chung et al., 2022, etc.), the conditional score is decomposed according to Bayes’
rule:

Ve logqe(X: = x|Y) = V,ylogqe(Y Xy = 2) + V, log go (X = ).

The second term is given by the score function sy (z, t). To approximate the first term, Rozet et al.
(2024) applies a Gaussian approximation gp (X = | Xy = z) = N(Eg[X | X = z], Vo[ X | X: = z]).
Consequently, the conditional distribution of Y is approximately

@o(Y = -|X; = ) ~ N(AE[X| X, = 2], 021 + AV,[X|X; = 2]AT).

Then, to calculate V,, log ¢o (Y| X = x), Rozet et al. (2024) introduces moment matching techniques
to approximate the variance function Vo[ X |X; = z|. Alternatively, Bai et al. (2024) applies a simpler
approximation o (Y = | X; = z) &~ N(AEg[X | X, = z], 03 1).

However, these approximations all rely on the assumption that ¢o(Xo = :|X; = z) is close to
a Gaussian distribution. This assumption may not hold for general diffusion priors, which are
highly multi-modal. Therefore, errors in these approximation schemes can be difficult to control.
Furthermore, even when the learned diffusion prior gy is close to the ground truth, the posterior
distribution of X |Y (obtained by approximating the score V, log go (X = x|Y")) might not accurately
represent the true conditional distribution g (X |Y") under the diffusion prior ¢g(X).

Additionally, the moment matching techniques of Rozet et al. (2024) are rather sophisticated and
specialized to the linear corruption process. For general forward channels with non-linear transfor-
mations, calculating the score V. log go(Y|X; = x) can be challenging even under the Gaussian
approximation assumption.

2.2 OUR APPROACH: EM WITH CONDITIONAL DIFFUSION MODEL

Instead of parametrizing the prior distribution gy (x) using a diffusion model, we directly model the
posterior distribution gg(z|y) through a conditional score function network sy (x, t|y). Below, we
describe the corresponding conditional diffusion process for generating posterior samples.
Conditional diffusion process. Given a latent variable model g, we consider the diffusion process

Let p be the joint distribution of ({X¢},c(47,Y). To sample from ¢(Xo|Y), we consider the
following reverse-time process:

dX; = —g(t)?sg(Xy, t]Y)dt + g(t)dBy, X1 ~aq(-]Y), ()

where the network sy directly approximates the true conditional score function

E[Xo|Xi=z,Y=y]—x )

7

so(x,tly) = Vi logp(X; = zly) = =
and the expectation is taken over the process (7) (see e.g. (Daras et al., 2024a)). For a given parameter
6 that parameterizes the conditional denoiser network sy, we let go (X = -|Y") be the distribution of
X generated by (8). In particular, when sy (x,t|y) = V, logp(X; = x|y), the reverse process (8)
indeed generates X ~ ¢(-|Y), i.e., go(-|Y) = q(-|Y).

EM with conditional diffusion models. Based on the conditional diffusion process, we propose
the following EM procedure, using a conditional diffusion model to learn the posterior directly.
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Algorithm 1 DiffEM: Expectation-Maximization with a conditional diffusion model

Input: Dataset of corrupted observations Dy = {YU ... YN} a known forward channel

Q(:|X), and a initialization for the conditional model 6.
fork=0,1,--- K —1do

// E-step:
fori € [N] do
Generate the reconstruction X !l ~ g, (-|Y'!)) using the current conditional model 6.
// M-step:
Train a new conditional diffusion model using the dataset DY’ = {X ... XN} and the

forward model Q(-|X') by minimizing the objective provided in (10)

6"+ = arg min Lgn x (6).
0

Output: (1) The conditional diffusion model 6, and
Output: (2) An unconditional diffusion model 6§ trained on the dataset D;?’”.

In the E-step, the algorithm generates the dataset D = {X ... XINI} consisting of the
reconstruction X7 ~ gy, (-|Y). Then, in the M-step, the algorithm uses the dataset D’ to train
the conditional diffusion model 8+, so that it learns to sample from P® (X|Y), the posterior

of P®(X,Y’) which samples X ~ DY and then samples Y ~ Q(-|X). To train this model, we
consider the following conditional score matching loss:

Lsni(9) = [ MEx p® yaqeix) Exe=x+ouz [[80(Xe, 1Y) + Z||* at, (10)

where Z ~ N(0,1I) is the unit noise, and A\; > 0 is a weight sequence. It is straightforward to
verify that, assuming the network sy is expressive enough, the minimizer 6* of Lgy . satisfies

so+ (x, tly) = E[Xolxtjﬁ’yzy]fm, where the conditional expectation is taken with respect to the
t

distribution sampling variables as Xo ~ DY, Y ~ Q(+|X), X; ~ N(Xo, 07I). Therefore, as long
as the M-step is done successfully, we expect to have gg+1) (X|Y) =~ p® (X1]Y) (cf. Section 3).

The advantage of conditional diffusion model. Unlike approaches that rely on ad hoc approxi-
mation schemes for the posterior score function using unconditional diffusion models (Rozet et al.,
2024; Bai et al., 2024), our framework directly employs a conditional diffusion model. Both the prior
and the corruption channel are implicitly encoded in this model through the minimization of the
conditional score matching loss (10). In experiments (Section 4), we observe that DiffEM consistently
outperforms EM methods with diffusion priors. As predicted by our theoretical analysis (Section 3),
this improvement is largely due to the fact that conditional models avoid the approximation bottleneck
inherent in heuristic posterior sampling schemes.

Output: Posterior sampler ) and diffusion prior §. Our framework is designed to address
two complementary goals: (1) posterior sampling and (2) prior reconstruction (cf. Section 1.1). The
conditional diffusion model trained by DiffEM naturally serves as a posterior sampler. For prior
reconstruction, we leverage the reconstructed dataset DE?*” generated during the final EM iteration,
and train an unconditional diffusion prior on this dataset. In particular, when the target application
requires only a diffusion prior (Daras et al., 2023b; Rozet et al., 2024; Bai et al., 2024), we may

directly use 6. In such cases, the conditional model adopted by our approach primarily serves as a
means to accelerate EM convergence.

Computation efficiency of DiffEM. The computational cost of DiffEM can be decomposed as
Total Time = Tin;y + K - Tr + T\, (11

where K is the number of EM iterations, T;;; is the time of training a standard conditional diffusion
model from scratch, T < Tiy,;: is the average time of fine-tuning the conditional diffusion model for
each M-step, and 7}, is the cost of training an unconditional model to output. The cost Tinix > T
of training diffusion model is intrinsic to diffusion-based learning methods. Thus, DiffEM can
be interpreted as increasing the training cost by a multiplicative factor of K (the number of EM
iterations), which we view as the unavoidable cost of working with only corrupted data.
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In general, the computational cost of EM-based methods (Rozet et al., 2024; Bai et al., 2024) can
always be decomposed as (11). In our experiments, we compare the computation time K, Tj,;;, and
Tt of DiffEM and EM-MMPS in CIFAR-10 experiments (Table 2).

3 MONOTONIC IMPROVEMENT PROPERTY AND CONVERGENCE

In this section, we analyze the convergence properties of the EM iteration. As observed by Aubin-
Frankowski et al. (2022), when the iteration (6) is exact, i.e., when the sample size is infinite and the
conditional model gy(.+1) learns the mixture posterior exactly in each M-step, the EM iteration is
equivalent to mirror descent in the space of measures. Therefore, the convergence of the exact EM
iteration follows immediately from the guarantees of mirror descent.

We study the DiffEM iteration, taking the score-matching error introduced by the M-step into account.
For simplicity, we analyze the EM iteration with fresh corrupted samples. Specifically, we consider
the variant of Algorithm 1 where, at each iteration £ = 0,1,--- , K — 1, a new dataset of corrupted
observations Dy = {Y ... 'YIN1 ~ Pg is drawn in the E-step. We continue to refer to this
procedure as DiffEM throughout this section.

Under this variant, for each , the reconstructed dataset D = {X 1 ...  XIN1 consists of i.i.d
samples from the posterior mixture distribution 7 = Ey . p; [ggx) (-|Y')]. We let P*) be the joint
probability distribution of (X,Y") under X ~ 7® Y ~ Q(-|X), and write P’ for the marginal of
Y. The convergence is measured in terms of Dkr,(Py || Py*), the Kullback-Leibler (KL) divergence
between the true observation distribution Py and the distribution P{f’ ), Intuitively, this measures how
plausible the prior 7*) is by comparing the induced observation distribution Py’ to Py. !

Score-matching error. We define the score-matching error of the kth M-step as
egm = Eypp D (gpeesn (1Y) | PO([Y)),

which measures the KL divergence between the conditional diffusion model gg(x+1) learned in the
kth M-step and the true posterior P™ (-|Y"). This error can be decomposed into two components: (1)
the error of the learned score function, which is the statistical error of score matching (10) with a
finite sample size, and (2) the sampling error, which comes from the discretized backward diffusion
process (8) starting from a noisy Gaussian. When the denoiser network is sufficiently expressive,
the score matching error can be upper bounded through statistical learning theory (Dou et al., 2024;
Zhang et al., 2024; Wibisono et al., 2024; Chen et al., 2024; Gatmiry et al., 2024, etc.). The sampling
error is addressed by existing work on backward diffusion sampling (see e.g., Chen et al., 2022;
Conforti et al., 2023; 2025)). Therefore, under appropriate conditions, it can be shown that the
score-matching error 5&'}&, — 0 as the sample size NV increases.

Monotonicity of EM. Our first result (shown in Appendix B.1) is the following approximate

monotonicity property of the EM iteration in terms of the statistical error 5(5"”,'\},.

Lemma 1 (Monotonic improvement). For any k > 0, it holds that

* (k1) * () (ot 1) || (k) ()
D (Py || Py™) < D (Py || Py”) = Do (n0 || «™) + &
error of prior w(F+1) error of prior =(®) difference between priors score-matching error of q,(k41)

Therefore, when the statistical error £5, — 0, the divergence Dxr,(P5 || Py*’) is monotonically

decreasing. In other words, in the EM iteration, the observation distribution induced by prior 7w+
is always closer to Py compared to the observation distribution induced 7*’, modulo the score-
matching error 5%. In Section 4.1.1, we corroborate this property in experiments, showing that
DiffEM can improve upon the learned prior produced by EM-MMPS (Rozet et al., 2024).

Convergence rate. Beyond monotonicity, we show that the EM iteration enjoys a convergence rate
guarantee. However, this guarantee requires that the conditional model achieves small approximation
error measured in the latent space. Specifically, for each k£ > 0, we define the error

k) P (X]Y)
sm = Exy)~pe |log oo ey |

"Here, the convergence is not measured as the divergence between priors Px and 7*) because in general,
the problem (1) might not be identifiable, i.e., there can exist a distribution Py # P% that induces the same
observation distribution Q4 Py = P§. Therefore, convergence in terms of the priors can only be obtained
under the additional assumption of identifiability (cf. Assumption 1).
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which measures the closeness of the posterior likelihoods computed under P and gyx+1) with

respect to samples (X, Y') ~ P*. The error £y, can be larger than the ey, since it is measured under

the unknown prior distribution P%. Nevertheless, we show that £5}, can be related to €y, under
appropriate assumptions (detailed in Appendix B.4). Below, we state the convergence guarantee of

the EM iteration. The proof is in Appendix B.2.
Proposition 2 (Convergence of EM iteration). For each K > 0, we have
. , K , Dk (P || 7@ ;
minge e Dxn (B || YY) < g SiZo Dxe (P || PY) < P2 4 maee i 26,
Therefore, as the number of EM iterations increases, Py’ converges to Py at the rate of 1, up to
the statistical error ?S’;\jl Furthermore, we can also derive the following last-iterate convergence by
invoking Lemma 1:

Dy (P || 7@ K ,
Dy (P || YY) < % + maxp< i Eopy + D oreo Esms VK > 0.

Given that each EM update is computationally expensive, the above convergence rate is most relevant
in the regime where Dk, (P% || @) < 1, i.e., where the initial diffusion model provides a prior
that is not too far from the ground-truth P%. Such a warm start model can be trained using existing
methods (Daras et al., 2023b) that are computationally cheaper.

Stronger convergence under identifiability. Under the assumption that the latent variable problem
(1) is identifiable, we show that EM achieves linear convergence in terms of Dy, (P || 7).

Assumption 1 (Identifiability). There exists parameter k > 1, R > 0 such that for any distribution
P(z) with Dx1,(P% || P) < R, it holds that

Dxu(Px || P) < 5 - Dxu(PY || Q4 P),
where Q. P is the distribution of Y under X ~ P,Y ~ Q(:|X).

In other words, Assumption 1 requires that for any prior P whose induced observation distribution
QP is close to Py, P itself must be close to the true prior P%. Intuitively, Assumption 1 quantifies
the identifiability of the latent variable problem (1). We show the following in Appendix B.3.

Proposition 3 (Linear convergence of EM). Suppose that Assumption I holds, Dx1,(P% || ) < R,
and ?S",\} < % for each k > 0. Then it holds that

Dicu (P || 7)< exp (= 25 ) - Diw (P [| 7©) + ( + 1) mae, 55,

4 EXPERIMENTS

We evaluate the proposed method, DiffEM, through a series of experiments. We begin with a synthetic
manifold learning task (Appendix C.1), where we show that the conditional diffusion model yields
more accurate posterior samples than existing approximate posterior sampling schemes (Rozet et al.,
2024). We then conduct image reconstruction experiments on CIFAR-10 (Section 4.1) and CelebA
(Section 4.2), demonstrating that DiffEM outperforms prior approaches for learning diffusion models
from corrupted data.

4.1 CORRUPTED CIFAR-10

We next evaluate our method on the CIFAR-10 dataset (Krizhevsky, 2009), treating the 50000 training
images as samples from the latent distribution P5%.

Masked corruption process. Following (Daras et al., 2023b; Rozet et al., 2024), we consider a
linear corruption process (2) corresponding to randomly masking each pixel with probability p, i.e.,
the corruption matrix A ~ Py is diagonal with entries independently drawn from Bernoulli(1 — p).
In this corruption process, the observation is generated as Y = (AX +¢€, A), with A ~ P4, X ~ P%,
e~N (O, U%/I). In other words, each image is corrupted by (1) first randomly deleting every pixel

independently with probability p, and then (2) adding isotropic Gaussian noises with variance o%..
In our experiments, we set p = (.75, cr%, = 1079, i.e, each image has 75% pixels deleted and

corrupted by negligible Gaussian noises. We also experimented with p = 0.9 and reported the results
in Table 6.
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Task Method IST FID] FDpmove! FDuxld
EM-MMPS (Rozet et al., 2024) 9.77  6.49 237.02 231.80

Posterior Sampling DiffEM (Ours) 9.81 4.68 220.97 216.53
DiffEM (Warm start) 9.66 4.66 186.90 180.70

Ambient-Diffusion (Daras et al., 2023b) | 6.88 28.88 1068.00 1062.98

Prior Reconstruction EM-MMPS (Rozet et al., 2024) 8.14 13.18 643.59 640.14
DiffEM (Ours) 8.57 10.24 598.18 594.75

DiffEM (Warm start) 8.49 1033 546.07 541.53

Table 1: Posterior sampling and prior reconstruction performance on CIFAR-10 with random masking
with corruption rate of p = 0.75 compared to Ambient-Diffusion (Daras et al., 2023b) and EM-
MMPS (Rozet et al., 2024).

Experiment setup. Our conditional diffusion model gy (x|y) is parametrized by a denoiser network
dp(x, t,y) with U-net architecture. We train the model for 21 DiffEM iterations, initializing with a
Gaussian prior (cf. Appendix C). For each iteration, we train the denoiser network with conditional
score matching (10) to learn the conditional mean E[X| X, Y]. We then compare DiffEM to prior
methods (Daras et al., 2023b; Rozet et al., 2024) under the following evaluation metrics, which
correspond to the posterior sampling task and prior reconstruction task (cf. Section 1.1).

Eval 1: Posterior sampling performance. The final model returned by DiffEM is a conditional
diffusion model, i.e., given any corrupted observation Y, the model sample a reconstructed image
X ~ qo(-]Y). Therefore, to evaluate the performance of posterior sampling, for each observation Y [
in our dataset, we use the trained model to generate a reconstructed image X 7l ~ gy (-|Y'1"!) and obtain
the reconstructed dataset Dyecon = {X [1}’ e X [500001} (similar to the E-step of Algorithm 1). We
then evaluate the quality of Diecon by computing the Inception Score (IS) (Salimans et al., 2016) and
the Fréchet distance to the uncorrupted dataset in various representation spaces” to obtain the metrics
FID (Heusel et al., 2017), FDpinove (Oquab et al., 2023; Stein et al., 2023), and FD,, (Chong and
Forsyth, 2020). The results are reported in Table 1.

Eval 2: Prior reconstruction performance. We also note that the models trained by existing
works (Daras et al., 2023b; Rozet et al., 2024; Bai et al., 2024) are unconditional diffusion models,
which can be regarded as the reconstruction of the ground-truth prior Px. In DiffEM, the recon-
structed prior is implicitly described by the conditional diffusion model gy. Therefore, to evaluate
the prior recovered by DiffEM, we use the reconstructed dataset Diecon to train a new (uncondi-
tional) diffusion model pg,, ..., Which learns to sample from the prior induced by gg. We then
evaluate the metrics (IS, FID, FD,, FDpinov2) of the model py as our performance on the
prior reconstruction task. We report the metrics in Table 1.

uncond

Discussion and comparison. We compare DiffEM to Ambient-Diffusion (Daras et al., 2023b)?
and EM-MMPS (Rozet et al., 2024) under the above metrics in Table 1 (higher IS and lower FID/FD
scores indicate better performance). To evaluate the diffusion prior trained by these baselines,
we apply their approximate posterior sampling scheme and report the metrics evaluated on the
reconstructed dataset. Under all four metrics, the diffusion models trained by DiffEM outperforms
both Ambient-Diffusion and EM-MMPS, demonstrating the power of our pipeline.* Figure 5 shows
qualitative results comparing the corrupted observations and reconstructions from our model.

We also compare the computational cost of DiffEM and EM-MMPS in Table 2, following our
discussion in Section 2.2.

The Fréchet distance measures discrepancies at the distributional level. Under severe corruption (75% of
pixels deleted), the posterior distribution P)*(ly may not concentrate around a single ground-truth. As a result,
classical reconstruction metrics such as PSNR and LPIPS are less appropriate in this setting (Rozet et al., 2024).

>We note that the Ambient-Diffusion model was trained on the dataset corruption level p’ = 0.6, an easier
setting than ours (p = 0.75).

“We note that Bai et al. (2024) proposed EM-Diffusion and reported FID score 21.08 (corruption level
p’ = 0.6 and initialized with a diffusion prior trained on 50 clean images). However, we cannot reproduce
their experiments to evaluate other metrics. Given that EM-MMPS achieves a much better FID score than
EM-Diffusion, we believe it is sufficient to compare DiffEM to EM-MMPS.
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Method K ﬂnit Tft Tu
EM-MMPS | 32 430+0.8 863=£0.7 N/A
DiffEM 21 635+04 703+£0.2 74.54+0.09

Table 2: Comparison of computation time (cf. Section 2.2), with Tin;t, T, 7, measured in minutes
using 4x H200. The cost of EM-MMPS can similarly be decomposed as Tinit + K - T (it does not
incur the cost T},). As shown, DiffEM is more computation-efficient.

4.1.1 DIFFEM WITH WARM-START

Additionally, we perform experiments on the masked CIFAR-10 dataset with warm-started DiffEM.
Specifically, we take the diffusion prior trained by 32 iterations of EM-MMPS (Rozet et al., 2024),
and perform 10 DiffEM iterations starting from this prior. We evaluate the final posterior sampling
performance and prior reconstruction quality (reported in Table 1).

As shown by the results, using an initial prior of high quality can indeed accelerate the convergence
of DiffEM, as we only need 10 DiffEM iterations. This is consistent with our theoretical results
(Section 3). Furthermore, warm-started DiffEM outperforms DiffEM with an initial Gaussian prior in
terms of the score FDpinov2 and FD, indicating that DiffEM can converge to a better distribution
when starting from an informed prior.5 We also plot the evolution of IS, FID, DINO, and FD, metrics
in Figure 7, which corroborates the monotonic improvement property of DiffEM (Lemma 1).

4.1.2 ADDITIONAL EXPERIMENT: CIFAR-10 UNDER GAUSSIAN BLUR

In addition to the masked corruption, we additionally perform experiments on the blurred CIFAR-
10 dataset. In Gaussian blur model, each observation Y ~ N (AX , 012/) is generated by applying
a Gaussian blur kernel on X with standard deviation oyerpe (represented by the matrix A), and
then adding isotropic Gaussian noise € ~ N (O7 032,1). In our experiment, we take oyernel = 2 and
02 = 1079, and we follow the same training procedure as in the experiments on CIFAR-10 with
random masking, with details presented in Appendix C.5.

4.2 CORRUPTED CELEBA

We perform experiments on the CelebA dataset (Liu et al., 2018), with images cropped to 64 x 64
pixels following (Wang et al., 2023; Daras et al., 2023b). We consider the masked corruption process
described in Section 4.1 with masking probability p € {0.5,0.75} and noise level 032, =0,1i.e., the
corruption level is moderate. We initialize the first iteration for DiffEM with the Gaussian prior
(cf. Appendix C). We evaluate the diffusion models trained by DiffEM following the protocol of
Section 4.1 (Table 3). As shown in Table 3, DiffEM significantly outperforms EM-MMPS. We also
present sample reconstructed images in Figure 10 and an illustration of the pipeline in Figure 1.

Task p Method ISt FID|] FDpmoved FDold

05 EMTMMPS 3237 0.61 9.36 6.07

Posterior sampling DiffEM 3.239  0.33 5.07 2.07
075 EM-MMPS | 296 31.22 113.09 109.41

DiffEM 3.16 1.43 39.34 36.26
05 EM-MMPS | 250 11.44 186.16 182.90
Prior reconstruction DiffEM 2,52  10.11 344.60 340.97
075 EM-MMPS | 2.35 61.40 321.90 319.58

DiffEM 250  10.75 423.95 420.76

Table 3: Performance of DiffEM and EM-MMPS on masked CelebA with p € {0.5,0.75}.
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A RELATED WORK

Learning diffusion models with corrupted dataset. Recent advances in diffusion models (Ho
et al., 2020; Song et al., 2020) have demonstrated remarkable success in learning high-dimensional
distributions. However, training diffusion models with corrupted data presents significant challenges,
as most existing techniques are designed for clean datasets, and learning latent variable models is
known to be theoretically and practically difficult. Several approaches have been proposed to address
this challenge using diffusion models. For linear corruption Y ~ N (AX , U%/I) (cf. Eq. (2)), methods
such as SURE-score (Aali et al., 2023), GSURE (Kawar et al., 2023), and Ambient-Diffusion (Daras
et al., 2023b; Aali et al., 2025; Daras et al., 2025) train the denoiser network using a surrogate
loss function. Specializing to Gaussian corruption ¥ ~ N (X ) 0'32/1), Daras et al. (2023a; 2024b)
propose enforcing consistency of the diffusion model to enable generalization to unseen noise levels,
while Lu et al. (2025) develop an iterative scheme to refine the diffusion prior. Recent work (Rozet
et al., 2024; Bai et al., 2024) identifies the Expectation-Maximization (EM) method as a promising
framework for training diffusion priors with linearly corrupted observations. However, as these
EM approaches employ diffusion models as priors, they rely heavily on approximation schemes for
posterior sampling (detailed discussion in Section 2.1). In this work, we propose an EM framework
with conditional diffusion models that eliminates the need for ad hoc approximate posterior sampling
schemes and applies to general corruption processes. Our experiments demonstrate quantitative
performance improvements over previous methods.

Solving inverse problems with diffusion models. Diffusion models have also been shown as
powerful priors for a wide range of inverse problems in computer vision and medical imaging. A
line of work—including SNIPS (Kawar et al., 2021), ILVR (Choi et al., 2021), DDRM (Kawar et al.,
2022), Palette (Saharia et al., 2022), and DPS (Chung et al., 2022), among others—has demonstrated
the effectiveness of both unconditional and conditional diffusion models in addressing various tasks,
such as super-resolution, inpainting, deblurring, and compressed sensing. As surveyed by Daras et al.
(2024a), many of these approaches leverage learned diffusion priors and perform posterior sampling
through approximations of the posterior score function, and the previous work on EM (Rozet et al.,
2024; Bai et al., 2024) also follows this approach.
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B PROOFS FROM SECTION 3

B.1 PROOF OF LEMMA 1
Note that
P(k+1)(Y)

Dk (Py || Py) — Dxw(Py || PYV) = Ey~py log POW)

By definition and Bayes’ rule,

7-(-(k+1)( )
Py (y) /Q yl)m O ( dw—/Q ylao)m® (@) - —5 s de

70 ()
/P(k)(l‘ y) - F(l::é)dx
— [ po . PO (gl T (@)
= [ By (y) - PP (zly) 0 () dz

PM(X]y) JT“””(X)}
qou+n (X[y)  7™(X) |

=Py (Y)  Exeg, i) Cly) [

Therefore, by Jensen’s inequality, we have
Dxr(Py || Py) — Dxu(Py || Py )
P(kJrl)(Y)

~Er O

T (X|Y) 77“‘*”(X)}
G+ (X[Y) 7™ (X)
P®(X]Y)  a®)(X)
> ]E ~ *E ~ . 1 :
= YR X (1Y) [Og <QG(k+1)(X|Y) T (X)
T (X) Gpoe+v) (XY)
=By ~rrExag, ) (1) log TOX) Ey ~pPrExng, i (1) 108 TPOX]Y)

= Dir (™ | 7)) = By ~py Dt (dpeeen (1Y) | PP CY))-

= ]EYNP{} IOgEXng(k+1)('\Y) |:

Rearranging the terms completes the proof. O

B.2 PROOF OF PROPOSITION 2
We first show that: For each k£ > 0, it holds that

DgL(Py || Py*Y) < Diu(Px || 7)) — Dgp (P || #*0) + 280

To simplify the presentation, we define 7+ (z) = Ey py P® (z|Y"). Then, by definition, we have

%(kJrl)(.’E) = EYNP)*, P(k)(l"Y)

gy [P @R
= YNPY P}(}>(Y)
Py (Y)
<k>( ) -Eyoq(e [ Y }
Q(|x) P{/’“)(Y)
Therefore, it follows that
~ D (X
Dia (P | 7) = Dia (P | 77) = B log — )
Py (Y)
= EXNP* logEy ~q(.|z) {(k)(y)]
Py(Y)
> Ex~priEyq(|2) [bg PO
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()
PP(Y)

—Eyor [bg } — Diw (P} | P,

Furthermore, we have

Dt (P | 7) = Dy (P | 7+)
=Ex~py[logm* ™ (X) —log 7" (X)]
= Ex~py [logEy~p; [PV (X]Y)] — log Eypg [gpen (X|Y)]]
POXIY)
Gor+1) (X|Y)}

2

<Ex,yv)~prs [log = Egm-

Combining the above equations, we have shown that

Dxu(PY || YY) < Dk (P || 7%) — Dxu(Px || #*7) + &gy

This is the desired upper bound. Taking the summation over ¥ = 0,1,--- , K completes the
proof. For the last-iterate convergence rate, we only need to use the fact that Dy, (P || Py) <
Dxr(Py || PYO) 4+ 300, &) (by Lemma 1). O

B.3 PROOF OF PROPOSITION 3

By Proposition 2, we have
Dxv(Px || #**) + Dxv(Py || Py™) < Diw(Px || 7)) + &gy
Using Assumption 1, we know that as long as Dk, (P% || #*) < R, we have
(1+ £ D (PX || 7Y) < Dyr (P || 7)) + g

Denote €5 = maxy, sSM Therefore, using the fact that € ’“) < Esm < £, we can show by induction
that Dk, (P% || 7)) < R for each k& > 0, and hence

(14 &~ HDkL(P% || #**) < Dgp(P% || #®) + Esm.
Applying this inequality recursively, we obtain

K ~
Dxu(Px | 7)) < 7 Dru(Px || 774) + Esm

2

K K
< (2 Dyn(Py | 7% Fom + &
_<1+H> kL (P || ™ )+(1+K>ESM+ESM

IN

IN

K k k—1 k—1—1
") Dyn(Ph || ) 2
<1+n> (P ) +ZZ(1+,£) o

< e MDDy (Py || 7@) + (14 K)Esm,

where the last inequality follows from 37— + =1- 1-&%@ < exp (*1_%&) 0

B.4 RELATION BETWEEN THE SCORE-MATCHING ERRORS

In this section, we provide the following upper bound for £5y, in terms of £y;. Recall that £5)) is

defined as
P®(X]Y) }
g =F ~p+ |log ——————=+
s = En- [ % oo (XTY)
Proposition 4. Suppose that By .p; Dy2(P*(-|Y) || gge+1) (-]Y)) < C < +00. Then it holds that
Eou < 21/ (C + Degy.
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Proof of Proposition 4. By definition,
P®(X]Y) )
o+ (X[Y) +

P®(X]Y) >
Goen (X[Y) /4

Eom < E(x y)~rg <10g

=Ey~psEx~ps(v) <log

2
=Brery \/(1 + Dy (P*(Y) I ggorsn (‘Y))) : ]EX~q9(k+1) (1Y) (log (m> +
< By oy /(1 Dy (P (1Y) || ggorsn (1)) - 4Dk (ggonen (1Y) || POCIY))
< 24/(C +1)edy,
where we apply Lemma 5. This yields the desired upper bound. 0

Lemma 5. For any distributions P and Q, it holds that
Ex~q(log P(X) ~log Q(X))} < 4Dxw(Q || P).

Proof. Note that logz < 2(y/z — 1) for any = > 1, and hence (log z)3 < 4(y/z — 1)2. Applying
this inequality, we have

Ex~o(log P(X) —log Q(X))2 = Ex-q (10g gg 3)
N
- 4EX“Q< gg; - 1) = 8D} (P,Q) < 4Dk (Q || P).

This is the desired upper bound. O

16



Under review as a conference paper at ICLR 2026

C EXPERIMENT DETAILS

Parametrization. Following Section 2.2, we adopt the denoiser parametrization dg(x, t|y), and the
conditional score function sy is thus given by
d9 (x7 tly) -z
Sp (.’I}, t|y) = 2 .
O

Therefore, the score-matching loss defined in (10) can be equivalently written as

1
Lowi(0) = / NExoo v~ 10 Exeen(xoezn o (Xe V) — Xol2dt,  (12)

At

where \} = 2%, and \; is the weight function from (10).
t

In our experiments, we adopt the following noise schedule:
02 = exp (1 — 1) log(ao) + tlog(e1)),

where 0y < o0 are appropriate parameters, and the scalar o; is encoded as a vector embedding. The
input to the denoiser network is the concatenation of X, Y, and the vector embedding of the noise
o¢. We also choose \; = (07 + 1) - f(t; , ), where f(t; o, 3) is the density function of the Beta
distribution with parameters (c, 3).

For the manifold experiment (Appendix C.2), we choose o = 3.5, 3 = 1.5, 0g = 1073, 01 = 10".
For the remaining experiments, we set a = 3 = 3, o9 = 1073, 0y = 102.

Initialization. As noted in Section 3, the convergence rate of DiffEM depends on the quality of
the initial prior 7 through the quantity Dk, (P% || 7®), i.e., the KL divergence between the
ground-truth prior P¥ and the initial prior 7(©. Therefore, a better initial prior may lead to faster
convergence. In our experiments, we consider the following initialization strategies:

(a) Corrupted prior: For linear corruption processes, the observationis Y = (AX + €, A).
When d, = d,, we can consider the corrupted prior 7>, which is simply the distribution
of X’ = AX + e. To sample from 7”, we can draw ¥ = (AX + ¢, A) ~ Py and set
X' =YI[0:d,].

(b) Gaussian prior: For general linear corruption processes, we can fit a Gaussian prior
7@ = N(ux, Xx) using the observations {Y! ... [ YINI} ~ pr.

(c) Warm-start: More generally, we can set 7' to be any pre-trained diffusion prior as the
warm-start prior. In particular, this can be the diffusion prior trained on corrupted data by
existing methods (Daras et al., 2023b; Kawar et al., 2023; Rozet et al., 2024, etc.).

For the experiments (except Section 4.1.1), we adopt initialization strategy (b). Following the
implementation in (Rozet et al., 2024), the Gaussian prior is fitted efficiently through a few closed-
form EM iterations. An exception is the experiment on blurred CIFAR-10, where we adopt strategy
(a). In Section 4.1.1, we perform experiments with strategy (c), applying DiffEM to the warm-start
prior trained by EM-MMPS (Rozet et al., 2024), demonstrating that DiffEM can monotonically
improve upon the initial prior.

C.1 ADDITIONAL EXPERIMENT: SYNTHETIC MANIFOLD IN R°®

We evaluate our method’s performance on a synthetic problem introduced by (Rozet et al., 2024).
In this setting, the latent space is X = R®, with the latent distribution P% supported on a one-
dimensional curve in R®. The corruption process generates observations Y = (AX +¢, A) through the
following steps: (1) sample a latent point X ~ P%, (2) sample a corruption matrix A € R?*5 ~ P,
with rows drawn uniformly from the unit sphere S*, and (3) add Gaussian noise € ~ N(0, 0% 1).

Following Rozet et al. (2024), we apply our method to a dataset of 65536 independent observations
with noise variance 02 = 10~*. Detailed experimental settings are presented in Appendix C.2.
Figure 2 illustrates the two-dimensional marginals of the reconstructed latent distribution compared
to those obtained by (Rozet et al., 2024). The results demonstrate that our method achieves better
concentration around the ground-truth curve, providing empirical evidence that the conditional
diffusion model learns the posterior distribution more accurately than the approximate posterior
sampling scheme of (Rozet et al., 2024) (cf. Section 2.1).
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Figure 2: Evolution of the learned latent distribution on the synthetic manifold task. From left to
right: reconstructed distributions from our model at DiffEM iterations 8, 16, and 32, followed by
the distribution from EM-MMPS ((Rozet et al., 2024), 32th iteration) and the ground-truth P%. Our
method shows progressively better concentration around the ground-truth curve, demonstrating more

accurate posterior learning compared to previous work.

C.2 MORE DETAILS ON THE EXPERIMENT IN APPENDIX C.1

We implement the denoiser network dy(x, t|y) using a Multi-Layer Perceptron (MLP). The network
architecture and training hyperparameters are detailed in Table 4.

Architecture MLP
Input Shape 5+24+5x2=17
Hidden Layers 3
Hidden Layer Sizes 256, 256, 256
Activation SiLU
Normalization LayerNorm
Optimizer Adam
Weight Decay 0
Scheduler linear
Initial Learning Rate 1x1073
Final Learning Rate 1x10°6
Gradient Norm Clipping 1.0
Batch Size 1024
Epochs in each iteration 65536
Sampler Predictor-Corrector
Sampler Steps 4096
Number of EM iterations 32

Table 4: Network architecture and training hyperparameters for the MLP used in the synthetic
manifold experiment.

To quantify the quality of the learned distribution, we compute the Sinkhorn divergence S Ramdas
et al. (2015) with regularization parameter A = 10~3 after each epoch. The Sinkhorn divergence is
defined as:

1
2

/(Rd)2 ly — zl|3dvy(z,y) + 2AH (v, p @ v)

S)\(/.L,I/) = T)\(/’La V) (T/\(MM) +T)\(Va V))

min

T, v) =
Mwsv) yEI(p,v)
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We plot the evolution of Sinkhorn divergence over the iterations of DiffEM and EM-MMPS (Rozet
et al., 2024) in Figure 3. We also plot the 2D marginals of the distributions reconstructed by DiffEM
and EM-MMPS in Figure 4.

Method
— ours
—— EM-MMPS

10-14

Divergence

123456 7 8 91011121314151617 1819 2021 22 2324 252627 28 29 30 31 32
Lap

Figure 3: Evolution of Sinkhorn divergence between the ground-truth and reconstructed distributions
during training. The red line shows DiffEM, and the blue line shows EM-MMPS.

Figure 3 demonstrates that while EM-MMPS provides effective initialization when the learned
distribution is far from the true prior, it plateaus quickly and fails to achieve further improvements.
This is likely due to the inherent approximation error of the approximate posterior sampling scheme
(MMPS). In contrast, DiffEM continues to refine the reconstructed distribution, achieving better
concentration around the ground-truth curve.
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Figure 4: Comparison of 2D marginals of reconstructed distributions after the final iteration. Left:
EM-MMPS; Right: DiffEM. DiffEM achieves better concentration around the ground-truth curve,
indicating more accurate posterior learning.

C.3 DETAILS OF MASKED CIFAR-10 (SECTION 4.1)

In this experiment, the conditional denoiser network dy is a U-Net Ronneberger et al. (2015), and
we adopt the same experimental setup as Rozet et al. (2024) for a fair comparison. The only major
difference in the architecture arises from the fact that our model is conditional and thus for the input
we need to feed two images X; with shape (32,32, 3) and Y with shape (32, 32, 3) to the model, we
concatenate the images on the third dimension and thus the input shape for the model is (32, 32, 6),
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Figure 5:

the output is also (32, 32,6

Iteration 3 Corrupted

Iteration 5

Iteration 21  Iteration 11

Ground Truth  EM-MMPS

Qualitative comparison of reconstruction results on masked CIFAR-10 images. Top to
bottom: corrupted input, EM-MMPS reconstructions, DiffEM reconstructions, and ground truth.

) but in the whole training process we ignore the last three channels of the

output. The details of network architecture and hyperparameters are presented in Table 5.

Experiment CIFAR-10 CelebA
Architecture U-Net U-Net
Input Shape (32,32,6) (64, 64, 6)
Channels Per Level (128, 256, 384) | (128, 256, 384, 512)
Attention Heads per level 0, 4,0) 0,0,0,4)
Hidden Blocks 5,5.5) (3.3,3,3)
Kernel Shape 3,3) 3,3)
Embedded Features 256 256
Activation SiLU SiL.U
Normalization LayerNorm LayerNorm
Optimizer Adam Adam
Initial Learning Rate 2x107% 1x1074
Final Leanring Rate 1 %1076 1x 1076
Weight Decay 0 0
EMA 0.9999 0.999
Dropout 0.1 0.1
Gradient Norm Clipping 1.0 1.0
Batch Size 256 256
Epochs per EM iteration 256 64
Sampler DDPM DDPM

Table 5: Network architecture and training hyperparameters for the U-Net models used in the CIFAR-
10 and CelebA experiments. Input shape varies by task.

We apply DiffEM with K = 21 iterations to train our conditional diffusion model and evaluate its
performance for the posterior sampling task as described in Section 4.1. To evaluate the quality of
the reconstructed prior, we also train an unconditional diffusion model with the same architecture on
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the reconstructed data. We compute the Inception Score (IS) Salimans et al. (2016) and the Fréchet
Inception Distance (FID) Heusel et al. (2017) using the torch-fidelity package (Obukhov et al., 2021),
and FDpinove (Oquab et al., 2023; Stein et al., 2023) and FD, (Chong and Forsyth, 2020) using the
codebase from (Stein et al., 2023). The results are presented in Table 1 and Table 1. We also note that
the results of EM-MMPS are obtained with 32 iterations, following the original setup of Rozet et al.
(2024).

FID

=

S

s
Inception Score

1 3 5 7 9 11 13 15 17 19 21 1 3 5 7 9 11 13 15 17 19 21
Lap Lap

Figure 6: Evolution of evaluation metrics for posterior sampling measured during DiffEM training on
CIFAR-10 with random masking. Left: FID, Right: Inception Score.

As an illustration, we also plot the evolution of the IS and FID during DiffEM iterations, demonstrating
that DiffEM monotonically improves the quality of the reconstructed prior, in accordance with our
theoretical results (Lemma 1).

Experiments with higher corruption. In addition, we perform experiments on CIFAR-10 with
corruption probability p = 0.9 (i.e., 90% pixels are randomly deleted) and present the results in
Table 6. Under such high corruptions, DiffEM also consistently outperforms EM-MMPS (Rozet
et al., 2024).

Task Method | ISt FID| FDpinowe!) FDuo |
EM-MMPS | 5.06 67.97 104551  1039.82
DiffEM | 5.86 4613  915.69 912.26

EM-MMPS | 486 73.34 1174.13 1168.66
DiffEM 546 49.10 1111.16 1107.64

Posterior sampling

Prior reconstruction

Table 6: Performance of DiffEM and EM-MMPS on CIFAR-10 with 90% random masking.

C.4 DIFFEM WITH WARM-START
We plot the evolution of IS, FID, FDpinove and FD, scores during training in Figure 7.

C.5 DETAILS OF BLURRED CIFAR-10

In the experiment on CIFAR-10 with Gaussian blur, we set oyenel = 2 and 0’%/ = 10"%. We
apply DiffEM for K = 21 iterations, with the same initialization, denoiser network architecture,
and hyperparameters as in the masked CIFAR-10 experiment (detailed in Table 5, Appendix C.3).
Due to time constraints, we do not evaluate EM-MMPS (Rozet et al., 2024), as in this problem the
moment-matching steps (based on conjugate gradient method) are very time-consuming.

Qualitative study. To evaluate the quality of the trained conditional model, we sample 7 blurred
images from the CIFAR-10 training set and use the trained model to generate a reconstruction for
each image. We present the images in Figure 8.

Quantitative comparison. For comparison, we use the Richardson-Lucy deblurring algorithm
Richardson (1972) as a baseline, which is a widely used method for image deconvolution. We also
plot the evolution of the IS and FID during DiffEM iterations in Figure 9.
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Figure 7: Evolution of IS, FID, DINO, FD, during the 10 DiffEM iterations with the warm-started
prior.

Method 1S T FID \I, FDDINOV2 J, FDOO \I,
Richardson-Lucy deconvolution | 3.72 131.74 1479.79 1470.78
DiffEM (Ours) 6.12  43.65 404.05 400.65

Table 7: Posterior sampling performance on CIFAR-10 with Gaussian blur (oernel = 2).

Method IS FID| FDpinovzld FDg !l
DiffEM (Ours) | 11.27 51.25 772.23 768.19

Table 8: Prior Reconstructoin performance on CIFAR-10 with Gaussian blur (0kernel = 2).

To evaluate the quality of the trained conditional model, we sample 21 blurred images from the
CIFAR-10 training set and use the trained model to generate a reconstruction for each image. We
present the images in Figure 8. For comparison, we use the Richardson-Lucy deblurring algorithm
Richardson (1972) as a baseline, which is a widely used method for image deconvolution. We also
plot the evolution of the IS and FID during DiffEM iterations in Figure 9.

C.6 MASKED CELEBA

As a demonstration, we sample seven masked images from the CelebA training set under the 75%
corruption setting. Using the trained model, we generate reconstructions for each image after the 1%,
ond 4th 8t and 16™ iterations. The results are shown in Figure 10.

The denoiser architecture is detailed in Table 5. For the 50% corruption setting, we trained the
conditional diffusion model for 20 EM iterations, while for the 75% corruption setting we trained it
for 24 iterations. In both cases, we trained EM-MMPS for 9 iterations. The computational overhead
of Moment Matching Posterior Sampling becomes particularly evident in this experiment, as the
CelebA dataset is larger (202,599 images) and each image is higher-dimensional (64 x 64) compared
to CIFAR-10. We observed that each EM iteration of EM-MMPS required 4.85 £ 0.02 hours, whereas
each iteration of DiffEM required 1.19 &£ 0.03 hours.
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Figure 8: Qualitative results of image reconstruction from Gaussian blur. Top to bottom: blurred
image, reconstruction by Richardson-Lucy deconvolution, image reconstructed by DiffEM model,
and ground truth. DiffEM effectively recovers image details.

Inception Score
v
¥
]

— T T T T L s S S s S B S S
1 3 5 7 9 11 13 15 17 19 21 1 3 5 7 9 11 13 15 17 19 21
Lap Lap

Figure 9: Evolution of evaluation metrics for posterior sampling measured during DiffEM training on
CIFAR-10 with Gaussian blur. Left: FID, Right: Inception Score.
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Figure 10: Qualitative results on the CelebA experiment under the 75% corruption setting. The
leftmost column shows samples from the dataset. The subsequent columns display reconstructions
generated by the conditional diffusion model after laps k£ = 1,2,4,8,16. The rightmost column
shows the ground-truth images.
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