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ABSTRACT

Diffusion models have emerged as powerful generative priors for high-dimensional
inverse problems, yet learning them when only corrupted or noisy observations are
available remains challenging. In this work, we propose a novel method for training
diffusion models with Expectation-Maximization (EM) from corrupted data. Our
proposed method, DiffEM, utilizes conditional diffusion models to reconstruct
clean data from observations in the E-step, and then uses the reconstructed data
to refine the conditional diffusion model in the M-step. Theoretically, we provide
monotonic convergence guarantees for the DiffEM iteration, assuming appropriate
statistical conditions. We demonstrate the effectiveness of our approach through
experiments on various image reconstruction tasks.

1 INTRODUCTION

Diffusion models (Song and Ermon, 2019; Ho et al., 2020; Song et al., 2020) have emerged as
powerful tools for learning high-dimensional distributions, achieving remarkable success across a
broad range of generative tasks. Their effectiveness as learned priors has led to significant advances
in solving inverse problems (Kawar et al., 2021; Choi et al., 2021; Saharia et al., 2022), including
image inpainting, denoising, and super-resolution. However, in many real-world scenarios, acquiring
clean training data remains difficult or costly, and can raise significant concerns, as training on clean
data might lead to memorization (Somepalli et al., 2023a; Carlini et al., 2023; Somepalli et al., 2023b;
Shah et al., 2025), posing privacy and copyright risks. While data with mild or moderate corruption is
often more readily available, particularly in domains like medical imaging (Wang et al., 2016; Zbontar
et al., 2018) and compressive sensing, training diffusion models effectively using only corrupted or
noisy observations presents substantial technical challenges.

The fundamental difficulty lies in the fact that standard techniques for training diffusion models are
designed for settings with access to clean data from the prior distribution. When only corrupted or
noisy observations are available, these techniques become inapplicable, and training diffusion models
effectively reduces to learning a latent variable model from corrupted observations—a problem
well-known for its theoretical and practical challenges.

Recent work (Rozet et al., 2024; Bai et al., 2024) has proposed addressing this challenge by applying
the Expectation-Maximization (EM) method with diffusion models as priors. However, this approach
faces a critical difficulty: in each E-step, the algorithm must sample from the posterior distribution
given the corrupted observations, whereas it only has access to the score function of the diffusion
prior. To overcome this, these works adopt ad hoc posterior sampling schemes that rely on various
approximations of the posterior score function that explicitly incorporate the corruption process. Such
approximation schemes, however, are based on implicit structural assumptions about the true prior
and the corruption process, making their approximation errors difficult to quantify.

In this work, we propose a novel approach that combines diffusion models with the EM framework.
Our key insight is that instead of learning a diffusion prior and then performing approximate sampling,
we can directly model the posterior distribution using a conditional diffusion model (Saharia et al.,
2022; Daras et al., 2024a). The primary advantage of our approach is its independence from specific
approximate posterior sampling schemes. Notably, it can handle any corruption channel, as it makes
no assumptions about the prior and corruption channel beyond requiring that the posterior score
function can be expressed by the denoiser network. Furthermore, we provide theoretical analysis
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of the proposed EM iteration, demonstrating its convergence under appropriate conditions on the
approximation error of the denoiser network. We validate our approach through extensive experiments
on both synthetic and real-world datasets with various types of corruption, including low-dimensional
manifold learning and image reconstruction on CIFAR-10 and CelebA.

Related work. Due to space limitations, we discuss further related work in Appendix A, and
provide more detailed discussions of the closest works to ours in the next couple of sections.

Figure 1: todo Top: Qualitative illustration of how the CelebA dataset is transformed in our setup.
Bottom: Illustration of the training process within a single EM iteration.
1.1 PRELIMINARIES

Problem setup. Formally, we consider the following setup. The prior P ⋆
X is a distribution over the

space X of latent variables. The forward channel (or corruption process) Q(·|X) maps each point
X ∈ X to a distribution over the observation space Y . The observation is generated as

Y ∼ Q(·|X), where X ∼ P ⋆
X , (1)

and we denote P ⋆ to be the joint distribution of (X,Y ) and P ⋆
Y to be the marginal distribution of Y .

This formulation encompasses classical inverse problems, which arise from a forward channel of the
form Q(·|X) = N

(
A(X), σ2

Y I
)

where A : X → Rdy is a known forward operator.

In our setting, the learner only has access to a dataset {Y [1], · · · , Y [N ]} consisting of i.i.d. observa-
tions from P ⋆

Y . The forward channel Q is also known. The goal is two-fold:

• Prior reconstruction: to generate new samples from the ground-truth prior P ⋆
X approximately.

• Posterior sampling: to sample X ∼ P ⋆(·|Y ) given an observation Y .

With this setup, the primary focus of recent work (Daras et al., 2023b;a; Rozet et al., 2024; Bai et al.,
2024; Daras et al., 2024b) has been on prior reconstruction under the linear corruption process.
In such settings, the latent space is X = Rdx (consisting of “clean images”), and there is a known
distribution PA of corruption matrices A ∈ Rdy×dx . The observation is drawn as

Y = (AX + ϵ, A), where X ∼ P ⋆
X , A ∼ PA, ϵ ∼ N

(
0, σ2

Y I
)
, (2)

i.e., the observation Y is a (corrupted image, corruption matrix) pair, with the image corrupted
by the matrix A ∼ PA and the additive Gaussian noise ϵ. By choosing different distributions PA
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for the corruption matrix, the linear corruption process (2) can model problems including random
masking (Daras et al., 2023b; Rozet et al., 2024; Bai et al., 2024) and blurring (Bai et al., 2024).

Diffusion models. Given samples from a data distribution p0 over Rd, diffusion models aim to
learn how to generate new samples from p0. Following Song et al. (2020), we consider the diffusion
process (Xt)t∈[0,1] with X0 ∼ p0, and Xt|X0 ∼ N

(
X0, σ

2
t I
)
. Formally, the diffusion process can

be described by the following stochastic differential equation (SDE):

dXt = g(t)dBt, X0 ∼ p0, (3)

where g(t)2 =
dσ2

t

dt , and (Bt)t∈[0,1] is the standard Brownian motion. Let pt(x) be the density
function of Xt ∈ Rd. It is well-known that the reverse of process (3) can be described by the
following reverse-time diffusion process:

dXt = −g(t)2∇xpt(Xt)dt+ g(t)dBt, X1 ∼ p1. (4)

With σ1 being sufficiently large, we have p1 ≈ N
(
0, σ2

1I
)
. The score function (x, t) 7→ ∇x log pt(x)

is typically parametrized by a neural network sθ(x, t). By Tweedie’s formula, ∇x log pt(x) =
E[X0|Xt=x]−x

σ2
t

, where the expectation is taken with respect to the diffusion process (3). Hence,
sθ(x, t) can be learned by optimizing the score-matching loss.

2 EXPECTATION-MAXIMIZATION APPROACH

For a class of parameterized latent variable models {qθ(x, y)}θ where x is the value of the latent
variable and y is that of the observable one, the Expectation-Maximization (EM) method aims to find
a parameter θ that maximizes the population log-likelihood of the observable variable, where qθ(y)
below refers to the marginal of model qθ(x, y) with respect to the observable variable:

maxθ L(θ) := EY∼P⋆
Y
log qθ(Y ).

This optimization problem is equivalent to minimizing the KL divergence between P ⋆
Y and qθ(y).

However, direct optimization is computationally intractable for most problems. To overcome this
computational challenge, each step of the EM method optimizes the following ELBO lower bound
with a parameter θ̂:

L(θ) ≥ EY∼P⋆
Y
EX∼q

θ̂
(X|Y ) log

qθ(X,Y )
q
θ̂
(X|Y ) .

In particular, the EM algorithm can be succinctly written as: Starting from an initial point θ(0), iterate

θ(k+1) = argmax
θ

EY∼P⋆
Y
EX∼q

θ(k) (X|Y ) log qθ(X,Y ).

In our setting, since the forward channel Q is known and simple, the parametrized model should
satisfy qθ(x, y) = Q(Y = y|X = x)qθ(x). In this case, the EM iterations reduce to

θ(k+1) = argmaxθ EY∼P⋆
Y
EX∼q

θ(k) (X|Y ) log qθ(X). (5)

This specialization of EM has been studied in (Aubin-Frankowski et al., 2022; Rozet et al., 2024;
Bai et al., 2024), and it is also the basis of our framework. To simplify the notation, we consider the
mixture posterior distribution π(k) with density π(k)(x) = EY∼P⋆

Y
[qθ(k)(x|Y )], which is a mixture

with respect to the observation distribution P ⋆
Y of the posteriors qθ(k)(X|Y ) (Rozet et al., 2024).

Then, the EM update (5) can be rewritten as

θ(k+1) = argminθ DKL(π
(k)(x) ∥ qθ(x)), (6)

i.e., the model qθ(k+1) minimizes the distance to the mixture posterior distribution π(k). Crucially, to
implement this update, we need to be able to sample from the conditional distribution qθ(k)(X|Y ).

2.1 PRIOR APPROACH: EM WITH DIFFUSION PRIORS

In this section, we briefly review how prior work (Rozet et al., 2024; Bai et al., 2024) performs
posterior sampling with diffusion models as priors. Their methods are restricted to the linear
corruption model (2), where the observation is Y = (AX + ϵ, A), where ϵ ∼ N

(
0, σ2

Y I
)

is the noise
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and A ∼ PA is a random corruption matrix. For simplicity, to describe these results, we focus on the
case where A is fixed, i.e. the forward channel is Q(·|X) = N

(
AX, σ2

Y I
)
.

In the EM approach of Rozet et al. (2024); Bai et al. (2024), the latent variable models are described
by diffusion models. More precisely, each θ parametrizes a score function sθ(x, t), and qθ(x)
corresponds to the distribution of X0 obtained by running the backward diffusion process with the
score function sθ. However, to sample from qθ(X|Y ), one needs to approximate the conditional
score function ∇x log qθ(Xt = x|Y = y). Following previous work on posterior sampling with
diffusion priors (Chung et al., 2022, etc.), the conditional score is decomposed according to Bayes’
rule:

∇x log qθ(Xt = x|Y ) = ∇x log qθ(Y |Xt = x) +∇x log qθ(Xt = x).

The second term is given by the score function sθ(x, t). To approximate the first term, Rozet et al.
(2024) applies a Gaussian approximation qθ(X = ·|Xt = x) ≈ N(Eθ[X|Xt = x],Vθ[X|Xt = x]).
Consequently, the conditional distribution of Y is approximately

qθ(Y = ·|Xt = x) ≈ N
(
AEθ[X|Xt = x], σ2

Y I+AVθ[X|Xt = x]A⊤).
Then, to calculate ∇x log qθ(Y |Xt = x), Rozet et al. (2024) introduces moment matching techniques
to approximate the variance function Vθ[X|Xt = x]. Alternatively, Bai et al. (2024) applies a simpler
approximation qθ(Y = ·|Xt = x) ≈ N

(
AEθ[X|Xt = x], σ2

Y I
)
.

However, these approximations all rely on the assumption that qθ(X0 = ·|Xt = x) is close to
a Gaussian distribution. This assumption may not hold for general diffusion priors, which are
highly multi-modal. Therefore, errors in these approximation schemes can be difficult to control.
Furthermore, even when the learned diffusion prior qθ is close to the ground truth, the posterior
distribution of X|Y (obtained by approximating the score ∇x log qθ(Xt = x|Y )) might not accurately
represent the true conditional distribution qθ(X|Y ) under the diffusion prior qθ(X).

Additionally, the moment matching techniques of Rozet et al. (2024) are rather sophisticated and
specialized to the linear corruption process. For general forward channels with non-linear transfor-
mations, calculating the score ∇x log qθ(Y |Xt = x) can be challenging even under the Gaussian
approximation assumption.

2.2 OUR APPROACH: EM WITH CONDITIONAL DIFFUSION MODEL

Instead of parametrizing the prior distribution qθ(x) using a diffusion model, we directly model the
posterior distribution qθ(x|y) through a conditional score function network sθ(x, t|y). Below, we
describe the corresponding conditional diffusion process for generating posterior samples.

Conditional diffusion process. Given a latent variable model q, we consider the diffusion process

(X0, Y ) ∼ q, dXt = g(t)dBt. (7)

Let p be the joint distribution of ({Xt}t∈[0,1], Y ). To sample from q(X0|Y ), we consider the
following reverse-time process:

dXt = −g(t)2sθ(Xt, t|Y )dt+ g(t)dBt, X1 ∼ q1(·|Y ), (8)

where the network sθ directly approximates the true conditional score function

sθ(x, t|y) ≈ ∇x log p(Xt = x|y) = E[X0|Xt=x,Y=y]−x
σ2
t

, (9)

and the expectation is taken over the process (7) (see e.g. (Daras et al., 2024a)). For a given parameter
θ that parameterizes the conditional denoiser network sθ, we let qθ(X = ·|Y ) be the distribution of
X0 generated by (8). In particular, when sθ(x, t|y) = ∇x log p(Xt = x|y), the reverse process (8)
indeed generates X0 ∼ q(·|Y ), i.e., qθ(·|Y ) = q(·|Y ).

EM with conditional diffusion models. Based on the conditional diffusion process, we propose
the following EM procedure, using a conditional diffusion model to learn the posterior directly.

4
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Algorithm 1 DiffEM: Expectation-Maximization with a conditional diffusion model

Input: Dataset of corrupted observations DY =
{
Y [1], · · · , Y [N ]

}
, a known forward channel

Q(·|X), and a initialization for the conditional model θ(0).
for k = 0, 1, · · · ,K − 1 do
// E-step:
for i ∈ [N ] do

Generate the reconstruction X [i] ∼ qθ(k)(·|Y [i]) using the current conditional model θ(k).
// M-step:
Train a new conditional diffusion model using the dataset D(k)

X = {X [1], · · · , X [N ]} and the
forward model Q(·|X) by minimizing the objective provided in (10)

θ(k+1) = argmin
θ

LSM,k(θ).

Output: (1) The conditional diffusion model θ(K), and
Output: (2) An unconditional diffusion model θ̂ trained on the dataset D(K−1)

X .

In the E-step, the algorithm generates the dataset D(k)

X = {X [1], · · · , X [N ]} consisting of the
reconstruction X [i] ∼ qθ(k)(·|Y [i]). Then, in the M-step, the algorithm uses the dataset D(k)

X to train
the conditional diffusion model θ(k+1), so that it learns to sample from P̂ (k)(X|Y ), the posterior
of P̂ (k)(X,Y ) which samples X ∼ D(k)

X and then samples Y ∼ Q(·|X). To train this model, we
consider the following conditional score matching loss:

LSM,k(θ) =
∫ 1

0
λtEX∼D(k)

X ,Y∼Q(·|X)
EXt=X+σtZ ∥sθ(Xt, t|Y ) + Z∥2 dt, (10)

where Z ∼ N(0, I) is the unit noise, and λt ≥ 0 is a weight sequence. It is straightforward to
verify that, assuming the network sθ is expressive enough, the minimizer θ⋆ of LSM,k satisfies
sθ⋆(x, t|y) = E[X0|Xt=x,Y=y]−x

σ2
t

, where the conditional expectation is taken with respect to the

distribution sampling variables as X0 ∼ D(k)

X , Y ∼ Q(·|X0), Xt ∼ N
(
X0, σ

2
t I
)
. Therefore, as long

as the M-step is done successfully, we expect to have qθ(k+1)(X|Y ) ≈ P̂ (k)(X|Y ) (cf. Section 3).

The advantage of conditional diffusion model. Unlike approaches that rely on ad hoc approxi-
mation schemes for the posterior score function using unconditional diffusion models (Rozet et al.,
2024; Bai et al., 2024), our framework directly employs a conditional diffusion model. Both the prior
and the corruption channel are implicitly encoded in this model through the minimization of the
conditional score matching loss (10). In experiments (Section 4), we observe that DiffEM consistently
outperforms EM methods with diffusion priors. As predicted by our theoretical analysis (Section 3),
this improvement is largely due to the fact that conditional models avoid the approximation bottleneck
inherent in heuristic posterior sampling schemes.

Output: Posterior sampler θ(K) and diffusion prior θ̂. Our framework is designed to address
two complementary goals: (1) posterior sampling and (2) prior reconstruction (cf. Section 1.1). The
conditional diffusion model trained by DiffEM naturally serves as a posterior sampler. For prior
reconstruction, we leverage the reconstructed dataset D(K−1)

X generated during the final EM iteration,
and train an unconditional diffusion prior on this dataset. In particular, when the target application
requires only a diffusion prior (Daras et al., 2023b; Rozet et al., 2024; Bai et al., 2024), we may
directly use θ̂. In such cases, the conditional model adopted by our approach primarily serves as a
means to accelerate EM convergence.

Computation efficiency of DiffEM. The computational cost of DiffEM can be decomposed as

Total Time = Tinit +K · Tft + Tu, (11)

where K is the number of EM iterations, Tinit is the time of training a standard conditional diffusion
model from scratch, Tft ≤ Tinit is the average time of fine-tuning the conditional diffusion model for
each M-step, and Tu is the cost of training an unconditional model to output. The cost Tinit ≥ Tft

of training diffusion model is intrinsic to diffusion-based learning methods. Thus, DiffEM can
be interpreted as increasing the training cost by a multiplicative factor of K (the number of EM
iterations), which we view as the unavoidable cost of working with only corrupted data.

5
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In general, the computational cost of EM-based methods (Rozet et al., 2024; Bai et al., 2024) can
always be decomposed as (11). In our experiments, we compare the computation time K, Tinit, and
Tft of DiffEM and EM-MMPS in CIFAR-10 experiments (Table 2).

3 MONOTONIC IMPROVEMENT PROPERTY AND CONVERGENCE

In this section, we analyze the convergence properties of the EM iteration. As observed by Aubin-
Frankowski et al. (2022), when the iteration (6) is exact, i.e., when the sample size is infinite and the
conditional model qθ(k+1) learns the mixture posterior exactly in each M-step, the EM iteration is
equivalent to mirror descent in the space of measures. Therefore, the convergence of the exact EM
iteration follows immediately from the guarantees of mirror descent.

We study the DiffEM iteration, taking the score-matching error introduced by the M-step into account.
For simplicity, we analyze the EM iteration with fresh corrupted samples. Specifically, we consider
the variant of Algorithm 1 where, at each iteration k = 0, 1, · · · ,K − 1, a new dataset of corrupted
observations D(k)

Y =
{
Y [1], · · · , Y [N ]

}
∼ P ⋆

Y is drawn in the E-step. We continue to refer to this
procedure as DiffEM throughout this section.

Under this variant, for each k, the reconstructed dataset D(k)

X = {X [1], · · · , X [N ]} consists of i.i.d
samples from the posterior mixture distribution π(k) = EY∼P⋆

Y
[qθ(k)(·|Y )]. We let P (k) be the joint

probability distribution of (X,Y ) under X ∼ π(k), Y ∼ Q(·|X), and write P (k)

Y for the marginal of
Y . The convergence is measured in terms of DKL(P

⋆
Y ∥ P (k)

Y ), the Kullback-Leibler (KL) divergence
between the true observation distribution P ⋆

Y and the distribution P (k)

Y . Intuitively, this measures how
plausible the prior π(k) is by comparing the induced observation distribution P (k)

Y to P ⋆
Y . 1

Score-matching error. We define the score-matching error of the kth M-step as

ε(k)

SM := EY∼P⋆
Y
DKL(qθ(k+1)(·|Y ) ∥ P (k)(·|Y )),

which measures the KL divergence between the conditional diffusion model qθ(k+1) learned in the
kth M-step and the true posterior P (k)(·|Y ). This error can be decomposed into two components: (1)
the error of the learned score function, which is the statistical error of score matching (10) with a
finite sample size, and (2) the sampling error, which comes from the discretized backward diffusion
process (8) starting from a noisy Gaussian. When the denoiser network is sufficiently expressive,
the score matching error can be upper bounded through statistical learning theory (Dou et al., 2024;
Zhang et al., 2024; Wibisono et al., 2024; Chen et al., 2024; Gatmiry et al., 2024, etc.). The sampling
error is addressed by existing work on backward diffusion sampling (see e.g., Chen et al., 2022;
Conforti et al., 2023; 2025)). Therefore, under appropriate conditions, it can be shown that the
score-matching error ε(k)

SM → 0 as the sample size N increases.

Monotonicity of EM. Our first result (shown in Appendix B.1) is the following approximate
monotonicity property of the EM iteration in terms of the statistical error ε(k)

SM.

Lemma 1 (Monotonic improvement). For any k ≥ 0, it holds that

DKL(P
⋆
Y ∥ P (k+1)

Y )︸ ︷︷ ︸
error of prior π(k+1)

≤ DKL(P
⋆
Y ∥ P (k)

Y )︸ ︷︷ ︸
error of prior π(k)

−DKL(π
(k+1) ∥ π(k))︸ ︷︷ ︸

difference between priors

+ ε(k)

SM︸︷︷︸
score-matching error of q

θ(k+1)

.

Therefore, when the statistical error ε(k)

SM → 0, the divergence DKL(P
⋆
Y ∥ P (k)

Y ) is monotonically
decreasing. In other words, in the EM iteration, the observation distribution induced by prior π(k+1)

is always closer to P ⋆
Y compared to the observation distribution induced π(k), modulo the score-

matching error ε(k)

SM. In Section 4.1.1, we corroborate this property in experiments, showing that
DiffEM can improve upon the learned prior produced by EM-MMPS (Rozet et al., 2024).

Convergence rate. Beyond monotonicity, we show that the EM iteration enjoys a convergence rate
guarantee. However, this guarantee requires that the conditional model achieves small approximation
error measured in the latent space. Specifically, for each k ≥ 0, we define the error

ε̃(k)

SM = E(X,Y )∼P⋆

[
log P (k)(X|Y )

q
θ(k+1) (X|Y )

]
,

1Here, the convergence is not measured as the divergence between priors P ⋆
X and π(k) because in general,

the problem (1) might not be identifiable, i.e., there can exist a distribution P ′
X ̸= P ⋆

X that induces the same
observation distribution Q#P ′

X = P ⋆
Y . Therefore, convergence in terms of the priors can only be obtained

under the additional assumption of identifiability (cf. Assumption 1).

6
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which measures the closeness of the posterior likelihoods computed under P (k) and qθ(k+1) with
respect to samples (X,Y ) ∼ P ⋆. The error ε̃(k)

SM can be larger than the ε(k)

SM since it is measured under
the unknown prior distribution P ⋆

X . Nevertheless, we show that ε̃(k)

SM can be related to ε(k)

SM under
appropriate assumptions (detailed in Appendix B.4). Below, we state the convergence guarantee of
the EM iteration. The proof is in Appendix B.2.

Proposition 2 (Convergence of EM iteration). For each K ≥ 0, we have

mink≤K DKL(P
⋆
Y ∥ P (k)

Y ) ≤ 1
K+1

∑K
i=0 DKL(P

⋆
Y ∥ P (k)

Y ) ≤ DKL(P
⋆
X ∥ π(0))

K+1 +maxk≤K ε̃(k)

SM.

Therefore, as the number of EM iterations increases, P (k)

Y converges to P ⋆
Y at the rate of 1

k , up to
the statistical error ε̃(k)

SM. Furthermore, we can also derive the following last-iterate convergence by
invoking Lemma 1:

DKL(P
⋆
Y ∥ P (K)

Y ) ≤ DKL(P
⋆
X ∥ π(0))

K+1 +maxk≤K ε̃(k)

SM +
∑K

k=0 ε
(k)

SM, ∀K ≥ 0.

Given that each EM update is computationally expensive, the above convergence rate is most relevant
in the regime where DKL(P

⋆
X ∥ π(0)) ≲ 1, i.e., where the initial diffusion model provides a prior

that is not too far from the ground-truth P ⋆
X . Such a warm start model can be trained using existing

methods (Daras et al., 2023b) that are computationally cheaper.

Stronger convergence under identifiability. Under the assumption that the latent variable problem
(1) is identifiable, we show that EM achieves linear convergence in terms of DKL(P

⋆
X ∥ π(k)).

Assumption 1 (Identifiability). There exists parameter κ ≥ 1, R ≥ 0 such that for any distribution
P (x) with DKL(P

⋆
X ∥ P ) ≤ R, it holds that

DKL(P
⋆
X ∥ P ) ≤ κ ·DKL(P

⋆
Y ∥ Q#P ),

where Q#P is the distribution of Y under X ∼ P, Y ∼ Q(·|X).

In other words, Assumption 1 requires that for any prior P whose induced observation distribution
Q#P is close to P ⋆

Y , P itself must be close to the true prior P ⋆
X . Intuitively, Assumption 1 quantifies

the identifiability of the latent variable problem (1). We show the following in Appendix B.3.

Proposition 3 (Linear convergence of EM). Suppose that Assumption 1 holds, DKL(P
⋆
X ∥ π(0)) ≤ R,

and ε̃(k)

SM ≤ R
κ for each k ≥ 0. Then it holds that

DKL(P
⋆
X ∥ π(K)) ≤ exp

(
− K

κ+1

)
·DKL(P

⋆
X ∥ π(0)) + (κ+ 1)maxk ε̃

(k)

SM.

4 EXPERIMENTS

We evaluate the proposed method, DiffEM, through a series of experiments. We begin with a synthetic
manifold learning task (Appendix C.1), where we show that the conditional diffusion model yields
more accurate posterior samples than existing approximate posterior sampling schemes (Rozet et al.,
2024). We then conduct image reconstruction experiments on CIFAR-10 (Section 4.1) and CelebA
(Section 4.2), demonstrating that DiffEM outperforms prior approaches for learning diffusion models
from corrupted data.

4.1 CORRUPTED CIFAR-10
We next evaluate our method on the CIFAR-10 dataset (Krizhevsky, 2009), treating the 50000 training
images as samples from the latent distribution P ⋆

X .

Masked corruption process. Following (Daras et al., 2023b; Rozet et al., 2024), we consider a
linear corruption process (2) corresponding to randomly masking each pixel with probability ρ, i.e.,
the corruption matrix A ∼ PA is diagonal with entries independently drawn from Bernoulli(1− ρ).
In this corruption process, the observation is generated as Y = (AX+ϵ, A), with A ∼ PA, X ∼ P ⋆

X ,
ϵ ∼ N

(
0, σ2

Y I
)
. In other words, each image is corrupted by (1) first randomly deleting every pixel

independently with probability ρ, and then (2) adding isotropic Gaussian noises with variance σ2
Y .

In our experiments, we set ρ = 0.75, σ2
Y = 10−6, i.e., each image has 75% pixels deleted and

corrupted by negligible Gaussian noises. We also experimented with ρ = 0.9 and reported the results
in Table 6.
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Task Method IS ↑ FID ↓ FDDINOv2 ↓ FD∞ ↓

Posterior Sampling
EM-MMPS (Rozet et al., 2024) 9.77 6.49 237.02 231.80

DiffEM (Ours) 9.81 4.68 220.97 216.53
DiffEM (Warm start) 9.66 4.66 186.90 180.70

Prior Reconstruction

Ambient-Diffusion (Daras et al., 2023b) 6.88 28.88 1068.00 1062.98
EM-MMPS (Rozet et al., 2024) 8.14 13.18 643.59 640.14

DiffEM (Ours) 8.57 10.24 598.18 594.75
DiffEM (Warm start) 8.49 10.33 546.07 541.53

Table 1: Posterior sampling and prior reconstruction performance on CIFAR-10 with random masking
with corruption rate of ρ = 0.75 compared to Ambient-Diffusion (Daras et al., 2023b) and EM-
MMPS (Rozet et al., 2024).

Experiment setup. Our conditional diffusion model qθ(x|y) is parametrized by a denoiser network
dθ(xt, t, y) with U-net architecture. We train the model for 21 DiffEM iterations, initializing with a
Gaussian prior (cf. Appendix C). For each iteration, we train the denoiser network with conditional
score matching (10) to learn the conditional mean E[X0|Xt, Y ]. We then compare DiffEM to prior
methods (Daras et al., 2023b; Rozet et al., 2024) under the following evaluation metrics, which
correspond to the posterior sampling task and prior reconstruction task (cf. Section 1.1).

Eval 1: Posterior sampling performance. The final model returned by DiffEM is a conditional
diffusion model, i.e., given any corrupted observation Y , the model sample a reconstructed image
X ∼ qθ(·|Y ). Therefore, to evaluate the performance of posterior sampling, for each observation Y [i]

in our dataset, we use the trained model to generate a reconstructed image X [i] ∼ qθ(·|Y [i]) and obtain
the reconstructed dataset Drecon = {X [1], · · · , X [50000]} (similar to the E-step of Algorithm 1). We
then evaluate the quality of Drecon by computing the Inception Score (IS) (Salimans et al., 2016) and
the Fréchet distance to the uncorrupted dataset in various representation spaces2 to obtain the metrics
FID (Heusel et al., 2017), FDDINOv2 (Oquab et al., 2023; Stein et al., 2023), and FD∞ (Chong and
Forsyth, 2020). The results are reported in Table 1.

Eval 2: Prior reconstruction performance. We also note that the models trained by existing
works (Daras et al., 2023b; Rozet et al., 2024; Bai et al., 2024) are unconditional diffusion models,
which can be regarded as the reconstruction of the ground-truth prior PX . In DiffEM, the recon-
structed prior is implicitly described by the conditional diffusion model qθ. Therefore, to evaluate
the prior recovered by DiffEM, we use the reconstructed dataset Drecon to train a new (uncondi-
tional) diffusion model pθuncond

, which learns to sample from the prior induced by qθ. We then
evaluate the metrics (IS, FID, FD∞, FDDINOv2) of the model pθuncond as our performance on the
prior reconstruction task. We report the metrics in Table 1.

Discussion and comparison. We compare DiffEM to Ambient-Diffusion (Daras et al., 2023b)3

and EM-MMPS (Rozet et al., 2024) under the above metrics in Table 1 (higher IS and lower FID/FD
scores indicate better performance). To evaluate the diffusion prior trained by these baselines,
we apply their approximate posterior sampling scheme and report the metrics evaluated on the
reconstructed dataset. Under all four metrics, the diffusion models trained by DiffEM outperforms
both Ambient-Diffusion and EM-MMPS, demonstrating the power of our pipeline.4 Figure 5 shows
qualitative results comparing the corrupted observations and reconstructions from our model.

We also compare the computational cost of DiffEM and EM-MMPS in Table 2, following our
discussion in Section 2.2.

2The Fréchet distance measures discrepancies at the distributional level. Under severe corruption (75% of
pixels deleted), the posterior distribution P ⋆

X|Y may not concentrate around a single ground-truth. As a result,
classical reconstruction metrics such as PSNR and LPIPS are less appropriate in this setting (Rozet et al., 2024).

3We note that the Ambient-Diffusion model was trained on the dataset corruption level ρ′ = 0.6, an easier
setting than ours (ρ = 0.75).

4We note that Bai et al. (2024) proposed EM-Diffusion and reported FID score 21.08 (corruption level
ρ′ = 0.6 and initialized with a diffusion prior trained on 50 clean images). However, we cannot reproduce
their experiments to evaluate other metrics. Given that EM-MMPS achieves a much better FID score than
EM-Diffusion, we believe it is sufficient to compare DiffEM to EM-MMPS.
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Method K Tinit Tft Tu

EM-MMPS 32 43.0 ± 0.8 86.3 ± 0.7 N/A
DiffEM 21 63.5 ± 0.4 70.3 ± 0.2 74.54 ± 0.09

Table 2: Comparison of computation time (cf. Section 2.2), with Tinit, Tft, Tu measured in minutes
using 4× H200. The cost of EM-MMPS can similarly be decomposed as Tinit +K · Tft (it does not
incur the cost Tu). As shown, DiffEM is more computation-efficient.

4.1.1 DIFFEM WITH WARM-START

Additionally, we perform experiments on the masked CIFAR-10 dataset with warm-started DiffEM.
Specifically, we take the diffusion prior trained by 32 iterations of EM-MMPS (Rozet et al., 2024),
and perform 10 DiffEM iterations starting from this prior. We evaluate the final posterior sampling
performance and prior reconstruction quality (reported in Table 1).

As shown by the results, using an initial prior of high quality can indeed accelerate the convergence
of DiffEM, as we only need 10 DiffEM iterations. This is consistent with our theoretical results
(Section 3). Furthermore, warm-started DiffEM outperforms DiffEM with an initial Gaussian prior in
terms of the score FDDINOv2 and FD∞, indicating that DiffEM can converge to a better distribution
when starting from an informed prior.5 We also plot the evolution of IS, FID, DINO, and FD∞ metrics
in Figure 7, which corroborates the monotonic improvement property of DiffEM (Lemma 1).

4.1.2 ADDITIONAL EXPERIMENT: CIFAR-10 UNDER GAUSSIAN BLUR

In addition to the masked corruption, we additionally perform experiments on the blurred CIFAR-
10 dataset. In Gaussian blur model, each observation Y ∼ N

(
AX, σ2

Y

)
is generated by applying

a Gaussian blur kernel on X with standard deviation σkernel (represented by the matrix A), and
then adding isotropic Gaussian noise ϵ ∼ N

(
0, σ2

Y I
)
. In our experiment, we take σkernel = 2 and

σ2
Y = 10−6, and we follow the same training procedure as in the experiments on CIFAR-10 with

random masking, with details presented in Appendix C.5.

4.2 CORRUPTED CELEBA
We perform experiments on the CelebA dataset (Liu et al., 2018), with images cropped to 64× 64
pixels following (Wang et al., 2023; Daras et al., 2023b). We consider the masked corruption process
described in Section 4.1 with masking probability ρ ∈ {0.5, 0.75} and noise level σ2

Y = 0, i.e., the
corruption level is moderate. We initialize the first iteration for DiffEM with the Gaussian prior
(cf. Appendix C). We evaluate the diffusion models trained by DiffEM following the protocol of
Section 4.1 (Table 3). As shown in Table 3, DiffEM significantly outperforms EM-MMPS. We also
present sample reconstructed images in Figure 10 and an illustration of the pipeline in Figure 1.

Task ρ Method IS ↑ FID ↓ FDDINOv2 ↓ FD∞ ↓

Posterior sampling
0.5 EM-MMPS 3.237 0.61 9.36 6.07

DiffEM 3.239 0.33 5.07 2.07

0.75 EM-MMPS 2.96 31.22 113.09 109.41
DiffEM 3.16 1.43 39.34 36.26

Prior reconstruction
0.5 EM-MMPS 2.50 11.44 186.16 182.90

DiffEM 2.52 10.11 344.60 340.97

0.75 EM-MMPS 2.35 61.40 321.90 319.58
DiffEM 2.50 10.75 423.95 420.76

Table 3: Performance of DiffEM and EM-MMPS on masked CelebA with ρ ∈ {0.5, 0.75}.
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A RELATED WORK

Learning diffusion models with corrupted dataset. Recent advances in diffusion models (Ho
et al., 2020; Song et al., 2020) have demonstrated remarkable success in learning high-dimensional
distributions. However, training diffusion models with corrupted data presents significant challenges,
as most existing techniques are designed for clean datasets, and learning latent variable models is
known to be theoretically and practically difficult. Several approaches have been proposed to address
this challenge using diffusion models. For linear corruption Y ∼ N

(
AX, σ2

Y I
)

(cf. Eq. (2)), methods
such as SURE-score (Aali et al., 2023), GSURE (Kawar et al., 2023), and Ambient-Diffusion (Daras
et al., 2023b; Aali et al., 2025; Daras et al., 2025) train the denoiser network using a surrogate
loss function. Specializing to Gaussian corruption Y ∼ N

(
X,σ2

Y I
)
, Daras et al. (2023a; 2024b)

propose enforcing consistency of the diffusion model to enable generalization to unseen noise levels,
while Lu et al. (2025) develop an iterative scheme to refine the diffusion prior. Recent work (Rozet
et al., 2024; Bai et al., 2024) identifies the Expectation-Maximization (EM) method as a promising
framework for training diffusion priors with linearly corrupted observations. However, as these
EM approaches employ diffusion models as priors, they rely heavily on approximation schemes for
posterior sampling (detailed discussion in Section 2.1). In this work, we propose an EM framework
with conditional diffusion models that eliminates the need for ad hoc approximate posterior sampling
schemes and applies to general corruption processes. Our experiments demonstrate quantitative
performance improvements over previous methods.

Solving inverse problems with diffusion models. Diffusion models have also been shown as
powerful priors for a wide range of inverse problems in computer vision and medical imaging. A
line of work—including SNIPS (Kawar et al., 2021), ILVR (Choi et al., 2021), DDRM (Kawar et al.,
2022), Palette (Saharia et al., 2022), and DPS (Chung et al., 2022), among others—has demonstrated
the effectiveness of both unconditional and conditional diffusion models in addressing various tasks,
such as super-resolution, inpainting, deblurring, and compressed sensing. As surveyed by Daras et al.
(2024a), many of these approaches leverage learned diffusion priors and perform posterior sampling
through approximations of the posterior score function, and the previous work on EM (Rozet et al.,
2024; Bai et al., 2024) also follows this approach.
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B PROOFS FROM SECTION 3
B.1 PROOF OF LEMMA 1
Note that

DKL(P
⋆
Y ∥ P (k)

Y )−DKL(P
⋆
Y ∥ P (k+1)

Y ) = EY∼P⋆
Y
log

P (k+1)

Y (Y )

P (k)

Y (Y )
.

By definition and Bayes’ rule,

P (k+1)

Y (y) =

∫
Q(y|x)π(k+1)(x)dx =

∫
Q(y|x)π(k)(x) · π

(k+1)(x)

π(k)(x)
dx

=

∫
P (k)(x, y) · π

(k+1)(x)

π(k)(x)
dx

=

∫
P (k)

Y (y) · P (k)(x|y) · π
(k+1)(x)

π(k)(x)
dx

= P (k)

Y (y) · EX∼q
θ(k+1) (·|y)

[
P (k)(X|y)
qθ(k+1)(X|y)

· π
(k+1)(X)

π(k)(X)

]
.

Therefore, by Jensen’s inequality, we have

DKL(P
⋆
Y ∥ P (k)

Y )−DKL(P
⋆
Y ∥ P (k+1)

Y )

= EY∼P⋆
Y
log

P (k+1)

Y (Y )

P (k)

Y (Y )

= EY∼P⋆
Y
logEX∼q

θ(k+1) (·|Y )

[
π(k)(X|Y )

qθ(k+1)(X|Y )
· π

(k+1)(X)

π(k)(X)

]
≥ EY∼P⋆

Y
EX∼q

θ(k+1) (·|Y )

[
log

(
P (k)(X|Y )

qθ(k+1)(X|Y )
· π

(k+1)(X)

π(k)(X)

)]
= EY∼P⋆

Y
EX∼q

θ(k+1) (·|Y ) log
π(k+1)(X)

π(k)(X)
− EY∼P⋆

Y
EX∼q

θ(k+1) (·|Y ) log
qθ(k+1)(X|Y )

P (k)(X|Y )

= DKL(π
(k+1) ∥ π(k))− EY∼P⋆

Y
DKL(qθ(k+1)(·|Y ) ∥ P (k)(·|Y )).

Rearranging the terms completes the proof.

B.2 PROOF OF PROPOSITION 2
We first show that: For each k ≥ 0, it holds that

DKL(P
⋆
Y ∥ P (k+1)

Y ) ≤ DKL(P
⋆
X ∥ π(k))−DKL(P

⋆
X ∥ π(k+1)) + ε̃(k)

SM.

To simplify the presentation, we define π̃(k+1)(x) = EY∼P⋆
Y
P (k)(x|Y ). Then, by definition, we have

π̃(k+1)(x) = EY∼P⋆
Y
P (k)(x|Y )

= EY∼P⋆
Y

[
π(k)(x)Q(Y |x)

P (k)

Y (Y )

]
= π(k)(x) · EY∼Q(·|x)

[
P ⋆
Y (Y )

P (k)

Y (Y )

]
.

Therefore, it follows that

DKL(P
⋆
X ∥ π(k))−DKL(P

⋆
X ∥ π̃(k+1)) = EX∼P⋆

X
log

π̃(k+1)(X)

π(k)(X)

= EX∼P⋆
X
logEY∼Q(·|x)

[
P ⋆
Y (Y )

P (k)

Y (Y )

]
≥ EX∼P⋆

X
EY∼Q(·|x)

[
log

P ⋆
Y (Y )

P (k)

Y (Y )

]
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= EY∼P⋆
Y

[
log

P ⋆
Y (Y )

P (k)

Y (Y )

]
= DKL(P

⋆
Y ∥ P (k)

Y ).

Furthermore, we have

DKL(P
⋆
X ∥ π(k+1))−DKL(P

⋆
X ∥ π̃(k+1))

= EX∼P⋆
X
[log π̃(k+1)(X)− log π(k+1)(X)]

= EX∼P⋆
X

[
logEY∼P⋆

Y
[P (k)(X|Y )]− logEY∼P⋆

Y
[qθ(k+1)(X|Y )]

]
≤ E(X,Y )∼P⋆

X

[
log

P (k)(X|Y )

qθ(k+1)(X|Y )

]
= ε̃(k)

SM.

Combining the above equations, we have shown that

DKL(P
⋆
Y ∥ P (k)

Y ) ≤ DKL(P
⋆
X ∥ π(k))−DKL(P

⋆
X ∥ π(k+1)) + ε̃(k)

SM.

This is the desired upper bound. Taking the summation over k = 0, 1, · · · ,K completes the
proof. For the last-iterate convergence rate, we only need to use the fact that DKL(P

⋆
Y ∥ P (k)

Y ) ≤
DKL(P

⋆
Y ∥ P (K)

Y ) +
∑K

ℓ=k ε
(ℓ)

SM (by Lemma 1).

B.3 PROOF OF PROPOSITION 3

By Proposition 2, we have

DKL(P
⋆
X ∥ π(k+1)) +DKL(P

⋆
Y ∥ P (k+1)

Y ) ≤ DKL(P
⋆
X ∥ π(k)) + ε̃(k)

SM.

Using Assumption 1, we know that as long as DKL(P
⋆
X ∥ π(k)) ≤ R, we have

(1 + κ−1)DKL(P
⋆
X ∥ π(k+1)) ≤ DKL(P

⋆
X ∥ π(k)) + ε̃(k)

SM.

Denote ε̃SM = maxk ε̃
(k)

SM. Therefore, using the fact that ε̃(k)

SM ≤ ε̃SM ≤ R
κ , we can show by induction

that DKL(P
⋆
X ∥ π(k)) ≤ R for each k ≥ 0, and hence

(1 + κ−1)DKL(P
⋆
X ∥ π(k+1)) ≤ DKL(P

⋆
X ∥ π(k)) + ε̃SM.

Applying this inequality recursively, we obtain

DKL(P
⋆
X ∥ π(k)) ≤ κ

1 + κ
DKL(P

⋆
X ∥ π(k−1)) + ε̃SM

≤
(

κ

1 + κ

)2

DKL(P
⋆
X ∥ π(k−2)) +

(
κ

1 + κ

)
ε̃SM + ε̃SM

≤ · · ·

≤
(

κ

1 + κ

)k

DKL(P
⋆
X ∥ π(0)) +

k−1∑
i=0

(
κ

1 + κ

)k−1−i

ε̃SM

≤ e−k/(κ+1)DKL(P
⋆
X ∥ π(0)) + (1 + κ)ε̃SM,

where the last inequality follows from κ
1+κ = 1− 1

1+κ ≤ exp
(
− 1

1+κ

)
.

B.4 RELATION BETWEEN THE SCORE-MATCHING ERRORS

In this section, we provide the following upper bound for ε̃(k)

SM in terms of ε(k)

SM. Recall that ε̃(k)

SM is
defined as

ε̃(k)

SM = E(X,Y )∼P⋆

[
log

P (k)(X|Y )

qθ(k+1)(X|Y )

]
,

Proposition 4. Suppose that EY∼P⋆
Y
Dχ2(P ⋆(·|Y ) ∥ qθ(k+1)(·|Y )) ≤ C < +∞. Then it holds that

ε̃(k)

SM ≤ 2
√
(C + 1)ε(k)

SM.
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Proof of Proposition 4. By definition,

ε̃(k)

SM ≤ E(X,Y )∼P⋆
X

(
log

P (k)(X|Y )

qθ(k+1)(X|Y )

)
+

= EY∼P⋆
Y
EX∼P⋆

X(·|Y )

(
log

P (k)(X|Y )

qθ(k+1)(X|Y )

)
+

≤ EY∼P⋆
Y

√(
1 +Dχ2(P ⋆(·|Y ) ∥ qθ(k+1)(·|Y ))

)
· EX∼q

θ(k+1) (·|Y )

(
log

P (k)(X|Y )

qθ(k+1)(X|Y )

)2

+

≤ EY∼P⋆
Y

√(
1 +Dχ2(P ⋆(·|Y ) ∥ qθ(k+1)(·|Y ))

)
· 4DKL(qθ(k+1)(·|Y ) ∥ P (k)(·|Y ))

≤ 2
√

(C + 1)ε(k)

SM,

where we apply Lemma 5. This yields the desired upper bound.

Lemma 5. For any distributions P and Q, it holds that

EX∼Q(logP (X)− logQ(X))
2
+ ≤ 4DKL(Q ∥ P ).

Proof. Note that log x ≤ 2(
√
x− 1) for any x ≥ 1, and hence (log x)2+ ≤ 4(

√
x− 1)2. Applying

this inequality, we have

EX∼Q(logP (X)− logQ(X))
2
+ = EX∼Q

(
log

P (X)

Q(X)

)2

+

≤ 4EX∼Q

(√
P (X)

Q(X)
− 1

)2

= 8D2
H (P,Q) ≤ 4DKL(Q ∥ P ).

This is the desired upper bound.
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C EXPERIMENT DETAILS

Parametrization. Following Section 2.2, we adopt the denoiser parametrization dθ(x, t|y), and the
conditional score function sθ is thus given by

sθ(x, t|y) =
dθ(x, t|y)− x

σ2
t

.

Therefore, the score-matching loss defined in (10) can be equivalently written as

LSM,k(θ) =

∫ 1

0

λ′
tEX0∼D(k),Y∼Q(·|X)EXt∼N(X0,σ2

t I)
∥dθ(Xt, t|Y )−X0∥2 dt, (12)

where λ′
t =

λt

σ2
t

, and λt is the weight function from (10).

In our experiments, we adopt the following noise schedule:

σ2
t = exp ((1− t) log(σ0) + t log(σ1)),

where σ0 < σ1 are appropriate parameters, and the scalar σt is encoded as a vector embedding. The
input to the denoiser network is the concatenation of Xt, Y , and the vector embedding of the noise
σt. We also choose λt = (σ2

t + 1) · f(t;α, β), where f(t;α, β) is the density function of the Beta
distribution with parameters (α, β).

For the manifold experiment (Appendix C.2), we choose α = 3.5, β = 1.5, σ0 = 10−3, σ1 = 101.
For the remaining experiments, we set α = β = 3, σ0 = 10−3, σ1 = 102.

Initialization. As noted in Section 3, the convergence rate of DiffEM depends on the quality of
the initial prior π(0) through the quantity DKL(P

⋆
X ∥ π(0)), i.e., the KL divergence between the

ground-truth prior P ⋆
X and the initial prior π(0). Therefore, a better initial prior may lead to faster

convergence. In our experiments, we consider the following initialization strategies:

(a) Corrupted prior: For linear corruption processes, the observation is Y = (AX + ϵ, A).
When dy = dx, we can consider the corrupted prior π(0), which is simply the distribution
of X ′ = AX + ϵ. To sample from π(0), we can draw Y = (AX + ϵ, A) ∼ P ⋆

Y and set
X ′ = Y [0 : dy].

(b) Gaussian prior: For general linear corruption processes, we can fit a Gaussian prior
π(0) = N(µX ,ΣX) using the observations {Y [1], · · · , Y [N ]} ∼ P ⋆

Y .

(c) Warm-start: More generally, we can set π(0) to be any pre-trained diffusion prior as the
warm-start prior. In particular, this can be the diffusion prior trained on corrupted data by
existing methods (Daras et al., 2023b; Kawar et al., 2023; Rozet et al., 2024, etc.).

For the experiments (except Section 4.1.1), we adopt initialization strategy (b). Following the
implementation in (Rozet et al., 2024), the Gaussian prior is fitted efficiently through a few closed-
form EM iterations. An exception is the experiment on blurred CIFAR-10, where we adopt strategy
(a). In Section 4.1.1, we perform experiments with strategy (c), applying DiffEM to the warm-start
prior trained by EM-MMPS (Rozet et al., 2024), demonstrating that DiffEM can monotonically
improve upon the initial prior.

C.1 ADDITIONAL EXPERIMENT: SYNTHETIC MANIFOLD IN R5

We evaluate our method’s performance on a synthetic problem introduced by (Rozet et al., 2024).
In this setting, the latent space is X = R5, with the latent distribution P ⋆

X supported on a one-
dimensional curve in R5. The corruption process generates observations Y = (AX+ϵ, A) through the
following steps: (1) sample a latent point X ∼ P ⋆

X , (2) sample a corruption matrix A ∈ R2×5 ∼ PA

with rows drawn uniformly from the unit sphere S4, and (3) add Gaussian noise ϵ ∼ N
(
0, σ2

Y I
)
.

Following Rozet et al. (2024), we apply our method to a dataset of 65536 independent observations
with noise variance σ2

Y = 10−4. Detailed experimental settings are presented in Appendix C.2.
Figure 2 illustrates the two-dimensional marginals of the reconstructed latent distribution compared
to those obtained by (Rozet et al., 2024). The results demonstrate that our method achieves better
concentration around the ground-truth curve, providing empirical evidence that the conditional
diffusion model learns the posterior distribution more accurately than the approximate posterior
sampling scheme of (Rozet et al., 2024) (cf. Section 2.1).
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Figure 2: Evolution of the learned latent distribution on the synthetic manifold task. From left to
right: reconstructed distributions from our model at DiffEM iterations 8, 16, and 32, followed by
the distribution from EM-MMPS ((Rozet et al., 2024), 32th iteration) and the ground-truth P ⋆

X . Our
method shows progressively better concentration around the ground-truth curve, demonstrating more
accurate posterior learning compared to previous work.

C.2 MORE DETAILS ON THE EXPERIMENT IN APPENDIX C.1
We implement the denoiser network dθ(x, t|y) using a Multi-Layer Perceptron (MLP). The network
architecture and training hyperparameters are detailed in Table 4.

Architecture MLP
Input Shape 5 + 2 + 5× 2 = 17

Hidden Layers 3
Hidden Layer Sizes 256, 256, 256

Activation SiLU
Normalization LayerNorm

Optimizer Adam
Weight Decay 0

Scheduler linear
Initial Learning Rate 1× 10−3

Final Learning Rate 1× 10−6

Gradient Norm Clipping 1.0
Batch Size 1024

Epochs in each iteration 65536
Sampler Predictor-Corrector

Sampler Steps 4096
Number of EM iterations 32

Table 4: Network architecture and training hyperparameters for the MLP used in the synthetic
manifold experiment.

To quantify the quality of the learned distribution, we compute the Sinkhorn divergence Sλ Ramdas
et al. (2015) with regularization parameter λ = 10−3 after each epoch. The Sinkhorn divergence is
defined as:

Sλ(µ, ν) := Tλ(µ, ν)−
1

2
(Tλ(µ, µ) + Tλ(ν, ν))

Tλ(µ, ν) := min
γ∈Π(µ,ν)

∫
(Rd)2

∥y − x∥22dγ(x, y) + 2λH(γ, µ⊗ ν)
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We plot the evolution of Sinkhorn divergence over the iterations of DiffEM and EM-MMPS (Rozet
et al., 2024) in Figure 3. We also plot the 2D marginals of the distributions reconstructed by DiffEM
and EM-MMPS in Figure 4.

Figure 3: Evolution of Sinkhorn divergence between the ground-truth and reconstructed distributions
during training. The red line shows DiffEM, and the blue line shows EM-MMPS.

Figure 3 demonstrates that while EM-MMPS provides effective initialization when the learned
distribution is far from the true prior, it plateaus quickly and fails to achieve further improvements.
This is likely due to the inherent approximation error of the approximate posterior sampling scheme
(MMPS). In contrast, DiffEM continues to refine the reconstructed distribution, achieving better
concentration around the ground-truth curve.

Figure 4: Comparison of 2D marginals of reconstructed distributions after the final iteration. Left:
EM-MMPS; Right: DiffEM. DiffEM achieves better concentration around the ground-truth curve,
indicating more accurate posterior learning.

C.3 DETAILS OF MASKED CIFAR-10 (SECTION 4.1)
In this experiment, the conditional denoiser network dθ is a U-Net Ronneberger et al. (2015), and
we adopt the same experimental setup as Rozet et al. (2024) for a fair comparison. The only major
difference in the architecture arises from the fact that our model is conditional and thus for the input
we need to feed two images Xt with shape (32, 32, 3) and Y with shape (32, 32, 3) to the model, we
concatenate the images on the third dimension and thus the input shape for the model is (32, 32, 6),
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Figure 5: Qualitative comparison of reconstruction results on masked CIFAR-10 images. Top to
bottom: corrupted input, EM-MMPS reconstructions, DiffEM reconstructions, and ground truth.

the output is also (32, 32, 6) but in the whole training process we ignore the last three channels of the
output. The details of network architecture and hyperparameters are presented in Table 5.

Experiment CIFAR-10 CelebA
Architecture U-Net U-Net
Input Shape (32, 32, 6) (64, 64, 6)

Channels Per Level (128, 256, 384) (128, 256, 384, 512)
Attention Heads per level (0, 4, 0) (0, 0, 0, 4)

Hidden Blocks (5, 5, 5) (3, 3, 3, 3)
Kernel Shape (3, 3) (3, 3)

Embedded Features 256 256
Activation SiLU SiLU

Normalization LayerNorm LayerNorm
Optimizer Adam Adam

Initial Learning Rate 2× 10−4 1× 10−4

Final Leanring Rate 1× 10−6 1× 10−6

Weight Decay 0 0
EMA 0.9999 0.999

Dropout 0.1 0.1
Gradient Norm Clipping 1.0 1.0

Batch Size 256 256
Epochs per EM iteration 256 64

Sampler DDPM DDPM

Table 5: Network architecture and training hyperparameters for the U-Net models used in the CIFAR-
10 and CelebA experiments. Input shape varies by task.

We apply DiffEM with K = 21 iterations to train our conditional diffusion model and evaluate its
performance for the posterior sampling task as described in Section 4.1. To evaluate the quality of
the reconstructed prior, we also train an unconditional diffusion model with the same architecture on
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the reconstructed data. We compute the Inception Score (IS) Salimans et al. (2016) and the Fréchet
Inception Distance (FID) Heusel et al. (2017) using the torch-fidelity package (Obukhov et al., 2021),
and FDDINOv2 (Oquab et al., 2023; Stein et al., 2023) and FD∞ (Chong and Forsyth, 2020) using the
codebase from (Stein et al., 2023). The results are presented in Table 1 and Table 1. We also note that
the results of EM-MMPS are obtained with 32 iterations, following the original setup of Rozet et al.
(2024).

Figure 6: Evolution of evaluation metrics for posterior sampling measured during DiffEM training on
CIFAR-10 with random masking. Left: FID, Right: Inception Score.

As an illustration, we also plot the evolution of the IS and FID during DiffEM iterations, demonstrating
that DiffEM monotonically improves the quality of the reconstructed prior, in accordance with our
theoretical results (Lemma 1).

Experiments with higher corruption. In addition, we perform experiments on CIFAR-10 with
corruption probability ρ = 0.9 (i.e., 90% pixels are randomly deleted) and present the results in
Table 6. Under such high corruptions, DiffEM also consistently outperforms EM-MMPS (Rozet
et al., 2024).

Task Method IS ↑ FID ↓ FDDINOv2 ↓ FD∞ ↓

Posterior sampling
EM-MMPS 5.06 67.97 1045.51 1039.82

DiffEM 5.86 46.13 915.69 912.26

Prior reconstruction
EM-MMPS 4.86 73.34 1174.13 1168.66

DiffEM 5.46 49.10 1111.16 1107.64

Table 6: Performance of DiffEM and EM-MMPS on CIFAR-10 with 90% random masking.

C.4 DIFFEM WITH WARM-START

We plot the evolution of IS, FID, FDDINOv2 and FD∞ scores during training in Figure 7.

C.5 DETAILS OF BLURRED CIFAR-10

In the experiment on CIFAR-10 with Gaussian blur, we set σkernel = 2 and σ2
Y = 10−6. We

apply DiffEM for K = 21 iterations, with the same initialization, denoiser network architecture,
and hyperparameters as in the masked CIFAR-10 experiment (detailed in Table 5, Appendix C.3).
Due to time constraints, we do not evaluate EM-MMPS (Rozet et al., 2024), as in this problem the
moment-matching steps (based on conjugate gradient method) are very time-consuming.

Qualitative study. To evaluate the quality of the trained conditional model, we sample 7 blurred
images from the CIFAR-10 training set and use the trained model to generate a reconstruction for
each image. We present the images in Figure 8.

Quantitative comparison. For comparison, we use the Richardson-Lucy deblurring algorithm
Richardson (1972) as a baseline, which is a widely used method for image deconvolution. We also
plot the evolution of the IS and FID during DiffEM iterations in Figure 9.
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Figure 7: Evolution of IS, FID, DINO, FD∞ during the 10 DiffEM iterations with the warm-started
prior.

Method IS ↑ FID ↓ FDDINOv2 ↓ FD∞ ↓
Richardson-Lucy deconvolution 3.72 131.74 1479.79 1470.78

DiffEM (Ours) 6.12 43.65 404.05 400.65

Table 7: Posterior sampling performance on CIFAR-10 with Gaussian blur (σkernel = 2).

Method IS ↑ FID ↓ FDDINOv2 ↓ FD∞ ↓
DiffEM (Ours) 11.27 51.25 772.23 768.19

Table 8: Prior Reconstructoin performance on CIFAR-10 with Gaussian blur (σkernel = 2).

To evaluate the quality of the trained conditional model, we sample 21 blurred images from the
CIFAR-10 training set and use the trained model to generate a reconstruction for each image. We
present the images in Figure 8. For comparison, we use the Richardson-Lucy deblurring algorithm
Richardson (1972) as a baseline, which is a widely used method for image deconvolution. We also
plot the evolution of the IS and FID during DiffEM iterations in Figure 9.

C.6 MASKED CELEBA
As a demonstration, we sample seven masked images from the CelebA training set under the 75%
corruption setting. Using the trained model, we generate reconstructions for each image after the 1st,
2nd, 4th, 8th, and 16th iterations. The results are shown in Figure 10.

The denoiser architecture is detailed in Table 5. For the 50% corruption setting, we trained the
conditional diffusion model for 20 EM iterations, while for the 75% corruption setting we trained it
for 24 iterations. In both cases, we trained EM-MMPS for 9 iterations. The computational overhead
of Moment Matching Posterior Sampling becomes particularly evident in this experiment, as the
CelebA dataset is larger (202,599 images) and each image is higher-dimensional (64× 64) compared
to CIFAR-10. We observed that each EM iteration of EM-MMPS required 4.85±0.02 hours, whereas
each iteration of DiffEM required 1.19± 0.03 hours.
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Figure 8: Qualitative results of image reconstruction from Gaussian blur. Top to bottom: blurred
image, reconstruction by Richardson-Lucy deconvolution, image reconstructed by DiffEM model,
and ground truth. DiffEM effectively recovers image details.

Figure 9: Evolution of evaluation metrics for posterior sampling measured during DiffEM training on
CIFAR-10 with Gaussian blur. Left: FID, Right: Inception Score.
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Figure 10: Qualitative results on the CelebA experiment under the 75% corruption setting. The
leftmost column shows samples from the dataset. The subsequent columns display reconstructions
generated by the conditional diffusion model after laps k = 1, 2, 4, 8, 16. The rightmost column
shows the ground-truth images.
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