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ABSTRACT

Semantic code search is the task of retrieving a code snippet given a textual
description of its functionality. Recent work has been focused on using similarity
metrics between neural embeddings of text and code. However, current language
models are known to struggle with longer, compositional sentences, and multi-
step reasoning. To overcome this limitation, we propose supplementing the query
sentence with a layout of its semantic structure. The semantic layout is used to
break down the final reasoning decision into a series of lower-level decisions. We
use a Neural Module Network architecture to implement this idea. We compare
our model - NS3 (Neuro-Symbolic Semantic Search) - to a number of baselines,
including state-of-the-art semantic code retrieval methods, such as CodeBERT,
CuBERT and GraphCodeBERT, and evaluate on two datasets - Code Search Net
(CSN) and Code Search and Question Answering (CoSQA). On these datasets we
demonstrate that our approach results in higher performance. We also perform
additional studies to show the effectiveness of our modular design when handling
compositional queries.

1 INTRODUCTION

Figure 1: To match query “Navigate folders”
on a code snippet, we would start by finding
all references to folders, paths or directories,
using semantic, syntactic, or linguistic cues.
Afterwards, we would look for ques that dis-
covered entities are being iterated through.

With the increasing scale of software repositories,
searching for relevant code fragments in large code
bases becomes more challenging. Traditionally,
searching source code has been limited to key-
word search (Reiss, 2009; Lu et al., 2015) or regex
search (Bull et al., 2002). This requires the user to
know exactly what keywords appear in or around the
code they hope to retrieve. With the rise of neural
models, the task of semantic code search (SCS) – or
retrieving code from a textual description of its func-
tionality – is being studied from new perspectives.
Most approaches map a database of code snippets
and natural language queries to a high-dimensional
space with a neural model (e.g., a Transformer (Vaswani et al., 2017)). Relevant code snippets are
retrieved by performing search over this embedding space using either predefined similarity metric
or a learned distance function (Kanade et al., 2020; Feng et al., 2020; Du et al., 2021). Some of the
recent works capitalize on the rich structure of the code, and apply various graph neural networks for
obtaining representations (Guo et al., 2021; Liu et al., 2021).

Despite the impressive results, current neural code search approaches are far from satisfactory in
dealing with a wide range of natural-language queries. First of all, encoding longer text into a dense
vector is an open problem for neural language models, as neural networks are not believed to be
extracting systematic rules from data (Beltagy et al., 2020; Bhathena et al., 2020; Baroni, 2019). Not
only this potentially affects the performance, but it can drastically reduce model’s value for the users,
because compositional queries such as “Checking that directory does not exist before creating it” may
require explicitly capturing compositionality and performing multi-step reasoning on code.

We suggest overcoming these limitations by introducing modular workflow based on the semantic
structure of the query. Figure 1 demonstrates an example, of how an engineer would approach the task
of searching for code that navigates through folders in Python. They would first only pay attention to
code that has cues about operating with paths, directories or folders. Afterwards, they would seek
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indications of iterating through some of the found objects or other entities in code related to them.
In other words, they would perform multiple steps of different nature - i.e. finding indications of
specific types of data entities, or specific operations. We attempt to imitate this process in this work.

Figure 2: The pipeline of processing for an example query “Load all
tables from dataset”.

To formalize the decom-
position of the query into
such steps, we take inspi-
ration from the idea that
code is comprised of data
entities and transformations
over data. Thus, a seman-
tic code search query is also
likely to describe the code
in terms of data entities and
actions. We break down the
task of matching the query
into smaller tasks of match-
ing individual data entities

and actions. For that we try to identify parts of the code that evidence the presence of the corre-
sponding data or action. We tackle each with a distinct type of network, or neural module. Using
the semantic parse of the query, we construct the layout of how modules’ outputs should be linked
according to the relationships between data entities and actions. Correspondingly, this layout specifies
how the modules should be combined into a single neural module network(Andreas et al., 2016).
This network is “evaluated” on the candidate code snippet to decide whether the query and code are
related.

We argue that this approach has the following advantages. Firstly, semantic parse captures the
compositionality of a query. Secondly, each of the modules handles only a small portion of the query.
This way it is more likely to be represented and detected with higher precision, in other words, less
likely to require compositional reasoning from an individual neural module. Finally, applying the
neural modules in a succession can potentially mimic staged reasoning necessary for SCS. Figure 2
provides a high-level overview of our entire pipeline.

We evaluate our proposed NS3 model on two SCS datasets - CodeSearchNet (Husain et al., 2019)
and CoSQA/WebQueryTest (Huang et al., 2021). WE also perform additional experimentation after
limiting the training set to just 10K or 5K examples. We find that NS3 provides large improvements
upon baselines in all cases. To measure how well the model captures compositional properties of
the queries, we experiment with performing adversarial modifications to the query and showing
that compared to the baselines, NS3 is more likely to correctly recognize modified queries. We
also research the effect on queries that require multi-staged reasoning over code by breaking down
the performance by query’s compositional complexity, and demonstrate that our proposed method
handles this task better than the baselines.

Our main contributions are: (i) We propose looking at SCS as a compositional task that requires
multi-staged reasoning. (ii) We present an implementation of the aforementioned paradigm based on
neural module networks. (iii) We evaluate the performance of our proposed model and demonstrate
that it provides a large improvement on a number of well-established baseline models. (iv) We
perform additional studies to evaluate the capacity of our model to handle compositional queries.

2 BACKGROUND

2.1 SEMANTIC CODE SEARCH (SCS)

Semantic code search is the process of retrieving a relevant code snippet based on a textual description
of its functionality, also referred to as query. Formally, let C be a database of code snippets ci. For
each code snippet ci, there is a textual description of its functionality qi. In the example in Figure 2
the query qi is ”Load all tables from dataset”. Let r be an indicator function such that r(qi, cj) = 1 if
i = j and 0 otherwise. Given some query q∗ the goal of the SCS is to find c∗ such that r(q∗, c∗) = 1.
We assume that for each q∗ there is exactly one such c∗. In our formulation, the models take as input
a pair of query and code: (qi, cj) and assign it a probability rij for being a correct match. Following
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the common practice in information retrieval, we evaluate the performance of the model based on
how high the correct answer c∗ is rated among a number of incorrect, or distractor, instances cj .

2.2 NEURAL MODELS FOR SCS

Most of the previous work has focused on enriching their models with incorporating more semantic
and syntactic information from code. More formally, prior works typically either define a neural
network f that takes as input a pair (qi, cj) and outputs the score rij : r(ij) = f(qi, cj), or define a
number of separate networks for independently representing the query (f ), the code (g) and measuring
the distance between them (d): rij = d(f(qi), g(cj)).

Limitations However, none of the existing approaches has attempted using semantic structure of
the query to improve their model. We see two main limitations with that.The first one is the fact
that they use a single representation for the entire query. This means that details of the query or its
compositional properties can get lost in the representation. Another limitation is the fact, that all
these approaches make the decision after a single pass over the entire code snippet. This ignores
cases where reasoning about a query requires multiple steps, and thus multiple lookups in the code.
We address both of these limitations in our proposed approach - NS3.

3 NEURAL MODULAR CODE SEARCH

We propose to supplement the query with a loose structure resembling its semantic parse, as illustrated
in Figure 2. Based on this semantic structure, we create a query-specific layout of the neural module
network (Sec. 3.1). We define two types of neural modules - entity discovery (E) and action module
(A) (Sec. 3.2 and 3.3). The entity discovery module estimates how relevant each of code tokens
[cj1, . . . , c

j
N ] to an entity from the query, e.g. “all tables” or “dataset” in the example in Figure 2. The

action module’s goal is estimating whether there is evidence of the given action happening in the
code snippet. The modules are nested - some are taking as input part of the output of another module
- and the order of nesting is decided by the semantic parse layout. Evaluating the resulting neural
network on a code snippet gives us a prediction about how well the code matches the original query
(Sec. 3.3).

Specifically, each instance in the training set is a 4-tuple (qi, sqi , c
j , r(qi, cj)) which consists of a

natural language query qi, the query’s semantic parse sqi), a candidate code (sequence) cj , and a
binary label r(qi, cj) indicating whether the query qi matches the code — r(qi, cj) = 1 if the code
matches for the query, and r(qi, cj) = 0 otherwise. The layout L(sqi) of the network is created from
the semantic structure of the query sqi . Given a training example (qi, sqi , c

j , r(qi, cj)) the model
instantiates a network based on the layout, passes qi, cj and sqi as inputs, and obtains the model
prediction rij . This pipeline is illustrated in Figure 2.

3.1 PARSING FOR MODULE NETWORK LAYOUT

We use a Combinatory Categorial Grammar-based (CCG) semantic parser (Zettlemoyer & Collins,
2012; Artzi et al., 2015) to infer the structural representation sqi (i.e., semantic parse) for a given
natural language query qi. We look to pair the query, e.g., “Load all tables from dataset” (as in
Fig. 2), with a simple semantic breakdown that looks similar to: DO WHAT (to/from/in/...)
WHAT, WHEN, WHERE, HOW, etc. From there we process the resulting fragments of the query
through individual neural modules.

Our definitions and roles of modules are inspired by the roles of different parts of speech in the
query. Nouns and noun phrases correspond to data entities in code, and verbs describe actions
or transformations performed on the data entities. Thus, data and transformations are handled by
separate neural modules – an entity discovery module E and an action module A.

Every noun phrase in the semantic parse will be passed through the entity discovery module E to
produce a single score for every token cjk in the code snippet cj : E(“dataset”, cj) = [eij1 , e

ij
2 , . . . , e

ij
N ].

For each verb x the layout will have an instance of action module A: A(x(px1 , p
x
2 , ..., p

x
N ), cj) =
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[aij1 , a
ij
2 , . . . , a

ij
N ], where p-s are children of x in the semantic parse. The top-level of the semantic

parse is always an action module.

In Figure 2, the preposition FROM is used with noun “dataset”, and thus will be combined with Arg1
into a single input. We provide more detail on how such tuples of inputs are handled in Section 3.3.

3.2 ENTITY DISCOVERY MODULE

The entity discovery module receives a string that references a data entity. Its goal is identifying
locations in the code that have high relevance to that string. The architecture of the module is
shown in Figure 3. Given an entity string, “dataset” in the example, and a sequence of code tokens
[cj1, . . . , c

j
N ], entity module first obtains contextual code token representation using RoBERTa model

that is initialized from CodeBERT-base checkpoint. The resulting embedding is passed through a
two-layer MLP to obtain a score for every individual code token cjk : 0 ≤ eijk ≤ 1. Thus, the total
output of the module is a a vector of scores: [eij1 , e

ij
2 , . . . , e

ij
N ]. To prime the entity discovery module

for measuring relevancy between code tokens and input, we fine-tune it with noisy supervision, as
detailed below.

Noisy Supervision for Entity Discovery Module We create noisy supervision for the entity
discovery module by using outputs of the keyword matching and Python static code analyzer.

Figure 3: Model architecture used for the en-
tity discovery module

For the keyword matching, if a code token is an exact
match for one or more tokens in the input string,
its supervision label is set to 1, otherwise it is 0.
Same is true if the code token is a substring or a
superstring of one or more input string tokens. For
some very common nouns we also manually added
their “synonyms”, e.g. “map” for “dict”, etc.

We used the static code analyzer to extract informa-
tion about statically known data types. We cross-
matched this information with the query to discover
whether the query references any datatypes found in the code snippet. If that is the case, the corre-
sponding code tokens are assigned supervision label 1, and all the other tokens are assigned to 0. For
noisy supervision, we used equal numbers of (query, code) pairs from the dataset, as well as random
pairs of queries and code snippets.

3.3 ACTION MODULE

Figure 4: Diagram of estimation process for
action module score.

The action module produces a probability score that
measures the amount of evidence of the given ac-
tion happening in the code. The rest of the dis-
cussion considers the case where the action module
only has data entity arguments. In the scenario of
nested action modules, we flatten such layout and
take conjunction of individual action scores. For ex-
ample, for a layout with two nested actions x and y,
and pxi and pyj are their corresponding arguments:
x(px1 , ..., p

x
i−1, y(p

y
1, ...p

y
l ), p

x
i+1, ..., p

x
k). The final

output is the conjunction of individual module out-
puts: A(x(px1 , ..., p

x
i−1, p

x
i+1, p

x
k)) ·A(y(py1, ..., p

y
l )), where all remaining p-s are data entities, and A

is the function computing action module score.

The design of the action module is inspired by fill-in-the-blank style question answering, Figure 4
provides a high-level illustration of the module. In the example, for the query “Load all tables from
dataset”, the action module receives only part of the full query “Load all tables from ???”. In this
case, the desired output for the action module should correspond to the argument “dataset”. If the
code snippet corresponds to the query, then the action module should be able to deduce this missing
part from the code and the rest of the query. We pre-train the action module using the output scores of
the entity discovery module as supervision. The similarity score between the outputs of two modules
measures how well the query matches the code. More formally, the action module performs three
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steps: masking, estimating, and computing similarity. For consistency, we always mask the last data
entity argument.

Figure 5: The similarity for query qi and code
cj is computed as similarity score between the
score outputs of entity discovery and action
modules.

After masking one input, we compute joint embed-
dings for verb and preposition for each data entity
argument. This is done with a 2-layer MLP model, as
illustrated in the left-most part of Figure 4. If a data
entity does not have a preposition associated with it,
that part of the input is filled with zeros. The joint
verb-preposition embedding is stacked with the code
token embedding tk and entity discovery module out-
put for that token, this is referenced in the middle part
of Figure 4. This vector is passed through a trans-
former encoder model, followed by a 2-layer MLP
and a sigmoid layer to output score aijk , illustrated in
the right-most part of the Figure 4.

The similarity of action module output scores to entity discovery module output scores is computed
with a dot product, as shown in Figure 5. We normalize this similarity to make it a probability, which
is the final output of the action module. If this is the only action in the query, this probability score
will also be the output of the entire model for (qi, cj) pair: rij , otherwise rij will be the product of
probability scores of all nested actions in the layout.

3.4 TRAINING AND INFERENCE

We train our model through supervised pre-training, as is discussed in Sections 3.2 and 3.3, followed
by end-to-end training. End-to-end training objective is binary classification - given a pair of query
qi and code cj , the model predicts probability rij that they are related. In the end-to-end training,
we use positive examples taken directly from the dataset - (qi, ci), as well as negative examples
composed through the combination of random queries and code snippets. The goal of end-to-end
training is fine-tuning parameters of entity discovery and action modules, including the weights of
the RoBERTA models used for code token representation.

Batching is hard to achieve for our model, so for the interest of time efficiency we do not perform
inference on all distractor code snippets in the code dataset. Instead, for a given query we evaluate
top-K highest ranked code snippets as outputted by a baseline model. Essentially, we evaluate
our model in a re-ranking setup, and thus deploy ranking evaluation metrics. We interpret the
probabilities outputted by the model as ranking scores. More details about this procedure are
provided in Section 4.1.

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

Dataset We conduct experiments on two datasets: CodeSearchNet (Husain et al., 2019) and
CoSQA (Huang et al., 2021). We use the Python portion of CodeSearchNet, which contains over
500K functions with their docstring, and CoSQA has over 20K natural language web queries.
We parse all queries with CCG parser, as described in Section 4.1, and leave out examples that
could not be parsed. After this preprocessing, we train our model on 40% of the CodeSearch-
Net dataset and 70% of the CoSQA dataset, the exact sizes of datasets are shown in Table 1.

Dataset Train Valid Test

CodeSearchNet 162801 8841 8905
CoSQA 14210 - -
WebQueryTest - - 662

Table 1: Dataset statistics after parsing.

For our baselines, we use the same reduced dataset for fine-
tuning. In addition, we also experiment with fine-tuning
all models on an even smaller subset of CodeSearchNet
dataset, using only 5000 and 10000 examples for fine-
tuning. The goal of this experiment is to see whether
the modular design can help with generalizing on smaller
datasets.

The results reported are obtained on the test set of Code-
SearchNet for models trained on CodeSearchNet training data, or WebQueryTest (Lu et al., 2021) - a
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small natural language web query dataset of document-code pairs - for models trained on CoSQA
data.

Compared Methods We compare NS3 with various state-of-the-art methods, including some
traditional approaches for document retrieval and pretrained large NLP language models. (1) BM25
is a ranking method to estimate the relevance of documents to a given query. (2) RoBERTa (code)
is a variant of RoBERTa (Liu et al., 2019) pretrained on the CodeSearchNet corpus. (3) CuBERT
(Kanade et al., 2020) is a BERT Large model pretrained on 7.4M Python files from GitHub. (4)
CodeBERT is an encoder-only Transformer model trained on unlabeled source code via masked
language modeling (MLM) and replaced token detection objectives. (5) GraphCodeBERT is a
pretrained Transformer model using MLM, data flow edge prediction, and variable alignment between
code and the data flow.

Evaluation and Metrics We follow CodeSearchNet’s original approach for evaluation for test
instance (q, c), comparing the output against outputs over a fixed set of 999 distractor code snippets.
We use two evaluation metrics: Mean Reciprocal Rank (MRR) and Precision@K (P@K). (1) MRR
evaluates a list of possible code snippets retrieved for a sample query. The snippets are ordered by the
predicted probability. (2) P@K is the proportion of the top-K documents closest to the given query.
For each query, if the correct code snippet is among the first K retrieved code snippets, we score it 1,
otherwise 0. We report this metric for K=1, 3, and 5.

Following a common approach in information retrieval, we perform two-step evaluation. In the first
step, we obtain CodeBERT’s output against 999 distractors. In the second step, we use NS3 to
re-rank the top 10 predictions of CodeBERT and to rank the correct answer. This way the evaluation
is much faster, since unlike our modular approach, CodeBERT can be fed examples in batches. And
as we will see from the results, we see improvement in final performance in all scenarios.

Parsing We used the NLTK Python package for our implementation of CCG parser. We built
a vocabulary of predicates by identifying some commonly used verbs, such as “convert”, “find”,
“remove”, “get”, etc. We also manually added commonly used nouns and their synonyms in Python to
the vocabulary, e.g. “dict”, and “map” as a synonym to it. Afterwards, we constructed the lexicon
(rules) of the parser using the predicates we defined in the previous step. Besides the predicates that
we had defined manually, we have also included “catch-all” predicates, for less-common verbs or
nouns and adjectives. In attempt to parse as much of the datasets as possible, we preprocessed the
queries by removing preceding question words, punctuation marks, and some specific words and
phrases, e.g. those that specify a programming language or version, such as “in Python”, “Python
2.7”, etc. Full implementation of our parser including its entire lexicon and vocabulary can be found
at https://anonymous.4open.science/r/ccg_parser-4BC6.

Pretrained Models Action and entity discovery modules each embed code tokens with a RoBERTa
model, that has been initialized from a checkpoint of pretrained CodeBERT model 1. We fine-tune
these models during the pretraining phases, as well as during final end-to-end training phase.

Hyperparameters The MLPs in entity discovery and action modules have 2 layers with input
dimension of 768. We use dropout in these networks with ratio 0.1. The learning rate for pretraining
and end-to-end training phases was chosen from the range of 1e-6 to 6e-5. We use early stopping with
evaluation on unseen validation set for model selection during action module pretraining and end-
to-end training. For entity discovery model selection we performed manual inspection of produced
scores on unseen examples. For evaluating the CuBERT, CodeBERT and GraphCodeBERT baselines
we use the hyperparameters as reported in their original papers. For RoBERTa (code), we perform
the search for learning rate during fine-tuning stage in the same interval as for our model. For model
selection on baselines we also use early stopping.

4.2 RESULTS

Performance Comparison Tables 2 and 3 present the performance evaluated on testing portion of
CodeSearchNet dataset, and WebQueryTest dataset correspondingly. As it can be seen, our proposed
model outperforms the baselines.

1https://huggingface.co/microsoft/codebert-base
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Method CSN CSN-10K CSN-5K
MRR P@1 P@3 P@5 MRR P@1 P@3 P@5 MRR P@1 P@3 P@5

BM25 0.209 0.144 0.230 0.273 0.209 0.144 0.230 0.273 0.209 0.144 0.230 0.273
RoBERTa (code) 0.842 0.768 0.905 0.933 0.461 0.296 0.545 0.664 0.29 0.146 0.324 0.438
CuBERT 0.225 0.168 0.253 0.294 0.144 0.081 0.166 0.214 0.081 0.03 0.078 0.118
CodeBERT 0.873 0.803 0.939 0.958 0.69 0.550 0.799 0.873 0.680 0.535 0.794 0.870
GraphCodeBERT 0.812 0.725 0.880 0.919 0.786 0.684 0.859 0.901 0.773 0.677 0.852 0.892

NS3 0.924 0.884 0.959 0.969 0.826 0.753 0.886 0.908 0.823 0.751 0.881 0.913
Upper-bound 0.979 0.939 0.936

Table 2: Mean Reciprocal Rank (MRR) scores (higher is better), Precision @1, @3, and @5 (higher
is better) for methods trained on different subsets from CodeSearchNet dataset.

Because of our evaluation strategy, we cannot improve the performance in the cases where the correct
code snippet was not ranked among the top-10 results returned by the CodeBERT model. The rows
labelled “Upper-bound” in Tables 2 and 3 measure the best performance that is possible to achieve
with this evaluation strategy.

Method CoSQA
MRR P@1 P@3 P@5

BM25 0.103 0.05 0.119 0.142
RoBERTa (code) 0.279 0.159 0.343 0.434
CuBERT 0.127 0.067 0.136 0.187
CodeBERT 0.345 0.175 0.42 0.54
GraphCodeBERT 0.435 0.257 0.538 0.628

NS3 0.551 0.445 0.619 0.668
Upper-bound 0.736

Table 3: Mean Reciprocal Rank(MRR) scores
(higher is better), Precision @1, @3, and @5
(higher is better) for different methods trained
on CoSQA dataset.

Perturbed Query Evaluation In this section we
study how well our model can capture the differ-
ence between a query and its perturbed version.
This experiment is designed to see how sensitive
the models are to small changes in the query. Our
expectation is that a sensitive model will not rate
the perturbed query as high as the original one,
because it no longer correctly describes the code
snippet. Whereas a model that tends to over-
generalize and ignore details of the query will likely
rate the perturbed query similar to the original.

We start from pairs of (query, code), that both our
model and CodeBERT predict correctly. We then
proceed to introduce small perturbations to the query,
we used 100 different (query, code) pairs as a starting
point, and for each query we generated 20 different
perturbations. To account for calibration of the models, we measure this sensitivity through ratio of
the perturbed query score over original query score. We generated two types of perturbations. For
the first type, we used queries that had a single verb and a single data entity argument to that verb.
To generate its perturbations, we replaced the correct data argument with a data argument sampled
randomly from another query. The result is shown in Figure 6 in bar labelled “V (arg1) → V (arg2)”.
For the next experiment, we again used queries that had a single verb and a single data argument
to that verb. This time, to generate perturbations we replace the verb argument with a randomly
sampled one from another query. The results for this scenario are demonstrated in Figure 6 under in
bar labelled “V1(arg) → V2(arg)”.

V(arg1)->V(arg2) V1(arg)->V2(arg)0.0
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0.82
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0.96CodeBERT
NS3

Figure 6: Ratio of the perturbed query score
to the original query score (lower is better) on
CSN dataset.

Query Complexity Effect on Performance Here
we present the breakdown of the performance for
our method vs baselines, using two proxies for the
complexity and compositionality of the query. The
first one is the maximum depth of the query. We
define the maximum depth as the maximum number
of nested action modules in the query. The results
for this experiment are presented in Figure 7a. As
we can see, NS3 provides improvement over the
baseline in all scenarios. It is interesting to note,
that while CodeBERT achieves the best performance
on queries with depth 3+, our model’s performance
peaks at depth = 1. We hypothesize that this can be
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Figure 7: We report Precision@1 scores. (a) Performance of our proposed method and baselines
broken down by average number of arguments per action in a single query. (b) Performance of our
proposed method and baselines broken down by number of arguments in queries with a single action.
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Figure 8: Performance of NS3 on the test portion of CSN dataset with different ablation variants.
(a) Skipping one, or both pretraining procedures, and only training end-to-end. (b) Using no
normalization on output scores (None), L1 norm or sigmoid. (c) Performance with different options
for computing action and entity discovery output similarities.

related to the automated parsing procedure, as parsing errors are more likely to be propagated in
deeper queries. Further studies with carefully curated manual parses are necessary to understand this
phenomenon better.

Another proxy for the query complexity we consider, is the number of data arguments to a single
action module. If the previous scenario is breaking down the performance by the depth of the query,
in this case we are considering its “width”. We measure the average number of entity arguments per
action module in the query. In the parsed portion of our dataset we have queries that range from 1 to
3 textual arguments per action verb. The results for this evaluation is presented in Figure 7. As it can
be seen, there is no significant difference in performances between two groups of queries in either
CodeBERT or our proposed method - NS3.

Effect of Pretraining In an attempt to better understand the individual effect of the two modules as
well as the roles of their pretraining and training procedures, we performed two additional ablation
studies. In the first one, we compare the final performance of the original model with two versions
where we skipped part of the pretraining. The model noted as (NS3−AP ) was trained with pretrained
entity discovery module, but no pretraining was done for action module, instead we proceeded to the
end-to-end training directly. For the model called NS3 − (AP&EP ), we skipped both pretrainings
of the entity and action modules, and just performed end-to-end training. Figure 8a demonstrates that
combined pretraining is important for the final performance.

Additionally, we wanted to measure how effective the pretraining was on its own, i.e. without
end-to-end training. The results for this variant are reported in Figure 8a under name NS3 − E2E.
Figure 8a shows that there is a huge performance dip in this scenario, and while the performance is
better than random, it is obvious that end-to-end training is crucial for the NS3 model.

SCORE NORMALIZATION We performed some experiments to determine the importance of nor-
malizing the output of our modules to a proper probability distribution. In Figure 8b we demonstrate
the performance achieved using no normalization at all, normalizing either action or entity discovery
module or normalizing both. In all cases we used L1 normalization, since our output scores are
non-negative. The version that is not normalized at all performs the worst on both datasets. The
performances of the other three versions are close on both datasets.

SIMILARITY METRIC Additionally, we experimented with replacing the dot product similarity with
a different similarity metric. In particular, in Figure 8c we compare the performance achieved using

8
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Figure 9: The leftmost column shows output scores of the entity discovery module after pretraining
for the emphasized part of the query. The middle column shows the scores after completing the
end-to-end training. The rightmost column shows the scores of the action module, emphasized text is
the input the module received for each query. Darker highlighting demonstrates higher score.

dot product similarity, L2 distance, and weighted cosine similarity. The difference in performance
among different versions is marginal.
QUALITATIVE CASE STUDY Finally, we demonstrate some examples of the scores produced by
our modules at different stages of training. Figure 9 shows module score outputs for two different
queries and with thier corresponding code snippets. The first column shows the output of the entity
discovery module after pretraining, while the second and third columns demonstrate the outputs of
entity discovery and action modules after the end-to-end training. We can see that in the first column
the model identifies syntactic matches, such as “folder” and a list comprehension, which “elements”
could be related too. After fine-tuning we can see there is a wider range of both syntactic and some
semantic matches present, e.g. “dirlist” and “filelist” are correctly identified as related to “folders”.

5 RELATED WORK

Different deep learning models have proved quite efficient when applying to programming languages
and code. Prior works have studied and reviewed the uses of deep learning for code analysis in
general and code search in particular (Xu et al., 2021; Lu et al., 2021).

A number of approaches to deep code search is based on creating a relevance-predicting model
between text and code. Gu et al. (2018) propose using RNNs for embedding both code and text to
the same latent space. Several variants of large pre-trained models for code were introduced, e.g.,
CodeBERT (Feng et al., 2020), GraphCodeBERT (Guo et al., 2021), and CuBERT (Kanade et al.,
2020). These methods also embed the query and code jointly. On the other hand, DGMS (Ling et al.,
2021) capitalizes the inherent graph-like structure of programs to formulate code search as graph
matching. A few works propose enriching the models handling code embedding by adding additional
code analysis information, such as semantic and dependency parses (Du et al., 2021; Akbar & Kak,
2019), variable renaming and statement permutation (Gu et al., 2020), as well as structures such as
abstract syntax tree of the program (Haldar et al., 2020; Wan et al., 2019). A few other approaches
have dual formulations of code retrieval and code summarization (Chen & Zhou, 2018; Yao et al.,
2019; Ye et al., 2020; Bui et al., 2021) In their work (Heyman & Cutsem, 2020) propose considering
the code search scenario where short annotative descriptions of code snippets are provided.

6 CONCLUSION

We presented NS3 a modular method for semantic code search. In contrast to existing code search
methods, NS3 can better capture the compositional nature of queries. In an extensive evaluation, we
show that this method works better than strong but unstructured baselines.
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Figure 10: The leftmost column shows output scores of the entity discovery module after pretraining
for the emphasized part of the query. The middle column shows the scores after completing the
end-to-end training. The rightmost column shows the scores of the action module, emphasized text is
the input the module received for each query. Darker highlighting demonstrates higher score.

A APPENDIX

Additional examples Figure 10 contains more illustrations of the output scores of the action and
entity discovery modules captured at different stages of training. The queries shown here are the
same, but this time they are evaluated on different functions.
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