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ABSTRACT

We introduce a highly expressive class of function approximators called Splat Re-
gression Models. Model outputs are mixtures of heterogeneous and anisotropic
bump functions, termed splats, each weighted by an output vector. The power
of splat modeling lies in its ability to locally adjust the scale and direction of
each splat, achieving both high interpretability and accuracy. Fitting splat models
reduces to optimization over the space of mixing measures, which can be imple-
mented using Wasserstein-Fisher-Rao gradient flows. As a byproduct, we recover
the popular Gaussian Splatting methodology as a special case, providing a uni-
fied theoretical framework for this state-of-the-art technique that clearly disam-
biguates the inverse problem, the model, and the optimization algorithm. Through
numerical experiments, we demonstrate that the resulting models and algorithms
constitute a flexible and promising approach for solving diverse approximation,
estimation, and inverse problems involving low-dimensional data.

1 INTRODUCTION

In the recent history of the deep machine learning discipline, certain problem areas have enjoyed
“inflection points” wherein the attainable performance and scale has rapidly improved by many
orders of magnitude. These inflection points are often directly coupled to the discovery of the
right model architecture for the problem at hand. To name a few examples: deep convolutional
networks and ResNets for image classification (Krizhevsky et al.l 2012} He et al., [2016); the U-
Net architecture for image segmentation and generation (Ronneberger et al., 2015} Song & Ermon)
2019); and the transformer architecture for language modeling|Vaswani et al.|(2017). This motivates
the search for new parsimonious architectures for different problem domains, and in this work, we
target low-dimensional modeling problems such as those lying at the intersection of computational
science and machine learning.

We introduce a new candidate that we call the ‘Splat Regression Model.’ In its simplest form, the
model can be written as,

k
f@) = i N(x;bi, A;AT) v; €ERP, b; € RY,  A; € R

=1

where N (z; i, 22) is the Gaussian density function. This rather simple architecture can be seen as a
two-layer neural network with an atypical activation function, or alternatively, as a generalization of
the classical Nadaraya-Watson estimator for nonparametric regression to use heterogeneous mixture
weights. Toward the goal of developing a general theory for these heterogeneous mixture mod-
els, we abstract them into the form f,(x) := E,~,, [v], where p, are conditionals of a probability
distribution (x,v) ~ p. We develop a theoretical framework for optimizing these functions and un-
derstanding their expressivity. We further demonstrate that the splat regression model is an extremely
performant architecture for low dimensional approximation, regression, and physics-informed fit-
ting problems, typically outperforming Kolmogorov-Arnold Network (KAN) [Liu et al.| (2025) and
Multilayer Perceptron (MLP) models by 10-100x even with far fewer parameters.

Another major success story of large-scale machine learning is in the computer graphics literature
on solving Novel View Synthesis, where the goal is to learn a 3D scene from 2D snapshots annotated
by camera position. A major breakthrough came with the introduction of Neural Radiance Fields
Mildenhall et al.| (2021a). A few years later, the so-called “3D Gaussian Splatting” methodology
took over as a premier architecture for graphics and reconstruction problems. There are parallels
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Figure 1: A representative approximation problem for the function f*(x) = sin(20mz(2 — z)),
d=p=1. Wefit a k = 30 splat model using least squares with n = 200 noiseless samples and we
compare to the performance of Chebyshev polynomial interpolation and Haar wavelet approxima-
tion. By learning an ‘adaptive grid’ interpolation, the splat regression model drastically outperforms
a Haar wavelet approximations, and competes with the gold-standard Chebyshev polynomial inter-
polation. (Left). Training iterates of a £ = 30 splat model (blue) as it fits f* (green) by minimizing
squared error with respect to n = 200 uniform samples (orange). (Right). Validation MSE of the
splat model over training. We also show the validation MSE of a Chebyshev approximation with
m = 30, 45 gridpoints and of a Haar wavelet approximation at scales 2!, 1 =1,...,8.

between developments in Novel View Synthesis and recent progress in physics-informed learning,
which has arguably not yet enjoyed its inflection point. An essential component in NeRF modeling
is the use of sinusoidal positional encoding, which drastically improves the modeling capabilities
across different ‘scales’ of variation in the target modeling problem, and which is paralleled by
the use of positional encoding schemes in physics informed PDE-fitting (Tancik et al., 20205 [Zeng
et al., 2024), to moderate success. In both cases, rendering solutions by pointwise evaluation of an
MLP across the spatial domain can be prohibitively slow. Recognizing that Novel View Synthesis
is inherently a spatial inverse problem, a major goal of our work is to replicate the successes
of 3D Gaussian Splatting across a wide variety of physical modeling and inverse problems.
We intend for this manuscript to provide an instruction manual for deploying and training splat
regression models in these settings. Our main contributions are the following.

1. We introduce the Splat Regression Model. We prove some preliminary structural theorems
about the it and we show that it is a universal approximator.

2. We develop principled optimization algorithms for gradient-based training, which are cru-
cial to our empirical success. To do this, we leverage an interpretation of the splat model
parameters as a hierarchical ‘distribution over distributions,” and we invoke the theory of
Wasserstein-Fisher-Rao gradient flows to compute gradient updates in parameter space.

3. We recover 3D Gaussian Splatting as an instance of splat regression modeling. In Example
2} we detail a clean formulation of it, where different aspects of the pipeline are split into
clear, ‘modular’ parts.

4. We test the performance of splat modeling in a few representative modeling problems in-
cluding low-dimensional regression (Figure[2) and physics-informed fitting.

2 RELATED WORK

Novel View Synthesis. The Novel View Synthesis in computer graphics has a long history. Input
data is typically sourced using Structure From Motion (SfM) methods (Ullman,|1979;Ozyesil et al.,
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2017). In the idealized setting, scenes are rendered using the Radiative Transfer Equation (Chan-
drasekhar, 2013)). Much work has gone into developing fast approximations to the RTE, such as the
widely used a-blending technique introduced in (Porter & Dutff] [1984; |Carpenter; [1984). For 3D
scene representation, [Zwicker et al.| (2002b) introduced the “elliptical weighted average” method,
although these ideas were not applied at scale for about two decades (Kerbl et al., 2023a). Major
interest in this problem was sparked with the release of Neural Radiance Fields [Mildenhall et al.
(2021Db)), an approach based on optimizing MLP parameters by differentiating through (an approxi-
mation of) the RTE.

Physics-informed Modeling. Following the introduction of PINNs (Raissi et al., 2019)), much work
has gone into developing ML methods for solving computational science problems. As documented
by |Krishnapriyan et al.| (2021)), PINN training can have surprising failure modes and requires careful
tuning and hand-crafted architectures. More recently, adding positional encoding schemes [Tancik
et al.| (2020); [Huang et al.| (2021)) through either RBF or sinusoidal encoding was shown to improve
performance. Alternatively, the Kolmogorov-Arnold Network architecture Liu et al.|(2025); Rigas &
Papachristoul (2025)) was introduced as a competitor, and some comparisons between KAN and RBF
interpolation methods are explored in [Li (2024). One way to view splat regression modeling is as
learning an ‘adaptive interpolation grid,” and our experimental results suggest that ‘smart positional
encoding is all you need’ for low-dimensional modeling problems.

Mean-field Theory of Two-layer Networks. Wasserstein-Fisher-Rao gradient flows can be used
to study the optimization of two-layer ReLU neural networks. This approach was pioneered by
Chizat & Bach| (2018)), who prove a conditional global convergence result for two-layer network
optimization. Further work in this direction includes (Mei et al., 2019a;b). The main difference
between optimizing ReL.U networks and Splat models is that our model has a fundamentally differ-
ent geometry of its parameter space, since first-layer output neurons are represented as elements of
a Bures-Wasserstein manifold. This is also a major difference between our work and (Chewi et al.
(2025b)), which introduces a modified ReLU network architecture whose neurons can be ‘superpo-
sitions’ of ReLU functions.

3 HETEROGENEOUS MIXTURES AND SPLAT REGRESSION MODELS

We now state a few essential definitions and basic properties of splat regression models. Readers
who are uninterested in the abstract formulation may skip to equation[I} which is the concrete object
that appears in algorithms.

We write £°(R?%;RP) to denote the functions f : R? — RP for which [ ||f(z)||$dz < oo, and
C$(R?) to denote the real-valued bounded s-times continuously differentiable functions on R¢.
For a function ¢ : RY — R, we write V(z) its gradient, V2¢(x) its Hessian, and A¢(z) =
ijl 02 ¢(x) its Laplacian. For ¢ : R — RP we write D¢ (x) its Jacobian and (when p = d)
we write divy(z) = Zle 0y, #9 () its divergence. We denote by P () the space of probability
distributions on 2, by P;(f2) the distributions with s > 1 finite moments, and by P,.(f2) the
distributions with a density. For € P(Q) we write Ex.,,[f(z)] = [ f(z) p(dz) and, if 42 has a
density, we denote it as p(z) : & — R. Last, we denote by T’y the pushforward of i, that is, the
distribution of T'(X') when X ~ p. We write id(z) = x the identity map, idxp = p.

Our general philosophy is to investigate the functions f € £5(R?; R?) that can be represented by a
probabilistic coupling 1 € P(RP x R?) which dictates, at each (v,z) € RP x R%, how much the
vector v contributes to the value of f(x). This makes sense whenever p satisfies a “density in z,
moment in v” assumption.

Proposition 1 (Heterogeneous Mixtures). Suppose that ji € P(RP x RY) is of the form ju(dv, dx) =
p(dv, x) dz and where B, oy, [[|v]|3] < oo, for s > 1. Then the function f,(x) = Eyu(. z)[v]
belongs to L*(R%; RP), and furthermore, there exists a measure v € P(RP) (the ‘mixture compo-
nents’) and a density k(v,x) > 0 (the ‘heterogeneous mixture weights’) so that

p(dv, ) = v(dv) k(v, x) fu(x) = Eyap [k (v, 2)].

Having a density in z is required to be able to make sense of f,(x) pointwise. For each z, k(-,z)
determines which v € supp(v) (and in what proportions) contribute to the value of f,(z). We
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propose to parametrize k(-, x) as a mixture of shifted-and-scaled copies of a simple base distribution
p. We envision p as an isotropic ‘bump’ function and call each individual copy a splat in homage to
the computer graphics literature where an instance of this model was first widely popularized. We
call p the mother splat in analogy to the mother wavelets used in wavelet theory (Mallat, 2008]).
Definition 1 (Splat Measures and Splat Models). Let p € P,.(R?) have zero mean and identity
covariance, and let p 4 ; be the distribution of AX +b when X ~ p. We say that 11 is a splat measure
if it is a heterogeneous mixture such that for each v € supp v, there exists w, € P(R¥*? x R%) so
that

k(v,2) = Eap)ow, [pap(@)]  pldo,z) = v(dv) k(v, )
and the associated splat model f,(x) is equal to,
fulx) =Elvpap(z)] v~y A~ w,.

If the support of the joint distribution of the (v, A,b) has k < oo elements, we say p is a k-splat
measure, f, is a k-splat model, and we write

T =

k
ful@) = 2> viv(v) p(A7 (@ = bi)) [ det A7 {(v3, A, bi) Yoo = supp(v, 4,b). (1)
=1

It may seem counterintuitive that k(v, x) is defined through a v-dependent distribution w, instead
of through a more ‘z-centric’ expression. One benefit is that it simplifies the model’s dependence
on x allowing us to prove a few desirable properties of splat models as function approximators.
Perhaps more importantly, it also leads to a natural interpretation of the parameters v, (W )yesupp v
as elements of a ‘pseudo-Riemannian’ manifold, allowing us to perform gradient-based training of
k-splat models. We now discuss both of these.

3.1 REGULARITY AND UNIVERSAL APPROXIMATION

It is helpful to have some basic sufficient conditions for f,,(x) to be continuous and to have contin-
uous derivatives.

Proposition 2 (Sufficient conditions for regularity). Let i € P(RY x R?).
1. The map f,.(-) has uniform modulus of continuity

w(e) = sup{|EH(.’w)[v] —E,y) [v]| e =yl < e}
< sup {Wi(u(-,z), n(-y)) : lz =yl < e}

In particular, f,(-) is absolutely continuous whenever (u(-,x)),cra is a Wi-absolutely
continuous measure-valued process on R%.

2. Suppose i is a splat measure whose mother splat p has s > 0 bounded derivatives. Then
fu(z) also has s bounded derivatives.

It is also helpful to understand the expressiveness of the class of splat models, and in particular, to
understand what kinds of functions can be approximated by k-splat models for finite k. As we show
in Appendix [A] the finite splat model (equation [T is already in the scope of Cybenko’s early result
on universal approximation of real-valued functions by two-layer neural networks.

Proposition 3 (Corollary of|Cybenko| (1989)), Definition 1 and Theorem 1). Let §2 be a compact sub-
set of R and suppose p is a continuous density with marginal p1(z1) = [ga_: p(x1, %2 ... 24) dx.
Then for any f € CI?(Q; R) and € > 0, there exists a k-splat measure i (with mother splat p) such
that

sup | f(z) — fu(2)| <e.
zEQ

We also prove in Appendix [A]a quantitative bound on the number of splats required to approximate
any Lipschitz function on a ‘nice’ domain using any ‘nice’ mother splat.
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Theorem B] (Informal — quantitative universal approximation) . For any bounded, ‘nice’ Q C R?,
any bounded, Lipschitz f : 0 — RP, and any bounded, Lipschitz mother splat with finite first
moment, there exists for each € > 0 a k-splat measure p with k < e~ 2(4+2) and,

sup || fu(x) = f(z)[l2 <e.
e

We find in our experiments that in a variety of low-dimensional modeling problems, one can attain
very high quality fits from k < e~ 2(¢+2) by optimizing the splat parameters, which can be thought
of as interpolating the observed data on a learned non-uniform grid.

3.2 GEOMETRY OF SPLAT MODELS

Ignoring some technical caveats, the space P(R%) of probability distributions can be viewed as a
manifold by assigning it a distance metric such as Ws(u, v/), the 2-Wasserstein distance, or H (u, v/),
the Hellinger distance. In both cases the distance induces a metric in the geometric sense, and a
tangent space structure, which together can be used to construct gradient-descent-like algorithms
over the space of probability distributions. In Wasserstein space, moving between points fig, 41 €
P, (R?) is accomplished by applying “infinitesimal” transport maps and the geodesics follow the
straight line interpolations of optimal transport maps, p; = (t Tjg—p, + (1 —t)id)4 . Under the
geometry of the Hellinger metric, known as the Fisher-Rao or Information geometry |/Amari (1983),
moving between points is accomplished by “mass teleportation,” which means directly scaling the
density up or down, pointwise over the domain, in a mass-preserving way. Its geodesics are u;(x) =
(cur/Ti0(x) + Bey/1(x))?, where oy, B; are spherical linear interpolation coordinates, as can be
seen from the £ form of H (o, p11) = [(\/Bo(z) — /R1(x))? dx for densities 1, p11 € Pac(R).
Finally, it is also possible to consider the geometry that arises when allowing movements by transport
and teleportation at the same time, which is the Wasserstein-Fisher-Rao geometry (Chewi et al.
2025a)).

The Wasserstein and Fisher-Rao geometric perspectives are widely used in the design and analy-
sis of probabilistic algorithms, such as for dynamical sampling (Chewi et al., [2025a)), variational
inference (Lambert et al., 2022), barycentric interpolation (Gouic et al., 2019} (Chewi et al., |2020),
and lineage tracing (Schiebinger et al.,[2019). We apply both to design a principled gradient-based
training method for splat regression. As a byproduct, we recover the heuristic methods used to op-
timize Gaussian Splat models, which has a clean interpretation as regularized risk minimization via
Wasserstein-Fisher-Rao gradient descent. We first explain the Wasserstein structure of the space of
splats, then the Wasserstein-Fisher-Rao structure of the space of splat measures.

Proposition 4 (Splats are a generalized Bures-Wasserstein manifold). Let p € P(R?) be a centered
isotropic mother splat. We denote the set of all splats as,

BW,(R) := {(A(-) +b),p: A€R™ pe Rd} .

Then BW ,(R) is a geodesically convex subset of W»(R®), and on this space the Wasserstein metric
reduces to the Bures-Wasserstein metric (Modin| 2016} Bhatia et al., |2019),

W3(pap prs) = b= sl + | AIE + | RIE — 2|ATRIl. A, ReR™? bseR’

where || - || is the Frobenius norm and || - ||« is the nuclear norm.

In the context of Definition [1} the parameters v, (wy)yesupp, are simply a conditioning decom-
position of a joint distribution belonging to S, 4 = P(RP x BW,(R%)). We abuse notation
and write a splat measure ;¢ € P(RP x R9) interchangeably as a measure in Sp.a (the abuse is,
“u(dv, z) = wy(x)r(dv) = p(dv, dw),” and now when we say ‘splat measure” we mean the latter).
The finite splat measures are the elements of S, 4 with discrete finite support.

Relative to particle methods, lifting to S,, 4 allows one to implement ‘smoothed particles’ on P (RP x
R?), thus providing a computationally tractable way to flow measures that are everywhere positive
and absolutely continuous. We comment in Appendix [B]on the relationship between gradient flows
in S, 4 and in P(R? x R?). This generalizes the concept of ‘Gaussian particles’ introduced in
(Lambert et al., 2022), because particles are represented by any affine pushforward of an arbitrary
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density p. Such a particle representation was also hinted at in the computer graphics literature on
‘volume splatting’ (Zwicker et al.,|2002a), and has also appeared in early work on hydrodynamics
simulations (Gingold & Monaghan, |1977).

We endow S, 4 with the Wasserstein and/or Fisher-Rao metric, similar to the ‘Wasserstein over
Wasserstein’ approach taken in (Lambert et al., 2022; |Bonet et al., 2025). After stating our results,
we give Examples [I] [2] that illustrate these objects concretely in two practical settings.

Definition 2 (First variation). Let F : £2(R?; RP) — R be a functional. Its first variation (when it
exists) is the function 6 F[f](z) which satisfies for every f,¢ € L2(R%; RP),

DT (f + ) Jemo = / (E(x), 6F[f)(x) dx.

Rd

It is convenient to express the Wasserstein gradient W, F(f,) : RP x BW,(R?) — RP x BW,(R%)
in the global coordinate system (v, A,b) = (v,pap). This coordinate system is convenient for
writing the gradient W, F(f,,) = (Wy, Wa, W;,)F(f,.), so that the particle dynamics

b= —WoF(fu) (v, Ab) Ay =—WaF(f)(0,A,0) by = =W, F(fu)(v, A,b).

implement a Wasserstein gradient flow in S, 4. Our main theorem is the following.

Theorem 1 (Informal — Wasserstein-Fisher-Rao gradient of p — F(f,)). Let p € Sp q = P(RP x
BW,(R%)) and let F : L2(R%RP) — R be a functional. Assume that p has a sub-exponential

density. Then the Fisher-Rao gradient is given by,
VZR]:(fM)(Uv A, b) = ]EXNPA,b [<§~F(X)7 ’U>] - EU’AJV\/H[]EX“/PA,I; [<§~F(X)» U>]
and the Wasserstein gradient is given by,
WoF (fu) (v, A, b) = Exop, , [0F (X))
WaF(fu)(v, A,b) = —Exrp,, [(0F(X),v) (Ia+ Vi log pas(X)(X — b)T) A_T}
WoF (fu) (0, A,0) = =Exrp,, [(0F(X),0)Velog pas(X)]
where the argument of §F (-) = dF[f](-) was suppressed.

The condition on p is required to apply integration by parts without a boundary term, but when
this does not hold (such as when p(xz) = 1{||z||2 < 1}) one can derive the appropriate corrections
on a case-by-case basis. We conclude with a few concrete examples of F which are relevant to
applications.

Example 1 (Empirical risk minimization). Suppose x1, 2, ...,2, ~ U() are i.i.d. samples,
where ) = [0, 1]¢ for simplicity, and set y; = f*(x;) with
1 n
) Z L(f(x
i=1
for a loss function L(g, y). To calculate the variation
1
Deo F(f + €€) = { ZL (1) + €€(xy), z)} = 5;<§<z7¢>,v@L<f<zi),z,;>>

and so 0F([f](z;) = 237" | V4 L(f(x;), z;), which is otherwise undefined for 2 € R? outside the
sample. We can use importance sampling to estimate the gradients,

Ex~p.,, [6FF1(X) ZPAI; [ (i)(. ).

This estimator is unbiased because {z;}" ; ~ U([0,1]?). For samples drawn from an unknown
distribution, one could instead estimate 6.F[f](z) by interpolating the available data, then approxi-
mating the average over X ~ p4 ; using either Monte-Carlo or a quadrature rule.
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Example 2 (Inverse problems and physics-informed training). We can also take

F(F) = 5IAU@) — o) aa) @

where A is a known integro-differential operator, g is a known forcing function, and we again take
Q = [0, 1]¢ for simplicity. To calculate the variation,

o (f +c6) = o {3 [ 1AL + el — 90113 )
- / (Alf)(x) — g(x), Dy AE)(2)) da

= /<(Df«4)*A[f](x) — (DA [9)(2), & (2)) da.

where DA is the linearization of A at f and (Dy.A)* is its adjoint. So 0. F[f] = (D A)* A[f](x) —
A*[g](x). Two illustrative instances of this setup are,

1. A ‘Physics-informed’ splat-based Poisson solver. Take p = 1, A[f,] = Af,. The Fisher-Rao
gradient is,

VERE(f,) (0, A,b) = /Q o(Af () — g(x)) Dpay(z) de.

In the same way, the coordinates of the Wasserstein gradient can be expressed as integrals with
respect to Ap(x) and V(Ap)(x). For simple p, these functions can be precomputed to accelerate
gradient computations, and the integral approximated by Monte-Carlo.

2. Splat regression modeling for Novel View Synthesis (NVS). NVS can be viewed as an inverse
problem whose forward operator A is the Radiative Transfer Equation (RTE) (Chandrasekhar,
2013), (Zwicker et al., [2002a, Equation (7)), whose unknown parameters are: the ‘emission
function,” s : R? x S? — R, and the ‘extinction function’ ¢ : R® — R. The emission s(x,v)
is the amount of light radiating from 2 € R? outwards in direction v, and the extinction o ()
represents the degree to which point x ‘occludes’ points behind it. Following (Kerbl et al.,
2023a), we parametrize splat models o(z) = g, («) and we parameterize s(z, v) as,

s(z,) =Y [ (@)¢i(v)
i=1

where {¢; }}_, are spherical harmonic basis functions and f,, : R® — RP? is another splat model
(p = 20). Given these two fields, rendering the scene involves evaluating the Radiative Transfer
Equation.

Als,o](z,v) = /OOO s(x + tv,v)o(x + tv) exp (_ /0

The RTE is typically evaluated using a discrete approximation called a-blending (Zwicker et al.
2002b; [Kerbl et al.| [2023a)) and splat parameters are trained via SGD with particle birth-death
dynamics to minimize residuals (equation [2).

t

o(x + sv) ds) dt. (3)

Finally, we remark that the performance of Gaussian splatting in large-scale Novel View Synthe-
sis depends heavily on the use of many training heuristics, such as initialization of splat locations
Kerbl et al.|(2023b), selective noising of splat locations during training Kheradmand et al.| (2024),
and on ‘pruning strategies’ to move spurious splats either by deleting them or teleporting them else-
where in space (Kerbl et al.| [2023b} [Hanson et al., 2025)). By providing a principled optimization
perspective on fitting splat models, our results pave the way to interpret these heuristics through
the lens of regularized risk minimization. For instance, in a sampling context, the stochastic Un-
adjusted Langevin Algorithm can be interpreted as Wasserstein gradient descent of the functional
F(u) = Dxr(p | Mtargel> divergence, which enjoys strong convexity whenever figrge is strongly
log concave. We anticipate that the selective noising heuristic introduced by |Kheradmand et al.
(2024) can be interpreted as adding a convex entropic regularizer to the objective (2)), improving
convergence. Similarly, particle birth-death dynamics are a well-known discretization algorithm
for Fisher-Rao gradient flows |[Lu et al.| (2023). With an appropriate discretization, Theorem [I| thus
prescribes a pruning criterion that is guaranteed (in the continuous-time limit) to decrease the loss.
While it is outside the scope of the present manuscript, principled regularization methods for splats
is a very promising direction for future work.
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4 EXPERIMENTS

In this section, we demonstrate the power of the splat regression modeling by directly comparing it
on approximation, regression, and physics-informed modeling problems.

4.1 MULTISCALE APPROXIMATION

First, we show in Figure[I] a representative 1D example of training a splat regression model, which
we compare to two standard function approximation algorithms: chebyshev polynomial interpola-
tion and wavelet basis projection.

In the left subpanel, we show snapshots of splat training arranged from right to left, top to bottom.
We train a & = 30 splat model initialized with v; = 0,b; = (i — 1)/k, and A; = 1/2k for
i = 1...k. Training is performed by least squares fitting via Wasserstein gradient descent with
learning rate 10~* and no momentum. The loss function is £(f,) = = > | (f(xz;) — y;)? for
n = 200 noiseless samples x; ~ U([0, 1]). In the right subpanel, we show the validation log-MSE
of the splat model. Anecdotally, the exponentially fast convergence which appears in Figure[T] (right)
is robust to different initializations and functions. We show in Appendix [C} Figure [5|a version of
this experiment where the {b;}¥_, are initialized as a k-point Chebyshev grid as well as a version
where data is sampled from a discontinuous sawtooth function.

We select this example as a simple one dimensional picture of how splat models are well suited to fit
‘multi-scale’ features of the observed data. For comparison, horizontal lines indicate the validation
MSE of the Chebyshev and wavelet approximations. The splat model with £ = 30 splats signifi-
cantly outperforms the Chebyshev interpolation with m = 30 interpolation nodes. Setting m = 45
in order to control for the total number of model parameters ((3 x k = 90) for splat vs. (2xm = 90)
for Chebyshev), we see that the splat model achieves slightly worse approximation error. Relative
to wavelet approximation, the splat model outperforms a Haar wavelet projection with m = 255
parameters (corresponding to level [ = 8 of the basis hierarchy). We find these results extremely
encouraging, particularly given that very simple optimization and initialization schemes are enough
to successfully train the splat model.

Validation MSE during Training Final Validation MSE vs Architecture Size
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Figure 2: We compare splat regression, Kolmogorov-Arnold Networks (2025)), and fully
connected Multi-layer Perceptron in a noisy regression task. We observe that splat models achieve
order of magnitude lower fitting error while using a small fraction of the parameters of MLP and
KAN networks.

4.2 REGRESSION WITH KAN, MLP, AND SRM
We compare the performance of splat regression modeling to Kolmogorov-Arnold networks
(2025) and to fully connected MLP architectures on a 2D regression task. We sample z; ~
U([0,1]%) i.i.d. and set y; = f(z;) + €; where ¢; ~ N(0,0.01) and,

f(x,y) = sin(3my/x) cos(3my).

Each model is trained using 3000 iterations using Adam with learning rate 10,
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We attribute the improved performance of splat models to their spatially localized nature, which can
be viewed as a learned positional encoding scheme. However, due to their expressivity, splat models
may be more susceptible to overfitting, requiring regularization to achieve good fits.

4.3 PHYSICS-INFORMED MODELING

Validation Error during Training Final Test Error vs Architecture Size
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Figure 3: We compare splat regression, Kolmogorov-Arnold Networks |Liu et al.| (2025)), and fully
connected Multi-layer Perceptron in a physics informed regression task. Models are fit to solve
the Allen-Cahn equation on [0, 1]2. (Left). True solution under this parameter regime. (Middle).
Validation error for each model class as a function of the number of training iterations. (Right).
Validation error relative to total number of model parameters. Among the test pool, a k = 50
splat model outperforms all KAN and MLP architectures by an order of magnitude while using
significantly fewer parameters.

We further test the splat regression model in a two dimensional physics-informed learning problem
where the goal is to estimate the solution of the Allen Cahn equation,

EAu(r) +u(z) —ud(x) =0  ze0, 1%

This equation is a well known example of a PDE whose solutions can have ‘boundary interfaces’
that converge to discontinuities as € — 0.

We take € = 0.1 and train each model to minimize a weighted sum of PINN-style residual loss and
a least-squares regression loss. We take observations of the form z; ~ U([0,1]9), y; = u(z;), for
i = 1...500 and we approximate the PINNs loss using a quadrature scheme on [0, 1]2. Similar to
our regression experiment, splat modeling exhibits fast convergence and excellent performance even
at extremely low parameter regimes,

5 CONCLUSION

We have shown that splat models are highly effective in solving a variety of representative low
dimensional modeling problems. We believe that these results are extremely promising from a prac-
tical perspective. Furthermore, we have drawn a novel connection between 3D Gaussian Splatting
and Wasserstein-Fisher-Rao gradient flows, which we hope will lead to many symbiotic interactions
between the optimal transport, computer graphics, and statistics communities.

There is much future work to be done. First, as we discuss in Section [3.2] splat models are highly
expressive and therefore susceptible to overfitting, warranting a larger scale computational study
beyond the scope of our work. The splatting community has developed many heuristics for regular-
izing and pruning splat models, which we expect will be instrumental to large-scale splat regression
modeling. As a second direction, we remark that the proposed model can be interpreted as a new
neural network layer, opening the door to compositions of splat models (‘deep splat networks’)
and/or integrations into existing deep architectures. We look forward to investigating these direc-
tions in followup work.
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REPRODUCIBILITY STATEMENT

The Jax/Python source code used to replicate our experiments will be made publicly available in
a open source repository upon publication. The repository will include detailed instructions for
setting up the environment, training the models, and evaluating the results. We will also release
all the information required to recreate the datasets and baseline comparisons used in this work,
including random seeds used in experiments.

ETHICS STATEMENT

The research presented in this paper introduces a novel trainable architecture for scientific mod-
eling and general-purpose regression tasks, with the primary goal of advancing machine learning
methodology. We use standard benchmark datasets and do not engage with sensitive personal data
or high-risk application areas. We have considered the societal and environmental impacts and con-
clude that our work adheres to established ethical guidelines, presenting no immediate societal risks.
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A WELL-POSEDNESS, REGULARITY, AND UNIVERSAL APPROXIMATION

Here we consolidate the proofs that are related to understanding structural properties of splat mea-
sures u € P(RP x BW,(R?)) and splat functions. This includes Propositions on the well-
posedness and differentiability of splat functions. We also provide the proof of the two universal
approximation theorems, Proposition [3|and Theorem [3] We restate these claims for reading conve-
nience.

We dedicate the rest of the section to proving Theorem [T} which we split into a few steps.

Proposition(Heterogeneous Mixtures). Suppose that ;1 € P(RP x R?) is of the form p(dv, dz) =
p(dv, x) dz and where E(, ;)~.[|[v]|3] < oo, for s > 1. Then the function f,(2) = Eyu(. 2)[v]
belongs to £°(R%; RP), and furthermore, there exists v € P(RP) (the ‘mixture components’) and a
density k(v, z) > 0 (the ‘heterogeneous mixture weights’) so that

pldv, ) = v(dv) k(v,2)  fu(z) = Eynp[ok(v, 2)].

Proof. I E(, 2)~u[|[v]|3] then by Jensen’s inequality,

- H [ vt

so f, € L2(R%RP). Now take v to be the v-marginal ((v,z) +— v)xu. By the disintegration
theorem (Ambrosio et al., 2008) there exists a family of measures k, € P(R?) so that u(dv, r)dz =
ky(dz)v(dv). We must check that each k,, has a density, and for this it is sufficient to check that for

any ¢ € L} (RP) and any sequence ¢, € L£!(R?) that converges ¢y, "2 0in L1,

[ ot ([ vntarintan) ) wiao) = [[ otopuntoputav,an

< sup B(V) - [Pkl o re
vEsupp(v)
2.
by Holder’s inequality. We have shown that for v-almost every v, any sequence converging to zero

in £!(R?) also converges to zero in £!(R%; k,). The proof follows by identifying k(v,z) as the
density of k, (dz).

dx < / [lolls p(dv, z) de < oo

Next we prove the sufficient conditions on y for f,,(+) to be continuous and/or differentiable.

Proposition(Sufﬁcient conditions for regularity). Let 1 € P(R? x R?).

1. The map f,(-) has uniform modulus of continuity

w(e) = sup{|IEH(.’w)[v] —E,y) [v]| Hlz—yll <€}
< sup {Wi(u( @), u(-,y)) : |z -yl < €}
In particular, f,(-) is absolutely continuous whenever (u(-,)),cra is a WWi-absolutely
continuous measure-valued process on RY.

2. Suppose v is a splat measure whose mother splat p has s > 0 bounded derivatives. Then
fu(x) also has s bounded derivatives.

Proof. The first property is by definition of the Wasserstein-1 distance. For the second since
p € C;(R?) and for any A € R4 b € RY 2 — Az + bis Cf°(R?), the function
(v,2) — v[(A(-) + b)xp](z) has s bounded and continuous derivatives in x and is dominated
by the v-integrable function v = C5v||0sp||co SUP,esupp(v) [ Allo, Where Cs is a universal constant.
Derivatives of f,(-) are therefore given by differentiation under the integral. O

Next, we show that under a wide range of p, splat models satisfy the conditions of Cybenko’s
theorem on universal approximation by two-layer neural networks. We restate the universal approx-
imation theorem and check that its conditions hold.
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Theorem 2 (Definition 1 and Theorem 1, |Cybenko| (1989)). We say that o is discriminatory if for
any measure p € I, = [0, 1],

/1 o(yTa + 0) du(z) = 0

forall y € R™ and 0 € R implies that u = 0. If o is any continuous discriminatory function, then
the finite sums of the form

N
r) = Z ozja(yfx +46,)
J=1

are dense in Cy (I,).

Corollary 1. Let Q C R? compact and suppose p is a continuous density with marginal py (1) =
Jga—1 p(z1, @2 ... xq) d. Then for any f € Cp(Q;R) and € > 0, there exists a k-splat measure i
(with mother splat p) such that

sup | f(z) — fu(z)| <e.
e

Proof. By scaling we may assume 2 C [0, 1]¢. We claim that p; is a discriminatory function and
that the approximator G(z) with ¢ = p; and with parameters {(c;,y;,6;) : j = 1...k}, which is
guaranteed by Theorem 2] for some k& >> 1, can be realized as a splat model. It is easy to see the
latter: to realize G/(x) as a splat, take A, = elyj s by, = €10, and v; = a;.

Let u be a nonzero measure on [0, 1]¢ and let s € supp(u). Assume for contradiction that for all
y € R 0 eR,

0= [ p o 0) ulde) 2 P (572 4 ) > )
[0,1]

Thus p(By,e(t)) = 0 for all sets By o(t) = {x € [0,1]¢ : p1(y"2 + 6) > t} and all t > 0. By
continuity, the set pfl((t7 00)) is open, so that by affine rescaling we can construct from the basis
{Byo(t):y € R%t,0 € R} the entire Borel -algebra on [0, 1]¢, which would imply = 0. [

Finally, we give a more constructive proof of a universal approximation theorem on sets 2 C R?
whose uniform measure U/ (2) has a finite Poincaré constant. This constant is the smallest Co, > 0
for which any f € H'() satisfies the inequality

V?,fg)(f(X)) < CIIVFlZ2 @

X~

This is satisfied by most ‘nice’ sets, namely whenever (2 is an open connected set with a Lipschitz
boundary (Evans, [2010, §5.8 Theorem 1).

Theorem 3. Let Q2 C R compact and suppose f € C} (S RP). Suppose further that the measure
w = Unif(Q) has finite Poincaré constant Cq < oo. For € > 0 there exists a k-splat measure p at

most k < $2e 242 (L, B,e + By L,)” splats and for which
sup [[f(z) = fu@)ll < (L+ Ly My)e

Where the constants are:

B, = ol o By = | flloo
J— lp(x) — p(y) Ly - If(z) = f(y)ll2
syere ||z —yll2 syea 2=yl

My, = Eznpl2]l2]
Proof. Set f¢(x) = E.~,[f(x + €z)], then

1F(@) = f @) < / 1£(@) — F(x+e2)lla pldz) < LyMye
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We now show that, for k£ > 1 also to be determined, there exist a k-splat measure p so that
sup || fu(z) — f(@)]2 < e
zeQ
Take random z1,...,7; ~ w®F and take v = %Zle 8(z)> k(v,) = e %p(z/e), and
w(dv, x)dx = v(dv)k(v, ). Then we have
V. C T - fc
(@)]2 > ) _ Var(@y oy o supeq 1ful@) = £@)]l2)

€2

P (xl ooz = osup || fulx) —
TEQ

k
< 5 Y BlVanar o sup If, @) = S (@)

zeN
resP=1!

k
;QZE[Vari(a:l oz = osup (r, fu(z) — f9(x))]

where Var;(f(z1,...,2)) is the variance of f(-) holding z1,...,z;—1,%it1,..., 2 fixed and
resampling x; ~ w independently. In advance of applying Poincaré’s inequality, invoke the envelope
theorem to see,

Vg, R T1...25 — ilelg (r, fulz) — f(x)) p = (" TDT, { Zf x;)e e p((x — $z)/€)}
resp—!

= L DF (e~ 20) /)

o O P @) () (@ — 7))

where z*, r* attain the supremum. Its norm is bounded by

I < o (LyBpe + ByrLy)

where || floc = sup,cq | £(@) 2. and C; = sup, ez [p() — p(y)]/||z —yll2. o that by Poincars

inequality,
. Co
P(z1,...,xp = sup | fu(z) — f(z)] > €) < S@og (LyBpe + Bpr) .
z€eN

Consequently, for k = 15 e 20d+2) ([, tBye+ B fL ) it occurs with probability at least one half
(over 1, ..., xzx ~ w‘g’k) that sup,.cq || fu(z) — f€(z)]|2 < e. By the triangle inequality

ilelg\\fu(w)—f(x)l\z égsclelgllfn(x)—fe(x)||2+||f6($) f@)lla < (14 LyMp)e.

B GRADIENT FLOWS ON MEASURE SPACES

We provide in this section some of the mathematical background on Wasserstein-Fisher-Rao calculus
that is required to state our main results. We then give the proofs of Theorem [T} Proposition ] and
some helpful calculation rules for computing gradients with respect to splat measures.

B.1 REVIEW OF WASSERSTEIN AND FISHER-RAO CALCULUS

First, we define the Hellinger and the ‘static’ Wasserstein distances.

Definition 3 (Wasserstein Distance (Villani, 2003)). Let M be a Riemannian manifold (endowed
with the canonical volume measure) and let p1, v € P, (M) be measures with finite p-th moments.
The p-Wasserstein distance is,

Wh(u,v) = inf /dM(X, Y)P r(dX,dY)
el (p,v)
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where daq(-, ) is the geodesic distance on M and I'(u, v) is the set of all joint couplings whose
marginals are 7x = p, my = v. We denote by W, (M) the space P, (M) endowed with the W,
metric.

Definition 4 (Hellinger Distance (Amaril [1983)). Let M be as inand let u, v € P(M) be mea-
sures with finite second moments. Setting A = %(u + v), the Hellinger distance is

(w0 = | ( - Zi(x)) A(do)

where g—’;(m‘) is the Radon-Nikodym derivative. Here, A can be replaced by any measure X' > p, v.
We denote by H (M) the space P (M) endowed with the H metric.

For our purposes we only need to consider rather two rather simple manifolds: the Euclidean space
(with the canonical || -||2 metric) and the Bures-Wasserstein space BW ,(R?). We postpone the proof
of Proposition [4] where we formally define the Bures-Wasserstein manifold, and proceed with the
review. For further reference and for proofs of the background theorems stated here, see wonderful
reference (Santambrogio, 2015) as well as the more contemporary (Chewi et al. [2025a), which
emphasizes a statistical perspective.

In their seminal 1998 paper, Jordan, Kinderlehrer, and Otto (Jordan et al.,|[1998)) introduced an itera-
tive ‘minimizing movements’ scheme as a variational approach to solving the Fokker-Plank equation
in fluid dynamics, leading them (largely by accident) to discover the geometric perspective on the
so-called ‘static’ Wasserstein distance. Shortly afterwards, |Benamou & Brenier| (2000) developed
the following elegant formulation.

Theorem 4 (Benamou—Brenier Benamou & Brenier| (2000)). Given two probability measures
Lo, 1 € Wo (M), it holds that

W22(:u’07/1'1) @)

1
= llljlf {/ EXN,ut H@t(X)HQ dt : 0tut + div (‘LLt’th) = Oa/Jt:O = W0, ht=1 = [Ll} . (5)
t 0

where ||0,(2)||? == (04(x),0(x)) is the tangent space norm at x € M. Moreover, the optimizer
{v} induces a curve {p;} with the following properties.

1. At time t = 0, vo(x) = Tyy—p, (x) — & where T, ., (x) is the optimal transportation
map from Lo to [4y.

2. (vt)e>0 has zero acceleration, in the sense that vy(X¢(x)) = Tpg—p, (T) — @ is constant in
time.

3. Fortimest > 0, py = Law [X + t(Tyy—p, (X) — X)] with X ~ o, and the joint law of
(X, X + t(Tyy—p, (X) — X)) is the optimal coupling of (10, it )-

The integrand of equation {4|is called the ‘kinetic energy’ of the ensemble y; and the minimizing
curves (fi¢)¢ejo,1) are the geodesics of Wa(M). One can show by analyzing the Euler-Lagrange
equations of equation |4 that the tangent vectors (v¢)¢c[o,1) have the form v;(z) = V¢;(x). Con-
versely, for any curve of measures (v¢)c[o,1) that is absolutely continuous in the following sense,
there exists a ¢, whose gradient weakly solves the transport equation 9y = — divag (1, V ;). Ev-
idently ¢, itself is the solution of a Poisson equation with positive semidefinite coefficents, which
already enjoys strong existence, uniqueness, and regularity theorems |Evans| (2010).

Definition 5 (Absolute continuity). Let (u:):ejo,1] € W2(M) be a curve of measures. The metric
derivative |j1|(t) is defined,

ey e Walpitn, pin)
i) = Jim W2l tn)

and p; is absolutely continuous (in Wo metric) at t € [0, 1] if |g|(t) < oo.
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Theorem 5. If (1¢)ic[o,1] is absolutely continuous, then there exists a function ¢ : M — R which
weakly solves

Oty + divag (e Vo) = 0
and moreover for which ¥V ¢; € L%(pt) for every t € [0, 1].

The tangent spaces of 7}, )V, (M) are defined in the usual way as the linear span of the tangent vector
of any absolutely continuous curve passing through p;. It is customary to identify the tangent vector
Orpte = — divaq (e Vo) with its drift function V¢, since the metric (-, -),, has a simple expression
in terms of the drifts.

Theorem 6. The space Wo(M) is a Riemannian manifold with tangent space structure

TMWQ(M) = {U S ﬁz(/l) : E|¢ : CSO(M) — R,V¢ = U}Cg(“)
with inner product (u,v), = Ex.,(u(X),v(X))x, where (-, ) x is the metric on Tx M.
Finally, the Wasserstein gradient W (i) is just the representer of & — O—oF(u + €£) in
T, Wa(M).

Definition 6 (Wasserstein Gradient). Let 7 : M — R, the Wasserstein gradient at y is (when it
exists) the function WF () € T, )V2(M) such that for every & € T, Wa(M),

00 (1) = (67, €) = [ (BFCOLEC0)x uldX).
where (f1¢)¢(—s,5) is any curve with tangent vector £ at pig = pu.

We turn our attention to the Fisher-Rao geometry, which is more straightforward to explain. A
standard reference for this material is the book |Amari| (2016)). The ‘admissible’ tangent vectors in
this geometry are those belonging to the absolutely continuous curves,

Definition 7 (Fisher-Rao absolute continuity). A curve (u)ie[o,1) is absolutely continuous at t €
[0, 1] if its Hellinger metric derivative is finite:

H(pige, 1) < 00
€

(0 = limy
Theorem 7. If (1¢)icj0,1) € H(W) is absolutely continuous at t € [0, 1], then there exists cv; :
M — R such that Oyp1s = o piy, and where Ex ., [0 (X)] = 0.

The Fisher-Rao geometry is essentially based on the fact that for any probability density u(x) :
M — R, the square root density \/z(z) is an element of the unit sphere S(£*(M)) = {v €
L2(M) : ||lv|| = 1}, since it has [ (y/z(z))? dz = 1 trivially. We endow it with the pullback metric
on P(M) induced by the map ¢ : pu — /7t € S(L?(M)). What that means concretely is:

* The geodesic connecting g, j41 is the spherical linear interpolant connecting /11, \/ft1:

v = (U v (D) VL costt) = (i)

* Each tangent space 7}, (M) is by definition isomorphic to T ;;H(M). The isomorphism
map is the pushforward or ‘differential’ d¢, which is given by

§

du(€) == 0t € =
© =) =55

and so the inner product on 7, (M) is

(€ b = (), ) g = / & ) dr
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* By absolute continuity we may write £ = ap, ¥ = Pu for densities o, 8 : M — R, and
the Fisher-Rao metric can be rewritten as

1
(o B1) = § [ al@)B@(do)
It is customary to identify the tangent vectors with their densities and to write

T, HM) ={a € C(M) : E,[a(X)] = 0}52(#)

with metric (-,-),, = 1(, ) £2(M)-
* The Fisher-Rao gradient of a functional F is (when it exists) the function VFRF ¢
T, H(M) that satisfies, for o € T), H(M),
OF (n+eap)| = (VERF(n),a),.
e=0

Finally, the Wasserstein-Fisher-Rao geometry is the one whose tangent spaces are direct sums of
the Wasserstein and the Fisher-Rao tangent spaces. In other words, Wasserstein-Fisher-Rao tangent
vectors have the form

atut + leM(MtV(bt) = Qg ¢, V¢t c TMW(M), oy € TMH(M)

and as usual we identify each tangent vector with its coefficients (V ¢y, o¢). The Wasserstein-Fisher-
Rao metric is

(V6,00 (Vo 5} = [ aul)fr(e) udn) + [ (Vou(o), V(o) o),
and its tangent spaces are
TIWM) @ T, HM) ={(a,v) : Fa,¢ € C*(M) = R, v =V} ),
and the Wasserstein-Fisher-Rao gradient of F is VWRF (1) = (WF (1), VIRF(1)).

B.2 PROOFS OF PROPOSITION 4] AND THEOREM [I]

The proof of Proposition follows exactly the same steps as the case p = N (0, I).

Proposition E] (Splats are a generalized Bures-Wasserstein manifold) . Let p € P,.(R%) be a
centered isotropic mother splat. We denote the set of all splats as,

BW,,(R%) = {(A(.) +b),p: A€R™ e Rd} .

Then BWp(Rd) is a geodesically convex subset of W, (IR?), and on this space the Wasserstein metric
reduces to the Bures-Wasserstein metric (Modin, 2016; Bhatia et al.,|[2019),
W3 (papsprs) = b= sllz + A% + [RIF - 2lATR]. A, ReR™ bseR

where || - || ¢ is the Frobenius norm and || - || is the nuclear norm.

Proof. Fix pagyp, = (Ao(-)+bo)gpand pa, p, = (A1(-) +b1)4. By Brenier’s uniqueness theorem
(Chewi et al.l 20252 Theorem 1.16), the map

T(x) = by + Ay (Ao AL AT Ag) 2 AG (= by)
is the optimal transport map T4 pa,,b, = LA, b, asitis the gradient of a convex function. It follows

that the geodesic connecting py to py is p; = ((1 — t)id + tT)zpo € BW,(R?). As p is centered
and isotropic, the distance Wa(py, p1) is

Wa(po, p1) = E, [|[(AoX + bo) — T(AgX + bo)||’]
=E, {Hbo — b1+ (Ao — AEI(A0A1A1TA0)1/2)XH]
= |bo — b ® + [| Ao — A ' (Ao A1 AT Ag) V28|13,

where X x = Cov,(X) = I. Thus Wa(pg, p1) = Wa(N (bo, AgAL), N (b1, A1 AT)) is the Bures-
Wasserstein metric Bhatia et al.[(2019)). ]
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We now proceed to the proof of Theorem [T} We develop these calculations at a formal level — the
reader who wishes to understand an entirely rigorous proof may compare to/Ambrosio et al.| (2008,
Chapter 11).

Theorem(Wasserstein-Fisher—Rao gradient of 11— F(f,)). Let u € Sp.q == P(RP x BW,(R?))
and let F : £L2(R% RP) — R be a functional. Assume that p has a sub-exponential density. Then
the Fisher-Rao gradient is given (if it exists) by the formula,

VZRF(fu)(Ua A,b) = EXNPA,I;K(S]:(X)?U” - Ev,A,b~u[EX~pA,b[<5]:(X)>U>]~
and the Wasserstein gradient is given (if it exists) by the formula,
Vo F(fu) (0, A,b) = Exmp  [IF(X)]
WaF(fu)(v, A,b) = —Exp,, [(0F(X),v) (Ig+ Vi log pap(X)(X — b)) AT]
WoF(fu) (v, A,0) = =Ex~p, , [(F(X),0)Velog pap(X)]
where the argument of F(-) = 0.F[f](-) was suppressed.

Proof. We begin by calculating the Fisher-Rao gradient. Along the way, we develop a ‘chain rule,’
which may aid in future calculations. Specifically we view p — f,, as amapping between manifolds,

foy + H(Spa) — L2(RYRP), and we calculate its differential df,, : T, H(Spq) — L2(R%RP).
For o € T, H(Sp,a),

d¥ B £, 0)(%) = Oc futean |€:O = /s va(v, A, b)pap(x) p(dv,dA,db).

Invoking the definition of the first variation, our chain rule takes the form

66]:(fu+eoc) 5]: fu] dfu[ ]>L2(]Rd iRP)
// (OF[ful(x a(v,A,b) pap(z)de p(dv, dA, db)

— [ (04,0 (B [GFUICX), 0)]) i(dv, dA, db),

We identify the Fisher-Rao gradient by matching the integrand to the definition.

Computing the Wasserstein gradient follows largely the same steps. One checks the following aux-
iliary calculations.

Va{p(A  z—b))|det A|7'} = —|det A|"A™T(Vp) (A (z = b)) (z —b)TA™T
—p(A7 (z —b)) |det AP ATT
= —pap() (I +Valogpas(e)(z—b)T)A™"
Vo {p (A (z—b))|det A|7'} = —(Vp)(A~ (z — b))| det A|
= —Vglogpas(z) pas(z).
Now fix u € T),W5(Sp,q4). We calculate the differential d" f,,[u] as
d% fulu)(z) = _/s vpap(z) divs, ,(up)(dv,dA, db)

— [ (Fuas topanla)} culv, 4,0) v, dA, )
- / o (v, A,b)pa (@) pu(dv, dA, db)
+/v Va{pap}t(x),ua(v,A, b)) p(dv,dA,db)

+/v Vo {pas} (2),us(v, A, b)) u(dv, dA, db)
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where u = (uy,ua,up) are the coordinate function representations of u. Thus, setting £ =
- diVSp,d (up),

OeF (futee) = <5}-[fu]adfu[u]>a2(R<i;Rp)
= //<5f[fu](sc),uv(v,A7b)>pA,b(x) dz pu(dv, dA, db)

+ //<5f[fu](:c)7v> (Va{pap} (@), ua(v,A,b)) dep(dv,dA, db)

+ //(6.7-"[@](3:),0) (Vo {pas} (@), up(v, A,b)) dx p(dv,dA, db).

From this we see,
W F ()0 A8 = [ SF @) pas(o) do
WaF(fu)(v,Ab) = — /<6}—[f#](z)v V) (I + Valog pas(x)(x —b)T)VA™T pay(x)da

()0 A = = [GFLI),0)Valog pase) pas(a) de.

O

There is an interesting relationship between the geometry of S, 4 and that of the space P(R? x R).
Intuitively, splats in BW, (R?) are like ‘smoothed particles,” this relationship bears out concretely
when calculating the Wasserstein and Fisher-Rao gradients in P(R? x R%).

Theorem 8 (Wasserstein-Fisher-Rao gradient of i +— F(f,) for p € P(RP x RY)). Let n €
P(RP x RY) and let F : L?>(R%; RP) — R be a functional. Assume that p has a sub-exponential
density. Then the Fisher-Rao gradient is given (if it exists) by the formula,

ViRF(fu)(v,2) = (0F (2),0) — Ex,vep[(0F(X), V).
and the Wasserstein gradient is given (if it exists) by the formula,
W F(fu)(v,x) = 6F(x)
Wwf(fu)(v7 l‘) = _UTDw]:(x)
where the argument of 0 F (-) = 0F[f](-) was suppressed.

Comparing to the Wasserstein-Fisher-Rao gradients in Theorem |1} we see that the gradients have
the same form as Theorem [8] but they are averaged with respect to the splat density. The W F has
the same relationship as can be seen by integrating by parts,

Wy F (f)(v, A,b) = —Exrp,, [(v,6F (X)) Vi log pas(x)] = Exep, , 07 Dy F(X)].

These formulas follow from the following expressions for d" f,,, d¥’ R fu, which can be derived by
the same arguments as for Theorem

OF Ul Y fu(u)) = / (6Ff) @ o7 DyoF (1), u(v, 2) pu(dv, da)

GFf ) d¥B () = / GFLf, va(v, z) p(dv, dz).

C EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

C.1 ADDITIONAL APPROXIMATION EXPERIMENTS
The following plots show versions of our function approximation experiment in two different set-

tings. The first shows the same experiment, but for fitting a sawtooth target function. The second
shows the same experiment, but with {b; }¥_, initialized as a k-point chebyshev grid.

22



Under review as a conference paper at ICLR 2026

Splat Function Training Progress
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Figure 4: Fitting a sawtooth function in the setting of [T} This is a much harder function to fit with
interpolation methods. Perhaps surprisingly, splats outperforms the Haar wavelet decomposition,
which can exactly fit vertical discontinuities.

Splat Function Training Progress
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Figure 5: In the setting of [I] we test the effect of Chebyshev initialization, which is slightly less
performant.
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