

SPLAT REGRESSION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

We introduce a highly expressive class of function approximators called Splat Regression Models. Model outputs are mixtures of heterogeneous and anisotropic bump functions, termed splats, each weighted by an output vector. The power of splat modeling lies in its ability to locally adjust the scale and direction of each splat, achieving both high interpretability and accuracy. Fitting splat models reduces to optimization over the space of mixing measures, which can be implemented using Wasserstein-Fisher-Rao gradient flows. As a byproduct, we recover the popular Gaussian Splatting methodology as a special case, providing a unified theoretical framework for this state-of-the-art technique that clearly disambiguates the inverse problem, the model, and the optimization algorithm. Through numerical experiments, we demonstrate that the resulting models and algorithms constitute a flexible and promising approach for solving diverse approximation, estimation, and inverse problems involving low-dimensional data.

1 INTRODUCTION

In the recent history of the deep machine learning discipline, certain problem areas have enjoyed “inflection points” wherein the attainable performance and scale have rapidly improved by many orders of magnitude. These inflection points are often directly coupled to the discovery of the *right* model architecture for the problem at hand. To name a few examples: deep convolutional networks and ResNets for image classification (Krizhevsky et al., 2012; He et al., 2016); the U-Net architecture for image segmentation and generation (Ronneberger et al., 2015; Song & Ermon, 2019); and the transformer architecture for language modeling (Vaswani et al., 2017). This motivates the search for new parsimonious architectures for different problem domains, and in this work, we target low-dimensional modeling problems such as those lying at the intersection of computational science and machine learning.

We introduce a new candidate that we call the ‘Splat Regression Model.’ In its simplest form, the model can be written as

$$f(x) = \sum_{i=1}^k v_i \mathcal{N}(x; b_i, A_i A_i^T) \quad v_i \in \mathbb{R}^p, \quad b_i \in \mathbb{R}^d, \quad A_i \in \mathbb{R}^{d \times d}$$

where $\mathcal{N}(x; \mu, \Sigma)$ is the Gaussian density function. This rather simple architecture can be seen as a two-layer neural network with an atypical activation function, or alternatively, as a generalization of the classical Nadaraya-Watson estimator for nonparametric regression to use heterogeneous mixture weights. Toward the goal of developing a general theory for these heterogeneous mixture models, we abstract them into the form $f_\mu(x) := \mathbb{E}_{v \sim \mu_x}[v]$, where μ_x are conditionals of a probability distribution $(x, v) \sim \mu$. We develop a theoretical framework for optimizing these functions and understanding their expressivity. We further demonstrate that the splat regression model is an *extremely performant* architecture for low dimensional approximation, regression, and physics-informed fitting problems, typically outperforming Kolmogorov-Arnold Network (KAN) [Liu et al. \(2025\)](#) and Multilayer Perceptron (MLP) models by 10-100x even with far fewer parameters.

Another major success story of large-scale machine learning is in the computer graphics literature on solving *Novel View Synthesis*, where the goal is to learn a 3D scene from 2D snapshots annotated by camera position. A major breakthrough came with the introduction of Neural Radiance Fields [Mildenhall et al. \(2021a\)](#). A few years later, the so-called “3D Gaussian Splatting” methodology took over as a premier architecture for graphics and reconstruction problems. There are parallels

Figure 1: A representative approximation problem for the function $f^*(x) = \sin(20\pi x(2 - x))$, $d = p = 1$. We fit a $k = 30$ splat model using least squares with $n = 200$ noiseless samples and we compare to the performance of Chebyshev polynomial interpolation and Haar wavelet approximation. By learning an ‘adaptive grid’ interpolation, the splat regression model drastically outperforms a Haar wavelet approximations, and competes with the gold-standard Chebyshev polynomial interpolation. (Left). Training iterates of a $k = 30$ splat model (blue) as it fits f^* (green) by minimizing squared error with respect to $n = 200$ uniform samples (orange). (Right). Validation MSE of the splat model over training. We also show the validation MSE of a Chebyshev approximation with $m = 30, 45$ gridpoints and of a Haar wavelet approximation at scales $2^l, l = 1, \dots, 8$.

between developments in Novel View Synthesis and recent progress in physics-informed learning, which has arguably not yet enjoyed its inflection point. An essential component in NeRF modeling is the use of sinusoidal positional encoding, which drastically improves the modeling capabilities across different ‘scales’ of variation in the target modeling problem, and which is paralleled by the use of positional encoding schemes in physics informed PDE-fitting [Tancik et al., 2020; Zeng et al., 2024], to moderate success. In both cases, rendering solutions by pointwise evaluation of an MLP across the spatial domain can be prohibitively slow. Recognizing that Novel View Synthesis is inherently a spatial inverse problem, **a major goal of our work is to replicate the successes of 3D Gaussian Splatting across a wide variety of physical modeling and inverse problems**. We intend for this work to provide an instruction manual for deploying and training splat regression models in these settings. Our main contributions are the following.

1. We introduce the Splat Regression Model. We prove some preliminary structural theorems about the it and we show that it is a universal approximator.
2. We develop principled optimization algorithms for gradient-based training, which are crucial to our empirical success. To do this, we leverage an interpretation of the splat model parameters as a hierarchical ‘distribution over distributions,’ and we invoke the theory of Wasserstein-Fisher-Rao gradient flows to compute gradient updates in parameter space.
3. We recover 3D Gaussian Splatting as an instance of splat regression modeling. In Example 2 we detail a clean formulation of it, where different aspects of the pipeline are split into clear, ‘modular’ parts.
4. We test the performance of splat modeling in a few representative modeling problems including low-dimensional regression (Figure 2) and physics-informed fitting.

2 RELATED WORK

Novel View Synthesis. The Novel View Synthesis in computer graphics has a long history. Input data is typically sourced using Structure From Motion (SfM) methods (Ullman, 1979; Özyeşil et al.,

108 In the idealized setting, scenes are rendered using the Radiative Transfer Equation (Chandrasekhar 2013). Much work has gone into developing fast approximations to the RTE, such as the
 109 widely used α -blending technique introduced in (Porter & Duff 1984; Carpenter 1984). For 3D
 110 scene representation, Zwicker et al. (2002b) introduced the “elliptical weighted average” method,
 111 although these ideas were not applied at scale for about two decades (Kerl et al. 2023a). Major
 112 interest in this problem was sparked with the release of Neural Radiance Fields Mildenhall et al.
 113 (2021b), an approach based on optimizing MLP parameters by differentiating through (an approxi-
 114 mation) of the RTE.
 115

116 **Physics-informed Modeling.** Following the introduction of PINNs (Raissi et al. 2019), much work
 117 has gone into developing ML methods for solving computational science problems. As documented
 118 by Krishnapriyan et al. (2021), PINN training can have surprising failure modes and requires careful
 119 tuning and hand-crafted architectures. More recently, adding positional encoding schemes Tancik
 120 et al. (2020); Huang et al. (2021) through either RBF or sinusoidal encoding was shown to improve
 121 performance. Alternatively, the Kolmogorov-Arnold Network architecture Liu et al. (2025); Rigas &
 122 Papachristou (2025) was introduced as a competitor, and some comparisons between KAN and RBF
 123 interpolation methods are explored in Li (2024). One way to view splat regression modeling is as
 124 learning an ‘adaptive interpolation grid,’ and our experimental results suggest that ‘smart positional
 125 encoding is all you need’ for low-dimensional modeling problems.

126 **Mean-field Theory of Two-layer Networks.** Wasserstein-Fisher-Rao gradient flows can be used
 127 to study the optimization of two-layer ReLU neural networks. This approach was pioneered by
 128 Chizat & Bach (2018), who prove a conditional global convergence result for two-layer network
 129 optimization. Further work in this direction includes (Mei et al. 2019a,b). The main difference
 130 between optimizing ReLU networks and Splat models is that our model has a fundamentally differ-
 131 ent geometry of its parameter space, since first-layer output neurons are represented as elements of
 132 a Bures-Wasserstein manifold. This is also a major difference between our work and Chewi et al.
 133 (2025), which introduces a modified ReLU network architecture whose neurons can be ‘superpo-
 134 sitions’ of ReLU functions.

3 HETEROGENEOUS MIXTURES AND SPLAT REGRESSION MODELS

135 We now state a few essential definitions and basic properties of splat regression models. Readers
 136 who are uninterested in the abstract formulation may skip to equation 1, which is the concrete object
 137 that appears in algorithms.

138 We write $\mathcal{L}^s(\mathbb{R}^d; \mathbb{R}^p)$ to denote the functions $f : \mathbb{R}^d \rightarrow \mathbb{R}^p$ for which $\int \|f(x)\|_s^s dx < \infty$, and
 139 $C_b^s(\mathbb{R}^d)$ to denote the real-valued bounded s -times continuously differentiable functions on \mathbb{R}^d .
 140 For a function $\phi : \mathbb{R}^d \rightarrow \mathbb{R}$, we write $\nabla\phi(x)$ its gradient, $\nabla^2\phi(x)$ its Hessian, and $\Delta\phi(x) =$
 141 $\sum_{i=1}^d \partial_{x_i}^2 \phi(x)$ its Laplacian. For $\psi : \mathbb{R}^d \rightarrow \mathbb{R}^p$ we write $D\psi(x)$ its Jacobian and (when $p = d$)
 142 we write $\text{div } \psi(x) = \sum_{i=1}^d \partial_{x_i} \phi^{(i)}(x)$ its divergence. We denote by $\mathcal{P}(\Omega)$ the space of probability
 143 distributions on Ω , by $\mathcal{P}_s(\Omega)$ the distributions with $s \geq 1$ finite moments, and by $\mathcal{P}_{ac}(\Omega)$ the
 144 distributions with a density. For $\mu \in \mathcal{P}(\Omega)$ we write $\mathbb{E}_{X \sim \mu}[f(x)] = \int f(x) \mu(dx)$ and, if μ has a
 145 density, we denote it as $\mu(x) : \Omega \rightarrow \mathbb{R}$. Last, we denote by $T_\# \mu$ the pushforward of μ , that is, the
 146 distribution of $T(X)$ when $X \sim \mu$. We write $\text{id}(x) = x$ the identity map, $\text{id}_\# \mu = \mu$.

147 Our general philosophy is to investigate the functions $f \in \mathcal{L}^s(\mathbb{R}^p; \mathbb{R}^d)$ that can be represented by a
 148 probabilistic coupling $\mu \in \mathcal{P}(\mathbb{R}^p \times \mathbb{R}^d)$ which dictates, at each $(v, x) \in \mathbb{R}^p \times \mathbb{R}^d$, how much the
 149 vector v contributes to the value of $f(x)$. This makes sense whenever μ satisfies a “density in x ,
 150 moment in v ” assumption.

151 **Proposition 1** (Heterogeneous Mixtures). *Suppose that $\mu \in \mathcal{P}(\mathbb{R}^p \times \mathbb{R}^d)$ is of the form $\mu(dv, dx) =$
 152 $\mu(dv, x) dx$ and where $\mathbb{E}_{(v, x) \sim \mu}[\|v\|_s] < \infty$, for $s \geq 1$. Then the function $f_\mu(x) := \mathbb{E}_{v \sim \mu(\cdot, x)}[v]$
 153 belongs to $\mathcal{L}^s(\mathbb{R}^d; \mathbb{R}^p)$, and furthermore, there exists a measure $\nu \in \mathcal{P}(\mathbb{R}^p)$ (the ‘mixture compo-
 154 nents’) and a density $k(v, x) > 0$ (the ‘heterogeneous mixture weights’) so that*

$$\mu(dv, x) = \nu(dv) k(v, x) \quad f_\mu(x) = \mathbb{E}_{v \sim \nu}[vk(v, x)].$$

155 Having a density in x is required to be able to make sense of $f_\mu(x)$ pointwise. For each x , $k(\cdot, x)$
 156 determines which $v \in \text{supp}(\nu)$ (and in what proportions) contribute to the value of $f_\mu(x)$. We

propose to parametrize $k(\cdot, x)$ as a mixture of *shifted-and-scaled copies of a simple base distribution* ρ . We envision ρ as an isotropic ‘bump’ function and call each individual copy a *splat* in homage to the computer graphics literature where an instance of this model was first widely popularized. We call ρ the *mother splat* in analogy to the *mother wavelets* used in wavelet theory (Mallat, 2008).

Definition 1 (Splat Measures and Splat Models). Let $\rho \in \mathcal{P}_{ac}(\mathbb{R}^d)$ have zero mean and identity covariance, and let $\rho_{A,b}$ be the distribution of $AX + b$ when $X \sim \rho$. We say that μ is a *splat measure* if it is a heterogeneous mixture such that for each $v \in \text{supp } \nu$, there exists $w_v \in \mathcal{P}(\mathbb{R}^{d \times d} \times \mathbb{R}^d)$ so that

$$k(v, x) = \mathbb{E}_{(A,b) \sim w_v} [\rho_{A,b}(x)] \quad \mu(dv, x) = \nu(dv) k(v, x)$$

and the associated splat model $f_\mu(x)$ is equal to,

$$f_\mu(x) = \mathbb{E}[v \rho_{A,b}(x)] \quad v \sim \nu \quad A, b \sim w_v.$$

If the support of the joint distribution of the (v, A, b) has $k < \infty$ elements, we say μ is a *k-splat measure*, f_μ is a *k-splat model*, and we write

$$f_\mu(x) = \frac{1}{k} \sum_{i=1}^k v_i \nu(v_i) \rho(A_i^{-1}(x - b_i)) |\det A_i^{-1}| \quad \{(v_i, A_i, b_i)\}_{i=1}^k = \text{supp}(v, A, b). \quad (1)$$

It may seem counterintuitive that $k(v, x)$ is defined through a v -dependent distribution w_v instead of through a more ‘ x -centric’ expression. One benefit is that it simplifies the model’s dependence on x allowing us to prove a few desirable properties of splat models as function approximators. Perhaps more importantly, it also leads to a natural interpretation of the parameters $\nu, (w_v)_{v \in \text{supp } \nu}$ as elements of a ‘pseudo-Riemannian’ manifold, allowing us to perform gradient-based training of k -splat models. We now discuss both of these.

3.1 REGULARITY AND UNIVERSAL APPROXIMATION

It is helpful to have some basic sufficient conditions for $f_\mu(x)$ to be continuous and to have continuous derivatives.

Proposition 2 (Sufficient conditions for regularity). *Let $\mu \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d)$.*

1. *The map $f_\mu(\cdot)$ has uniform modulus of continuity*

$$\begin{aligned} \omega(\epsilon) &= \sup \{ |\mathbb{E}_{\mu(\cdot, x)}[v] - \mathbb{E}_{\mu(\cdot, y)}[v]| : \|x - y\| \leq \epsilon \} \\ &\leq \sup \{ W_1(\mu(\cdot, x), \mu(\cdot, y)) : \|x - y\| \leq \epsilon \}. \end{aligned}$$

In particular, $f_\mu(\cdot)$ is absolutely continuous whenever $(\mu(\cdot, x))_{x \in \mathbb{R}^d}$ is a W_1 -absolutely continuous measure-valued process on \mathbb{R}^d .

2. *Suppose μ is a splat measure whose mother splat ρ has $s \geq 0$ bounded derivatives. Then $f_\mu(x)$ also has s bounded derivatives.*

It is also helpful to understand the expressiveness of the class of splat models, and in particular, to understand what kinds of functions can be approximated by k -splat models for finite k . As we show in Appendix A, the finite splat model (equation 1) is already in the scope of Cybenko’s early result on universal approximation of real-valued functions by two-layer neural networks.

Proposition 3 (Corollary of Cybenko (1989), Definition 1 and Theorem 1). *Let Ω be a compact subset of \mathbb{R}^d and suppose ρ is a continuous density with marginal $\rho_1(x_1) = \int_{\mathbb{R}^{d-1}} \rho(x_1, x_2 \dots x_d) dx$. Then for any $f \in C_b^0(\Omega; \mathbb{R})$ and $\epsilon > 0$, there exists a k -splat measure μ (with mother splat ρ) such that*

$$\sup_{x \in \Omega} |f(x) - f_\mu(x)| < \epsilon.$$

We also prove in Appendix A a quantitative bound on the number of splats required to approximate any Lipschitz function on a ‘nice’ domain using any ‘nice’ mother splat.

216 **Theorem 3** (Informal – quantitative universal approximation) . For any bounded, ‘nice’ $\Omega \subseteq \mathbb{R}^d$,
 217 any bounded, Lipschitz $f : \Omega \rightarrow \mathbb{R}^p$, and any bounded, Lipschitz mother splat with finite first
 218 moment, there exists for each $\epsilon > 0$ a k -splat measure μ with $k \lesssim \epsilon^{-2(d+2)}$ and,

$$220 \quad \sup_{x \in \Omega} \|f_\mu(x) - f(x)\|_2 < \epsilon. \\ 221$$

222 To put this rate into perspective, we prove in Appendix A the following lower bound on the error of
 223 uniform approximation over the family of 1-Lipschitz functions.

224 **Proposition 4** (Uniform approximation lower bound). *Set $\mathcal{F} = \{f : [0, 1]^d \rightarrow \mathbb{R} : f \text{ is 1-Lipschitz}\}$
 225 and let $\mathcal{S}_{1,d}^{(k)}$ be the family of k -splat models from \mathbb{R}^p to \mathbb{R} . Then we have,*

$$227 \quad \sup_{f \in \mathcal{F}} \inf_{\hat{f} \in \mathcal{S}_{1,d}^{(k)}} \|f - \hat{f}\|_\infty \gtrsim k^{-1/d} \\ 228$$

229 where the inequality holds up to universal constants.

231 This rate is tight: given $f \in \mathcal{F}$, one may create a splat model approximation using the piecewise
 232 constant approximation of f on sets of the form $\bigotimes_{i=1}^d [s_i\epsilon, (s_i + 1)\epsilon]$ where each $(s_i)_{i=1\dots d}$ has
 233 $1 \leq s_i \leq d$ and where $\epsilon = k^{-1/d}$. The piecewise constant approximation is representable by a
 234 splat model with mother splat $\rho = [-c, c]^d$ where $c > 0$ is so that ρ has identity covariance, and
 235 the number of pieces in the piecewise approximation is indeed $\epsilon^{-d} = k$. Taken together, Theorem
 236 **3** and Proposition **4** imply that *there exists a mother splat that achieves the minimax optimal rate*
 237 $\epsilon \sim k^{-1/d}$ *of approximation of Lipschitz functions*, and also, that *for any ‘nice’ mother splat, the*
 238 *approximation rate is at worst $\epsilon \sim k^{-1/2(d+2)}$* . However, much like the corresponding universal
 239 approximation rates for multilayer perceptrons, these worst case approximation bounds typically do
 240 not describe the number of parameters required to achieve a high quality fit for real data. We discuss
 241 further in Section 4.

242 3.2 GEOMETRY OF SPLAT MODELS

244 Ignoring some technical caveats, the space $\mathcal{P}(\mathbb{R}^d)$ of probability distributions can be viewed as a
 245 manifold by assigning it a distance metric such as $W_2(\mu, \nu)$, the 2-Wasserstein distance, or $H(\mu, \nu)$,
 246 the Hellinger distance. In both cases the distance induces a metric in the geometric sense, and a
 247 tangent space structure, which together can be used to construct gradient-descent-like algorithms
 248 over the space of probability distributions. In Wasserstein space, moving between points $\mu_0, \mu_1 \in$
 249 $\mathcal{P}_2(\mathbb{R}^d)$ is accomplished by applying “infinitesimal” transport maps and the geodesics follow the
 250 straight line interpolations of optimal transport maps, $\mu_t = (t T_{\mu_0 \rightarrow \mu_1} + (1 - t) \text{id})_\# \mu_0$. Under the
 251 geometry of the Hellinger metric, known as the Fisher-Rao or Information geometry [Amari \(1983\)](#),
 252 moving between points is accomplished by “mass teleportation,” which means directly scaling the
 253 density up or down, pointwise over the domain, in a mass-preserving way. Its geodesics are $\mu_t(x) =$
 254 $(\alpha_t \sqrt{\mu_0}(x) + \beta_t \sqrt{\mu_1}(x))^2$, where α_t, β_t are spherical linear interpolation coordinates, as can be
 255 seen from the L^2 form of $H^2(\mu_0, \mu_1) = \int (\sqrt{\mu_0}(x) - \sqrt{\mu_1}(x))^2 dx$ for densities $\mu_0, \mu_1 \in \mathcal{P}_{ac}(\mathbb{R}^d)$.
 256 Finally, it is also possible to consider the geometry that arises when allowing movements by transport
 257 and teleportation at the same time, which is the *Wasserstein-Fisher-Rao geometry* [\(Chewi et al., 2025a\)](#).

259 The Wasserstein and Fisher-Rao geometric perspectives are widely used in the design and analysis
 260 of probabilistic algorithms, such as for dynamical sampling [\(Chewi et al., 2025a\)](#), variational
 261 inference [\(Lambert et al., 2022\)](#), barycentric interpolation [\(Gouic et al., 2019; Chewi et al., 2020\)](#),
 262 and lineage tracing [\(Schiebinger et al., 2019\)](#). We apply both to design a principled gradient-based
 263 training method for splat regression. As a byproduct, we recover the heuristic methods used to
 264 optimize Gaussian Splat models, which has a clean interpretation as regularized risk minimization via
 265 Wasserstein-Fisher-Rao gradient descent. We first explain the Wasserstein structure of the space of
 266 splats, then the Wasserstein-Fisher-Rao structure of the space of splat measures.

267 **Proposition 5** (Splats are a generalized Bures-Wasserstein manifold). *Let $\rho \in \mathcal{P}(\mathbb{R}^d)$ be a centered
 268 isotropic mother splat. We denote the set of all splats as,*

$$269 \quad \text{BW}_\rho(\mathbb{R}^d) := \left\{ (A(\cdot) + b)_\# : A \in \mathbb{R}^{d \times d}, b \in \mathbb{R}^d \right\}.$$

270 Then $\text{BW}_\rho(\mathbb{R}^d)$ is a geodesically convex subset of $\mathcal{W}_2(\mathbb{R}^d)$, and on this space the Wasserstein metric
 271 reduces to the Bures-Wasserstein metric (Modin, 2016; Bhatia et al., 2019),

$$273 \quad W_2^2(\rho_{A,b}, \rho_{R,s}) = \|b - s\|_2 + \|A\|_F^2 + \|R\|_F^2 - 2\|A^T R\|_* \quad A, R \in \mathbb{R}^{d \times d} \quad b, s \in \mathbb{R}^d$$

274 where $\|\cdot\|_F$ is the Frobenius norm and $\|\cdot\|_*$ is the nuclear norm.

275

276 In the context of Definition 1, the parameters $\nu, (w_v)_{v \in \text{supp } \nu}$ are simply a conditioning decomposition
 277 of a joint distribution belonging to $\mathcal{S}_{p,d} := \mathcal{P}(\mathbb{R}^p \times \text{BW}_\rho(\mathbb{R}^d))$. We abuse notation
 278 and write a splat measure $\mu \in \mathcal{P}(\mathbb{R}^p \times \mathbb{R}^d)$ interchangeably as a measure in $\mathcal{S}_{p,d}$ (the abuse is,
 279 “ $\mu(dv, x) = w_v(x)\nu(dv) = \mu(dv, dw)$,” and now when we say ‘splat measure’ we mean the latter).
 280 The finite splat measures are the elements of $\mathcal{S}_{p,d}$ with discrete finite support.

281 Relative to particle methods, lifting to $\mathcal{S}_{p,d}$ allows one to implement ‘smoothed particles’ on $\mathcal{P}(\mathbb{R}^p \times$
 282 $\mathbb{R}^d)$, thus providing a computationally tractable way to flow measures that are everywhere positive
 283 and absolutely continuous. We comment in Appendix B on the relationship between gradient flows
 284 in $\mathcal{S}_{p,d}$ and in $\mathcal{P}(\mathbb{R}^p \times \mathbb{R}^d)$. This generalizes the concept of ‘Gaussian particles’ introduced in
 285 (Lambert et al., 2022), because particles are represented by any affine pushforward of an arbitrary
 286 density ρ . Such a particle representation was also hinted at in the computer graphics literature on
 287 ‘volume splatting’ (Zwicker et al., 2002a), and has also appeared in early work on hydrodynamics
 288 simulations (Gingold & Monaghan, 1977).

289 We endow $\mathcal{S}_{p,d}$ with the Wasserstein and/or Fisher-Rao metric, similar to the ‘Wasserstein over
 290 Wasserstein’ approach taken in (Lambert et al., 2022; Bonet et al., 2025). After stating our results,
 291 we give Examples 1, 2 that illustrate these objects concretely in two practical settings.

292 **Definition 2** (First variation). Let $\mathcal{F} : \mathcal{L}^2(\mathbb{R}^d; \mathbb{R}^p) \rightarrow \mathbb{R}$ be a functional. Its first variation (when it
 293 exists) is the function $\delta\mathcal{F}[f](x)$ which satisfies for every $f, \xi \in \mathcal{L}^2(\mathbb{R}^d; \mathbb{R}^p)$,

$$294 \quad \partial_\epsilon \mathcal{F}(f + \epsilon\xi) |_{\epsilon=0} = \int_{\mathbb{R}^d} \langle \xi(x), \delta\mathcal{F}[f](x) \rangle dx.$$

297 It is convenient to express the Wasserstein gradient $\nabla_\mu \mathcal{F}(f_\mu) : \mathbb{R}^p \times \text{BW}_\rho(\mathbb{R}^d) \rightarrow \mathbb{R}^p \times \text{BW}_\rho(\mathbb{R}^d)$
 298 in the global coordinate system $(v, A, b) \cong (v, \rho_{A,b})$. This coordinate system is convenient for
 299 writing the gradient $\nabla_\mu \mathcal{F}(f_\mu) = (\nabla_v, \nabla_A, \nabla_b) \mathcal{F}(f_\mu)$, so that the particle dynamics
 300

$$301 \quad \dot{v}_t = -\nabla_v \mathcal{F}(f_\mu)(v, A, b) \quad \dot{A}_t = -\nabla_A \mathcal{F}(f_\mu)(v, A, b) \quad \dot{b}_t = -\nabla_b \mathcal{F}(f_\mu)(v, A, b).$$

302 implement a Wasserstein gradient flow in $\mathcal{S}_{p,d}$. Our main theorem is the following.

303 **Theorem 1** (Informal – Wasserstein-Fisher-Rao gradient of $\mu \mapsto \mathcal{F}(f_\mu)$). Let $\mu \in \mathcal{S}_{p,d} := \mathcal{P}(\mathbb{R}^p \times$
 304 $\text{BW}_\rho(\mathbb{R}^d))$ and let $\mathcal{F} : \mathcal{L}^2(\mathbb{R}^d; \mathbb{R}^p) \rightarrow \mathbb{R}$ be a functional. Assume that ρ has a sub-exponential
 305 density. Then the Fisher-Rao gradient is given by,

$$307 \quad \nabla_\mu^{\text{FR}} \mathcal{F}(f_\mu)(v, A, b) = \mathbb{E}_{X \sim \rho_{A,b}} [\langle \delta\mathcal{F}(X), v \rangle] - \mathbb{E}_{v, A, b \sim \mu} [\mathbb{E}_{X \sim \rho_{A,b}} [\langle \delta\mathcal{F}(X), v \rangle]].$$

308 and the Wasserstein gradient is given by,

$$310 \quad \nabla_v \mathcal{F}(f_\mu)(v, A, b) = \mathbb{E}_{X \sim \rho_{A,b}} [\delta\mathcal{F}(X)] \\ 311 \quad \nabla_A \mathcal{F}(f_\mu)(v, A, b) = -\mathbb{E}_{X \sim \rho_{A,b}} [\langle \delta\mathcal{F}(X), v \rangle (I_d + \nabla_x \log \rho_{A,b}(X)(X - b)^T) A^{-T}] \\ 312 \quad \nabla_b \mathcal{F}(f_\mu)(v, A, b) = -\mathbb{E}_{X \sim \rho_{A,b}} [\langle \delta\mathcal{F}(X), v \rangle \nabla_x \log \rho_{A,b}(X)]$$

313 where the argument of $\delta\mathcal{F}(\cdot) = \delta\mathcal{F}[f](\cdot)$ was suppressed.

315 The condition on ρ is required to apply integration by parts without a boundary term, but when
 316 this does not hold (such as when $\rho(x) = \mathbf{1}\{\|x\|_2 \leq 1\}$) one can derive the appropriate corrections
 317 on a case-by-case basis. We conclude with a few concrete examples of \mathcal{F} which are relevant to
 318 applications.

319 **Example 1** (Empirical risk minimization). Suppose $x_1, x_2, \dots, x_n \sim \mathcal{U}(\Omega)$ are i.i.d. samples,
 320 where $\Omega = [0, 1]^d$ for simplicity, and set $y_i = f^*(x_i)$ with

$$322 \quad 323 \quad \mathcal{F}(f) := \frac{1}{n} \sum_{i=1}^n L(f(x_i), y_i)$$

324 for a loss function $L(\hat{y}, y)$. To calculate the variation
 325

$$326 \quad \partial_{\epsilon=0} \mathcal{F}(f + \epsilon \xi) = \partial_{\epsilon=0} \left\{ \frac{1}{n} \sum_{i=1}^n L(f(x_i) + \epsilon \xi(x_i), x_i) \right\} = \frac{1}{n} \sum_{i=1}^n \langle \xi(x_i), \nabla_{\hat{y}} L(f(x_i), x_i) \rangle$$

328 and so $\delta \mathcal{F}[f](x_i) = \frac{2}{n} \sum_{i=1}^n \nabla_{\hat{y}} L(f(x_i), x_i)$, which is otherwise undefined for $x \in \mathbb{R}^d$ outside the
 329 sample. We can use importance sampling to estimate the gradients,
 330

$$331 \quad \mathbb{E}_{X \sim \rho_{A,b}} [\delta \mathcal{F}[f](X) \dots] \approx \frac{1}{n} \sum_{i=1}^n \rho_{A,b}(x_i) \delta \mathcal{F}[f](x_i) \dots.$$

334 This estimator is unbiased because $\{x_i\}_{i=1}^n \sim \mathcal{U}([0, 1]^d)$. For samples drawn from an unknown
 335 distribution, one could instead estimate $\delta \mathcal{F}[f](x)$ by interpolating the available data, then approxi-
 336 mating the average over $X \sim \rho_{A,b}$ using either Monte-Carlo or a quadrature rule.

337 **Example 2** (Inverse problems and physics-informed training). We can also take

$$338 \quad \mathcal{F}(f) = \frac{1}{2} \|\mathcal{A}[f](x) - g(x)\|_{\mathcal{L}^2(\Omega)}^2 \quad (2)$$

340 where \mathcal{A} is a known integro-differential operator, g is a known forcing function, and we again take
 341 $\Omega = [0, 1]^d$ for simplicity. To calculate the variation,
 342

$$343 \quad \partial_{\epsilon=0} \mathcal{F}(f + \epsilon \xi) = \partial_{\epsilon=0} \left\{ \frac{1}{2} \int \|\mathcal{A}[f + \epsilon \xi](x) - g(x)\|_2^2 \right\}$$

$$344 = \int \langle \mathcal{A}[f](x) - g(x), D_f \mathcal{A}[\xi](x) \rangle dx$$

$$345 = \int \langle (D_f \mathcal{A})^* \mathcal{A}[f](x) - (D_f \mathcal{A})^* [g](x), \xi(x) \rangle dx.$$

349 where $D_f \mathcal{A}$ is the linearization of \mathcal{A} at f and $(D_f \mathcal{A})^*$ is its adjoint. So $\delta \mathcal{F}[f] = (D_f \mathcal{A})^* \mathcal{A}[f](x) -$
 350 $\mathcal{A}^*[g](x)$. Two illustrative instances of this setup are,
 351

352 1. A ‘Physics-informed’ splat solver for the Poisson equation. Take $p = 1$, $\mathcal{A}[f_\mu] = \Delta f_\mu$. The
 353 Fisher-Rao gradient is,

$$355 \quad \nabla_\mu^{\text{FR}} \mathcal{F}(f_\mu)(v, A, b) = \int_{\Omega} v(\Delta f(x) - g(x)) \Delta \rho_{A,b}(x) dx.$$

357 In the same way, the coordinates of the Wasserstein gradient can be expressed as integrals with
 358 respect to $\Delta \rho(x)$ and $\nabla(\Delta \rho)(x)$. For simple ρ , these functions can be precomputed to accelerate
 359 gradient computations, and the integral approximated by Monte-Carlo.

360 2. Splat regression modeling for Novel View Synthesis (NVS). NVS can be viewed as an inverse
 361 problem whose forward operator \mathcal{A} is the *Radiative Transfer Equation* (RTE) (Chandrasekhar,
 362 2013), (Zwicker et al., 2002a, Equation (7)), whose unknown parameters are: the ‘emission
 363 function,’ $s : \mathbb{R}^3 \times S^2 \rightarrow \mathbb{R}$, and the ‘extinction function’ $\sigma : \mathbb{R}^3 \rightarrow \mathbb{R}$. The emission $s(x, v)$
 364 is the amount of light radiating from $x \in \mathbb{R}^d$ outwards in direction v , and the extinction $\sigma(x)$
 365 represents the degree to which point x ‘occludes’ points behind it. Following (Kerbl et al.,
 366 2023a), we parametrize splat models $\sigma(x) = g_\nu(x)$ and we parameterize $s(x, v)$ as,

$$368 \quad s(x, \cdot) = \sum_{i=1}^p f_\mu^{(i)}(x) \phi_i(v)$$

370 where $\{\phi_i\}_{i=1}^p$ are spherical harmonic basis functions and $f_\mu : \mathbb{R}^3 \rightarrow \mathbb{R}^p$ is another splat model
 371 ($p \approx 20$). Given these two fields, rendering the scene involves evaluating the *Radiative Transfer*
 372 *Equation*.

$$374 \quad \mathcal{A}[s, \sigma](x, v) = \int_0^\infty s(x + tv, v) \sigma(x + tv) \exp \left(- \int_0^t \sigma(x + sv) ds \right) dt. \quad (3)$$

376 The RTE is typically evaluated using a discrete approximation called α -blending (Zwicker et al.,
 377 2002b; Kerbl et al., 2023a) and splat parameters are trained via SGD with particle birth-death
 dynamics to minimize residuals (equation 2).

Finally, we remark that the performance of Gaussian splatting in large-scale Novel View Synthesis depends heavily on the use of many training heuristics, such as initialization of splat locations [Kerbl et al. (2023b)], selective noising of splat locations during training [Kheradmand et al. (2024)], and on ‘pruning strategies’ to move spurious splats either by deleting them or teleporting them elsewhere in space (Kerbl et al. (2023b); Hanson et al. (2025)). By providing a principled optimization perspective on fitting splat models, our results pave the way to interpret these heuristics through the lens of *regularized risk minimization*. For instance, in a sampling context, the stochastic *Unadjusted Langevin Algorithm* can be interpreted as Wasserstein gradient descent of the functional $\mathcal{F}(\mu) = D_{\text{KL}}(\mu \mid \mu_{\text{target}})$ divergence, which enjoys strong convexity whenever μ_{target} is strongly log concave. We anticipate that the selective noising heuristic introduced by [Kheradmand et al. (2024)] can be interpreted as adding a convex entropic regularizer to the objective (2), improving convergence. Similarly, particle birth-death dynamics are a well-known discretization algorithm for Fisher-Rao gradient flows [Lu et al. (2023)]. With an appropriate discretization, Theorem I thus prescribes a pruning criterion that is guaranteed (in the continuous-time limit) to decrease the loss. While it is outside the scope of the present manuscript, principled regularization methods for splats is a very promising direction for future work.

4 EXPERIMENTS

In this section, we demonstrate the power of the splat regression modeling by directly comparing it on approximation, regression, and physics-informed modeling problems.

4.1 MULTISCALE APPROXIMATION

First, we show in Figure 1 a representative 1D example of training a splat regression model, which we compare to two standard function approximation algorithms: *chebyshev polynomial interpolation* and *wavelet basis projection*.

In the left subpanel, we show snapshots of splat training arranged from right to left, top to bottom. We train a $k = 30$ splat model initialized with $v_i = 0, b_i = (i - 1)/k$, and $A_i = 1/2k$ for $i = 1 \dots k$. Training is performed by least squares fitting via Wasserstein gradient descent with learning rate 10^{-4} and no momentum. The loss function is $\mathcal{L}(f_\mu) = \frac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2$ for $n = 200$ noiseless samples $x_i \sim \mathcal{U}([0, 1])$. In the right subpanel, we show the *validation log-MSE* of the splat model. Anecdotally, the exponentially fast convergence which appears in Figure 1(right) is robust to different initializations and functions. We show in Appendix C Figure 5 a version of this experiment where the $\{b_i\}_{i=1}^k$ are initialized as a k -point Chebyshev grid as well as a version where data is sampled from a discontinuous sawtooth function.

We select this example as a simple one dimensional picture of how splat models are well suited to fit ‘multi-scale’ features of the observed data. For comparison, horizontal lines indicate the validation MSE of the Chebyshev and wavelet approximations. The splat model with $k = 30$ splats significantly outperforms the Chebyshev interpolation with $m = 30$ interpolation nodes. Setting $m = 45$ in order to control for the total number of model parameters ($(3 \times k = 90)$ for splat vs. $(2 \times m = 90)$ for Chebyshev), we see that the splat model achieves slightly worse approximation error. Relative to wavelet approximation, the splat model outperforms a Haar wavelet projection with $m = 255$ parameters (corresponding to level $l = 8$ of the basis hierarchy). We find these results extremely encouraging, particularly given that very simple optimization and initialization schemes are enough to successfully train the splat model.

4.2 REGRESSION WITH KAN, MLP, AND SRM

We compare the performance of splat regression modeling to Kolmogorov-Arnold networks [Liu et al. (2025)] and to fully connected MLP architectures on a 2D regression task. We sample $x_i \sim \mathcal{U}([0, 1]^2)$ i.i.d. and set $y_i = f(x_i) + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, 0.01)$ and,

$$f(x, y) = \sin(3\pi\sqrt{x}) \cos(3\pi y).$$

Each model is trained using 3000 iterations using Adam with learning rate 10^{-4} .

Figure 2: We compare splat regression, Kolmogorov-Arnold Networks [Liu et al. \(2025\)](#), and fully connected Multi-layer Perceptron in a noisy regression task. We observe that splat models achieve order of magnitude lower fitting error while using a small fraction of the parameters of MLP and KAN networks.

We attribute the improved performance of splat models to their spatially localized nature, which can be viewed as a learned positional encoding scheme. However, due to their expressivity, splat models may be more susceptible to overfitting, requiring regularization to achieve good fits.

4.3 PHYSICS-INFORMED MODELING

Figure 3: We compare splat regression, Kolmogorov-Arnold Networks [Liu et al. \(2025\)](#), and fully connected Multi-layer Perceptron in a physics informed regression task. Models are fit to solve the Allen-Cahn equation on $[0, 1]^2$. (Left). True solution under this parameter regime. (Middle). Validation error for each model class as a function of the number of training iterations. (Right). Validation error relative to total number of model parameters. Among the test pool, a $k = 50$ splat model outperforms all KAN and MLP architectures by an order of magnitude while using significantly fewer parameters.

We further test the splat regression model in a two dimensional physics-informed learning problem where the goal is to estimate the solution of the *Allen Cahn* equation,

$$\epsilon^2 \Delta u(x) + u(x) - u^3(x) = 0 \quad x \in [0, 1]^d.$$

This equation is a well known example of a PDE whose solutions can have ‘boundary interfaces’ that converge to discontinuities as $\epsilon \rightarrow 0$. We take $\epsilon = 0.1$ and train each model to minimize a weighted sum of the loss,

$$\mathcal{L}(u_\theta) = \frac{1}{n_{\text{int}}} \sum_{i=1}^{n_{\text{int}}} \|\mathcal{D}u_\theta(x_i) - f(x_i)\|_2^2 + \frac{1}{n_{\text{bdy}}} \sum_{j=1}^{n_{\text{bdy}}} \|u_\theta(z_j) - u^*(z_j)\|_2^2$$

where $x_i \sim \mathcal{U}([0, 1]^d)$ and where $z_j \sim \mathcal{U}(\partial[0, 1]^d)$ for $i = 1, \dots, 10^5$ and $j = 1, \dots, 5 \cdot 10^4$, both i.i.d. We observe that the splat equation converges very quickly and to a highly accurate solution, even when limited to use orders of magnitude fewer parameters the KAN and MLP models.

486 5 CONCLUSION
487488 We have shown that splat models are highly effective in solving a variety of representative low
489 dimensional modeling problems. We believe that these results are extremely promising from a practical
490 perspective. Furthermore, we have drawn a novel connection between 3D Gaussian Splatting
491 and Wasserstein-Fisher-Rao gradient flows, which we hope will lead to many symbiotic interactions
492 between the optimal transport, computer graphics, and statistics communities.493 There is much future work to be done. First, as we discuss in Section 3.2 splat models are highly
494 expressive and therefore susceptible to overfitting, warranting a larger scale computational study
495 beyond the scope of our work. The splatting community has developed many heuristics for regularizing
496 and pruning splat models, which we expect will be instrumental to large-scale splat regression
497 modeling. As a second direction, we remark that the proposed model can be interpreted as a new
498 *neural network layer*, opening the door to compositions of splat models ('deep splat networks')
499 and/or integrations into existing deep architectures. We look forward to investigating these directions
500 in followup work.501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REPRODUCIBILITY STATEMENT
541542 The Jax/Python source code used to replicate our experiments will be made publicly available in
543 a open source repository upon publication. The repository will include detailed instructions for
544 setting up the environment, training the models, and evaluating the results. We will also release
545 all the information required to recreate the datasets and baseline comparisons used in this work,
546 including random seeds used in experiments.
547548 ETHICS STATEMENT
549550 The research presented in this paper introduces a novel trainable architecture for scientific mod-
551 eling and general-purpose regression tasks, with the primary goal of advancing machine learning
552 methodology. We use standard benchmark datasets and do not engage with sensitive personal data
553 or high-risk application areas. We have considered the societal and environmental impacts and con-
554 clude that our work adheres to established ethical guidelines, presenting no immediate societal risks.
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Shun-ichi Amari. A foundation of information geometry. *Electronics and Communications in Japan*
597 (*Part I: Communications*), 66(6):1–10, 1983. doi: <https://doi.org/10.1002/ecja.4400660602>. URL
598 <https://onlinelibrary.wiley.com/doi/abs/10.1002/ecja.4400660602>.
599 eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/ecja.4400660602>.

600 Shun-ichi Amari. *Information Geometry and Its Applications*. Springer Publishing Company, In-
601 corporated, 1st edition, 2016. ISBN 4-431-55977-9.

602 Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. *Gradient Flows in Metric Spaces and in the*
603 *Space of Probability Measures*. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, 2. ed
604 edition, 2008. ISBN 978-3-7643-8722-8.

605 Jean-David Benamou and Yann Brenier. A computational fluid mechanics solution to the
606 Monge–Kantorovich mass transfer problem. *Numerische Mathematik*, 84(3):375–393, January
607 2000. doi: 10.1007/s002110050002. Publisher: Springer Science and Business Media LLC.

608 Rajendra Bhatia, Tanvi Jain, and Yongdo Lim. On the Bures–Wasserstein distance between pos-
609 itive definite matrices. *Expositiones Mathematicae*, 37(2):165–191, 2019. ISSN 0723-0869.
610 doi: <https://doi.org/10.1016/j.exmath.2018.01.002>. URL <https://www.sciencedirect.com/science/article/pii/S0723086918300021>.

611 Clément Bonet, Christophe Vauthier, and Anna Korba. Flowing Datasets with Wasserstein over
612 Wasserstein Gradient Flows. In *Forty-second International Conference on Machine Learning*,
613 2025. URL <https://openreview.net/forum?id=I1OHPb4zWo>.

614 Loren Carpenter. The A-buffer, an antialiased hidden surface method. *ACM SIGGRAPH Computer*
615 *Graphics*, 18(3):103–108, 1984. Publisher: ACM New York, NY, USA.

616 S. Chandrasekhar. *Radiative Transfer*. Dover Books on Physics. Dover Publications, 2013. ISBN
617 978-0-486-31845-5. URL <https://books.google.com/books?id=1YHCAgAAQBAJ>.

618 Sinho Chewi, Tyler Maunu, Philippe Rigollet, and Austin J. Stromme. Gradient descent algorithms
619 for Bures–Wasserstein barycenters. In Jacob Abernethy and Shivani Agarwal (eds.), *Proceedings*
620 *of Thirty Third Conference on Learning Theory*, volume 125 of *Proceedings of Machine Learning*
621 *Research*, pp. 1276–1304. PMLR, July 2020. URL <https://proceedings.mlr.press/v125/chewi20a.html>.

622 Sinho Chewi, Jonathan Niles-Weed, and Philippe Rigollet. *Statistical Optimal Transport*, volume
623 2364 of *Lecture Notes in Mathematics*. Springer, 2025a.

624 Sinho Chewi, Philippe Rigollet, and Yuling Yan. Gaussian mixture layers for neural networks. *arXiv*
625 *preprint 2508.04883*, 2025b.

626 Lénaïc Chizat and Francis Bach. On the global convergence of gradient descent for over-
627 parameterized models using optimal transport. *Advances in Neural Information Processing Sys-*
628 *tems*, 31, 2018.

629 George V. Cybenko. Approximation by superpositions of a sigmoidal function. *Mathematics of*
630 *Control, Signals and Systems*, 2:303–314, 1989.

631 Lawrence C. Evans. *Partial Differential Equations*, volume 19 of *Graduate Studies in Mathematics*.
632 American Mathematical Society, Providence, RI, 2nd edition, 2010. ISBN 978-0-8218-4974-3.

633 R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics: theory and applica-
634 tion to non-spherical stars. *Monthly Notices of the Royal Astronomical Society*, 181(3):375–
635 389, December 1977. ISSN 0035-8711. doi: 10.1093/mnras/181.3.375. URL <https://doi.org/10.1093/mnras/181.3.375>. eprint: <https://academic.oup.com/mnras/article-pdf/181/3/375/3104055/mnras181-0375.pdf>.

636 Thibaut Le Gouic, Quentin Paris, Philippe Rigollet, and Austin J. Stromme. Fast convergence of
637 empirical barycenters in Alexandrov spaces and the Wasserstein space. *Journal of the European*
638 *Mathematical Society*, 2019. URL <https://api.semanticscholar.org/CorpusID:199405372>.

648 Alex Hanson, Allen Tu, Vasu Singla, Mayuka Jayawardhana, Matthias Zwicker, and Tom Goldstein.
 649 PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting. In *Proceedings of the*
 650 *Computer Vision and Pattern Recognition Conference (CVPR)*, pp. 5949–5958, June 2025. URL
 651 <https://pup3dgs.github.io/>

652 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recogni-
 653 tion. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 654 770–778, 2016.

655 Xinquan Huang, Tariq Alkhafifah, and Chao Song. A modified physics-informed neural net-
 656 work with positional encoding. In *First International Meeting for Applied Geoscience*
 657 & Energy Expanded Abstracts, pp. 2480–2484. 2021. doi: 10.1190/segam2021-3584127.
 658 1. URL <https://library.seg.org/doi/abs/10.1190/segam2021-3584127.1>.
 659 1. eprint: <https://library.seg.org/doi/pdf/10.1190/segam2021-3584127.1>.

660 Richard Jordan, David Kinderlehrer, and Felix Otto. The Variational Formulation of the
 661 Fokker–Planck Equation. *SIAM Journal on Mathematical Analysis*, 29(1):1–17, January 1998.
 662 doi: 10.1137/s0036141096303359. Publisher: Society for Industrial & Applied Mathematics
 663 (SIAM).

664 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
 665 ting for real-time radiance field rendering. *ACM Transactions on Graphics*, 42(4), 2023a. URL
 666 <https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/>.

667 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3D Gaussian Splat-
 668 ting for Real-Time Radiance Field Rendering. *ACM Transactions on Graphics*, 42(4), July 2023b.
 669 URL <https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/>.

670 Shakiba Kheradmand, Daniel Rebain, Gopal Sharma, Weiwei Sun, Yang-Che Tseng, Hossam Isack,
 671 Abhishek Kar, Andrea Tagliasacchi, and Kwang Moo Yi. 3d gaussian splatting as markov chain
 672 monte carlo. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2024.

673 Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney.
 674 Characterizing possible failure modes in physics-informed neural networks. *Advances in Neural*
 675 *Information Processing Systems*, 34, 2021.

676 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
 677 neural networks. In *Advances in neural information processing systems 25*, pp. 1097–1105,
 678 2012.

679 Marc Lambert, Sinho Chewi, Francis Bach, Silvère Bonnabel, and Philippe Rigollet. Variational
 680 inference via wasserstein gradient flows. In *Proceedings of the 36th International Conference on*
 681 *Neural Information Processing Systems*, NIPS '22, Red Hook, NY, USA, 2022. Curran Associates
 682 Inc. ISBN 978-1-7138-7108-8. event-place: New Orleans, LA, USA.

683 Ziyao Li. Kolmogorov-Arnold Networks are Radial Basis Function Networks, 2024. URL <https://arxiv.org/abs/2405.06721>. eprint: 2405.06721.

684 Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacic,
 685 Thomas Y. Hou, and Max Tegmark. KAN: Kolmogorov–Arnold Networks. In *The Thirteenth*
 686 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=Ozo7qJ5vZi>.

687 Yulong Lu, Dejan Slepčev, and Lihan Wang. Birth–death dynamics for sampling: global con-
 688 vergence, approximations and their asymptotics. *Nonlinearity*, 36(11):5731, September 2023.
 689 doi: 10.1088/1361-6544/acf988. URL <https://dx.doi.org/10.1088/1361-6544/acf988>. Publisher: IOP Publishing.

690 Stphane Mallat. *A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way*. Academic
 691 Press, Inc., USA, 3rd edition, 2008. ISBN 0-12-374370-2.

702 Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-layers neural
 703 networks: dimension-free bounds and kernel limit. In *Proceedings of the Thirty-Second Con-*
 704 *ference on Learning Theory (COLT 2019)*, volume 99 of *Proceedings of Machine Learning Re-*
 705 *search*, pp. 2388–2464. PMLR, 2019a. URL <https://proceedings.mlr.press/v99/mei19a.html>

706

707 Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-layers neural
 708 networks: dimension-free bounds and kernel limit. In *Proceedings of the Thirty-Second Con-*
 709 *ference on Learning Theory (COLT 2019)*, volume 99 of *Proceedings of Machine Learning Re-*
 710 *search*, pp. 2388–2464. PMLR, 2019b. URL <https://proceedings.mlr.press/v99/mei19a.html>

711

712 Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
 713 Ren Ng. Nerf: representing scenes as neural radiance fields for view synthesis. *Commun. ACM*,
 714 65(1):99–106, December 2021a. ISSN 0001-0782. doi: 10.1145/3503250.

715

716 Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi,
 717 and Ren Ng. NeRF: representing scenes as neural radiance fields for view synthesis. *Commun.*
 718 *ACM*, 65(1):99–106, December 2021b. ISSN 0001-0782. doi: 10.1145/3503250. URL <https://doi.org/10.1145/3503250>. Place: New York, NY, USA Publisher: Association for
 719 Computing Machinery.

720

721 Klas Modin. Geometry of Matrix Decompositions Seen Through Optimal Transport and Information
 722 Geometry. *The Journal of Geometric Mechanics*, 9:335–390, 2016. URL <https://api.semanticscholar.org/CorpusID:119636228>.

723

724 Thomas Porter and Tom Duff. Compositing digital images. *ACM SIGGRAPH Computer Graphics*,
 725 18(3):253–259, 1984. Publisher: ACM New York, NY, USA.

726

727 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 728 deep learning framework for solving forward and inverse problems involving nonlinear partial
 729 differential equations. *Journal of Computational Physics*, 378:686–707, 2019. Publisher: Else-
 730 vier.

731

732 Spyros Rigas and Michalis Papachristou. jaxKAN: A unified JAX framework for Kolmogorov-
 733 Arnold Networks. *Journal of Open Source Software*, 10(108):7830, 2025. doi: 10.21105/joss.
 734 07830.

735

736 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 737 image segmentation. In *International Conference on Medical image computing and computer-*
 738 *assisted intervention*, pp. 234–241. Springer, 2015.

739

740 Filippo Santambrogio. Optimal Transport for Applied Mathematicians. 2015. URL <http://www.math.toronto.edu/mccann/assignments/477/Santambrogio15.pdf>

741

742 Geoffrey Schiebinger, Jian Shu, Marcin Tabaka, Brian Cleary, Vidya Subramanian, Aryeh Solomon,
 743 Joshua Gould, Siyan Liu, Stacie Lin, Peter Berube, Lia Lee, Jenny Chen, Justin Brumbaugh,
 744 Philippe Rigollet, Konrad Hochedlinger, Rudolf Jaenisch, Aviv Regev, and Eric S. Lander.
 745 Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajecto-
 746 ries in Reprogramming. *Cell*, 176, 2019. URL <https://api.semanticscholar.org/CorpusID:72333759>

747

748 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 749 In *Advances in Neural Information Processing Systems* 32, 2019.

750

751 Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
 752 Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let net-
 753 works learn high frequency functions in low dimensional domains. In *Proceedings of the 34th*
 754 *International Conference on Neural Information Processing Systems*, NIPS ’20, Red Hook, NY,
 755 USA, 2020. Curran Associates Inc. ISBN 978-1-7138-2954-6. event-place: Vancouver, BC,
 Canada.

756 S. Ullman. The interpretation of structure from motion. *Proceedings of the Royal Society of London.*
 757 *Series B. Biological Sciences*, 203(1153):405–426, 1979. doi: 10.1098/rspb.1979.0006.

758

759 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 760 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in neural information*
 761 *processing systems 30*, 2017.

762 Cédric Villani. *Topics in Optimal Transport*. American Mathematical Society, Providence, RI, 2003.

763

764 Martin J. Wainwright. *High-Dimensional Statistics: A Non-Asymptotic Viewpoint*. Cambridge
 765 Series in Statistical and Probabilistic Mathematics. Cambridge University Press,
 766 Cambridge, 2019. ISBN 978-1-108-49802-9. doi: 10.1017/9781108627771. URL
 767 <https://www.cambridge.org/core/books/highdimensional-statistics/8A91ECEEC38F46DAB53E9FF8757C7A4E>

768

769 Chengxi Zeng, Tilo Burghardt, and Alberto M. Gambaruto. RBF-PINN: Non-Fourier Positional
 770 Embedding in Physics-Informed Neural Networks. *ArXiv*, abs/2402.08367, 2024.

771

772 M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Ewa splatting. *IEEE Transactions on Visualization*
 773 *and Computer Graphics*, 8(3):223–238, 2002a.

774 M. Zwicker, H. Pfister, J. van Baar, and M. Gross. EWA Splatting. *IEEE Transactions on Visualiza-*
 775 *tion and Computer Graphics*, 8(3):223–238, 2002b. Publisher: IEEE Section: 223.

776 Onur Özyeşil, Vladislav Voroninski, Ronen Basri, and Amit Singer. A survey of structure from
 777 motion. *Acta Numerica*, 26:305–364, 2017. doi: 10.1017/S096249291700006X.

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809