
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

USDPNET: AN UNSUPERVISED SYMMETRIC DEEP
FRAMEWORK FOR ROBUST PARCELLATION OF INFANT
SUBCORTICAL NUCLEI

Anonymous authors
Paper under double-blind review

ABSTRACT

Accurate infant subcortical parcellation is vital for understanding early brain de-
velopment and neurodevelopmental pathology. However, existing methods suffer
from initialization sensitivity, poor bilateral consistency, and limited applicability
to early postnatal data. We propose USDPnet, an Unsupervised Symmetric Deep
Parcellation Network, which integrates deep autoencoder-based feature embed-
ding with divergence-driven clustering. By introducing the generalized Cauchy-
Schwarz divergence (GCSD) as the clustering objective, we enhance inter-cluster
separability across complex developmental features. A symmetry constraint fur-
ther enforces bilateral consistency, leading to anatomically plausible and robust
delineations. USDPnet operates on surface-based features extracted from infant
subcortical nuclei. Experiments show it outperforms traditional and deep clus-
tering baselines. Visualizations are largely consistent with the parcellation results
based on anatomy and function connectivity. The resulting parcellations are devel-
opmentally grounded, anatomically symmetric, and functionally relevant, offer-
ing fine-grained and biologically coherent maps of early subcortical organization.
Code is available at https://anonymous.4open.science/r/USDPnet-X12D.

1 INTRODUCTION

Subcortical nuclei, including the hippocampus, amygdala, thalamus, and basal ganglia (e.g., cau-
date, putamen, pallidum), form complex neural circuits fundamental to higher-order cognitive func-
tions such as memory consolidation, emotional regulation, and motor control (Johnson, 2012).
These structures can be further parcellated into anatomically and functionally heterogeneous sub-
regions (e.g., hippocampal subfields, amygdaloid nuclei) (Tian et al., 2020; Iglesias et al., 2015),
each playing distinct roles in behavior and cognition. For instance, CA3a and CA3b subfields of the
hippocampus are crucial for encoding spatial memory (Kesner, 2007), while the laterobasal group
of the amygdala exhibits robust auditory responses (Ball et al., 2007).

Owing to their specialized functions, subcortical regions are critically implicated in a range of neu-
rological and psychiatric conditions. For instance, atrophy of the CA1 subregion of the hippocampus
is a hallmark of Alzheimer’s disease (De Flores et al., 2015), while abnormal enlargement of the lat-
erobasal subregion of the amygdala is frequently observed in autism spectrum disorder (ASD) (Kim
et al., 2010). Consequently, accurate subregional parcellation of subcortical structures is essential
for understanding their underlying mechanisms and informing targeted interventions. Deep brain
stimulation (DBS), for example, relies on precise localization of therapeutic targets in nuclei such
as the subthalamic nucleus or pallidum (Iorio-Morin et al., 2020).

Recent trends in neuroscience and neuroengineering further emphasize the urgency of high-
resolution subcortical mapping. Multimodal neuroimaging atlases (Chen et al., 2022; Tian et al.,
2020; Iglesias et al., 2015) and emerging brain-computer interface (BCI) technologies increasingly
require anatomically faithful and developmentally informed subcortical boundaries to support fine-
grained localization, neural decoding, and closed-loop modulation (Horn et al., 2017).

Notably, early infancy marks a critical period of subcortical growth that underpins the emergence
of cognition, consciousness, and neurodevelopmental trajectories (Chen et al., 2023a). Despite this
developmental significance, current subcortical parcellation fall short in the infant context. Existing
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Figure 1: Overview of the unsupervised symmetric infant subcortical parcellation based on surface-
derived developmental features. (a) Surface mesh reconstruction of subcortical nuclei across time
points within the first two postnatal years; (b) Extraction and temporal integration of vertex-wise
area features to model developmental trajectories; (c) Bilateral correspondence mapping to acquire
symmetry-aware feature representations; (d) Architecture of the proposed USDPnet; (e) Multi-view
visualization of parcellation outcomes across representative nuclei.

methods are predominantly adult-centric and rely on either static anatomical priors or functional
connectivity maps, both of which are difficult to acquire or adapt for infants (Dubois et al., 2021).
Compounding this, infant MRIs suffer from motion artifacts, reduced tissue contrast, and rapid
intensity fluctuations due to ongoing myelination (Zöllei et al., 2020), rendering most adult-based
models ill-suited for infant applications. While recent work has exploited the intrinsic bilateral sym-
metry of human anatomy (Wathore & Gorthi, 2024; Raina et al., 2020), many existing methods for
subcortical parcellation overlook this property (Teyler & Discenna, 1984; Zuccoli et al., 2015). This
oversight can lead to mismatched left-right partitions, compromising accuracy and interpretability,
particularly in infants where small asymmetries may yield misleading conclusions.

To overcome the limitations of existing subcortical parcellation methods in early infancy, we pro-
pose USDPnet—an Unsupervised Symmetric Deep Parcellation Network—which integrates deep
autoencoder-based feature embedding with divergence-driven clustering (Figure 1(d)). At the core
of our approach, we introduce a novel symmetry-aware clustering architecture specifically designed
for bilaterally organized subcortical structures. Thereby, we introduced the generalized Cauchy-
Schwarz divergence (GCSD) for supervising each hemisphere to effectively handle complex multi-
modal distributions in developmental data, significantly outperforming traditional pairwise measures
in multi-region clustering scenarios while substantially improving computational efficiency and sta-
bility. To ensure biologically meaningful and interpretable outputs, USDPnet explicitly incorporates
bilateral symmetry constraints, aligning with the known anatomical symmetry of subcortical struc-
tures across hemispheres. This design not only improves robustness but also ensures consistency
of parcellation results. Using 513 high resolution longitudinal infant MRI scans from 231 BCP
subjects aged 0-2 years, we construct temporally aligned surface meshes for 6 subcortical structures
with infant-dedicated methods and extract vertex-wise area features along with symmetry-consistent
correspondence mapping (Figure 1(a-c,e)).

Comprehensive evaluations demonstrate that USDPnet significantly outperforms state-of-the-art
methods in clustering quality, biological plausibility, and computational stability. The resulting
subregion maps reveal consistent and interpretable developmental trajectories, offering new insights
into early brain organization and subcortical topography. Our main contributions include:

• Unsupervised and symmetry-aware parcellation framework: USDPnet enables fine-grained
characterization of subcortical nuclei, providing a crucial reference for both developmental neu-
roscience and translational applications.
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• Robust clustering objective: We introduce GCSD as a scalable, information-theoretic loss that
robustly manages multi-distribution clustering scenarios in high-dimensional feature space.

• Symmetry-constrained optimization: By leveraging intrinsic anatomical symmetry, we im-
prove parcellation accuracy, consistency, and interpretability, offering an effective new direction
for surface-based neuroimaging parcellation.

2 RELATED WORK

Brain Tissue Parcellation Algorithms. Parcellation of brain tissue is a fundamental task for under-
standing the structural-functional architecture of the brain and its role in neuropsychiatric conditions.
Glasser et al. (2016) introduced a semi-automated, gradient-based method using multimodal data,
achieving 96.6% detection accuracy across 180 cortical areas per hemisphere. In subcortical stud-
ies, Tian et al. (2020) used functional connectivity gradients to generate hierarchical atlases, while
Jitsuishi & Yamaguchi (2025) applied tractography to map thalamic nuclei to large-scale networks.
Cucurull et al. (2018) reformulated Broca’s area parcellation as a graph node classification prob-
lem, where GCN and GAT outperformed traditional vertex-wise models. Recently, Gao et al. (2025)
used diffusion MRI tractography with graph neural networks (GNNs) for fine-scale striatal parcel-
lation.Despite these advances, most methods target adult brains and lack the adaptability to infant
developmental characteristics and imaging constraints, calling for tailored solutions for early post-
natal parcellation.

Unsupervised Clustering Methods. Unsupervised clustering is widely used in parcellation to dis-
cover latent structures in neuroimaging data. Classical methods like spectral clustering (Ng et al.,
2001) and non-negative matrix factorization (NMF; Lee & Seung, 1999) can model complex and in-
terpretable patterns. Building upon these foundations, deep learning-based unsupervised clustering
has emerged as a transformative research paradigm. Deep Embedded Clustering (DEC; Xie et al.,
2016) and its extensions such as BDEC(Ma et al., 2023; Zhu et al., 2025) jointly learn representations
and clustering in fMRI parcellation tasks.Recent work such as DECS, DCSS, and DMSC(Cheng
et al., 2024; Sadeghi & Armanfard, 2023; Zhu et al., 2025) has also improved the mechanisms for
balancing the clustering and reconstruction losses in deep clustering. However, these methods suffer
from inefficiency in multi-region applications. Clustering effectiveness fundamentally depends on
divergence measure quality. Traditional divergences such as Cauchy-Schwarz (Kampffmeyer et al.,
2019) or KL divergence (Zhou et al., 2015) are limited to pairwise distributions, and their multi-
distribution extensions (Rosenblatt, 2011; Perez, 1984) lack computational scalability. Recently, we
proposed a generalized Cauchy-Schwarz divergence (GCSD; Lu et al., 2025b) to address these lim-
itations with efficient and robust multi-distribution estimation, motivating its adoption in USDPnet.

3 METHOD

The proposed USDPnet is an end-to-end unsupervised learning framework that jointly performs fea-
ture representation learning and clustering-based subcortical parcellation. As illustrated in Figure 2,
the model is explicitly designed to maximize inter-cluster separability through a GCSD objective,
which is well-suited for capturing complex multi-modal distributions in high-dimensional develop-
mental brain data. At the same time, USDPnet introduces a novel bilateral symmetry regularization
to ensure anatomical consistency across hemispheres—particularly critical for the bilaterally orga-
nized subcortical nuclei in infant brains. This joint optimization strategy enhances the biological
plausibility, robustness, and interpretability of the resulting parcellations, making USDPnet a prin-
cipled solution for data-efficient, structure-aware infant brain mapping.

3.1 PROBLEM FORMULATION

Accurate and interpretable parcellation of subregions within infant subcortical nuclei is critical for
understanding early neurodevelopmental trajectories and the pathophysiology of related neurologi-
cal and psychiatric disorders. Given the fine-grained and heterogeneous nature of these structures,
our goal is to identify developmentally coherent subregions based on local morphological features
extracted from surface representations of subcortical nuclei.
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Figure 2: Overall architecture of USDPnet. (a) Bilateral input matrices XL and XR, containing
original and symmetrically mapped surface-area features, are encoded into latent embeddings ZL

and ZR and then transformed into soft assignment matrices AL and AR; proximity matrices QL

and QR are further computed from these assignments to characterize cluster-wise similarities. (b) A
GCSD-based clustering objective operates on these assignments, where AO

L and AO
R denote cluster

probabilities for original vertices and AS
L and AS

R for symmetrically mapped vertices, and a symme-
try loss enforces consistent parcellations across hemispheres.

Formally, let {xi ∈ X}ni=1 denote a set of high-dimensional feature vectors, where each xi ∈ Rm

corresponds to a vertex on the surface of a subcortical nucleus, capturing local developmental met-
rics (e.g., vertex-wise area over time). The objective is to assign each vertex to one of r anatomically
and functionally meaningful clusters C1, ... , Cr, such that: (1) intra-cluster similarity is maximized;
(2) inter-cluster separability is maximized; and (3) anatomical bilateral symmetry is preserved.

This leads to a constrained clustering formulation with dual goals: (1) learning a compact and
discriminative latent representation space for subcortical features, and (2) optimizing a biologically
informed cluster assignment that respects the symmetrical nature of infant subcortical structures.

3.2 NETWORK ARCHITECTURE

Overall Architecture. This study aims to train a network that effectively parcellates each vertex of
subcortical nuclei surface models into one of k anatomically consistent subregions. To achieve this,
we adopt an encoder-clustering architecture comprising: a feature encoder transforming surface area
features into discriminative representations, a cluster assignment network generating probability
distributions over target subregions, and an optimization framework jointly optimizing GCSD and
symmetry losses. The framework processes bilateral datasets XL ∈ Rn×m and XR ∈ Rn×m

containing original and symmetric features. Please refer to Figure 2 for the detailed architecture.

Encoder. The encoder of USDPnet employs a four-layer multilayer perceptron architecture consist-
ing of an input layer of dimension din, two intermediate hidden layers each containing 500 units
with ReLU activation functions, and an output layer of dimension dz with Tanh activation. Batch
normalization is applied after each hidden layer. The original data X is transformed by the feature
encoder into distinguishable low-dimensional features Z. Specifically, the input data is organized
into bilateral hemisphere datasets XL, XR ∈ Rn×m, where n = nL + nR represents the total
number of vertices across both hemispheres. Each dataset is constructed by concatenating original
and symmetric features: XL = {XS

R, X
O
L } and XR = {XO

R , XS
L}, where the semicolon denotes

vertical concatenation. The original features XO
L ∈ RnL×m and XO

R ∈ RnR×m represent local
surface area features from left and right hemispheres, while symmetric features XS

L ∈ RnL×m and
XS

R ∈ RnR×m are generated through symmetric mapping and one nearest neighbor matching. No-
tably, XS

R and XO
R maintain identical dimensions and occupy symmetric positions within XL and

XR, with XO
L and XS

L following the same dimensional and positional correspondence, as illustrated
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in Figure 1 (b) and (c). These extended datasets are fed into the same encoder to obtain correspond-
ing low-dimensional features ZL ∈ Rn×h and ZR ∈ Rn×h.

Cluster Assignment Network. The clustering module comprises a fully connected layer with 100
nodes, followed by Batchnorm layer,a ReLU activation and a Softmax layer. The network takes
the low-dimensional feature embeddings ZL or ZR as inputs, and outputs the corresponding soft
assignment matrices AL ∈ Rn×r and AR ∈ Rn×r, where each row represents the probability
distribution of a sample over all clusters. The composition of AL and AR corresponds to that of
XL and XR, comprising AL = {AS

R, A
O
L} and AR = {AO

R, A
S
L}. Among these, AO

L ∈ RnL×r and
AO

R ∈ RnR×r serve as the final assignment matrices applied to clustering results, where the features
represent the ultimate vertex labels. The complete matrices AL and AR are utilized for subsequent
loss function computation, as illustrated in Figure 2 (b).

For each subcortical nuclei, to achieve effective parcellation across multiple clusters, we adopt the
maximization of GCSD among multiple clusters in the feature embeddings ZL or ZR as the principal
clustering objective, combined with simplex regularization on the assignment matrix A:

LGCSD = DGCS(Z,A) + λ1 tr(AA⊤) + λ2 tr(QQ⊤), (1)

where λ1, λ2 ≥ 0 are regularization coefficients balancing the trade-off between divergence maxi-
mization and cluster representation constraints, A⊤ and Q⊤ denote the matrix transpose of A and Q,
and tr(·) represents the matrix trace operation. The core term DGCS, representing the generalized
Cauchy-Schwarz divergence, follows the estimator in Lu et al. (2025b):

DGCS(Z,A) = − log

(
1

r
sum

((
Ar−1

)⊤
KA

prod(KA)

))
+

1

r
tr
[
log
(
(A⊤)r−1 (KA)r−1

)]
,

(2)
where K is the Gram matrix computed from the positive definite kernel κσ , such that Kij = κσ(zi−
zj) for all (i, j) pairs, and r represents the dimensionality of the cluster space encoded by the
assignment matrix A. The notation sum(·) signifies the summation of all elements within a matrix,
prod(A) calculates the product of row elements in matrix A, yielding a column vector. The second
and third terms in equation 1 serve to promote orthogonality among the clusters and to enforce the
proximity of the cluster membership vectors to a corner of the simplex. The proximity matrix Q is
derived from the assignment matrix A as:

Qij = exp
(
−∥αi − ej∥2

)
, (3)

where αi denotes the i-th row of A and ej denotes the j-th standard basis vector. Maximizing
tr(QQ⊤) drives the assignment vectors toward one-hot form, thereby yielding more discriminative
cluster assignments. Details on the regularization terms can be found in Kampffmeyer et al. (2019).

Compared to traditional pairwise divergence computation methods, GCSD offers significant advan-
tages through joint entropy computation, enabling single joint computation across all distributions
simultaneously, as illustrated in Figure 2 (b). This approach enhances clustering stability and com-
putational efficiency by avoiding the need for multiple pairwise comparisons and providing a unified
measure for multi-cluster optimization.

Symmetry Constraint. Motivated by the inherent anatomical symmetry of brain regions, we in-
troduce a symmetry constraint to address common limitations in traditional methods: left-right
parcellation inconsistency, poor stability, and high initialization sensitivity. Symmetry incorpora-
tion substantially improves result stability and reproducibility while reducing dependence on initial
conditions. To leverage anatomical symmetry, we perform symmetric point matching between hemi-
spheric data through midsagittal plane correspondence. Through symmetric coordinate mapping and
nearest neighbor matching, we obtain augmented datasets XS

L and XS
R containing cross-hemisphere

symmetric correspondences.The details has been mentioned above.

The encoder processes the concatenated datasets XL and XR to generate assignment matrices AL

and AR, where the symmetry loss employs Mean Squared Error (MSE) to quantify discrepancies
between symmetric assignments:

Lsym = MSE(AL, AR) =
1

n

n∑
i=1

∥αL,i − αR,i∥2 , (4)
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where αL,i and αR,i denote the i-th rows of AL and AR (cluster probability vectors for correspond-
ing samples), and n is the total number of samples.

The overall loss function of the proposed framework is formulated as:

L = LL
GCSD + LR

GCSD + λ3 Lsym, (5)

where LL
GCSD and LR

GCSD denote the GCSD-based clustering losses for the left and right hemi-
spheric feature embeddings, Lsym is the MSE-based symmetry constraint term, and λ3 > 0 is a
weighting coefficient controlling the strength of the symmetry regularization.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset and Preprocessing. We use MRI data from the Baby Connectome Project (BCP) (How-
ell et al., 2019) covering 513 typically developing infants aged 0-2 years. All preprocessing steps
strictly followed the iBEAT V2.0 pipeline as described in (Wang et al., 2023), including intensity
correction, skull stripping, registration, and surface reconstruction. Following the same method-
ology, we generated vertex-corresponding surface models for 6 subcortical nuclei (hippocampus,
amygdala, thalamus, caudate, putamen, pallidum). Local surface areas at each vertex were com-
puted across multiple developmental stages and Gaussian-smoothed to construct temporal feature
vectors. This yields bilateral surface meshes where each vertex index encodes stage-specific area
measurements, forming growth trajectory representations that capture morphological development
patterns essential for age-sensitive parcellation, as illustrated in Figure 1 (a).

Implementation Details. The regularization weights were set to λ1 = λ2 = 5 × 10−2, while the
symmetry term weight λ3 = 10−1 was configured to prioritize symmetric convergence in clustering
results. We employ 0.2 dropout probability for regularization. SGD optimizer is used with initial
learning rate 1× 10−3 and momentum 0.9, coupled with ReduceLROnPlateau scheduler. The adap-
tive epoch strategy follows epochs = r × 1500, where r represents the target subregion count, with
comprehensive experiments conducted across bilateral hemispheres for all 6 subcortical nuclei with
subregion counts ranging from 2 to 10. To fully exploit GCSD’s joint entropy computation capa-
bility, we adopt a full-batch training strategy using the complete dataset as a single batch, enabling
global optimization over the entire data distribution and maximizing GCSD’s theoretical advantages.
Detailed implementation configurations are provided in the Appendix.

Competing Methods and Metrics. We compare our method against representative unsupervised
clustering approaches across four categories: (1) Matrix factorization methods including Deep-
NMF (Trigeorgis et al., 2014) and NMF (Wild et al., 2003); (2) Spectral clustering variants in-
cluding Spectral + Discretization (Ng et al., 2001), Spectral + GMM (Azimbagirad & Junior, 2021),
Spectral + K-Means (Sinaga & Yang, 2020), Spectral + K-Medoids (Park & Jun, 2009), and Spec-
tral + QR (Narasimhan et al., 2005); (3) Dimensionality reduction + clustering including t-SNE
+ Agglomerative (Maaten & Hinton, 2008), UMAP + Agglomerative (McInnes et al., 2018), and
PCA + Agglomerative (Abdi & Williams, 2010); (4) Deep clustering including DEC (Xie et al.,
2016), DDC (Kampffmeyer et al., 2019), and GJRD (Lu et al., 2025a) which employs generalized
Jensen-Rényi divergence to handle multiple distributions, providing a baseline for multi-distribution
clustering comparison. We evaluate clustering performance using four metrics: Silhouette Coeffi-
cient (SC), Calinski-Harabasz Index (CH), Reconstruction Error (RE), and Feature Homogeneity
(FH) (Rousseeuw, 1987; Caliński & Harabasz, 1974; Valle et al., 1999; Rosenberg & Hirschberg,
2007). As deep clustering methods are prone to local minima, a common problem for unsupervised
deep architectures, we conduct 30 independent runs per configuration and report results with opti-
mal unsupervised loss convergence. Baseline methods subject to random initialization variability
undergo equivalent multiple runs (≥30), with best-performing results selected for fair comparison.

4.2 RESULT ANALYSIS

Clustering Performance Comparison. Table 1 reports the best performance achieved by various
methods under the optimal settings derived in Appendix D.4. These results demonstrate USDP-
net’s superiority across all metrics and both hemispheres. For cluster cohesion, USDPnet achieves
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Table 1: Performance comparison of unsupervised clustering methods and the ablation study of
USDPnet. We use bold and underline text to denote the first and second places respectively.

Method Left Hemisphere Right Hemisphere

SC↑ CH↑ RE↓ FH↑ SC↑ CH↑ RE↓ FH↑

DeepNMF 0.309 891 1.259 0.638 0.310 763 1.341 0.622
NMF 0.246 479 2.019 0.647 0.244 420 2.060 0.651
Spectral+Disc 0.311 989 1.187 0.668 0.312 919 1.216 0.661
Spectral+GMM 0.276 851 1.301 0.639 0.260 735 1.379 0.622
Spectral+KMeans 0.296 985 1.192 0.677 0.299 922 1.216 0.673
Spectral+KMed 0.307 900 1.253 0.665 0.308 791 1.325 0.651
Spectral+QR 0.280 961 1.210 0.666 0.278 892 1.242 0.657
tSNE+Agglo 0.219 766 1.368 0.648 0.252 725 1.365 0.629
UMAP+Agglo 0.271 833 1.307 0.654 0.299 728 1.371 0.633
PCA+Agglo 0.111 1142 1.096 0.701 0.107 1088 1.096 0.700
DEC 0.247 1055 1.145 0.681 0.159 953 1.196 0.676
DDC 0.243 1195 1.092 0.702 0.255 1003 1.167 0.678
GJRD 0.252 1118 1.100 0.697 0.178 976 1.174 0.686

Ours w/o A regularization 0.312 1189 1.085 0.667 0.309 1091 1.092 0.665
Ours w/o Q regularization 0.320 1113 1.105 0.669 0.311 1049 1.112 0.672
Ours w/o Lsym 0.306 1132 1.115 0.688 0.305 1049 1.121 0.681
Ours 0.328 1228 1.083 0.708 0.317 1123 1.087 0.704

the highest SC scores (0.328 left, 0.317 right), indicating tighter within-cluster similarity compared
to the second-best Spectral + Discretization (0.311 left, 0.312 right) and significantly outperform-
ing traditional methods like NMF (0.246 left, 0.244 right). For inter-cluster separability, USDPnet
attains the highest CH values (1228 left, 1123 right), demonstrating superior cluster distinctive-
ness compared to DDC (1195 left, 1003 right) and other deep methods. For reconstruction fidelity,
USDPnet achieves the lowest RE (1.083 left, 1.087 right), indicating minimal information loss dur-
ing feature compression. For anatomical consistency, USDPnet maintains the highest FH (0.708
left, 0.704 right), ensuring parcellated subregions preserve meaningful neuroanatomical boundaries.
These findings highlight USDPnet’s capacity to jointly optimize multiple dimensions of parcella-
tion quality, demonstrating the effectiveness of GCSD-based clustering and symmetry constraints in
achieving anatomically coherent subcortical delineations.

To further validate the robustness and stability of USDPnet, we present average performance results
with standard deviation statistics in Table 2. These results are averaged across bilateral hemispheres
and subregion counts 2-10 over 30 independent runs for each method, where all baseline methods are
subject to random initialization effects. The analysis shows that USDPnet consistently outperforms
all baseline methods across all evaluation metrics, demonstrating superior clustering quality with
lower variability compared to traditional methods.

Statistical Significance Analysis. To further substantiate the performance advantages, we con-
ducted Welch’s t-tests comparing USDPnet against leading deep clustering methods (DEC, DDC,
GJRD) under the same 30 experimental runs. The analysis reveals statistically significant superior-
ity on all metrics (p < 0.05 for all 12 comparisons), with large effect sizes (Cohen’s d > 0.8) in
11/12 comparisons demonstrating both statistical significance and practical importance. USDPnet
shows clear advantages over DEC (d = 2.530 for SC, d = 1.748 for FH), substantial improvements
over DDC (d = 1.248 for SC, d = 1.474 for FH), and significant gains over GJRD (d = 1.142 for
SC, d = 1.254 for FH). After Bonferroni correction (α = 0.0042), 91.7% of comparisons remain
significant, providing robust evidence of USDPnet’s superiority over SOTA approaches.

Parcellation Visualization Analysis. Through systematic analysis of clustering metric variations
across different target subregion numbers for each nucleus, particularly examining SC coefficient
trends (detailed in Appendix), we determined optimal clustering numbers for each nucleus: Hip-
pocampus (7), Amygdala (2), Thalamus (10), Caudate (5), Putamen (4), and Pallidum (2). All com-
parative methods were evaluated under these metric-driven configurations. Figure 3 presents a com-
prehensive qualitative comparison of USDPnet against representative baseline methods: Spectral
+ Discretization (top SC performer), DeepNMF (established matrix factorization approach), DDC
(recent deep clustering method), and Tian et al. (2020)’s functional connectivity gradient-based par-
cellation using voxel data. The visualization reveals critical limitations in existing approaches that
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Table 2: Average performance comparison across clustering methods with standard deviations (av-
eraged across bilateral hemisphere regions for subregion counts 2-10 over 30 independent runs).We
use bold text to denote the first places.

Method SC↑ CH↑ RE↓ FH↑

Spectral+GMM 0.227±0.058 644±202 1.585±0.431 0.578±0.090
Spectral+KMeans 0.239±0.059 747±267 1.423±0.269 0.614±0.069
Spectral+KMed 0.234±0.068 563±278 1.688±0.446 0.563±0.106
tSNE+Agglo 0.208±0.024 659±90 1.472±0.128 0.608±0.029
UMAP+Agglo 0.220±0.038 631±100 1.507±0.130 0.594±0.035
DEC 0.135±0.052 866±139 1.304±0.160 0.643±0.040
DDC 0.187±0.074 885±149 1.289±0.148 0.648±0.040
GJRD 0.203±0.049 952±134 1.224±0.117 0.676±0.034

Ours 0.253±0.065 1035±127 1.161±0.084 0.712±0.041

Figure 3: Qualitative comparison of subcortical parcellation results between USDPnet and repre-
sentative baseline methods. Visualizations show bilateral parcellations across multiple nuclei. Com-
pared to baseline methods and functional connectivity gradient parcellation (Tian et al., 2020)—US-
DPnet yields anatomically coherent, symmetric subregions without spurious outliers or interhemi-
spheric inconsistencies (highlighted with red circles). The resulting parcellations exhibit strong
alignment with expert-defined anatomical boundaries and SOTA adult parcellation (Tian et al.,
2020), demonstrating both biological plausibility and developmental relevance.

USDPnet effectively addresses. In the baseline methods, several hemispheric discrepancies and
irregular parcellation fragments are observed (marked with red circles), indicating inconsistent clus-
tering behavior across methods.

These anomalous results reflect the limitations of existing methods, including their susceptibility
to initialization variance, inability to enforce anatomical constraints, and limited capacity to ex-
tract meaningful developmental features from complex infant brain data. In contrast, USDPnet
produces more bilaterally consistent and symmetric parcellation boundaries than baseline methods,
and its surface area–based parcellations visually align with the voxel-level gradients reported in
Tian et al. (2020), indicating agreement in the captured spatial patterns. This hemispheric consis-
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Figure 4: Parameter sensitivity analysis for regularization weights λ1, λ2, and λ3.The vertical axis
shows the silhouette coefficient (SC) and the horizontal axis shows the corresponding weight values.

Table 3: Comparison results of different divergences.We use bold text to denote the first places.

Method Left Hemisphere Right Hemisphere

SC ↑ CH ↑ RE ↓ FH ↑ SC ↑ CH ↑ RE ↓ FH ↑
CSD 0.252 1075 1.149 0.689 0.255 1003 1.167 0.678
KLD 0.218 1056 1.149 0.680 0.200 1007 1.145 0.676
GJRD-1(JSD) 0.281 965 1.212 0.664 0.274 865 1.255 0.653
GJRD-2 0.264 970 1.208 0.668 0.265 895 1.228 0.656

Ours(GCSD) 0.328 1228 1.042 0.708 0.317 1123 1.087 0.704

tency and pattern-level concordance supports USDPnet as a robust clustering solution that effec-
tively exploits surface-based feature representations, which are more cost-effective and scalable to
acquire from standard sMRI than modalities such as fMRI or individualized anatomical delineations,
particularly in large infant cohorts.

Overall, our approach establishes a robust and interpretable foundation for analyzing early infant
brain development. By providing developmentally grounded, anatomically symmetric, and func-
tionally relevant subregional delineations, our subcortical parcellations not only visualizes the fine-
grained organization of subcortical structures during the first two years of life—a period charac-
terized by heightened neurodevelopmental plasticity and critical windows for the maturation of
cognitive, emotional, and sensorimotor functions—but also supports research into how early sub-
cortical architecture scaffolds the formation of neural circuits and guides subsequent behavioral
development, providing a robust foundation for mechanistic investigations into the emergence and
differentiation of brain functions. Beyond its neuroscientific implications, USDPnet opens promis-
ing avenues for early identification and personalized intervention of neurodevelopmental disorders.
Fine-scale, symmetric subcortical parcellations can guide the discovery of atypical growth patterns
associated with conditions such as ASD and ADHD. Moreover, our anatomically informed par-
cellation results provide a structural foundation for refining precision DBS targets, enabling more
individualized and developmentally appropriate neuromodulation therapies.

Ablation Study. We conducted comprehensive ablation analysis to evaluate the contribution of each
loss component by systematically removing: (1) orthogonality regularization on Matrix A (setting
λ1 = 0), (2) simplex regularization on row vectors of matrix A through Q (setting λ2 = 0), and
(3) symmetry loss term (setting λ3 = 0). Table 1 presents the results across all clustering metrics for
bilateral hemispheres. The analysis reveals that removing the symmetry constraint yields the most
substantial performance degradation across all metrics, confirming its critical role in maintaining
anatomical consistency. Matrix regularization terms show moderate but consistent impacts, with
Q regularization contributing more significantly to clustering stability than A regularization. This
validates our joint optimization strategy and demonstrates the importance of anatomical priors in
infant subcortical parcellation.

Parameter Sensitivity Analysis. To validate the robustness of weights under high-granularity clus-
tering scenarios, we conducted systematic parameter sensitivity analysis on the thalamus using 30
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Figure 5: Reproducibility analysis results for various clustering methods. The vertical axis repre-
sents clustering metrics (Dice, NMI, ARI) and the horizontal axis shows different methods. Error
bars indicate standard deviation across 30 runs.

high-performing initialization seeds. We evaluated each parameter across 12 logarithmically-spaced
values. SC served as the primary evaluation metric. The results indicate that clustering performance
is stable when the weights lie within a suitable range but degrades when they deviate from this range
by orders of magnitude. A favorable setting is λ1 = λ2 = 5× 10−2 and λ3 = 10−1 (Figure 4), fa-
voring balanced weights and avoiding symmetry-loss values so large that they overemphasize bi-
lateral matching and yield anatomically implausible parcellations.Additional details are available in
the Appendix.

Comparison of different divergences. We evaluated Cauchy–Schwarz (CSD), Kullback–Leibler
(KLD), and generalized Jensen–Rényi (GJRD) divergences, with quantitative results in Table 3.
Unlike the GJRD baseline in Table 1, these variants modify only the divergence term of USDPnet
while keeping the architecture fixed. GJRD-1 and GJRD-2 correspond to Rényi orders 1 and 2,
with order 1 reducing to Jensen–Shannon divergence (JSD). Across all configurations, GCSD best
balances robustness to outliers and computational efficiency, making it well suited to noisy infant
brain imaging data.

Reproducibility Analysis. We evaluated reproducibility for deep clustering methods. Using the 30
experimental results obtained on thalamus with subregion numbers r ∈ {2, 3, . . . , 10}, we assessed
weighted Dice, NMI, and ARI for each method (Figure 5). The weighted Dice coefficient measures
spatial overlap between parcellation maps, whereas NMI and ARI quantify the consistency of
cluster labels across runs via normalized mutual information and pairwise agreement corrected for
chance. Most methods show good reproducibility at 2 regions, but it drops sharply at 3–4 regions
and then gradually declines with partial stabilization as the region number increases. In contrast,
our method consistently yields superior performance compared to other deep clustering approaches
and exhibits relative stability at higher region numbers.

5 CONCLUSION

We propose USDPnet, an Unsupervised Symmetric Deep Parcellation Network for infant subcortical
nuclei delineation in early postnatal development. By combining deep autoencoder-based embed-
ding with a clustering objective driven by generalized Cauchy–Schwarz divergence (GCSD), US-
DPnet enhances inter-cluster separability in high-dimensional developmental features. A symmetry
regularization term ensures bilateral consistency and mitigates initialization bias. Experiments show
that USDPnet outperforms classical and state-of-the-art clustering methods in both accuracy and
anatomical coherence. Visualizations reveal strong alignment with known anatomical boundaries
and functional connectivity, underscoring biological plausibility. While surface area serves as a dis-
criminative morphological feature, its limitations highlight the need for multimodal integration and
denser temporal sampling in future work. Overall USDPnet offers a robust, anatomically informed,
and computationally efficient framework for infant subcortical parcellation, with broad applicability
to other symmetric brain regions and early neurodevelopmental research.
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6 ETHICS AND REPRODUCIBILITY STATEMENT

This study used infant MRI data from the Baby Connectome Project (BCP), openly available, with
parental consent and ethical approval. The proposed parcellation approach is intended only for
research purposes and requires expert validation for clinical applicability. We commit to open-
sourcing the code to ensure reproducibility and responsible use. Declaration of using LLMs:
LLMs were only used for language editing. All scientific content, analysis, and results are origi-
nally produced.
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A DECLARATION OF LARGE LANGUAGE MODELS (LLMS) USAGE

We only employed LLMs to enhance manuscript quality through grammar correction, error iden-
tification, and clarity optimization. All AI-generated suggestions underwent rigorous human re-
view and adaptation. The authors retain full responsibility for all content and conclusions presented
herein.

B REPRODUCIBILITY

B.1 DETAILED IMPLEMENTATION CONFIGURATION

Computational Environment. All experiments were conducted on Ubuntu 20.04 with Python 3.8.8
and PyTorch framework, accelerated using CUDA 12.2 for efficient GPU computation.

Hyperparameters. We configured regularization weights λ1 = λ2 = 5 × 10−2 and symmetry
weight λ3 = 10−1 to prioritize anatomically-consistent bilateral convergence. The model employed
p = 0.2 dropout probability and SGD optimizer with learning rate α0 = 1 × 10−3, momentum
µ = 0.9. ReduceLROnPlateau scheduler utilized reduction factor γ = 0.5, patience P = 1000
epochs, cooldown C = 50 epochs, and minimum learning rate αmin = 1× 10−3.

Training Protocol. The adaptive epoch strategy followed epochs = r × 1500 where r represents
target subregion count. Full-batch training was implemented to maximize GCSD’s joint entropy
computation advantages, followed by nfinetune = 30 fine-tuning iterations for optimal performance
across all six subcortical nuclei (amygdala, caudate nucleus, hippocampus, pallidum, putamen, and
thalamus) with bilateral hemispheric training for both left and right structures, encompassing subre-
gional configurations r ∈ {2, 3, ..., 10} for comprehensive parcellation analysis.

B.2 BASELINE METHODS CONFIGURATION

Fair Comparison Setup. All baseline methods were evaluated using identical data preprocessing
protocols, and evaluation metrics to ensure fair comparison. Each method underwent 30 independent
runs with different random initializations to account for stochastic variability.

Deep Learning Baselines. DEC (Xie et al., 2016), DDC (Kampffmeyer et al., 2019), and GJRD
(Lu et al., 2025a) were implemented using their original architectures with learning rates adapted to
1× 10−3 for consistent convergence. GJRD employed identical encoder architecture to our method
for fair feature comparison.

Traditional Methods. All methods utilized L2-normalized input features. Agglomerative Cluster-
ing employed Ward linkage with Euclidean distance. NMF variants used nndsvd initialization, max-
imum iterations = 80000, tolerance = 10−4, regularization coefficient α = 0.1, and L1-ratio = 0.5.
DeepNMF implemented hierarchical matrix factorization with random initialization, maximum iter-
ations = 80000, tolerance = 10−5, Frobenius beta loss, regularization coefficients αW = αH = 0.01,
L1-ratio = 0.0, and Min-Max normalization preprocessing followed by K-means clustering on latent
representations. Spectral Clustering variants configured RBF kernel with γ = 1.0 and discretize
assignment strategy. Dimensionality reduction methods (PCA, t-SNE, UMAP) used default scikit-
learn parameters followed by Ward agglomerative clustering.

B.3 PARAMETER SENSITIVITY ANALYSIS DETAILS

To systematically evaluate the robustness and optimal configuration of regularization weights, we
conducted comprehensive parameter sensitivity analysis on the thalamus with 10 target clusters. We
initialized the baseline configuration with λ1 = λ2 = λ3 = 10−2 and the weight coefficient for
DGCS fixed at unity. For sensitivity assessment, we defined 12 logarithmically-spaced values span-
ning five orders of magnitude: {1× 10−5, 5× 10−5, 1× 10−4, 5× 10−4, 1× 10−3, 5× 10−3, 1×
10−2, 5 × 10−2, 1 × 10−1, 5 × 10−1, 1, 5}. For each parameter λi (i ∈ {1, 2, 3}), we systemati-
cally varied its value across the 12-point grid while maintaining the remaining two parameters at
the baseline value of 10−2. To ensure statistical reliability, we employed 30 high-performing initial-
ization seeds consistently across all parameter configurations. For each experimental condition, we
executed clustering procedures and computed the silhouette coefficient (SC) for both hemispheres.
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Table 4: Vertex counts, running time (epochs/s), and peak GPU memory usage (GB) for subcortical
nuclei in left and right hemispheres.

Metric Subcortical Nuclei

Amyg. Caud. Hipp. Pall. Put. Thal.

Vertices (Left) 674 2,230 2,264 1,088 2,230 3,416
Vertices (Right) 694 2,176 2,332 1,100 2,234 3,346

Running time (epochs/s) 50.6 27.2 24.3 26.9 49.3 14.1
Memory usage (GB) 0.13 0.83 0.90 0.25 0.83 1.80

Performance evaluation was based on the mean SC values averaged across the 30 independent runs
and bilateral hemispheres. The sensitivity profiles for all three parameters were visualized as per-
formance curves, enabling identification of optimal parameter ranges. Based on these empirical
results, we identified a favorable configuration as λ1 = λ2 = 5 × 10−2 and λ3 = 10−1, which
demonstrated superior clustering performance for subsequent experiments. All other experimental
settings remained consistent with those specified in the Environment section.

B.4 COMPUTATIONAL RESOURCE CONSUMPTION

This section summarizes the computational resources and runtime required for model training and
experiments. All experiments were performed on a system equipped with NVIDIA RTX 3090
GPUs. Table 4 reports the number of vertices, which represents the data size n in {xi ∈ X}ni=1,
for each nucleus in the left and right hemispheres. Each vertex is associated with a 513-dimensional
feature vector, corresponding to the dimension of xi ∈ Rm, where each dimension encodes the
surface area of the vertex at a specific age in the atlas. We further evaluated our method on all six
nuclei at their respective optimal cluster numbers and recorded the corresponding computational
costs, as detailed in the table.

C EVALUATION METRICS FORMULATION

Silhouette Coefficient (SC). We employ a customized affinity-based silhouette coefficient formula-
tion (Rousseeuw, 1987) to accommodate the inherent structure of subcortical surface area features.
For each vertex i, the silhouette score si is computed as:

si =
bi − ai

max(ai, bi)
(6)

where ai denotes the intra-cluster average dissimilarity: ai = 1
|Ci|−1

∑
j∈Ci,j ̸=i d(i, j), and bi repre-

sents the minimum inter-cluster average dissimilarity: bi = mink ̸=cluster(i)
1

|Ck|
∑

j∈Ck
d(i, j). The

dissimilarity metric is derived from the original feature affinity matrix as d(i, j) = 1 −Rij , where
R represents the affinity matrix constructed from raw vertex area features. The overall silhouette
coefficient is obtained by averaging across all vertices: SC = 1

n

∑n
i=1 si.

Calinski-Harabasz Index (CH). This index (Caliński & Harabasz, 1974) quantifies the ratio of
between-cluster to within-cluster variance, computed using the standard formulation:

CH =
tr(Bk)/(K − 1)

tr(Wk)/(n−K)
(7)

where Bk =
∑K

i=1 ni(µi − µ)(µi − µ)T constitutes the between-cluster scatter matrix, Wk =∑K
i=1

∑
x∈Ci

(x − µi)(x − µi)
T defines the within-cluster scatter matrix, µ denotes the global

feature centroid, and µi represents the centroid of the i-th cluster.

Reconstruction Error (RE). This metric (Valle et al., 1999) evaluates clustering fidelity by quanti-
fying the mean squared deviation between vertex features and their respective cluster centroids:

RE =
1

n

K∑
k=1

∑
i∈Ck

||xi − µk||2 (8)
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where µk = 1
|Ck|

∑
i∈Ck

xi denotes the centroid of the k-th cluster, computed as the arithmetic
mean of all vertices assigned to that cluster.

Feature Homogeneity (FH). This coefficient (Rosenberg & Hirschberg, 2007) assesses intra-cluster
feature consistency relative to global feature variability, formulated as:

FH = 1− σ̄2
intra

σ2
global

(9)

where σ̄2
intra = 1

K

∑K
k=1

1
d

∑d
j=1 Var(XCk,j) represents the average intra-cluster variance across

all feature dimensions, and σ2
global = 1

d

∑d
j=1 Var(Xj) characterizes the global feature variance.

Higher FH values indicate superior feature consistency within clusters relative to the overall dataset
distribution.

D SUPPLEMENTARY EXPERIMENTS

D.1 SCHEDULING OF SYMMETRY LOSS WEIGHT.

Given that subtle asymmetries persist between the left and right hemispheres of subcortical nuclei,
we design a temporal scheduling strategy to dynamically adjust the symmetry constraint during
training. We kept the random seed and all experimental settings identical to those used in Table
1, modifying only the symmetry weight scheduling strategies.A dedicated scheduler scales the
symmetry loss term, and we consider three schemes: cosine, linear, and exponential.

In all runs, the symmetry weight wsym(t) is updated from an initial value w0 (e.g., w0 = 2×10−3)
toward a final value wf (e.g., wf = 0) over T epochs, with epoch index t and normalized progress
p = t/T . The scheduler is active only for t ≥ tstart; otherwise wsym(t) = w0. For the linear
schedule, we use

wsym(t) = (1− p)w0 + pwf , (10)

for the cosine schedule

wsym(t) = wf + (w0 − wf )
1

2

(
1 + cos(πp)

)
, (11)

and for the exponential schedule

wsym(t) = w0 exp(−λp), λ =

− ln

(
wf

w0

)
, wf > 0,

λ0, wf = 0,
(12)

where λ0 is a fixed decay rate (in our experiments chosen such that the weight rapidly approaches
zero near the end of training).

This setup aims to impose stronger bilateral consistency early while gradually relaxing the con-
straint to permit mild asymmetries. However, the results in Table 5 show that reducing the sym-
metry loss weight over training degrades performance and does not improve clustering quality. In
practice, an appropriately chosen fixed symmetry weight better preserves global bilateral symmetry
while still accommodating localized, neurobiologically meaningful asymmetries.
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Table 5: Comparison of symmetry weight scheduling strategies across left and right hemispheres.We
use bold text to denote the first places.

Scheduling strategy Left Hemisphere Right Hemisphere

SC ↑ CH ↑ RE ↓ FH ↑ SC ↑ CH ↑ RE ↓ FH ↑
Cosine 0.324 1211 1.038 0.696 0.320 1120 1.089 0.702
Linear 0.315 1154 1.102 0.692 0.311 1146 1.110 0.688
Exponential 0.311 1142 1.112 0.686 0.309 1055 1.119 0.679

Ours 0.328 1228 1.042 0.708 0.317 1123 1.087 0.704

Table 6: Comparison results of different batch strategy across left and right thalamus(r=10) hemi-
spheres.We use bold text to denote the first places.

Batch strategy Left Hemisphere Right Hemisphere

SC ↑ CH ↑ RE ↓ FH ↑ SC ↑ CH ↑ RE ↓ FH ↑
Batchsize=64 0.085 564 0.859 0.675 0.101 620 0.849 0.703
Batchsize=256 0.223 647 0.791 0.647 0.182 708 0.857 0.687
Batchsize=1024 0.281 645 0.792 0.644 0.231 661 0.897 0.645

Ours(Full batch) 0.285 644 0.792 0.631 0.294 648 0.908 0.642

D.2 VALIDATION OF THE FULL-BATCH TRAINING STRATEGY

We evaluate the effectiveness of the full-batch training strategy by systematically comparing it
with stochastic gradient descent (SGD) using fixed mini-batch sizes of 64, 256, and 1024. We
kept the random seed and all experimental settings identical to those in Table 1, varying only
the batch strategy, and conducted the experiments exclusively on the thalamus with the subregion
number fixed at 10 (r = 10). The resulting clustering metrics are summarized in Table 6. No-
tably, the thalamus comprises 3416 vertices in the left hemisphere and 3346 vertices in the right
hemisphere. Under the full-batch setting, each training pass processes all vertices simultaneously,
yielding input matrices of size XL, XR ∈ R6762×m. In contrast, when employing fixed mini-batch
strategies, each iteration uses batches of size 2 × batchsize for the concatenated bilateral inputs
XL and XR. The full-batch approach provides more stable gradient estimates and more faithfully
captures the global data distribution, which is essential for optimizing the GCSD-based objective.
Conversely, mini-batch SGD introduces stochastic noise due to sampling variability, which can
hinder convergence and reduce consistency across runs. Empirically, our results demonstrate that
full-batch training yields more reliable and reproducible clustering performance, particularly for
the structurally complex thalamus, where subtle anatomical variations can substantially influence
parcellation outcomes.

D.3 COMPARISON OF SYMMETRY LOSS BASED ON MSE AND CROSS-ENTROPY

To compare the effectiveness of symmetry loss computed using MSE versus cross-entropy, we kept
the random seed and all experimental settings identical to those used in Table 1, modifying only the
formulation of the symmetry loss to cross-entropy. The results, summarized in Table 7, show that
the MSE-based symmetry loss consistently outperforms its cross-entropy counterpart. A plausible
explanation is that MSE provides a smoother and more stable gradient signal for enforcing bilateral
correspondence, whereas cross-entropy tends to be more sensitive to local prediction fluctuations,
leading to less reliable symmetry constraints.
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Table 7: Comparison of MSE-based and cross-entropy–based symmetry loss formulations across
left and right thalamus(r=10) hemispheres

Batch strategy Left Hemisphere Right Hemisphere

SC ↑ CH ↑ RE ↓ FH ↑ SC ↑ CH ↑ RE ↓ FH ↑
Cross-entry 0.292 969 1.135 0.709 0.300 1030 1.146 0.703
Ours(MSE) 0.328 1228 1.042 0.708 0.317 1123 1.087 0.704

D.4 DETERMINATION OF OPTIMAL SUBREGION NUMBERS

To systematically determine the optimal parcellation granularity for each subcortical nucleus, we
conducted comprehensive cluster validation analysis across subregion numbers ranging from r = 2
to r = 10. We evaluated the results from the 30 independent runs previously performed for all six
subcortical nuclei across bilateral hemispheres, following the experimental protocol described in the
Section 4.1, to ensure statistical robustness. The silhouette coefficient (SC) was computed for all
clustering results, with average SC values calculated across all nuclei at each cluster number and
visualized as line plots in Figure 6. The SC serves as our primary validation metric, quantifying
clustering quality through the ratio of inter-cluster separation to intra-cluster compactness, where
higher values indicate superior parcellation coherence and distinctiveness. Figure 6 establishes the
criterion for selecting optimal subregion numbers, with arrows indicating regions of locally maximal
SC values corresponding to the most appropriate parcellation granularities.

Our analysis revealed distinct SC optimization profiles reflecting the inherent structural complex-
ity of each subcortical nucleus. The amygdala and pallidum demonstrated optimal SC values at
r = 2, consistent with their relatively lower structural complexity and smaller volumetric charac-
teristics, making them unsuitable for finer-grained subdivisions. Conversely, the caudate nucleus,
hippocampus, and putamen achieved optimal SC values at r = 5, r = 7, and r = 4, respectively,
reflecting their intermediate organizational complexity. The thalamus exhibited optimal SC perfor-
mance at r = 10, reflecting its highly complex internal architecture. To validate our methodology’s
performance at higher granularities and definitively establish the optimal thalamic parcellation, we
extended the analysis to encompass r ∈ {11, 12, . . . , 15}. This extended evaluation confirmed that
r = 10 remained optimal for thalamic parcellation, demonstrating the stability of our optimization
approach. Based on this comprehensive validation analysis, we established the following optimal
subregion numbers for subsequent neuroanatomical characterization: amygdala (r = 2), caudate
nucleus (r = 5), hippocampus (r = 7), pallidum (r = 2), putamen (r = 4), and thalamus (r = 10).

E EXPERIMENTAL DATA AND PREPROCESSING PIPELINE

E.1 BCP DATASET CHARACTERISTICS

The Baby Connectome Project (BCP) dataset (Howell et al., 2019) provides longitudinal neuroimag-
ing data from typically developing infants. For each scan, both T1w and T2w images were collected
with 3T Siemens Prisma MRI scanners using a 32-channel head coil. The T1w images were acquired
with parameters: TR/TE/TI = 2400/2.24/1060 ms, flip angle = 8°, and isotropic spatial resolution
of 0.8 mm. The T2w images were acquired with parameters: TR/TE = 3200/564 ms, variable flip
angle, and isotropic spatial resolution of 0.8 mm. Table 8 presents the details of the data used in this
work. Of note, the BCP cohort doesn’t include twins. Figure 7 exhibits the number of subjects per
month with respect to sex (Female/Red, Male/Blue).Additional methodological details can be found
in (Howell et al., 2019).

Inclusion and Exclusion Criteria. Inclusion criteria: (1) born from 37 to 42 weeks gestational age
(GA); (2) appropriate birth weight matching gestational age; (3) absence of major pregnancy and
delivery complications.Exclusion criteria: (1) adoption status; (2) diagnosed schizophrenia, autism
spectrum disorder, bipolar disorder, or intellectual disability; (3) medical or genetic conditions af-
fecting growth, development, or cognition; (4) MRI contraindications; (5) maternal substance use
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Figure 6: Silhouette coefficient optimization profiles for subcortical nucleus parcellation. SC values
are plotted across subregion numbers r ∈ {2, 3, . . . , 10} for five nuclei (amygdala, caudate nu-
cleus, hippocampus, pallidum, putamen) and extended to r ∈ {2, 3, . . . , 15} for thalamus due to its
complex internal architecture. Arrows denote selected optimal configurations determined through
combined SC maximization and neuroanatomical validation. The analysis demonstrates nucleus-
specific structural complexity gradients, with optimal parcellation granularities established as fol-
lows: amygdala (r = 2), caudate nucleus (r = 5), hippocampus (r = 7), pallidum (r = 2), putamen
(r = 4), and thalamus (r = 10).

Table 8: Participant characteristics and data processing workflow for the BCP dataset.

Characteristic Data
Total number of scans acquired 702 scans

Remaining scans after each processing step:
1. After quality control (excessive motion, 633 scans

insufficient coverage, and/or ghosting)
2. After removing scans with missing T1w or T2w

images
564 scans

3. After subcortical segmentation and manual
correction

513 scans

Total number of subjects 231 subjects (513 scans)
Subjects having only 1 scan 92 subjects
Subjects having 2 scans 65 subjects
Subjects having ≥ 3 scans 74 subjects

Sex distribution 126 females / 105 males
Age range 10–809 days (scan age)

(alcohol or illicit drugs), placental abruption, maternal preeclampsia, or maternal HIV-positive status
during pregnancy.
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Figure 7: The number of subjects at each scan age.

E.2 NEUROIMAGING PREPROCESSING METHODOLOGY

We strictly adhered to the comprehensive iBEAT V2.0 deep learning–based pipeline as detailed in
(Wang et al., 2023) for all infant cortical surface reconstruction procedures.

Subcortical Surface Mapping Protocol. Instead of reconstructing any new atlas, we fol-
lowed and applied the publicly released 4D subcortical atlas and mapping framework described in
Chen et al. (2022), and we include the workflow here solely to document the preprocessing method-
ology used in our study. Figure 8 illustrates the complete subcortical surface mapping workflow.
The processing pipeline comprises five sequential stages:

(1) 4D Atlas Construction: The publicly available 4D infant brain atlas Chen et al. (2022) is utilized
and processed through the SyGN template construction method in ANTs. T1w, T2w, and tissue
probability maps (generated by iBEAT V2.0) are incorporated to improve registration robustness
across developmental stages. The atlas includes densely sampled temporal points from 0 to 24
months (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18, 21, 24 months). Age-specific deformation fields
provided in the framework are used for linking individual scans to atlas templates across time.

(2) Inter-Atlas Deformation Mapping: Voxel-wise anatomical deformations across developmental
time points are computed following the procedures described in Chen et al. (2022).High-contrast
images serve as registration targets, with low-contrast images warped accordingly.Temporal consis-
tency is maintained through sequential chronological registration.

(3) Reference Surface Reconstruction: Surface mesh representations were reconstructed for each
subcortical structure using the 0-month atlas as the initial reference template.

(4) Individual Surface Warping: Subcortical surface meshes from the 0-month template were warped
to individual scans by combining anatomical deformations across age-specific atlases with template-
to-individual transformations in chronological sequence. These deformation fields were consoli-
dated into unified transformations for efficient surface mapping.

(5) Vertex-wise Feature Extraction: Local surface areas were computed at each vertex across indi-
vidual subcortical surfaces to establish vertex-wise developmental trajectories.

The integration of tissue probability maps as additional registration constraints effectively addresses
dynamic appearance changes and low tissue contrast characteristic of infant brain MRI, resulting in
accurate deformation estimation and high-quality subcortical surface correspondence across devel-
opmental stages.
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Figure 8: Overview of the cortical surface reconstruction pipeline. M: Month. TSM: tissue segmen-
tation map.The workflow illustrates the complete processing pipeline from multi-modal MRI data
(T1w, T2w, TSM) through atlas-based registration and deformation mapping to generate subcorti-
cal surface meshes across different developmental stages. ANTs registration enables transformation
propagation from atlas to individual subjects, facilitating vertex-correspondence analysis of subcor-
tical nuclei morphometry.

E.3 SUBCORTICAL SEGMENTATION AND MANUAL CORRECTION

Subcortical segmentation is based on an infant-dedicated deep learning framework (Chen et al.,
2020; 2023b).This section summarizes the segmentation and manual-correction steps as part of the
preprocessing methodology. In detail, at the coarse stage, the pipeline uses the SDM-UNet(Chen
et al., 2020) to directly predict the signed distance maps from multi-modal intensity images, in-
cluding T1w, T2w, and the ratio of T1w and T2w images, which can leverage the spatial context
information, including the structural position information and the shape information of the target
structure, to generate high-quality signed distance maps. At the fine stage, the pipeline further uses
a multi-source and multi-path attention UNet (M2A-UNet)(Chen et al., 2023b). Then, the signed
distance maps predicted by SDM-UNet, which encode spatial-context information of each subcor-
tical structure, are integrated with the multi-modal intensity images as the input of M2A-UNet for
achieving refined segmentation. Besides, both the 3D spatial and channel attention blocks are added
to guide the M2A-UNet to focus more on the important subregions and channels. Due to the signif-
icantly different appearances of the infant brain MR images across ages, we manually delineated 48
scans within four representative age ranges, namely 0-3 months, 6 months, 9-12 months, and 18-24
months, and each age range has 12 scans. We then separately trained a deep network for each age
group. A stratified 6-fold cross-validation strategy is employed, and each fold consists of 10 training
images and 2 testing images.

F MULTI-PERSPECTIVE PARCELLATION VISUALIZATION

This section presents comprehensive three-dimensional visualization of subcortical nuclei parcella-
tion outcomes across multiple methodological approaches. Figure 9 demonstrates the parcellation
results obtained through our proposed USDPnet framework, with subcortical structures rendered
in bilateral paired configurations to facilitate systematic morphological assessment. Each nucleus
pair is visualized from six distinct anatomical perspectives to enable comprehensive evaluation of
three-dimensional parcellation boundaries and subregional organization patterns.
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Figures 10–13 provide equivalent multi-perspective renderings for baseline methodologies: Spectral
clustering with discretization (top-performing spectral clustering variant), DeepNMF (established
matrix factorization approach), DDC (recent deep clustering method), and Tian et al. (2020)’s func-
tional connectivity gradient-based parcellation using voxel data. Visual inspection reveals several
key advantages of our USDPnet framework over these baseline approaches. The proposed method
demonstrates superior boundary definition precision, with more anatomically coherent subregional
delineations that preserve neurobiologically meaningful structures. Additionally, dynamic visual-
izations of our parcellation results can be viewed in the supplementary movie.mp4 and movie1.mp4
files.

Figure 9: Subcortical nuclei parcellation results obtained through the proposed USDPnet frame-
work, demonstrating multi-perspective anatomical renderings with bilateral paired configurations
for comprehensive morphological assessment.

Figure 10: Subcortical nuclei parcellation outcomes obtained via Tian et al. (2020)’s functional
connectivity gradient-based approach.
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Figure 11: Subcortical nuclei parcellation outcomes obtained via DDC methodology.

Figure 12: Subcortical nuclei parcellation outcomes obtained via DeepNMF methodology.

Figure 13: Subcortical nuclei parcellation outcomes obtained via Spectral clustering with discretiza-
tion methodology.
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