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ABSTRACT

Accurate infant subcortical parcellation is vital for understanding early brain de-
velopment and neurodevelopmental pathology. However, existing methods suffer
from initialization sensitivity, poor bilateral consistency, and limited applicability
to early postnatal data. We propose USDPnet, an Unsupervised Symmetric Deep
Parcellation Network, which integrates deep autoencoder-based feature embed-
ding with divergence-driven clustering. By introducing the generalized Cauchy-
Schwarz divergence (GCSD) as the clustering objective, we enhance inter-cluster
separability across complex developmental features. A symmetry constraint fur-
ther enforces bilateral consistency, leading to structurally coherent and repro-
ducible delineations. USDPnet operates on surface-based features extracted from
infant subcortical nuclei. Experiments show it outperforms traditional and deep
clustering baselines. Visualizations are largely consistent with the parcellation re-
sults based on anatomy and function connectivity. The resulting parcellations are
developmentally grounded, anatomically symmetric, and functionally relevant, of-
fering fine-grained and morphological coherent maps of early subcortical organi-
zation. Code is available at https://anonymous.4open.science/r/USDPnet-X12D.

1 INTRODUCTION

Subcortical nuclei, including the hippocampus, amygdala, thalamus, and basal ganglia (e.g., cau-
date, putamen, pallidum), form complex neural circuits fundamental to higher-order cognitive func-
tions such as memory consolidation, emotional regulation, and motor control (Johnson, 2012).
These structures can be further parcellated into anatomically and functionally heterogeneous sub-
regions (e.g., hippocampal subfields, amygdaloid nuclei) (Tian et al.l 2020; Iglesias et al., 2015)),
each playing distinct roles in behavior and cognition. For instance, CA3a and CA3Db subfields of the
hippocampus are crucial for encoding spatial memory (Kesner, [2007)), while the laterobasal group
of the amygdala exhibits robust auditory responses (Ball et al.,[2007).

Owing to their specialized functions, subcortical regions are critically implicated in a range of neu-
rological and psychiatric conditions. For instance, atrophy of the CA1 subregion of the hippocampus
is a hallmark of Alzheimer’s disease (De Flores et al.|2015)), while abnormal enlargement of the lat-
erobasal subregion of the amygdala is frequently observed in autism spectrum disorder (ASD) (Kim
et al.,2010). Consequently, accurate subregional parcellation of subcortical structures is essential
for understanding their underlying mechanisms and informing targeted interventions. Deep brain
stimulation (DBS), for example, relies on precise localization of therapeutic targets in nuclei such
as the subthalamic nucleus or pallidum (lorio-Morin et al., 2020).

Recent trends in neuroscience and neuroengineering further emphasize the urgency of high-
resolution subcortical mapping. Multimodal neuroimaging atlases (Chen et al.| 2022; [Tian et al.,
2020; Iglesias et al., 2015) and emerging brain-computer interface (BCI) technologies increasingly
require anatomically faithful and developmentally informed subcortical boundaries to support fine-
grained localization, neural decoding, and closed-loop modulation (Horn et al., [2017)).

Notably, early infancy marks a critical period of subcortical growth that underpins the emergence
of cognition, consciousness, and neurodevelopmental trajectories (Chen et al.| [2023a)). Despite this
developmental significance, current subcortical parcellation methods fall short in the infant con-
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Figure 1: Overview of unsupervised symmetric infant subcortical parcellation. (a) Surface mesh re-
construction of subcortical nuclei across time points within the first two postnatal years; (b) Extrac-
tion and integration of vertex-wise area features: original features X LO, X g and symmetric features
X7, X3, form bilateral datasets X, X g, where 2 ; and z7, ; denote a vertex and its symmetric
counterpart; (c) Bilateral correspondence mapping; (d) Architecture of USDPnet; (e) Multi-view
visualization of parcellation outcomes.

text. Existing methods are predominantly adult-centric and rely on either static anatomical priors
or functional connectivity maps, both of which are difficult to acquire or adapt for infants
[2021). Compounding this, infant MRIs suffer from motion artifacts, reduced tissue contrast,
and rapid intensity fluctuations due to ongoing myelination (Z5llei et all, [2020), rendering most
adult-based models ill-suited for infant applications. While recent work has exploited the intrinsic
bilateral symmetry of human anatomy (Wathore & Gorthi, 2024} Raina et al., [2020), many exist-
ing methods for subcortical parcellation overlook this property (Teyler & Discennal, [1984}; [Zuccoli|
2015). This oversight can lead to mismatched left-right partitions, compromising accuracy and
interpretability, particularly in infants where small asymmetries may yield misleading conclusions.

To overcome the limitations of existing subcortical parcellation methods in early infancy, we pro-
pose USDPnet—an Unsupervised Symmetric Deep Parcellation Network—which integrates deep
autoencoder-based feature embedding with divergence-driven clustering (Figure [T[d)). At the core
of our approach, we introduce a novel symmetry-aware clustering architecture specifically designed
for bilaterally organized subcortical structures. Thereby, we introduced the generalized Cauchy-
Schwarz divergence (GCSD) for supervising each hemisphere to effectively handle complex multi-
modal distributions in developmental data, significantly outperforming traditional pairwise measures
in multi-region clustering scenarios while substantially improving computational efficiency and sta-
bility. To ensure morphologically consistent and interpretable outputs, USDPnet explicitly incorpo-
rates bilateral symmetry constraints, aligning with the known anatomical symmetry of subcortical
structures across hemispheres. This design not only improves robustness but also ensures consis-
tency of parcellation results. Using 513 high resolution longitudinal infant MRI scans from 231 BCP
subjects aged 0-2 years, we construct temporally aligned surface meshes for 6 subcortical structures
with infant-dedicated methods and extract vertex-wise area features along with symmetry-consistent
correspondence mapping (Figure[T(a-c.e)).

Comprehensive evaluations demonstrate that USDPnet significantly outperforms state-of-the-art
methods in clustering quality, anatomical consistency, and computational stability. The resulting
subregion maps reveal consistent and interpretable developmental trajectories, offering new insights
into early brain organization and subcortical topography. Our main contributions include:

* Unsupervised and symmetry-aware parcellation framework: USDPnet enables fine-grained
characterization of subcortical nuclei, providing a crucial reference for both developmental neu-
roscience and translational applications.
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* Robust clustering objective: We introduce GCSD as a scalable, information-theoretic loss that
robustly manages multi-distribution clustering scenarios in high-dimensional feature space.

* Symmetry-constrained optimization: By leveraging intrinsic anatomical symmetry, we im-
prove parcellation accuracy, consistency, and interpretability, offering an effective new direction
for surface-based neuroimaging parcellation.

2 RELATED WORK

Brain Tissue Parcellation Algorithms. Parcellation of brain tissue is a fundamental task for under-
standing the structural-functional architecture of the brain and its role in neuropsychiatric conditions.
Glasser et al.| (2016)) introduced a semi-automated, gradient-based method using multimodal data,
achieving 96.6% detection accuracy across 180 cortical areas per hemisphere. In subcortical stud-
ies, [Tian et al.| (2020) used functional connectivity gradients to generate hierarchical atlases, while
Jitsuishi & Yamaguchil (2025) applied tractography to map thalamic nuclei to large-scale networks.
Cucurull et al.[(2018) reformulated Broca’s area parcellation as a graph node classification problem,
where GCN and GAT outperformed traditional vertex-wise models. Recently, Gao et al.|(2025) used
diffusion MRI tractography with graph neural networks (GNNs) for fine-scale striatal parcellation.
Despite these advances, most methods target adult brains and lack the adaptability to infant devel-
opmental characteristics and imaging constraints, calling for tailored solutions for early postnatal
parcellation.

Unsupervised Clustering Methods. Unsupervised clustering is widely used in parcellation to dis-
cover latent structures in neuroimaging data. Classical methods like spectral clustering (Ng et al.,
2001) and non-negative matrix factorization (NMF;|Lee & Seung}|1999) can model complex and in-
terpretable patterns. Building upon these foundations, deep learning-based unsupervised clustering
has emerged as a transformative research paradigm. Deep Embedded Clustering (DEC; [Xie et al.,
2016) and its extensions such as BDEC(Ma et al.} 2023} Zhu et al.,|2025)) jointly learn representations
and clustering in fMRI parcellation tasks.Recent work such as DECS, DCSS, and DMSC(Cheng
et al., 2024} [Sadeghi & Armantard| 2023} [Zhu et al.| 2025) has also improved the mechanisms for
balancing the clustering and reconstruction losses in deep clustering. However, these methods suffer
from inefficiency in multi-region applications. Clustering effectiveness fundamentally depends on
divergence measure quality. Traditional divergences such as Cauchy-Schwarz (Kampffmeyer et al.,
2019) or KL divergence (Zhou et al., [2015) are limited to pairwise distributions, and their multi-
distribution extensions (Rosenblatt, [201 1} Perez, 1984) lack computational scalability. Recently, we
proposed a generalized Cauchy-Schwarz divergence (GCSD;|Lu et al.,[2025b)) to address these lim-
itations with efficient and robust multi-distribution estimation, motivating its adoption in USDPnet.

3 METHOD

The proposed USDPnet is an end-to-end unsupervised learning framework that jointly performs fea-
ture representation learning and clustering-based subcortical parcellation. As illustrated in Figure[2]
the model is explicitly designed to maximize inter-cluster separability through a GCSD objective,
which is well-suited for capturing complex multi-modal distributions in high-dimensional develop-
mental brain data. At the same time, USDPnet introduces a novel bilateral symmetry regularization
to ensure anatomical consistency across hemispheres—particularly critical for the bilaterally or-
ganized subcortical nuclei in infant brains. This joint optimization strategy enhances the bilateral
consistency, robustness, and interpretability of the resulting parcellations, making USDPnet a prin-
cipled solution for data-efficient, structure-aware infant brain mapping.

3.1 PROBLEM FORMULATION

Accurate and interpretable parcellation of subregions within infant subcortical nuclei is critical for
understanding early neurodevelopmental trajectories and the pathophysiology of related neurologi-
cal and psychiatric disorders. Given the fine-grained and heterogeneous nature of these structures,
our goal is to identify developmentally coherent subregions based on local morphological features
extracted from surface representations of subcortical nuclei.
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Figure 2: Overall architecture of USDPnet. (a) Bilateral input matrices X, and Xpg, containing
original and symmetrically mapped surface-area features, are encoded into latent embeddings Zp,
and Zg and then transformed into soft assignment matrices Ay, and Ag; proximity matrices Qp,
and @ i are further computed from these assignments to characterize cluster-wise similarities. (b) A
GCSD-based clustering objective operates on these assignments, where A9 and Ag denote cluster
probabilities for original vertices and Af and ASR for symmetrically mapped vertices, and a symme-
try loss enforces consistent parcellations across hemispheres.

Formally, let {z; € X }?:1 denote a set of high-dimensional feature vectors, where each xz; € R™
corresponds to a vertex on the surface of a subcortical nucleus, capturing local developmental met-
rics (e.g., vertex-wise area over time). The objective is to assign each vertex to one of  anatomically
and functionally meaningful clusters C1, ... , C.., such that: (1) intra-cluster similarity is maximized;
(2) inter-cluster separability is maximized; and (3) anatomical bilateral symmetry is preserved.

This leads to a constrained clustering formulation with dual goals: (1) learning a compact and dis-
criminative latent representation space for subcortical features, and (2) optimizing an anatomically
informed cluster assignment that respects the symmetrical nature of infant subcortical structures.

3.2 NETWORK ARCHITECTURE

Overall Architecture. This study aims to train a network that effectively parcellates each vertex of
subcortical nuclei surface models into one of k& anatomically consistent subregions. To achieve this,
we adopt an encoder-clustering architecture comprising: a feature encoder transforming surface area
features into discriminative representations, a cluster assignment network generating probability
distributions over target subregions, and an optimization framework jointly optimizing GCSD and
symmetry losses. The framework processes bilateral datasets X; € R™ ™ and Xp € R"*™
containing original and symmetric features. Please refer to Figure 2] for the detailed architecture.

Encoder. The encoder of USDPnet employs a four-layer multilayer perceptron architecture consist-
ing of an input layer of dimension d;;, two intermediate hidden layers each containing 500 units
with ReLU activation functions, and an output layer of dimension d, with Tanh activation. Batch
normalization is applied after each hidden layer. The original data X is transformed by the feature
encoder into distinguishable low-dimensional features Z. Specifically, the input data is organized
into bilateral hemisphere datasets X, Xr € R"*™, where n = nj + npr represents the total
number of vertices across both hemispheres. Each dataset is constructed by concatenating original
and symmetric features: X7 = {X3, X9} and Xp = {X¢, X7}, where the semicolon denotes
vertical concatenation. The original features X9 € R"£*™ and Xg € R"=>™ represent local
surface area features from left and right hemispheres, while symmetric features X f € R™£*™ and
X 1% € R™rX™ are generated through symmetric mapping and one nearest neighbor matching. No-
tably, X2 and X & maintain identical dimensions and occupy symmetric positions within X, and
Xpg, with X9 and X7 following the same dimensional and positional correspondence, as illustrated
in Figure[T] (b) and (c). These extended datasets are fed into the same encoder to obtain correspond-
ing low-dimensional features Z;, € R"*" and Zp € R"*".
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Cluster Assignment Network. The clustering module comprises a fully connected layer with 100
nodes, followed by Batchnorm layer,a ReLLU activation and a Softmax layer. The network takes
the low-dimensional feature embeddings Z;, or Zr as inputs, and outputs the corresponding soft
assignment matrices Ay, € R™*" and Ap € R"*", where each row represents the probability
distribution of a sample over all clusters. The composition of Ay, and Ag corresponds to that of
X1, and X g, comprising A;, = {A%, A9} and Ap = {AD, A?}. Among these, AY € R"*" and
Ag € R™2 X" gerve as the final assignment matrices applied to clustering results, where the features
represent the ultimate vertex labels. The complete matrices Ay, and Ay are utilized for subsequent
loss function computation, as illustrated in Figure 2] (b).

For each subcortical nuclei, to achieve effective parcellation across multiple clusters, we adopt the
maximization of GCSD among multiple clusters in the feature embeddings Z, or Z, as the principal
clustering objective, combined with simplex regularization on the assignment matrix A:

Lacsp = Daos(Z, A) + A tr(AAT) + A tr(QQ 1), )]

where A1, Ao > 0 are regularization coefficients balancing the trade-off between divergence maxi-
mization and cluster representation constraints, AT and Qfr denote the matrix transpose of A and @,
and tr(-) represents the matrix trace operation. The core term Dgcg, representing the generalized
Cauchy-Schwarz divergence, follows the estimator in|Lu et al.| (2025b):

r—1) T
Dges(Z,A) = —log (1 Sum<(AKA) prod(KA))) + %tr [log ((AT)’“*1 (KA)T*)] ,

r

2)
where K is the Gram matrix computed from the positive definite kernel ,, such that K;; = £, (z; —
z;) for all (4,7) pairs, and r represents the dimensionality of the cluster space encoded by the
assignment matrix A. The notation sum(-) signifies the summation of all elements within a matrix,
prod(A) calculates the product of row elements in matrix A, yielding a column vector. The second
and third terms in equation [I] serve to promote orthogonality among the clusters and to enforce the
proximity of the cluster membership vectors to a corner of the simplex. The proximity matrix @ is
derived from the assignment matrix A as:

Qij = exp(—|lai — ;?), 3)

where o; denotes the i-th row of A and e; denotes the j-th standard basis vector. Maximizing

tr(QQT) drives the assignment vectors toward one-hot form, thereby yielding more discriminative
cluster assignments. Details on the regularization terms can be found in Kampftmeyer et al.|(2019).

Compared to traditional pairwise divergence computation methods, GCSD offers significant advan-
tages through joint entropy computation, enabling single joint computation across all distributions
simultaneously, as illustrated in Figure 2| (b). This approach enhances clustering stability and com-
putational efficiency by avoiding the need for multiple pairwise comparisons and providing a unified
measure for multi-cluster optimization.

Symmetry Constraint. Motivated by the inherent anatomical symmetry of brain regions, we in-
troduce a symmetry constraint to address common limitations in traditional methods: left-right
parcellation inconsistency, poor stability, and high initialization sensitivity. Symmetry incorpora-
tion substantially improves result stability and reproducibility while reducing dependence on initial
conditions. To leverage anatomical symmetry, we perform symmetric point matching between hemi-
spheric data through midsagittal plane correspondence. Through symmetric coordinate mapping and
nearest neighbor matching, we obtain augmented datasets X f and X ;3 containing cross-hemisphere
symmetric correspondences.The details have been mentioned above.

The encoder processes the concatenated datasets X and X to generate assignment matrices Aj,
and Ap, where the symmetry loss employs Mean Squared Error (MSE) to quantify discrepancies
between symmetric assignments:

1 n
ﬁsym:MSE(AL,AR) = EZ”O‘LJ_QRJHQ’ (4)
i=1

where oy, ; and ap ; denote the i-th rows of Ay, and Ap (cluster probability vectors for correspond-
ing samples), and n is the total number of samples.
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The overall loss function of the proposed framework is formulated as:
L= CéCSD + EgCSD + A3 Csyma &)

where L5 gp and LEqp denote the GCSD-based clustering losses for the left and right hemi-
spheric feature embeddings, Lsyn, is the MSE-based symmetry constraint term, and A3 > 0 is a
weighting coefficient controlling the strength of the symmetry regularization.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset and Preprocessing. We use MRI data from the Baby Connectome Project (BCP) (How-
ell et al.l [2019) covering 513 typically developing infants aged 0-2 years. All preprocessing steps
strictly followed the iBEAT V2.0 pipeline as described in (Wang et al., [2023)), including intensity
correction, skull stripping, registration, and surface reconstruction. Following the same method-
ology, we generated vertex-corresponding surface models for 6 subcortical nuclei (hippocampus,
amygdala, thalamus, caudate, putamen, pallidum). Local surface areas at each vertex were com-
puted across multiple developmental stages and Gaussian-smoothed to construct temporal feature
vectors. This yields bilateral surface meshes where each vertex index encodes stage-specific area
measurements, forming growth trajectory representations that capture morphological development
patterns essential for age-sensitive parcellation, as illustrated in Figure|l|(a).

Implementation Details. The regularization weights were set to \; = Ay = 5 x 1072, while the
symmetry term weight A3 = 1 x 10~! was configured to prioritize symmetric convergence in clus-
tering results. We employ 0.2 dropout probability for regularization. SGD optimizer is used with
initial learning rate 1 x 10~3 and momentum 0.9, coupled with ReduceLROnPlateau scheduler. The
adaptive epoch strategy follows epochs = r x 1500, where r represents the target subregion count,
with comprehensive experiments conducted across bilateral hemispheres for all 6 subcortical nuclei
with subregion counts ranging from 2 to 10. To fully exploit GCSD’s joint entropy computation ca-
pability, we adopt a full-batch training strategy using the complete dataset as a single batch, enabling
global optimization over the entire data distribution and maximizing GCSD’s theoretical advantages.
Detailed implementation configurations are provided in the Appendix.

Competing Methods and Metrics. We compare our method against representative unsupervised
clustering approaches across four categories: (1) Matrix factorization methods including Deep-
NMF (Trigeorgis et al., [2014) and NMF (Wild et al., |2003); (2) Spectral clustering variants in-
cluding Spectral + Discretization (Ng et al.,[2001)), Spectral + GMM (Azimbagirad & Junior, |[2021)),
Spectral + K-Means (Sinaga & Yang| [2020), Spectral + K-Medoids (Park & Junl 2009)), and Spec-
tral + QR (Narasimhan et al., [2005); (3) Dimensionality reduction + clustering including t-SNE
+ Agglomerative (Maaten & Hintonl [2008), UMAP + Agglomerative (Mclnnes et al., 2018), and
PCA + Agglomerative (Abdi & Williams)| [2010); (4) Deep clustering including DEC (Xie et al.,
2016), DDC (Kampffmeyer et al., 2019), and GJIRD (Lu et al., [2025a) which employs generalized
Jensen-Rényi divergence to handle multiple distributions, providing a baseline for multi-distribution
clustering comparison. We evaluate clustering performance using four metrics: Silhouette Coeffi-
cient (SC), Calinski-Harabasz Index (CH), Reconstruction Error (RE), and Feature Homogeneity
(FH) (Rousseeuw, (1987} (Calinski & Harabaszl |[1974; |Valle et al., [1999; [Rosenberg & Hirschberg,
2007). As deep clustering methods are prone to local minima, a common problem for unsupervised
deep architectures, we conduct 30 independent runs per configuration and report results with opti-
mal unsupervised loss convergence. Baseline methods subject to random initialization variability
undergo equivalent multiple runs (>30), with best-performing results selected for fair comparison.

4.2 RESULT ANALYSIS

Clustering Performance Comparison. Table [I] reports the best performance achieved by various
methods under the optimal settings derived in Appendix [D.4] These results demonstrate USDP-
net’s superiority across all metrics and both hemispheres. For cluster cohesion, USDPnet achieves
the highest SC scores (0.328 left, 0.317 right), indicating tighter within-cluster similarity compared
to the second-best Spectral + Discretization (0.311 left, 0.312 right) and significantly outperform-
ing traditional methods like NMF (0.246 left, 0.244 right). For inter-cluster separability, USDPnet
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Table 1: Performance comparison of unsupervised clustering methods and the ablation study of
USDPnet. We use bold and underline text to denote the first and second places respectively.

Method | Left Hemisphere | Right Hemisphere

| sCt CH?T RE| FHt | SCt CH?T RE| FHT
DeepNMF 0.309 891 1.259 0.638 0.310 763 1.341 0.622
NMF 0.246 479 2.019 0.647 0.244 420 2.060 0.651
Spectral+Disc 0.311 989 1.187 0.668 0.312 919 1.216 0.661
Spectral+GMM 0.276 851 1.301 0.639 0.260 735 1.379 0.622
Spectral+KMeans 0.296 985 1.192 0.677 0.299 922 1.216 0.673
Spectral+KMed 0.307 900 1.253 0.665 0.308 791 1.325 0.651
Spectral+QR 0.280 961 1.210 0.666 0.278 892 1.242 0.657
tSNE+Agglo 0.219 766 1.368 0.648 0.252 725 1.365 0.629
UMAP+Agglo 0.271 833 1.307 0.654 0.299 728 1.371 0.633
PCA+Agglo 0.111 1142 1.096 0.701 0.107 1088 1.096 0.700
DEC 0.247 1055 1.145 0.681 0.159 953 1.196 0.676
DDC 0.243 1195 1.092 0.702 0.255 1003 1.167 0.678
GIRD 0.252 1118 1.100 0.697 0.178 976 1.174 0.686
Ours w/o A regularization 0.312 1189 1.085 0.667 0.309 1091 1.092 0.665
Ours w/o @ regularization 0.320 1113 1.105 0.669 0.311 1049 1.112 0.672
Ours w/0 Leym 0.306 1132 1.115 0.688 0.305 1049 1.121 0.681
Ours 0.328 1228 1.083 0.708 0.317 1123 1.087 0.704

attains the highest CH values (1228 left, 1123 right), demonstrating superior cluster distinctive-
ness compared to DDC (1195 left, 1003 right) and other deep methods. For reconstruction fidelity,
USDPnet achieves the lowest RE (1.083 left, 1.087 right), indicating minimal information loss dur-
ing feature compression. For anatomical consistency, USDPnet maintains the highest FH (0.708
left, 0.704 right), ensuring parcellated subregions preserve meaningful neuroanatomical boundaries.
These findings highlight USDPnet’s capacity to jointly optimize multiple dimensions of parcella-
tion quality, demonstrating the effectiveness of GCSD-based clustering and symmetry constraints in
achieving anatomically coherent subcortical delineations.

To further validate the robustness and stability of USDPnet, we present average performance results
with standard deviation statistics in Table 2] These results are averaged across bilateral hemispheres
and subregion counts 2-10 over 30 independent runs for each method, where all baseline methods are
subject to random initialization effects. The analysis shows that USDPnet consistently outperforms
all baseline methods across all evaluation metrics, demonstrating superior clustering quality with
lower variability compared to traditional methods.

Statistical Significance Analysis. To further substantiate the performance advantages, we con-
ducted Welch’s t-tests comparing USDPnet against leading deep clustering methods (DEC, DDC,
GJRD) under the same 30 experimental runs. The analysis reveals statistically significant superior-
ity on all metrics (p < 0.05 for all 12 comparisons), with large effect sizes (Cohen’s d > 0.8) in
11/12 comparisons demonstrating both statistical significance and practical importance. USDPnet
shows clear advantages over DEC (d = 2.530 for SC, d = 1.748 for FH), substantial improvements
over DDC (d = 1.248 for SC, d = 1.474 for FH), and significant gains over GJRD (d = 1.142 for
SC, d = 1.254 for FH). After Bonferroni correction (o« = 0.0042), 91.7% of comparisons remain
significant, providing robust evidence of USDPnet’s superiority over SOTA approaches.

Parcellation Visualization Analysis. Through systematic analysis of clustering metric variations
across different target subregion numbers for each nucleus, particularly examining SC coefficient
trends (detailed in Appendix), we determined optimal clustering numbers for each nucleus: Hip-
pocampus (7), Amygdala (2), Thalamus (10), Caudate (5), Putamen (4), and Pallidum (2). All com-
parative methods were evaluated under these metric-driven configurations. Figure [3| presents a com-
prehensive qualitative comparison of USDPnet against representative baseline methods: Spectral
+ Discretization (top SC performer), DeepNMF (established matrix factorization approach), DDC
(recent deep clustering method), and [Tian et al.|(2020)’s functional connectivity gradient-based par-
cellation using voxel data. The visualization reveals critical limitations in existing approaches that
USDPnet effectively addresses. In the baseline methods, several hemispheric discrepancies and
irregular parcellation fragments are observed (marked with red circles), indicating inconsistent clus-
tering behavior across methods.
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Table 2: Average performance comparison across clustering methods with standard deviations (av-
eraged across bilateral hemisphere regions for subregion counts 2-10 over 30 independent runs).We
use bold text to denote the first places.

Method | SCt CH? RE| FH?T

Spectral+GMM 0.227+0.058 6444202 1.585+0.431 0.578+0.090
Spectral+KMeans 0.239+0.059 747267 1.423+0.269 0.614+0.069
Spectral+KMed 0.234+0.068 563+278 1.688+0.446 0.563+0.106
tSNE+Agglo 0.208+0.024 659+90 1.472+0.128 0.608+0.029
UMAP+Agglo 0.220+0.038 631+100 1.507+0.130 0.594+0.035
DEC 0.135+0.052 866+139 1.304+0.160 0.643+0.040
DDC 0.187+0.074 885+149 1.289+0.148 0.648+0.040
GIRD 0.203+0.049 952+134 1.224+40.117 0.676+0.034
Ours | 0.253+0.065 1035+127 1.161+0.084 0.712+0.041

DeepNMF
[Lee & Seung]

DDC

Gradient-based

-X view +X view -Y view +Y view -Z view +Z view

Figure 3: Qualitative comparison of subcortical parcellation results between USDPnet and rep-
resentative baseline methods. Visualizations show bilateral parcellations across multiple nuclei.
Compared to baseline methods and functional connectivity gradient parcellation (Tian et al., 2020)-
USDPnet yields anatomically coherent, symmetric subregions without spurious outliers or inter-
hemispheric inconsistencies (highlighted with red circles). The resulting parcellations exhibit strong
alignment with expert-defined anatomical boundaries and SOTA adult parcellation (Tian et al.,
2020), demonstrating both anatomical consistency and developmental relevance.

These anomalous results reflect the limitations of existing methods, including their susceptibility
to initialization variance, inability to enforce anatomical constraints, and limited capacity to extract
meaningful developmental features from complex infant brain data. In contrast, USDPnet produces
more bilaterally consistent and symmetric parcellation boundaries than baseline methods, and its
surface area-based parcellations visually align with the voxel-level gradients reported in|Tian et al.
(2020), indicating agreement in the captured spatial patterns. This hemispheric consistency and
pattern-level concordance supports USDPnet as a robust clustering solution that effectively exploits
surface-based feature representations, which are more cost-effective and scalable to acquire from
standard sMRI than modalities such as fMRI or individualized anatomical delineations, particularly
in large infant cohorts.
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Figure 4: Parameter sensitivity analysis for regularization weights A1, A2, and \3.The vertical axis
shows the silhouette coefficient (SC) and the horizontal axis shows the corresponding weight values.

Table 3: Comparison results of different divergences. We use bold text to denote the first places.

Method | Left Hemisphere | Right Hemisphere

| SCt CHt RE| FHt | SCt CHT RE| FH{
CSD 0252 1075 1.149 0.689 | 0.255 1003 1.167 0.678
KLD 0.218 1056 1.149 0.680 | 0.200 1007  1.145 0.676
GIRD-1(JSD) | 0.281 965 1.212  0.664 | 0.274 865 1.255 0.653
GJRD-2 0.264 970 1.208  0.668 | 0.265 895 1.228  0.656

Ours(GCSD) | 0.328 1228 1.042 0.708 | 0317 1123 1.087 0.704

Overall, our approach establishes a robust and interpretable foundation for analyzing early infant
brain development. By providing developmentally grounded, anatomically symmetric, and func-
tionally relevant subregional delineations, our subcortical parcellations not only visualizes the fine-
grained organization of subcortical structures during the first two years of life—a period charac-
terized by heightened neurodevelopmental plasticity and critical windows for the maturation of
cognitive, emotional, and sensorimotor functions—but also supports research into how early sub-
cortical architecture scaffolds the formation of neural circuits and guides subsequent behavioral
development, providing a robust foundation for mechanistic investigations into the emergence and
differentiation of brain functions. Beyond its neuroscientific implications, USDPnet opens promis-
ing avenues for early identification and personalized intervention of neurodevelopmental disorders.
Fine-scale, symmetric subcortical parcellations can guide the discovery of atypical growth patterns
associated with conditions such as ASD and ADHD. Moreover, our anatomically informed par-
cellation results provide a structural foundation for refining precision DBS targets, enabling more
individualized and developmentally appropriate neuromodulation therapies.

Ablation Study. We conducted comprehensive ablation analysis to evaluate the contribution of each
loss component by systematically removing: (1) orthogonality regularization on Matrix A (setting
A1 = 0), (2) simplex regularization on row vectors of matrix A through @ (setting Ao = 0), and (3)
symmetry loss term (setting A3 = 0). Table[I] presents the results across all clustering metrics for
bilateral hemispheres. The analysis reveals that removing the symmetry constraint yields the most
substantial performance degradation across all metrics, confirming its critical role in maintaining
anatomical consistency. Matrix regularization terms show moderate but consistent impacts, with )
regularization contributing more significantly to clustering stability than A regularization.

Favorable Parameter Settings. We identified favorable parameter settings through systematic anal-
ysis on the thalamus using 30 seeds across logarithmically-spaced values. Results indicate that clus-
tering performance (silhouette coefficient) remains stable within a specific range but degrades when
weights deviate significantly. A favorable configurationis \; = Ao =5 x 1072 and A3 = 1 x 10~}
(Figure d). This setting maintains balanced weights, avoiding excessive symmetry loss that would
overemphasize bilateral matching and yield anatomically implausible parcellations. Additional de-
tails are available in the Appendix B3]

Comparison of different divergences. We evaluated Cauchy-Schwarz (CSD), Kullback-Leibler
(KLD), and generalized Jensen-Rényi (GJIRD) divergences, with quantitative results in Table@ Un-
like the GIRD baseline in Table[T] these variants modify only the divergence term of USDPnet while
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Figure 5: Reproducibility analysis results for various clustering methods. The vertical axis repre-
sents clustering metrics (Dice, NMI, ARI) and the horizontal axis shows different methods. Error

bars indicate standard deviation across 30 runs.

Table 4: Comparison of symmetry-preserving strategies for subcortical parcellation. We use bold to
denote the best results.

o | Left Hemisphere | Right Hemisphere
Symmetrization
Strategy | sC+ CHt RE|] FHft | SCt CHt RE| FH?t
Input-level 0.303 1129 1.116 0.686 | 0.302 1130 1.116  0.688
Output-level 0.288 1119  1.212 0.663 | 0.289 1119 1.211 0.664

Ours (In-training) | 0.328 1228 1.042 0.708 | 0.317 1123 1.087 0.704

keeping the architecture fixed. GJRD-1 and GJRD-2 correspond to Rényi orders 1 and 2, with order
1 reducing to Jensen-Shannon divergence (JSD). Across all configurations, GCSD achieves superior
clustering quality and computational efficiency, which may contribute to robustness in infant brain
imaging applications.

Reproducibility Analysis. We evaluated reproducibility for deep clustering methods across 30 runs
on thalamus with » € {2,...,10} subregions (Figure . We assessed weighted Dice for spatial
overlap, NMI for normalized mutual information, and ARI for chance-corrected pairwise agreement.
Most methods show good reproducibility at 2 regions, but it drops sharply at 3-4 regions and then
gradually declines. In contrast, our method consistently yields superior performance and exhibits
relative stability at higher region numbers.

Comparison of Symmetry-Preserving Strategies. We compared our in-training soft symmetry
regularization against two alternatives: input-level symmetrization (averaging and mirroring data
before training) and output-level symmetrization (averaging assignment matrices after independent
training). Results in Table [ show that harder constraints degrade performance, confirming that our
method discovers latent bilateral structure rather than inflating metrics through enforced homogene-
ity. Additional details are provided in Appendix [D.6]

5 CONCLUSION

We propose USDPnet, an Unsupervised Symmetric Deep Parcellation Network for infant subcorti-
cal nuclei delineation in early postnatal development. By combining deep autoencoder-based em-
bedding with a clustering objective driven by generalized Cauchy—Schwarz divergence (GCSD),
USDPnet enhances inter-cluster separability in high-dimensional developmental features. A sym-
metry regularization term ensures bilateral consistency and mitigates initialization bias. Experiments
show that USDPnet outperforms classical and state-of-the-art clustering methods in both accuracy
and anatomical coherence. Visualizations reveal strong alignment with known anatomical bound-
aries and functional connectivity, underscoring anatomical consistency. While surface area serves
as a discriminative morphological feature, its limitations highlight the need for multimodal integra-
tion and denser temporal sampling in future work. Overall USDPnet offers a robust, anatomically
informed, and computationally efficient framework for infant subcortical parcellation, with broad
applicability to other symmetric brain regions and early neurodevelopmental research.

10
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6 ETHICS AND REPRODUCIBILITY STATEMENT

This study used infant MRI data from the Baby Connectome Project (BCP), openly available, with
parental consent and ethical approval. The proposed parcellation approach is intended only for
research purposes and requires expert validation for clinical applicability. We commit to open-
sourcing the code to ensure reproducibility and responsible use. Declaration of using LLMs:
LLMs were only used for language editing. All scientific content, analysis, and results are origi-
nally produced.
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A DECLARATION OF LARGE LANGUAGE MODELS (LLMSs) USAGE

We only employed LLMs to enhance manuscript quality through grammar correction, error iden-
tification, and clarity optimization. All Al-generated suggestions underwent rigorous human re-
view and adaptation. The authors retain full responsibility for all content and conclusions presented
herein.

B REPRODUCIBILITY

B.1 DETAILED IMPLEMENTATION CONFIGURATION

Computational Environment. All experiments were conducted on Ubuntu 20.04 with Python 3.8.8
and PyTorch framework, accelerated using CUDA 12.2 for efficient GPU computation.

Hyperparameters. We configured regularization weights A\; = Ay = 5 x 1072 and symmetry
weight A3 = 1 x 10~ to prioritize anatomically-consistent bilateral convergence. The model em-
ployed p = 0.2 dropout probability and SGD optimizer with learning rate g = 1 x 103, momen-
tum g = 0.9. ReduceLROnPlateau scheduler utilized reduction factor v = 0.5, patience P = 1000
epochs, cooldown C' = 50 epochs, and minimum learning rate o, = 1 x 1073,

Training Protocol. The adaptive epoch strategy followed epochs = r x 1500 where r represents
target subregion count. Full-batch training was implemented to maximize GCSD’s joint entropy
computation advantages, followed by 1 fipetune = 30 fine-tuning iterations for optimal performance
across all six subcortical nuclei (amygdala, caudate nucleus, hippocampus, pallidum, putamen, and
thalamus) with bilateral hemispheric training for both left and right structures, encompassing subre-
gional configurations r € {2, 3, ..., 10} for comprehensive parcellation analysis.

B.2 BASELINE METHODS CONFIGURATION

Fair Comparison Setup. All baseline methods were evaluated using identical data preprocessing
protocols, and evaluation metrics to ensure fair comparison. Each method underwent 30 independent
runs with different random initializations to account for stochastic variability.

Deep Learning Baselines. DEC (Xie et al., 2016), DDC (Kampftmeyer et al., 2019), and GIRD
(Lu et al.| [2025a) were implemented using their original architectures with learning rates adapted to
1 x 10~ for consistent convergence. GIRD employed identical encoder architecture to our method
for fair feature comparison.

Traditional Methods. All methods utilized L2-normalized input features. Agglomerative Clus-
tering employed Ward linkage with Euclidean distance. NMF variants used nndsvd initialization,
maximum iterations = 80000, tolerance = 1 x 10~%, regularization coefficient o« = 0.1, and L1-
ratio = 0.5. DeepNMF implemented hierarchical matrix factorization with random initialization,
maximum iterations = 80000, tolerance = 1 x 1075, Frobenius beta loss, regularization coeffi-
cients ayy = ag = 0.01, Ll-ratio = 0.0, and Min-Max normalization preprocessing followed by
K-means clustering on latent representations. Spectral Clustering variants configured RBF kernel
with v = 1.0 and discretize assignment strategy. Dimensionality reduction methods (PCA, t-SNE,
UMAP) used default scikit-learn parameters followed by Ward agglomerative clustering.

B.3 FAVORABLE PARAMETER SETTINGS DETAILS

To determine the favorable configuration of regularization weights, we conducted a comprehensive
parameter analysis on the thalamus with 10 target clusters. We initialized the baseline configura-
tion with \; = XAy = A3 = 1 x 1072 and the weight coefficient for Dgcg fixed at unity. For
this assessment, we defined 12 logarithmically-spaced values spanning five orders of magnitude:
{1x107%,5x1075,1x 10745 x 107, 1 x 1073,5 x 1073,1 x 1072,5 x 1072,1 x 107}, 5 x
1071,1, 5}. For each parameter \; (i € {1,2,3}), we systematically varied its value across the
12-point grid while maintaining the remaining two parameters at the baseline value of 1 x 1072
To ensure statistical reliability, we employed 30 high-performing initialization seeds consistently
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Figure 6: Parameter analysis for regularization weights A1, A2, and A3. Each plot illustrates the
effect of varying one parameter across a logarithmic scale on clustering performance, evaluated
using four metrics: SC, RE, CH, and FH. Performance scores are averaged over 30 independent
runs. This analysis identifies the favorable parameter configuration that ensures stable and high-
quality clustering.

across all parameter configurations. For each experimental condition, we executed clustering pro-
cedures and computed SC, RE, CH, and FH metrics for both hemispheres. Performance evaluation
was based on the mean values of these metrics averaged across 30 independent runs and bilateral
hemispheres on the thalamus. The performance profiles for all three parameters are visualized in
Figure [f] enabling the identification of favorable parameter ranges. Based on these empirical re-
sults, we identified a favorable configuration as \; = Ay = 5 x 1072 and A3 = 1 x 10!, which
demonstrated superior clustering performance for subsequent experiments. All other experimental
settings remained consistent with those specified in the Experimental Setup F.I]section.

B.4 COMPUTATIONAL RESOURCE CONSUMPTION

This section summarizes the computational resources and runtime required for model training and
experiments. All experiments were performed on a system equipped with NVIDIA RTX 3090
GPUs. Table [5|reports the number of vertices, which represents the data size n in {x; € X };L:l,
for each nucleus in the left and right hemispheres. Each vertex is associated with a 513-dimensional
feature vector, corresponding to the dimension of z; € R™, where each dimension encodes the sur-

face area of the vertex at a specific age in the atlas. We further evaluated our method on all six nuclei
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Table 5: Vertex counts, running time (epochs/s), and peak GPU memory usage (GB) for subcortical
nuclei in left and right hemispheres.

Subcortical Nuclei

Metric |

| Amyg. Caud. Hipp. Pall. Put. Thal.
Vertices (Left) 674 2,230 2,264 1,088 2,230 3,416
Vertices (Right) 694 2,176 2,332 1,100 2,234 3,346
Running time (epochs/s) 50.6 27.2 24.3 26.9 493 14.1
Memory usage (GB) 0.13 0.83 0.90 0.25 0.83 1.80

at their respective optimal cluster numbers and recorded the corresponding computational costs, as
detailed in the table.

C EVALUATION METRICS FORMULATION

Silhouette Coefficient (SC). We employ a customized affinity-based silhouette coefficient formula-
tion (Rousseeuw, |1987) to accommodate the inherent structure of subcortical surface area features.
For each vertex ¢, the silhouette score s; is computed as:

b — as

s; = v (6)
max(ai, bz)

where a; denotes the intra-cluster average dissimilarity: a; = ﬁ > JeCi i d(i, j), and b; repre-

sents the minimum inter-cluster average dissimilarity: b; = ming ,cjuster(s) lcilk\ > jecy d(i,7). The

dissimilarity metric is derived from the original feature affinity matrix as d(7,j) = 1 — R;;, where

‘R represents the affinity matrix constructed from raw vertex area features. The overall silhouette

coefficient is obtained by averaging across all vertices: SC = % S Sie

Calinski-Harabasz Index (CH). This index (Calinski & Harabasz, [1974) quantifies the ratio of
between-cluster to within-cluster variance, computed using the standard formulation:

g B/~ 1)

 w(Wy)/(n - K) @

T

where B, = Zfil n;(p; — p)(p; — p)* constitutes the between-cluster scatter matrix, Wy =

Zfil Y oxec, (X — pi)(x — w;)T defines the within-cluster scatter matrix, g denotes the global
feature centroid, and p; represents the centroid of the ¢-th cluster.

Reconstruction Error (RE). This metric (Valle et al.,|1999) evaluates clustering fidelity by quanti-
fying the mean squared deviation between vertex features and their respective cluster centroids:

K
RE= 53 i — el ®)

k=1i€Cy

where p, = ICilk\ > cc, Xi denotes the centroid of the k-th cluster, computed as the arithmetic
mean of all vertices assigned to that cluster.

Feature Homogeneity (FH). This coefficient (Rosenberg & Hirschbergl |2007) assesses intra-cluster
feature consistency relative to global feature variability, formulated as:

Oimurs
FH=1- "% )
Gglnbal
~ K d . .
where 52, = % Y ket %Z =1 Var(X, ;) represents the average intra-cluster variance across

all feature dimensions, and ngobal = %ijl Var(X;) characterizes the global feature variance.

Higher FH values indicate superior feature consistency within clusters relative to the overall dataset
distribution.
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Table 6: Comparison of symmetry weight scheduling strategies across left and right hemispheres.We
use bold text to denote the first places.

Scheduling strategy \ Left Hemisphere \ Right Hemisphere

| SCt CHt RE| FH{ |SCt CH{ RE| FH{
Cosine 0.324 1211 1.038 0.696 | 0.320 1120 1.089 0.702
Linear 0315 1154 1.102 0.692 | 0.311 1146 1.110 0.688
Exponential 0311 1142 1.112 0.686 | 0.309 1055 1.119 0.679
Ours ‘ 0.328 1228 1.042 0.708 ‘ 0.317 1123 1.087 0.704

D SUPPLEMENTARY EXPERIMENTS

D.1 SCHEDULING OF SYMMETRY LOSS WEIGHT.

Given that subtle asymmetries persist between the left and right hemispheres of subcortical nuclei,
we designed a temporal scheduling strategy to dynamically adjust the symmetry constraint during
training. We kept the random seed and all experimental settings identical to those used in Table
[l modifying only the symmetry weight scheduling strategies. A dedicated scheduler scaled the
symmetry loss term, and we considered three schemes: cosine, linear, and exponential.

In all runs, the symmetry weight wsym(t) was updated from an initial value wy (e.g., wg = 2 X 1073)
toward a final value wy (e.g., wy = 0) over 1" epochs, with epoch index ¢ and normalized progress
p = t/T. The scheduler was active only for ¢ > tgar; otherwise wgym (t) = wp. For the linear
schedule, we used

wsym(t) = (1 _p) wo +pwfv (10)
for the cosine schedule
1
wsym(t) =wyf+ (wo — U)f) 5(1 + cos(wp)), (11D
and for the exponential schedule
- ln<f> , wy > 0,
wsym(t) = Wo eXp(_)‘p)7 A= wWo (12)
Ao, wyr = 0,

where )\ is a fixed decay rate (in our experiments chosen such that the weight rapidly approaches
zero near the end of training).

This setup aims to impose stronger bilateral consistency early while gradually relaxing the constraint
to permit mild asymmetries. However, the results in Table [6] show that reducing the symmetry loss
weight over training degrades performance and does not improve clustering quality. In practice, an
appropriately chosen fixed symmetry weight better preserves global bilateral symmetry while still
accommodating localized, neurobiologically meaningful asymmetries.

D.2 VALIDATION OF THE FULL-BATCH TRAINING STRATEGY

We evaluated the effectiveness of the full-batch training strategy by systematically comparing it
with stochastic gradient descent (SGD) using fixed mini-batch sizes of 64, 256, and 1,024. We kept
the random seed and all experimental settings identical to those in Table [T} varying only the batch
strategy, and conducted the experiments exclusively on the thalamus with the subregion number
fixed at 10 (r = 10). The resulting clustering metrics are summarized in Table [7]] Notably, the
thalamus comprises 3416 vertices in the left hemisphere and 3346 vertices in the right hemisphere.
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Table 7: Comparison results of different batch strategy across left and right thalamus(r=10) hemi-
spheres.We use bold text to denote the first places.

Batch strategy \ Left Hemisphere \ Right Hemisphere
| SCt CHT RE| FH{ |SCt? CHf RE| FH?
Batchsize=64 0.085 564 0.859 0.675 | 0.101 620 0.849 0.703

Batchsize=256 0223 647 0.791 0.647 | 0.182 708 0.857 0.687
Batchsize=1024 0281 645 0.792 0.644 | 0231 661 0.897 0.645

Ours(Full batch) | 0.285 644  0.792 0.631 | 0.294 648 0.908 0.642

Under the full-batch setting, each training pass processes all vertices simultaneously, yielding input
matrices of size X1, Xr € R6762X™ In contrast, when employing fixed mini-batch strategies, each
iteration uses batches of size 2 x batchsize for the concatenated bilateral inputs X7, and X . The full-
batch approach provides more stable gradient estimates and more faithfully captures the global data
distribution, which is essential for optimizing the GCSD-based objective. Conversely, mini-batch
SGD introduces stochastic noise due to sampling variability, which can hinder convergence and
reduce consistency across runs. Empirically, our results demonstrate that full-batch training yields
more reliable and reproducible clustering performance, particularly for the structurally complex
thalamus, where subtle anatomical variations can substantially influence parcellation outcomes.

D.3 COMPARISON OF SYMMETRY LOSS BASED ON MSE AND CROSS-ENTROPY

To compare the effectiveness of symmetry loss computed using MSE versus cross-entropy, we kept
the random seed and all experimental settings identical to those used in Table [I] modifying only the
formulation of the symmetry loss to cross-entropy. The results, summarized in Table [ show that
the MSE-based symmetry loss consistently outperforms its cross-entropy counterpart. A plausible
explanation is that MSE provides a smoother and more stable gradient signal for enforcing bilateral
correspondence, whereas cross-entropy tends to be more sensitive to local prediction fluctuations,
leading to less reliable symmetry constraints.

D.4 DETERMINATION OF OPTIMAL SUBREGION NUMBERS

To systematically determine the optimal parcellation granularity for each subcortical nucleus, we
conducted comprehensive cluster validation analysis across subregion numbers ranging from r = 2
to 7 = 10. We evaluated the results from the 30 independent runs previously performed for all six
subcortical nuclei across bilateral hemispheres, following the experimental protocol described in the
Section @ to ensure statistical robustness. The silhouette coefficient (SC) was computed for all
clustering results, with average SC values calculated across all nuclei at each cluster number and
visualized as line plots in Figure [/} The SC serves as our primary validation metric, quantifying
clustering quality through the ratio of inter-cluster separation to intra-cluster compactness, where
higher values indicate superior parcellation coherence and distinctiveness. Figure [7] establishes the
criterion for selecting optimal subregion numbers, with arrows indicating regions of locally maximal
SC values corresponding to the most appropriate parcellation granularities.

Our analysis revealed distinct SC optimization profiles reflecting the inherent structural complex-
ity of each subcortical nucleus. The amygdala and pallidum demonstrated optimal SC values at
r = 2, consistent with their relatively lower structural complexity and smaller volumetric charac-
teristics, making them unsuitable for finer-grained subdivisions. Conversely, the caudate nucleus,
hippocampus, and putamen achieved optimal SC values at » = 5, r = 7, and r = 4, respectively,
reflecting their intermediate organizational complexity. The thalamus exhibited optimal SC perfor-
mance at » = 10, reflecting its highly complex internal architecture. To validate our methodology’s
performance at higher granularities and definitively establish the optimal thalamic parcellation, we
extended the analysis to encompass r € {11,12,...,15}. This extended evaluation confirmed that
r = 10 remained optimal for thalamic parcellation, demonstrating the stability of our optimization
approach. Based on this comprehensive validation analysis, we established the following optimal
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Table 8: Comparison of MSE-based and cross-entropy—based symmetry loss formulations across
left and right thalamus(r=10) hemispheres

Left Hemisphere \ Right Hemisphere

Batch strategy |
| SCt+ CHt RE| FH?t | SCt CHtT RE| FH?t

Cross-entry ‘0.292 969 1.135 0.709 ‘ 0.300 1030 1.146 0.703

Ours(MSE) 0.328 1228 1.042 0.708 | 0.317 1123 1.087 0.704
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Figure 7: Silhouette coefficient optimization profiles for subcortical nucleus parcellation. SC values
are plotted across subregion numbers r € {2,3,...,10} for five nuclei (amygdala, caudate nu-
cleus, hippocampus, pallidum, putamen) and extended to r € {2,3,...,15} for thalamus due to its
complex internal architecture. Arrows denote selected optimal configurations determined through
combined SC maximization and neuroanatomical validation. The analysis demonstrates nucleus-
specific structural complexity gradients, with optimal parcellation granularities established as fol-
lows: amygdala (r = 2), caudate nucleus (r = 5), hippocampus (r = 7), pallidum (r = 2), putamen
(r = 4), and thalamus (r = 10).

subregion numbers for subsequent neuroanatomical characterization: amygdala (r = 2), caudate
nucleus (r = 5), hippocampus (r = 7), pallidum (r = 2), putamen (r = 4), and thalamus (r = 10).

D.5 PARAMETER SENSITIVITY ANALYSIS

To further assess the model’s parameter sensitivity, we conducted a fine-grained analysis centered
around the previously identified favorable settings. We systematically adjusted the regularization
weights, evaluating 10 distinct values for each parameter. Specifically, A\; and Ay were varied within
the range of [0.01, 0.10] using a step size of 0.01, while A3 was adjusted within [0.05, 0.50] using
a step size of 0.05. All other experimental conditions remained consistent with those detailed in
Section B3] The evaluation was based on the mean silhouette coefficient (SC) averaged across 30
independent runs on the bilateral thalamus. As shown in Table 0] the results demonstrate that per-
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formance metrics remain highly stable within this local parameter range, confirming the robustness
of our selected configuration.

D.6 COMPARISON OF SYMMETRY-PRESERVING STRATEGIES

To further validate the effectiveness of our symmetry constraint, we conducted additional ablation
experiments comparing two alternative symmetry-preserving strategies for subcortical parcellation.
The first strategy, termed input-level symmetrization, computes a weighted average of left and right
hemisphere data followed by mirror symmetry prior to training. This approach aligns with the
methodology in [Tian et al.| (2020), which directly mirrors left-right hemisphere data prior to clus-
tering. The second strategy, termed output-level symmetrization, first trains a single-path USDPnet
independently on each hemisphere and performs clustering, then averages the resulting soft assign-
ment matrices A across symmetric correspondences established using the same matching procedure
described in the main text, yielding fully mirrored bilateral parcellation results. As shown in Ta-
ble[d] using identical hyperparameters and 30 random seeds as in the main experiments, our method
outperforms both alternatives across all four metrics (SC/CH/RE/FH). For fair comparison, all eval-
uations are conducted on the original features. Notably, our approach enforces soft symmetry during
training by minimizing the discrepancy between Ay and Ap, rather than imposing hard constraints
on the final parcellation, thus preserving feature-driven asymmetries as the divergence loss domi-
nates over the symmetry loss.

Table 9: Fine-grained sensitivity analysis for regularization parameters A\, Ao, and A3. Parameters
A1 and Ay were varied from 0.01 to 0.10 with a step size of 0.01, while A3 was varied from 0.05 to
0.50 with a step size of 0.05. Performance is measured by the Silhouette Coefficient on the left and
right thalamus.

Parameters \; and )\, (Range: 0.01-0.10, Step: 0.01)

Parameter 0.01 0.02 003 0.04 005 0.06 007 0.08 0.09 0.10

A1 (left) 0.221 0.235 0.228 0.245 0.248 0.251 0.246 0.239 0.232 0.231
A (right) 0200 0.215 0229 0.249 0.248 0244 0.245 0238 0.225 0.223
A2 (left) 0.185 0.208 0.215 0.218 0.232 0.244 0.231 0.227 0.219 0.212
Ag (right) 0.194 0.212 0.218 0.235 0.242 0.251 0.235 0222 0.219 0.213

Parameter )3 (Range: 0.05-0.50, Step: 0.05)

Parameter 0.05 010 015 020 025 030 035 040 045 0.50

A3 (left) 0.191 0.253 0.258 0.249 0.235 0.244 0.215 0.192 0.158 0.125
Az (right) 0.205 0.255 0.253 0.251 0.233 0.235 0.221 0.188 0.165 0.126

E EXPERIMENTAL DATA AND PREPROCESSING PIPELINE

E.1 BCP DATASET CHARACTERISTICS

The Baby Connectome Project (BCP) dataset (Howell et al.L[2019) provides longitudinal neuroimag-
ing data from typically developing infants. For each scan, both T1w and T2w images were collected
with 3T Siemens Prisma MRI scanners using a 32-channel head coil. The T1w images were acquired
with parameters: TR/TE/TI = 2400/2.24/1060 ms, flip angle = 8°, and isotropic spatial resolution
of 0.8 mm. The T2w images were acquired with parameters: TR/TE = 3200/564 ms, variable flip
angle, and isotropic spatial resolution of 0.8 mm. Table [I0] presents the details of the data used in
this work. Of note, the BCP cohort doesn’t include twins. Figure [§]exhibits the number of subjects
per month with respect to sex (Female/Red, Male/Blue).Additional methodological details can be
found in (Howell et al.| 2019).

Inclusion and Exclusion Criteria. Inclusion criteria: (1) born from 37 to 42 weeks gestational age
(GA); (2) appropriate birth weight matching gestational age; (3) absence of major pregnancy and
delivery complications.Exclusion criteria: (1) adoption status; (2) diagnosed schizophrenia, autism
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Table 10: Participant characteristics and data processing workflow for the BCP dataset.

Characteristic Data

Total number of scans acquired 702 scans

Remaining scans after each processing step:

1. After quality control (excessive motion, 633 scans
insufficient coverage, and/or ghosting)
2. After removing scans with missing T1w or T2w 564 scans
images
3. After subcortical segmentation and manual 513 scans
correction
Total number of subjects 231 subjects (513 scans)
Subjects having only 1 scan 92 subjects
Subjects having 2 scans 65 subjects
Subjects having > 3 scans 74 subjects
Sex distribution 126 females / 105 males
Age range 10-809 days (scan age)

Number of subjects per month
35

W Female mMale
30
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Figure 8: The number of subjects at each scan age.

spectrum disorder, bipolar disorder, or intellectual disability; (3) medical or genetic conditions af-
fecting growth, development, or cognition; (4) MRI contraindications; (5) maternal substance use
(alcohol or illicit drugs), placental abruption, maternal preeclampsia, or maternal HIV-positive status
during pregnancy.

E.2 NEUROIMAGING PREPROCESSING METHODOLOGY

We strictly adhered to the comprehensive iBEAT V2.0 deep learning—based pipeline as detailed in
2023)) for all infant cortical surface reconstruction procedures.

Subcortical Surface Mapping Protocol. Instead of reconstructing any new atlas, we followed and
applied the publicly released 4D subcortical atlas and mapping framework described in |Chen et al.
(2022), and we include the workflow here solely to document the preprocessing methodology used
in our study. Figure[d]illustrates the complete subcortical surface mapping workflow. The processing
pipeline comprises five sequential stages:

(1) 4D Atlas Construction: The publicly available 4D infant brain atlas (2022)) is utilized
and processed through the SyGN template construction method in ANTs. Tlw, T2w, and tissue
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Figure 9: Overview of the cortical surface reconstruction pipeline. M: Month. TSM: tissue segmen-
tation map.The workflow illustrates the complete processing pipeline from multi-modal MRI data
(T1w, T2w, TSM) through atlas-based registration and deformation mapping to generate subcorti-
cal surface meshes across different developmental stages. ANTSs registration enables transformation
propagation from atlas to individual subjects, facilitating vertex-correspondence analysis of subcor-
tical nuclei morphometry.

probability maps (generated by iBEAT V2.0) are incorporated to improve registration robustness
across developmental stages. The atlas includes densely sampled temporal points from 0 to 24
months (0, 1, 2,3,4,5,6,7,8,9, 10, 11, 12, 15, 18, 21, 24 months). Age-specific deformation fields
provided in the framework are used for linking individual scans to atlas templates across time.

(2) Inter-Atlas Deformation Mapping: Voxel-wise anatomical deformations across developmental
time points are computed following the procedures described in [Chen et al.| (2022).High-contrast
images serve as registration targets, with low-contrast images warped accordingly. Temporal consis-
tency is maintained through sequential chronological registration.

(3) Reference Surface Reconstruction: Surface mesh representations were reconstructed for each
subcortical structure using the 0-month atlas as the initial reference template.

(4) Individual Surface Warping: Subcortical surface meshes from the 0-month template were warped
to individual scans by combining anatomical deformations across age-specific atlases with template-
to-individual transformations in chronological sequence. These deformation fields were consoli-
dated into unified transformations for efficient surface mapping.

(5) Vertex-wise Feature Extraction: Local surface areas were computed at each vertex across indi-
vidual subcortical surfaces to establish vertex-wise developmental trajectories.

The integration of tissue probability maps as additional registration constraints effectively addresses
dynamic appearance changes and low tissue contrast characteristic of infant brain MRI, resulting in
accurate deformation estimation and high-quality subcortical surface correspondence across devel-
opmental stages.

E.3 SUBCORTICAL SEGMENTATION AND MANUAL CORRECTION
Subcortical segmentation is based on an infant-dedicated deep learning framework (Chen et al.

2020; 2023b)).This section summarizes the segmentation and manual-correction steps below to pro-
vide context for the preprocessing workflow adopted in our study. In detail, at the coarse stage, the
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pipeline uses the SDM-UNet(Chen et al., 2020) to directly predict the signed distance maps from
multi-modal intensity images, including T1w, T2w, and the ratio of T1w and T2w images, which can
leverage the spatial context information, including the structural position information and the shape
information of the target structure, to generate high-quality signed distance maps. At the fine stage,
the pipeline further uses a multi-source and multi-path attention UNet (M2A-UNet)(Chen et al.,
2023b). Then, the signed distance maps predicted by SDM-UNet, which encode spatial-context
information of each subcortical structure, are integrated with the multi-modal intensity images as
the input of M2A-UNet for achieving refined segmentation. Besides, both the 3D spatial and chan-
nel attention blocks are added to guide the M2A-UNet to focus more on the important subregions
and channels. Due to the significantly different appearances of the infant brain MR images across
ages, we manually delineated 48 scans within four representative age ranges, namely 0-3 months,
6 months, 9-12 months, and 18-24 months, and each age range has 12 scans. We then separately
trained a deep network for each age group. A stratified 6-fold cross-validation strategy is employed,
and each fold consists of 10 training images and 2 testing images.

F MULTI-PERSPECTIVE PARCELLATION VISUALIZATION

This section presents comprehensive three-dimensional visualization of subcortical nuclei parcella-
tion outcomes across multiple methodological approaches. Figure|10|demonstrates the parcellation
results obtained through our proposed USDPnet framework, with subcortical structures rendered
in bilateral paired configurations to facilitate systematic morphological assessment. Each nucleus
pair is visualized from six distinct anatomical perspectives to enable comprehensive evaluation of
three-dimensional parcellation boundaries and subregional organization patterns.

Figures provide equivalent multi-perspective renderings for baseline methodologies: Spectral
clustering with discretization (top-performing spectral clustering variant), DeepNMF (established
matrix factorization approach), DDC (recent deep clustering method), and|Tian et al.|(2020)’s func-
tional connectivity gradient-based parcellation using voxel data. Visual inspection reveals several
key advantages of our USDPnet framework over these baseline approaches. The proposed method
demonstrates superior boundary definition precision, with more anatomically coherent subregional
delineations that preserve neurobiologically meaningful structures. Additionally, dynamic visual-
izations of our parcellation results can be viewed in the supplementary movie.mp4 and moviel.mp4
files.
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Figure 10: Subcortical nuclei parcellation results obtained through the proposed USDPnet frame-
work, demonstrating multi-perspective anatomical renderings with bilateral paired configurations
for comprehensive morphological assessment.
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Figure 11: Subcortical nuclei parcellation outcomes obtained via [Tian et al.| (2020)’s functional
connectivity gradient-based approach.
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Figure 12: Subcortical nuclei parcellation outcomes obtained via DDC methodology.
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Figure 13: Subcortical nuclei parcellation outcomes obtained via DeepNMF methodology.
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Figure 14: Subcortical nuclei parcellation outcomes obtained via Spectral clustering with discretiza-
tion methodology.
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