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Abstract

We consider the facility location problem in the
dynamic setting, where the goal is to efficiently
process an intermixed sequence of point insertions
and deletions while maintaining a high-quality
and stable solution. Although the problem has
been studied in the context of general metrics and
low-dimensional spaces, much remains unknown
concerning dynamic facility location in high-
dimensional spaces. In this work, we present the
first fully dynamic algorithm for facility location
in high-dimensional spaces Rd. For any c ≥ 1,
our algorithm achieves O(c)-approximation, sup-
ports point updates in Õ(poly(d)n1/c+o(1)) amor-
tized time and incurs O(1) amortized recourse.
More generally, our result shows that despite the
linear-time lower bound on the update time for
general metrics, it is possible to achieve sub-linear
update times for metric spaces that admit dynamic
nearest neighbour oracles. Experiments on real
datasets confirm that our algorithm achieves high-
quality solutions with low running time, and in-
curs minimal recourse.

1. Introduction
Clustering is one of the most important problems in un-
supervised learning, finding a wide range of applications
in social network analysis, image segmentation, anomaly
detection, and grouping of search results, among others. A
classical problem at the core of cluster analysis is the facil-
ity location problem: the input is a set of points (known as
’clients’) in a metric space, and the goal is to find a subset
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of clients (known as ’facilities’), so as to minimize the cost
of opening the facilities plus the cost of assigning clients to
their closest facilities. Facility Location is an NP-complete
problem whose approximability has been well-studied (Jain
& Vazirani, 2001; Mettu & Plaxton, 2003). Because of its
practical relevance and connections to other areas such as
operations research, this problem has also been extensively
studied under different computational paradigms, including
the streaming model (Indyk, 2004; Lammersen & Sohler,
2008; Czumaj et al., 2013), massive parallel computation
(MPC) model (Czumaj et al., 2024), online algorithms (Mey-
erson, 2001; Fotakis, 2008; Cygan et al., 2018), dynamic
algorithms (Goranci et al., 2018; Cohen-Addad et al., 2019;
Guo et al., 2020; Bhattachcharya et al., 2022), and many
more.

In many modern applications of facility location, the un-
derlying data evolves dynamically. While many efficient
approximation algorithms have been developed for facil-
ity location, these algorithms usually operate under the as-
sumption that input data is static. To tackle the evolving
nature of data, there has been a recent and growing focus
on facility location, and more broadly, clustering, in the
fully dynamic setting. Here, the input data undergoes an
intermixed sequence of point insertions and deletions, re-
ferred to as updates. The goal is to process these updates
as efficiently as possible, ensuring that (i) the maintained
clustering achieves a small approximation ratio and that (ii)
the number of changes in the clustering between any two
adjacent updates, known as the recourse, is minimal.

Much of the work on dynamic facility location has focused
on general metrics and low-dimensional spaces. For the
former, (Cohen-Addad et al., 2019) showed an algorithm
that achieves O(1) approximation, O(n log n) update time,
and O(1) amortized recourse. One drawback of consid-
ering general metric spaces is the natural linear-update
time lower bound: inserting a point entails describing dis-
tances to other points, which requires Ω(n) time. In the
low-dimensional regime, (Goranci et al., 2018) presented
an O(1)-approximation algorithm with Õ(1) update time.
However, their update time grows exponentially with the
dimension, which is prohibitive for high-dimensional Eu-
clidean spaces.

In this work, we give the first fully dynamic algorithm
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for facility location in high-dimensional Euclidean spaces.
Specifically, our algorithm achieves O(1) approximation in
sub-linear in n update time. Our main result and its exact
guarantees are summarized in the theorem below.

Theorem 1.1. For any c ≥ 1, there is a fully dynamic algo-
rithm that supports insertions and deletions of points from
a d-dimensional Euclidean space Rd, and whp, it main-
tains a O(c)-approximation to the facility location problem
in Õ(poly(d)n1/c+o(1)) amortized update time and O(1)
amortized recourse.

In fact, the above result is a corollary of a much stronger
theorem, as outlined in Theorem 4.10. For any ρ, τ ≥ 1, and
any metric space that admits a dynamic nearest neighbour
(NN) oracle that is ρ-approximate and support updates and
queries in O(τ) time, we obtain a fully dynamic algorithm
for facility location that has O(ρ2) approximation ratio,
Õ(τ) amortized update time and O(1) amortized recourse.
This black-box reduction combined with the implementation
of NN oracle for Euclidean space via locally sensitive hash
functions (LSH) (Har-Peled et al., 2012) leads to the trade-
off presented in Theorem 1.1. Similar improved dynamic
algorithms for facility location can be obtained for metric
spaces that admit competitive LSH guarantees including ℓp
spaces (Datar et al., 2004), the Hamming metric (Har-Peled
et al., 2012), and the Jaccard metric (Broder, 1997). Finally,
we remark that the reduction to NN oracle queries has also
been used for obtaining sub-quadratic running times for
approximate high-dimensional proximity problems in the
static setting (Goel et al., 2001).

To complement our primary contribution (see Theorem 1.1),
we perform an experimental evaluation of our algorithm
on real datasets. The results obtained demonstrate that our
algorithm consistently produces high-quality solutions, and
the recourse of the maintained facilities is minimal.

1.1. Technical Overview

For ease of exposition, we assume w.l.o.g. that the opening
cost f = 1, and that we have access to an exact dynamic
nearest neighbor (NN) oracle. Only minor changes to the
ideas described in this section are required to handle the
error introduced by the approximate NN.

Technical Contribution: Near Neighbor Indicator Struc-
ture Before we discuss how our algorithm works, we first
introduce a general data structure called near-neighbor indi-
cator structure (see Section 3), which is our main technical
contribution. This structure is crucially used in major steps
of our algorithm. Due to the fundamental nature of this
structure, we believe it may be of independent interest to
the study of dynamic algorithms in Rd.

This structure enhances the vanilla NN oracle, such that it

not only answers the nearest neighbor for one point, but
also explicitly maintains an (approximate) near neighbor
for every point present in the data structure simultaneously.
Specifically, given a threshold λ > 0, under point insertion
and deletions, this structure maintains for each point x ∈ P
(where P is the current point set) an indicator bλ(x) ∈
{0, 1}, such that bλ(x) = 1 roughly means x has a neighbor
within O(λ) distance in P . Furthermore, on each point
insertion or deletion, it only needs to make O(1) vanilla NN
queries (see Theorem 3.1).

A Basic Static Algorithm: Modified Mettu-Plaxton Our
dynamic algorithm is based on a modified version of the
Mettu-Plaxton algorithm (MP), (Czumaj et al., 2024) which
returns a O(1)-approximate solution to the facility location
problem (see Section 2.1). We start with a brief review of
the original MP algorithm, which is suggested by (Mettu
& Plaxton, 2003). For every data point x in the dataset P ,
the MP algorithm computes a value rx, such that

∑
x rx =

Θ(1) ·OPT. Then it scans the data points in non-decreasing
order of rx, and opens the current point x as a facility if so
far no facility is open in the metric ball B(x, 2rx).

The procedure for computing the set of open facilities in the
original MP algorithm is quite global/sequential and hence
is hard to dynamize, while the modified version, which
our algorithm is based on, is more local. In particular, in
addition to computing the rx value for every data point x,
it also assigns a random value h(x) ∈ [0, 1] to each x ∈ P .
Then this modified MP algorithm decides to open x if h(x)
is the smallest among the points in B(x, rx)

1.

Our Dynamic Algorithm To make this modified MP al-
gorithm dynamic, our strategy consists of two parts. The
first part explicitly maintains rx’s, which are then taken as
input in the second part to maintain the set of open facilities.

We start with the first part which maintains approximations
to rx’s (see Section 4.1). As first observed in (Badoiu et al.,
2005), to compute an O(1)-approximation to rx, it suf-
fices to know for r′ = 1/n, 2/n, . . . , 1, whether B(x, r′)
contains at least Ω(1/r′) data points. To test if B(x, r′)
contains at least Ω(1/r′) data points with Θ(1) success
probability, it suffices to first do a sub-sampling with surviv-
ing rate r′ to the data points, denoting the resultant dataset
as Pr′ , and test if the nearest neighbor of x in the survived
points Pr′ is within distance r′. We follow exactly this idea,
and the key step is to make use of the above-mentioned near
neighbor indicator structure, to maintain for every data point
x if there is a near enough point after the sub-sampling (see
Corollary 3.2 and its proof in Section 3.2).

1There is another rule, which independently opens each x with
probability rx, but this is trivial to dynamize and we choose to
ignore this step in the technical overview.
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Now, for the second step, we need to follow the modified
MP algorithm, and maintain for every data point x ∈ P ,
if it has the smallest h value in the ball B(x, rx) (recall-
ing that for every point x ∈ P we assign an independent
uniform random value h(x) ∈ [0, 1]). In fact, this task is
somewhat similar to that of maintaining rx, and can be “re-
duced” to the near neighbor indicator data structure (see
Section 4.2). In particular, we first “discretize” the h values
by rounding them up to the next power of 2. After this step
there are only O(log n) distinct h values. We manage to
show that plugging this rounded version of h (which we call
h⋆) into the modified MP algorithm, it still yields an O(1)-
approximation (see Lemma 4.5). Now, to test if h⋆(x) is the
smallest among points within the ball B(x, rx), we make
the following crucial observation: If h⋆(x) indeed is the
smallest in the ball, then with high probability (whp) there
are very few, that is poly(log n), points within B(x, rx)
that achieve this minimum h⋆ value. Hence, it suffices to
do a sub-sampling with survival rate poly(log n) of the data
points, and test if there is a survived point within distance
rx to x whose h⋆ value is larger than h⋆(x). This procedure
can again be done using near neighbor indicator structure,
similar to the steps for maintaining the rx’s.

1.2. Related Work

Recently, there has been a surge of interest in designing dy-
namic algorithms for various clustering objectives. This line
of work was initiated by (Charikar et al., 2004) who gave an
insertions-only algorithm for approximate k-center cluster-
ing. Their result was extended to the fully dynamic setting
by the work of (Chan et al., 2018a), who also re-emphasized
the importance of dynamic clustering algorithms in the
machine learning literature. Since then, several dynamic
algorithms have been developed for clustering problems
such as k-median/k-means (Cohen-Addad et al., 2019; Hen-
zinger & Kale, 2020; Bhattachcharya et al., 2023) and k-
center (Goranci et al., 2021; Bateni et al., 2023; Cruciani
et al., 2024; Biabani et al., 2023; Lacki et al., 2024; Chan
et al., 2024). In the high dimensional regime, the only prior
work we are aware of is the dynamic k-center algorithm
in (Bateni et al., 2023).

2. Preliminaries
Throughout this paper, we assume that we are dealing with
“points” embedded in a specific metric space. For any two
points x, y, let dist(x, y) denote the distance between
them in the underlying metric. For any point-set S and any
point x (not necessarily in S), we define dist(x, S) :=
miny∈S dist(x, y).2 In the FACILITY LOCATION prob-
lem, the input is a set of n points P , and a parameter f > 0.
We have to “open” a subset F ⊆ P of “facilities”, so as to

2For notational consistency, we set dist(p, S) = ∞ if S = ∅.

minimize f · |F | +
∑

x∈P dist(x, F ). Here, f denotes
the “opening cost” of a facility, and dist(x, F ) denotes
the “connection cost” we have to pay for assigning point
x ∈ P to its nearest open facility. We let Opt denote the
optimal objective value for the concerned input instance.

This paper is focused on the dynamic setting, where the
set P changes via a sequence of “updates”. Each update
inserts/deletes a point in P . Throughout these updates, we
have to explicitly maintain the subset F ⊆ P of open facili-
ties and an (approximate) estimate of the optimal objective
value. The time taken to handle an update is called the “up-
date time” of the concerned algorithm. Another important
property of a dynamic algorithm is its “recourse”, which
is defined as the number changes (insertions/deletions of
points) to the maintained solution F due to an update. We
wish to ensure that our update time remains as small as
possible, and ideally, obtain O(1) recourse.

Notations For any point x ∈ P , any subset S ⊆ P , and
any r ≥ 0, we let BS(x, r) := {y ∈ S : dist(x, y) ≤ r}
denote the “ball of radius r” around x (w.r.t. S). Throughout
the rest of the paper, w.l.o.g. we assume that the facility
opening cost f = 1.

Nearest-Neighbor Oracle We will assume that there is
an oracle, with parameters ρ, τ ≥ 1, that can maintain a
dynamic point-set S, and supports the following operations.
(i) UPDATE: Insert/delete a point in S. (ii) QUERY: Given
a point p (not necessarily in S), return a ρ-approximate
nearest neighbor of p in S, which we denote by NN(p, S).
Thus, NN(p, S) ∈ S \ {p},3 and dist(p,NN(p, S)) ≤
ρ ·dist(p, S \{p}). The oracle handles an update or query
operation in O(τ) time. Our dynamic algorithm will invoke
this oracle in a black-box manner, and its approximation
ratio and update time will depend respectively on ρ and τ .

2.1. A Static Algorithm

The starting point of our work will be a well-known static
algorithm due to (Mettu & Plaxton, 2003), with a slight
twist that was discovered recently by (Czumaj et al., 2024).

Assuming that f = 1, this static algorithm defines a param-
eter rp for every input point p ∈ P , as follows. For any
r ≥ 0, define Vol(p, r) =

∑
x∈BP (p,r)(r − dist(x, p)).

Note that Vol(p, r) is a monotonically increasing, continu-
ous function of r, and that Vol(p, 0) = 0. The parameter
rp is now defined to be the unique value of r at which
Vol(p, r) = 1. It is easy to verify that rp ∈ [0, 1].

The next two lemmas were derived by (Mettu & Plaxton,
2003). Lemma 2.1 states that

∑
p∈P rp gives us a Θ(1)-

approximation to Opt. Lemma 2.2 essentially implies that

3If S \ {p} = ∅, then we set NN(p, S) = ∅.
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if we find a parameter λ ≥ 1 with |BP (p, λ
−1)| = Θ(1) ·λ,

then λ is a Θ(1)-approximation to rp.

Lemma 2.1. We have: Opt/4 ≤
∑

p∈P rp ≤ 6 · Opt.

Lemma 2.2. rp ∈
[

1
|BP (p,rp)| ,

2
|BP (p,rp/2)|

]
for all p ∈ P .

We next present a static algorithm for FACILITY LOCATION,
due to (Czumaj et al., 2024).

Algorithm 1 (Czumaj et al., 2024) on input point-set P

1: For every p ∈ P , compute a value r̂p that is Θ(1)-
approximation to rp.

2: For each p ∈ P , sample a value h(p) ∈ [0, 1] u.a.r.
3: For every p ∈ P , include p in a subset F ⊆ P iff it is

selected in either of the following (independent) steps.

(S1) Select p if h(p) ≤ h(p′) for all p′ ∈ BP (p, r̂p).

(S2) Select p with probability r̂p.

4: Return F as the set of open facilities.

Theorem 2.3. (Czumaj et al., 2024) Algorithm 1 is a Θ(1)-
approximation algorithm for FACILITY LOCATION.

3. A Key Building Block
In this section, we develop a data structure that will be
crucially used by our dynamic facility location algorithm.
Due to the space limit, we postpone proofs of technical
claims in this section to Appendix A.

Theorem 3.1. Given any parameter λ > 0, there is a
data structure Dλ(S) for handling a dynamic point-set S.
Specifically, it maintains a bit bλ(p, S) ∈ {0, 1} for each
p ∈ S, and after every update (point insertion/deletion) in
S, it reports all the points that change their bλ(p, S) values.
The following properties are satisfied, for every p ∈ S.

(i) If dist(p, S \ {p}) ≤ λ, then bλ(p, S) = 1.
(ii) If dist(p, S \ {p}) > 2ρλ, then bλ(p, S) = 0.

Each update in S is handled in amortized Õ(τ) time.4

In essence, the bit bλ(p, S) indicates whether or not the
point p ∈ S has a neighbor in S within distance λ (subject
to a multiplicative slack of 2ρ). We refer to Dλ(S) as an
approximate “nearest neighbor indicator data structure”.

The corollary below follows from Theorem 3.1. It allows us
to maintain, for each point p ∈ S, whether there are suffi-
ciently many other points “close” to it. We outline the main
ideas behind the proofs of Theorem 3.1 and Corollary 3.2
in Section 3.1 and Section 3.2, respectively.

4Recall that ρ and τ respective denote the approximation ratio
and update/query-time of the nearest neighbor oracle. The Õ(.)
notation hides polylogarithmic (in the the input-size) factors.

Corollary 3.2. For all λ > 0, κ > 1, there is a data struc-
ture D⋆

λ,κ(S) for handling a dynamic point-set S. It main-
tains a bit b⋆λ,κ(p, S) ∈ {0, 1} for each p ∈ S, and after
every update (point insertion/deletion) in S, it reports all
the points that change their b⋆λ,κ(p, S) values. At every
time-step, the following properties hold whp, for all p ∈ S.

(i) If |BS(p, λ)| ≥ 5κ, then b⋆λ,κ(p, S) = 1.
(ii) If |BS(p, 2ρλ)| < κ, then b⋆λ,κ(p, S) = 0.

Whp, the algorithm has an amortized update time of Õ(τ).

3.1. Proof of Theorem 3.1

Throughout the sequence of updates, we maintain a partition
of the point-set S into three subsets: R ⊆ S, C ⊆ S \ R,
and A = S \ (C ∪ R). We refer to the points in R, C and
A as “remote-points”, “cluster-points” and “alive-points”,
respectively. The set C is further partitioned into subsets
that we refer to as “clusters”. These partitions can change
over time (for example, a given point might move from
A to R, due to an update in S). Each alive-point p ∈ A
maintains a “witness” w(p) ∈ C (this necessarily implies
that if A ̸= ∅, then C ̸= ∅). For each cluster-point q ∈ C,
we let w−1(q) := {p ∈ A : w(p) = q} denote the set of
alive-points for which q serves as a witness. We say that a
point q ∈ C is “responsible” for every point p ∈ w−1(q).
We always satisfy the following two invariants.
Invariant 3.3. Every cluster-point is responsible for at most
one alive-point, i.e., |w−1(q)| ≤ 1 for all q ∈ C. Further-
more, every cluster in C contains at least two points.
Invariant 3.4. Every point p ∈ R has dist(p, S \ {p}) >
λ. For every pair of points p, q ∈ C belonging to the same
cluster, we have dist(p, q) ≤ 2ρλ. Finally, for every point
p ∈ A, we have dist(p, w(p)) ≤ ρλ.

Thus, for an alive-point p ∈ A, the existence of a witness
guarantees that dist(p, S \ {p}) ≤ d(p, w(p)) ≤ 2ρλ.
Furthermore, for a cluster-point p ∈ C, the cluster it belongs
to contains at least one other point q ̸= p, and this guarantees
that dist(p, S \ {p}) ≤ dist(p, q) ≤ 2ρλ. In contrast,
for a remote point p ∈ R, we have dist(p, S \ {p}) > λ.
This implies that the set R (resp. C ∪A) corresponds to the
set of points p ∈ S with bλ(p, S) = 0 (resp. bλ(p, S) = 1).
Since we explicitly maintain the partition of S into A,C and
R, we are able to report the set of points that move in and
out of R (i.e., change their bλ(p, S) values) after an update.
Thus, Theorem 3.1 follows from Lemmas 3.5 and 3.6.

We use two auxiliary data structures, for nearest-neighbor
oracles in R, and in C ∪A.

Well-behaved Update Sequence We say that a sequence
of updates in S is “well-behaved” iff it never deletes a
cluster-point p ∈ C with w−1(p) ̸= ∅. W.l.o.g., we can
assume that our algorithm deals with a well-behaved update
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sequence, as follows. Whenever the algorithm is asked to
delete a point p ∈ C with w−1(p) ̸= ∅, we identify the
unique point q ∈ A such that w(q) = p, and then do the fol-
lowing. We first delete q, then delete p, and finally insert q
back. We refer to the first and the last of these three updates
(involving q) as “pseduo-updates”, while the middle one
(involving p) being a “real-update”. It is easy to verify that
none of the two invariants get violated due to first pseudo-
update (which deletes q), and hence other than deleting q,
nothing else changes due to the first pseudo-update. This
implies that when the real-update arrives, the node p ∈ C
has w−1(p) = ∅, and hence the resulting “pseduo-update
sequence” is well-behaved. Using this technique, we can
convert any real update-sequence of length σ into a well-
behaved, and equivalent, pseudo-update sequence of length
at most 3σ, and feed this pseudo-update sequence into our al-
gorithm. Accordingly, from now on we will assume that our
algorithm deals with only a well-behaved update sequence.

Insertion of a Point p in S We handle this by calling
the subroutine INSERT(p), as described in Algorithm 2.
Because of this insertion, some remote-points might now
violate Invariant 3.4, if the point p is too close to them.
This is addressed in lines 1–6 of Algorithm 2. If there
were no such remote-points close to p, then we imple-
ment lines 7–17. This requires us to first make a call to
the oracle NN(p, C ∪ A), and then update the structure
(A,C,R) in a natural manner, based on the outcome of the
call. Note that if we create a new cluster {p, q} in line
11, then it satisfies Invariant 3.4 for cluster-points, because
dist(p, q) ≤ dist(p, x)+dist(x, q) ≤ ρλ+ρλ = 2ρλ.
Similarly, if we create a new cluster {p, x} in line 10, then
it also satisfies Invariant 3.4, because dist(p, x) ≤ ρλ.

Deletion of a Point p from S If p ∈ A ∪R, then there is
nothing else to be done as both the invariants continue to
remain satisfied. The same is true if p ∈ C and belongs to a
cluster containing at least two other points (recall that since
the sequence is well-behaved, if p ∈ C then w−1(p) = ∅).
Thus, the only interesting case occurs when p and belongs
to a cluster C0 = {p, q} ⊆ C, where q is the only other
node belonging to the same cluster as p. In this case, we first
remove q from the set C (thereby destroying the cluster C0),
and then call the subroutine INSERT(p) (see Algorithm 2).

The next lemma follows from the preceding discussion.
Lemma 3.5. The above algorithm always satisfies Invari-
ant 3.3 and Invariant 3.4.

Lemma 3.6. The amortized update time of the above algo-
rithm is Õ(τ).

Proof. The time taken to handle an update (both insertion
and deletion) is dominated by the time spent on calls to the
INSERT(p) subroutine. To bound the latter, note that lines

Algorithm 2 INSERT(p)

1: X ← ∅.
2: while R ̸= ∅ and dist(p,NN(p,R)) ≤ ρλ do
3: X ← X ∪ {NN(p,R)}, and R← R \ {NN(p,R)}.
4: end while
5: if X ̸= ∅ then
6: Create a new cluster X∪{p}, and add all these points

to C (after removing all the points in X from R).
7: else
8: if C ∪A ̸= ∅

∧
dist(p,NN(p, C ∪A)) ≤ ρλ then

9: Let x← NN(p, C ∪A).
10: if x ∈ C then
11: If w−1(x) = ∅, then add p to A, and set

w(p) ← x. Otherwise, let w−1(x) = {q},
where q ∈ A. Then, move q from A to C and
add p to C, by creating a new cluster {p, q}.

12: else
13: x ∈ A. In this case, move x from A to C and

add p to C, by creating a new cluster {p, x}.
14: end if
15: else
16: Add p to the set R.
17: end if
18: end if

7–17 of Algorithm 2 require at most one call to the nearest
neighbor oracle, and hence they can be implemented in Õ(τ)
time. Lines 1–8, on the other hand, takes Õ(τ · (1 + |X|))
time. Clearly, each point p ∈ X moves into the set C in
line 6. Say that a “critical event” occurs whenever a point
moves “in or out” of the set C. Thus, the amortized update
time of our algorithm is Õ(τ · (1+ γ)), where γ denotes the
amortized number of critical events. To conclude the proof,
we next show that γ = Θ(1).

Consider any sequence of σ updates (assuming S = ∅ in
the beginning). Note that during this sequence, whenever
a point p moves into C, it joins a cluster with at least one
other point q ̸= p (see Invariant 3.3). Subsequently, the
point p moves out of C only if either: (i) p gets deleted from
S itself, or (ii) we end up in a scenario where p belongs to
a cluster with exactly one other point q, and q gets deleted
from S. Thus, in either case, we can “charge” this event (of
p moving out of C) to a deletion in S. It follows that during
the entire update sequence, the total number of times some
point moves out of C is at most O(σ). Hence, the total
number of critical events is also at most O(σ). Accordingly,
the amortized number of critical events is γ = Θ(1).

3.2. Proof of Corollary 3.2

Let n be an upper bound on the number of points in S,
throughout the sequence of updates. Let c > 0 be a suffi-
ciently large constant, and let T := ⌈cκ log n⌉. For each
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i ∈ [1, T ], we maintain a subset Si ⊆ S, constructed as fol-
lows: Each point p ∈ S is sampled in Si independently with
probability 1/κ. Invoking Theorem 3.1, we also maintain
the data structure Dλ(Si), for all i ∈ [1, T ].

For all points p ∈ S and indices i ∈ [1, T ], let Xp,i ∈ {0, 1}
be an indicator random variable that is set to 1 iff p ∈ Si

and the data structure Dλ(Si) sets bλ(p, Si) = 1. Finally,
define Xp :=

∑
i∈[1,T ] Xp,i for all p ∈ P .

We maintain the following output for each point p ∈ P : If
Xp ≥ c

2 log n, then b⋆λ,κ(p, S) = 1, else b⋆λ,κ(p, S) = 0.

Analysis For any point p ∈ S, define Sp := {Si : i ∈
[1, T ], p ∈ Si} to be the collection of sampled subsets where
p “survives”. Since p is sampled with probability 1/κ in
each Si and since T = Θ(κ log n), it is easy to verify that
whp |Sp| = O(log n). Thus, whp insertion/deletion of
a point in S leads to Õ(1) updates to the data structures
{Dλ(S)}i maintained by our algorithm. Since each of these
data structures {Dλ(Si)}i has an amortized update time of
Õ(τ), with some extra effort and book-keeping we can en-
sure that the amortized update time of our algorithm is also
Õ(τ) whp. It now remains to show that the output main-
tained by our algorithm satisfies properties (i) and (ii) in the
statement of Corollary 3.2. This follows from Claim 3.9 be-
low (which, in turn, follows from Claim 3.7 and Claim 3.8).

Claim 3.7. Consider any point p ∈ S with |BS(p, λ)| ≥ 5κ.
Then, we have E[Xp,i] ≥ (1− e−4)/κ for all i ∈ [1, T ].

Claim 3.8. Consider any p ∈ S with |BS(p, 2ρλ)| < κ.
Then, we have E[Xp,i] ≤ e−2/κ for all i ∈ [1, T ].

Claim 3.9. The following hold for every point p ∈ S.

(i) If |BS(p, λ)| ≥ 5κ, then whp b⋆λ,κ(p, S) = 1.
(ii) If |BS(p, 2ρλ)| < κ, then whp b⋆λ,κ(p, S) = 0.

4. Our Dynamic Algorithm
Let n ≥ 1 and δ ∈ (0, 1] respectively denote an upper bound
on the size of the input point-set P and a lower bound on
the minimum distance between any two distinct points in
P , at all times. We assume that n and δ are known in ad-
vance, and that 1/δ ∈ [1, O(poly(n))]. We will maintain
the output of a (slight) variant of Algorithm 1, under point
insertions/deletions in P . In Section 4.1, we show how to
maintain a Θ(ρ)-approximate estimate r̂p for each point
p ∈ P . By Lemma 2.1, this already gives us a dynamic
Θ(ρ)-approximation algorithm for the value of the optimal
facility location objective. In Section 4.2, we show how
to explicitly maintain an Θ(ρ)-approximate solution to our
problem, which is defined by the set of open facilities. Fi-
nally, in Section 4.3, we explain how to ensure that the
recourse of our algorithm remains at most O(1), leading to
our main result (summarized in Theorem 4.10).

4.1. Maintaining the r̂p Value of Each Point p ∈ P

Below, we summarize the main result in this section. Due
to the space limit, we postpone proofs of technical claims
in this section to Appendix B.

Theorem 4.1. Consider an input point-set P undergoing a
sequence of updates (point insertions/deletions). There is
a dynamic algorithm that explicitly maintains an estimate
r̂p ∈ [0, 1] for all p ∈ P . After each update in P , the
algorithm also reports the set of points that change their
{r̂p} values. Whp, the algorithm has Õ(τ) amortized update
time, and it ensures that rp ≤ r̂p ≤ Θ(ρ) ·rp for all p ∈ P .5

We devote the rest of Section 4.1 to outlining the main ideas
behind the proof of Theorem 4.1. Let I := ⌊log2(2ρ/δ)⌋,
and for each i ∈ [0, I], define the parameter λi :=

δ
4ρ · 2

i.

The Algorithm For each i ∈ [0, I], we maintain the data
structure D⋆

λi,λ
−1
i

(P ) by invoking Corollary 3.2. To ease

notation, henceforth we use the symbol b⋆i (p) as a shorthand
for b⋆

λi,λ
−1
i

(p, P ) (see the statement of Corollary 3.2). For

each point p ∈ P , we maintain the index ip := max{i ∈
[0, I] : b⋆i (p) = 0}, and the value r̂p := min(1, 6ρλip). The
index ip is well-defined, due to Claim 4.2.

Claim 4.2. Consider any p ∈ P . We have b⋆0(p) = 0 whp.

Analysis In Claim 4.3 below, we prove that these {r̂p}
values satisfy the property required by Theorem 4.1. Next,
observe that an update in P leads to one update in each
of the data structures {D⋆

λi,λ
−1
i

(P )}i∈[0,T ]. Further, we

have T = O(log(ρ/δ)) = Õ(1), and each of the data struc-
tures {D⋆

λi,λ
−1
i

(P )}i has an update time of Õ(τ) (see Corol-
lary 3.2). Thus, with some additional book-keeping, we can
ensure that the overall update time of our dynamic algorithm
is Õ(1) · Õ(τ) = Õ(τ). This leads us to Theorem 4.1.

Claim 4.3. For all p ∈ P , we have: rp ≤ r̂p ≤ 30ρ · rp.

4.2. Maintaining the Set F of Open Facilities

Our main result is stated in the theorem below. We devote
the rest of Section 4.2 towards proving Theorem 4.4. Due
to the space limit, we postpone proofs of technical claims
in this section to Appendix D.

Theorem 4.4. Consider an input point-set P undergoing a
sequence of updates (point insertions/deletions). There is a
dynamic algorithm that explicitly maintains a subset F ⊆ P
of open facilities. Whp, the algorithm has an amortized
update time of Õ(τ), and F is a Θ(ρ)-approximate solution
to the FACILITY LOCATION instance defined by P .6

5Recall that ρ and τ respectively denote the approximation ratio
and update/query-time of the nearest-neighbor oracle (Section 2).

6Recall that ρ and τ respectively denote the approximation ratio
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Figure 1: The running time comparison of our dynamic algorithm and MP algorithm (Mettu & Plaxton, 2003). Since MP
algorithm is static, we re-run it from scratch to handle updates. However, since re-running every step takes prohibitively
long time, we choose to re-run it only every 100 time steps (and report the running time of that specific invocation). To
make a fair comparison, we report the average running time of our algorithm during these 100 time steps.
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Figure 2: The objective value and amortized recourse evaluated on the four datasets. The objective of the MP algo-
rithm (Mettu & Plaxton, 2003), re-run after each update, is also reported for comparison.

We first propose a (slightly) modified version of Algorithm 1.
For each point p ∈ P , let h⋆(p) be obtained by rounding
the value of h(p) in powers of 2 (see line 2 of Algorithm 1):
If 2−i ≤ h(p) < 2−i+1 for an integer i ≥ 0, then h⋆(p) =
2−i. Further, we define Pi := {p ∈ P : h⋆(p) = 2−i}. In
the “new algorithm”, we change step (S1) of Algorithm 1
to: “Select p if h⋆(p) ≤ h⋆(p′) for all p′ ∈ BP (p, r̂p)”.
Everything else remains the same as before. Thus, the
new algorithm can be thought of a simple discretization of
Algorithm 1, where we replace h(p) by h⋆(p) for all p ∈ P .

Lemma 4.5. The new algorithm described above returns a
Θ(1)-approximate solution to FACILITY LOCATION.

Proof. The proof can be found in Appendix C.

We proceed towards highlighting a few key properties of
this new (static) algorithm. Say that a point p ∈ P is in
“layer i” iff p ∈ Pi. Let P≥i :=

⋃
j≥i Pj . The claim below

guarantees that there are O(log n) non-empty layers, whp.

Claim 4.6. Fix a sufficiently large constant α > 0 and let
Lα := ⌈α log n⌉. Then, whp, we have: P≥Lα

= ∅.

Next, we prove that for all p ∈ P , whp the non-empty layer
with the largest index (in BP (p, r̂p)) has O(log n) points.

and update/query-time of the nearest-neighbor oracle (Section 2).

Claim 4.7. Consider any p ∈ P , and let ip := max{i : Pi∩
BP (p, r̂p) ̸= ∅}. Then, whp: |Pip ∩BP (p, r̂p)| ≤ 4β log n,
where β > 0 is a sufficiently large constant.

Fix a parameter Lβ := ⌈16β2 log2 n⌉. For each point p ∈
P , choose an index jp ∈ [1, Lβ ] independently and u.a.r.
For each j ∈ [1, Lβ ], define the subset of points Qj := {p ∈
P : jp = j}. In addition, for each i ∈ [1, Lα] and each
j ∈ [1, Lβ ], define the subset of points Si,j := P≥i ∪ Qj .
Our dynamic algorithm will maintain these subsets, and will
crucially rely upon the following property.

Claim 4.8. Condition on the (high probability) events de-
scribed in the statements of Claim 4.6 and Claim 4.7. Con-
sider any point p ∈ P . Then, with constant probability, we
have jq ̸= jq′ for all q, q′ ∈ Pip ∩BP (p, r̂p) with q ̸= q′.

Our Dynamic Algorithm Recall steps (S1) and (S2) in
Algorithm 1. For each point p ∈ P , let Z(2)

p ∈ {0, 1} be
an indicator random variable that is set to 1 iff a facility
is opened at point p because of step (S2). Similarly, let
Z

(1)
p ∈ {0, 1} be an indicator random variable that is set to

1 iff a facility is opened at point p because of the modified
step (S1) in the new algorithm (i.e., iff h⋆(p) ≤ h⋆(p′)
for all p′ ∈ BP (p, r̂p)). In the dynamic setting, we will
maintain the output of the new algorithm. Towards this end,
it suffices to maintain the

{
Z

(1)
p , Z

(2)
p

}
p∈P

values.

7
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To begin with, it is relatively straightforward to keep track
of the

{
Z

(2)
p

}
p∈P

values: Whenever a point p is inserted

into P , we sample a number γp ∈ [0, 1] independently and
u.a.r. Subsequently, throughout the lifespan of point p (i.e.,
until it gets deleted), we set Z(2)

p = 1 iff γp ≤ r̂p. This

ensures that Pr
[
Z

(2)
p = 1

]
= r̂p. Invoking Thoerem 4.1,

this can be implemented in Õ(τ) update time.

To explain how we maintain the
{
Z

(1)
p

}
p∈P

values, hence-

forth we condition on the (high-probability) events de-
scribed in the statements of Claim 4.6 and Claim 4.7. We
also make the following simplifying assumptions: We have
access to an “exact” nearest-neighbor oracle (i.e., ρ = 1),
and a data structure for Theorem 3.1 that does not need
any slack. In Õ(τ) update time, this idealized data struc-
ture maintains a bit bλ(p, S) ∈ {0, 1} that is set to 1 iff
dist(p, S \ {p}) ≤ λ. Under these assumptions, we now
outline how to get a dynamic algorithm for Theorem 4.4,
with update time Õ(τ) and approximation ratio Θ(1). It is
relatively straightforward to extend the ensuing discussion
to the general case, where the simplifying assumptions do
not hold, leading to a formal proof of Theorem 4.4.

Fix any point p ∈ P , and let p ∈ Pi, where 0 ≤ i < Lα.
Note that we should set Z(1)

p = 0 iff P≥i+1∩BP (p, r̂p) ̸= ∅.
In our dynamic algorithm, we instead set Z(1)

p = 0 iff the
nearest neighbor of p in Si+1,jp is at most a distance r̂p away
(i.e., iff dist(p, Si+1,jp \ {p}) ≤ r̂p). We can keep track
of whether this latter condition is being satisfied or not, by
invoking Theorem 3.1; specifically, by maintaining a nearest
neighbor indicator (NNI) data structure Dλ(Si,j) for all
i ∈ [1, Lα], j ∈ [1, Lβ ], where λ is an approximate “guess”
(in powers of 2) on the value of r̂p. Note that there are only
Õ(1) such guesses, assuming the “aspect ratio” of the metric
is polynomially bounded. Since Lα, Lβ = Õ(1), we need to
maintain only Õ(1) such NNI data structures. Furthermore,
it is easy to verify that each update in P leads to Õ(1)
updates in these NNI data structures. By Theorem 3.1, this
gives us an amortized update time of Õ(τ).

We now explain why, in the scheme described above, the
value of Z(1)

p is set correctly with constant probability. To-
wards this end, condition on the event described in Claim 4.8
(which occurs with constant probability). Now, there are
two cases to consider. (i) P≥i+1 ∩ BP (p, r̂p) ̸= ∅. In this
case, we clearly have dist(p, Si+1,jp \{p}) ≤ r̂p, because
Si+1,jp ⊇ P≥i+1, and hence our dynamic algorithm main-
tains the correct value of Z(1)

p . (ii) P≥i+1 ∩BP (p, r̂p) = ∅.
In this case, we have i = ip, and hence Claim 4.8 implies
that Qjp ∩ BP (p, r̂p) = {p}. As Si+1,jp = P≥i+1 ∪ Qjp ,
it follows that dist(p, Si+1,jp \ {p}) > r̂p, and hence our
dynamic algorithm sets the correct value of Z(1)

p .

Table 1: Specifications of datasets and parameters

dataset size dimension opening cost

Twitter 21040936 2 1
Census1990 2458285 68 10
Covertype 581012 52 1
KDD-Cup 4898431 28 0.5

To summarize, our dynamic algorithm maintains the correct
value Z

(1)
p ∈ {0, 1} with constant probability. We can now

boost this success probability using standard techniques,
by keeping O(log n) independent copies of the above data
structure. This ensures that our dynamic algorithm works
correctly whp, at the cost of increasing its update time by
only a O(log n) factor.

4.3. Consistent Facility Location: A General Reduction

Finally, we show how to ensure that our algorithm achieves
constant (amortized) recourse. Towards this end, we make
use of the following general reduction which was implicitly
shown in (Cohen-Addad et al., 2019). It turns a generic dy-
namic algorithm for facility location (without any recourse
bound) to a “consistent” one (i.e., with O(1) recourse), with
negligible additional overhead.

Lemma 4.9 (Cohen-Addad et al. (2019)). Let there be a
dynamic algorithm A that maintains an α-approximate so-
lution for facility location, with amortized update time T .
Then there is another dynamic facility location algorithm
that maintains a O(ρα)-approximate solution, with O(1)
amortized recourse and Õ(T + τ) amortized update time.7

Combining Lemma 4.9 with Theorem 4.4, we obtain the
main result of this paper, which is summarized below.

Theorem 4.10. There is a randomized dynamic algorithm
for facility location that has O(ρ2)-approximation ratio,
O(1) amortized recourse, and Õ(τ) amortized update time.

5. Experimental Evaluation
We implement our algorithm in C++ language and run it on
real datasets. We aim to validate that our algorithm consis-
tently generates accurate solutions, and that the recourse of
the open facility set is very small.

Datasets and Parameters Our experiment is done on
Twitter (Chan et al., 2018b), Census1990 (Meek et al.),
Covertype (Blackard, 1998) and KDD-Cup (Stolfo et al.,
1999) datasets. These datasets have been used in various
previous works for evaluating clustering and facility loca-
tion algorithms (Chan et al., 2018a; Cohen-Addad et al.,

7Recall that ρ and τ respectively denote the approximation ratio
and update/query time of the nearest neighbor oracle (Section 2).
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2019; Bhattachcharya et al., 2022). We take the numerical
attributes to generate the input points in Rd, and normalize
each attribute/dimension to prevent a single attribute from
dominating the vector. We consider a sliding window of
size ℓ = 1000, and our update operations on the datasets are
generated by this sliding window. The opening cost is set
such that a moderate number of facilities would be open in
a (near-)optimal solution. We summarize the specifications
and the opening cost for the four datasets in Table 1.

Implementation Details Our implementation has an im-
portant difference to the one listed in the proof, is that we
decide not to apply Lemma 4.9 which is a generic step to
reduce the amortized recourse to O(1). In fact, even with-
out this step, our algorithm can still achieve O(poly log n)
amortized recourse, and it turns out to still achieve good re-
course in the experiments. We make use of standard locality-
sensitive hashing (LSH) techniques (see e.g. Har-Peled et al.
(2012)) to implement the nearest neighbor oracle. In our ex-
periments, we use 15 random hash functions and we find this
setup already produces decent accuracy when combining
with our algorithm. All the experiments are conducted on
an Apple computer with M1 Pro CPU and 16GB memory.

Experiment Setup We run our algorithm on the four
datasets, and we report the objective value of the approx-
imate solution, the recourse and running time after pro-
cessing each query in Figure 2. The reported recourse is
amortized, i.e., it is the total recourse divided by the number
of time steps, which may be viewed as a running average.
We also report the objective and running time achieved by
the Mettu-Plaxton (MP) algorithm (Mettu & Plaxton, 2003).
This is a static algorithm and is re-run after each update. Due
to the fact that our dynamic algorithm is designed based on
a modified version of MP, and that this algorithm is shown
to be 3-approximation (which achieves the same ratio as
another well-known algorithm by Jain & Vazirani (2001)),
it serves as a baseline for evaluating our algorithm.

Experiment Results We can see from Figure 1 that our
algorithm typically runs roughly two magnitudes faster than
MP. This justifies the efficiency of our dynamic algorithm.
Moreover, this speedup is achieved without sacrificing the
accuracy. As depicted in Figure 2, on all datasets, our
algorithm maintains a solution whose objective value is very
similar to that of MP algorithm. This is much better than
the worst-case theoretical bound in which our ratio is worse
than that of MP by a (large) constant, due to the additional
error introduced by the approximate nearest-neighbor oracle
and that in the modified MP (Theorem 2.3). In addition, the
solution is maintained with very small amortized recourse,
which is even less than 1, and this is again much better than
the worst-case bound. The fact that the amortized recourse
is less than 1 may be caused by the nature of the sliding

window, since the removal of a single point may not be
enough to force the change of a facility.
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A. Missing Proofs in Section 3
Claim 3.7. Consider any point p ∈ S with |BS(p, λ)| ≥ 5κ. Then, we have E[Xp,i] ≥ (1− e−4)/κ for all i ∈ [1, T ].

Proof. Fix any index i ∈ [1, T ], and let Ep,i be the event that at least one point q ∈ BS(p, λ) \ {p} is sampled in Si. It
follows that Pr[Ep,i] = 1 − (1 − 1/κ)|BS(p,λ)|−1 ≥ 1 − (1 − 1/κ)4κ ≥ 1 − e−4. Observe that if p ∈ Si and the event
Ep,i occurs, then Xp,i = 1. To see why this is true, consider any point q ∈ (BS(p, λ) \ {p}) ∩ Si (such a point must exist
under the event Ep,i). Then, we have dist(p, Si \ {p}) ≤ dist(p, q) ≤ λ and p ∈ Si, and hence Theorem 3.1 implies
that bλ(p, Si) = 1 = Xp,i.

To conclude, since the events p ∈ Si and Ep,i are independent, we get: E[Xp,i] = Pr[Xp,i = 1] = Pr[p ∈ Si] · Pr[Ep,i] ≥
(1− e−4)/κ.

Claim 3.8. Consider any p ∈ S with |BS(p, 2ρλ)| < κ. Then, we have E[Xp,i] ≤ e−2/κ for all i ∈ [1, T ].

Proof. Fix any index i ∈ [1, T ], and let E⋆p,i be the event that no point q ∈ BS(p, 2ρλ) \ {p} is sampled in Si. Thus, we
have Pr[E⋆p,i] = (1 − 1/κ)|BS(p,2ρλ)|−1 > (1 − 1/κ)κ ≥ e−2. Observe that if p ∈ Si and the event E⋆p,i occurs, then
Xp,i = 0. To see why this is true, note that under this event dist(p, Si \ {p}) > 2ρλ. Thus, Theorem 3.1 implies that
bλ(p, Si) = 0 = Xp,i.

To conclude, since the events p ∈ Si and E⋆p,i are independent, we get: E[Xp,i] = 1 − Pr[Xp,i = 0] ≤ 1 − Pr[(p ∈
Si) ∧ E⋆p,i] = 1− Pr[p ∈ Si] · Pr[E⋆p,i] ≤ e−2/κ.

Claim 3.9. The following hold for every point p ∈ S.

(i) If |BS(p, λ)| ≥ 5κ, then whp b⋆λ,κ(p, S) = 1.
(ii) If |BS(p, 2ρλ)| < κ, then whp b⋆λ,κ(p, S) = 0.

Proof. Throughout the proof, fix any point p ∈ S.

Part (i): We have E[Xp] =
∑

i∈[1,T ] E[Xp,i]. Since |BS(p, λ)| ≥ 5κ, Claim 3.7 implies that E[Xp] ≥ (1− e−4)κ−1T =

(1 − e−4) · c log n ≥ 3c
4 log n. Since {Xp,i}i are mutually independent 0/1 random variable, Xp =

∑
i Xp,i, and c is a

sufficiently large constant, applying a Chernoff bound we get: whp Xp ≥ c
2 log n (which is equivalent to claiming that

b⋆λ,κ(p, S) = 1).

Part (ii): We have E[Xp] =
∑

i∈[1,T ] E[Xp,i]. Since |BS(p, 2ρλ)| < κ, Claim 3.8 implies that E[Xp] ≤ e−2κ−1T =

e−2c log n ≤ c
4 log n. Applying a Chernoff bound as in part (i) above, we get: whp Xp < c

2 log n (which is equivalent to
claiming that b⋆λ,κ(p, S) = 0).

B. Missing Proofs in Section 4.1
Claim 4.2. Consider any p ∈ P . We have b⋆0(p) = 0 whp.

Proof. Note that λ0 = δ/(4ρ). Since δ is a lower bound on the minimum distance between any two distinct points in P , we
have BP (p, 2ρλ0) = BP (p, δ/2) = {p}. This implies that |BP (p, 2ρλ0)| = 1 < 4ρ/δ = λ−1

0 . Thus, by Corollary 3.2, we
get: b⋆0(p) = 0 whp.

Claim 4.3. For all p ∈ P , we have: rp ≤ r̂p ≤ 30ρ · rp.

We first prove the following Claim B.1 as it is used in the proof of Claim 4.3.

Claim B.1. Consider any point p ∈ P and any index i ∈ [0, I]. Then the following two properties hold whp.

(i) If b⋆i (p) = 1, then rp ≤ min(1, 3ρλi).
(ii) If b⋆i (p) = 0, then rp > λi/5.

Proof. For part (i), let b⋆i (p) = 1. Then, by Corollary 3.2, we have |BP (p, 2ρλi)| ≥ λ−1
i . Thus, we infer that

Vol(p, 3ρλi) :=
∑

x∈BP (p,3ρλi)
(3ρλi − dist(x, p)) ≥ ρλi · |BP (p, 2ρλi)| ≥ 1, and hence rp ≤ min(1, 3ρλi).

11
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For part (ii), let b⋆i (p) = 0. Then, by Corollary 3.2, we have |BP (p, λi)| < 5λ−1
i . Thus, we infer that Vol(p, λi/5) :=∑

x∈BP (p,λi/5)
(λi/5− dist(x, p)) ≤ |BP (p, λi/5)| · (λi/5) ≤ |BP (p, λi)| · (λi/5) < 1, and hence rp > λi/5.

This concludes the proof of the claim.

Proof of Claim 4.3. Fix any point p ∈ P , and consider two cases.

Case 1: 0 ≤ ip < I . Thus, b⋆ip(p) = 0 and b⋆ip+1(p) = 1, and Claim B.1 implies that λip/5 < rp ≤ min(1, 3ρλip+1) =

min(1, 6ρλip) = r̂p. Hence, we get: rp ≤ r̂p ≤ 30ρ · rp.

Case 2: ip = I . As before, Claim B.1 implies that λip/5 < rp. We also have rp ≤ 1. This leads us to conclude that
λip/5 < rp ≤ 1 = min(1, 6ρλip) = r̂p (the second last inequality holds because λip = λI ≥ 1/4 and ρ ≥ 1). Thus, we
get: rp ≤ r̂p ≤ 30ρ · rp.

C. Proof of Lemma 4.5
Conditioned on the {h(p)}p∈P values, the set of facilities opened by the new algorithm is a superset of the set of facilities
opened by Algorithm 1. Since each point p ∈ P gets connected to its nearest open facility, this implies that the total
connection cost of the new algorithm is at most the total connection cost of Algorithm 1. The latter quantity, in turn, is at
most Θ(1) times the optimal objective (see Theorem 2.3). Thus, it now remains to upper bound the total facility opening
cost of the new algorithm.

This is achieved in Lemma C.1 below. Specifically, Lemma C.1 implies that the expected contribution of a point p ∈ P
towards the total facility opening cost is O(r̂p). Hence, by linearity of expectation, the total expected facility opening cost is∑

p∈P O(r̂p) =
∑

p∈P O(rp) = O(1) · Opt, where Opt denotes the optimal objective. The first equality holds due to line
1 of Algorithm 1, whereas the last equality holds because of Lemma 2.1.

Lemma C.1. In the new algorithm, for all p ∈ P we have: Pr[p ∈ F ] = O(r̂p).

Proof. Fix any point p ∈ P . Clearly, the point p is opened as a facility due to step (S2) (see Algorithm 1) with probability
r̂p. Thus, it remains to upper bound the probability that the point p is opened as a facility due to the modified step (S1) in
the new algorithm. Specifically, let E⋆p denote the event that h⋆(p) ≤ h⋆(p′) for all p′ ∈ BP (p, r̂p). We want to show that
Pr[E⋆p ] = O(r̂p).

Let mp := |BP (p, r̂p)|. For any integer i ≥ 0, let E⋆p (i) denote the event that (i) p ∈ Pi and (ii) p′ /∈ P≥i+1 for all
p′ ∈ BP (p, r̂p) \ {p}. Clearly, we have E⋆p :=

⋃
i≥0 E⋆p (i). We will first upper bound Pr[E⋆p (i)], for a fixed i. Observe

that Pr[p ∈ Pi] = 2−i+1 − 2−i = 2−i, and that Pr[q ∈ P≥i+1] = 2−i for all q ∈ BP (p, r̂p). Thus, we infer that:
Pr[E⋆p (i)] = 2−i · (1− 2−i)mp ≤ 2−i · exp(−mp/2

i) ≤ 2−i−mp/2
i

. Now, via a union bound over all i ≥ 0, we get:

Pr
[
E⋆p

]
≤

∑
i≥0

2−i−mp/2
i

=
∑

i:2i≤mp

2−i−mp/2
i

+
∑

i:2i>mp

2−i−mp/2
i

. (1)

Let Λ1 and Λ2 respectively denote the first and the second term on the RHS of (1). To bound Λ1, we change the summation
variable to j = logmp− i, so that j ∈ {0, . . . , logmp}, and get: Λ1 =

∑
0≤j≤logmp

2− logmp+j−mp/2
log mp−j

= (1/mp) ·∑
0≤j≤logmp

2j−2j = O(1/mp). Next, to bound Λ2, we observe that: Λ2 =
∑

i:2i>mp
2−i−mp/2

i ≤
∑

i:2i>mp
2−i =

O(1/mp). To conclude, we infer that:
Pr[E⋆p ] ≤ Λ1 + Λ2 = O(1/mp). (2)

Finally, since rp ≤ r̂p (see Theorem 4.1), we have: 1 ≤ Vol(p, r̂p) =
∑

q∈BP (p,r̂p)
(r̂p−dist(p, q)) ≤ r̂p · |BP (p, r̂p)| =

r̂p ·mp, and hence: 1/mp ≤ r̂p. This last inequality, in conjunction with (2), gives us: Pr[E⋆p ] = O(r̂p), which concludes
the proof of Lemma C.1.

D. Other Missing Proofs in Section 4.2
Claim 4.6. Fix a sufficiently large constant α > 0 and let Lα := ⌈α log n⌉. Then, whp, we have: P≥Lα = ∅.
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Proof. Consider any point p ∈ P . Note that Pr[p ∈ P≥Lα
] ≤ Pr[h(p) < 2−Lα+1] = 2−Lα+1 ≤ 2/nα. Since there are at

most n points in P , the claim now follows from a union bound over all p ∈ P .

Claim 4.7. Consider any p ∈ P , and let ip := max{i : Pi ∩ BP (p, r̂p) ̸= ∅}. Then, whp: |Pip ∩ BP (p, r̂p)| ≤ 4β log n,
where β > 0 is a sufficiently large constant.

Proof. Define mp := |BP (p, r̂p)|. Let Ep denote the event that h(q) ≤ (β log n)/mp for some q ∈ BP (p, r̂p). Note that:
Pr[Ep] = 1− Pr[Ep] = 1− (1− β log n/mp)

mp ≥ 1− 1/nβ . So, the event Ep occurs whp.

For each point q ∈ BP (p, r̂p), let Xp(q) ∈ {0, 1} be an indicator random variable that is set to 1 iff h(q) < (2β log n)/mp.
Further, let Xp :=

∑
q∈BP (p,r̂p)

Xp(q).

Since h(q) is chosen independently and u.a.r. from [0, 1], we have E[Xp(q)] = Pr[Xp(q) = 1] = (2β log n)/mp for all
q ∈ Bp(p, r̂p). Thus, linearity of expectation implies that: E[Xp] = mp · (2β log n)/mp = 2β log n. At this stage, applying
a Chernoff bound, we get: Xp ≤ 4β log n whp.

Now, by a union bound, whp the following two events occur simultaneously: (i) Ep and (ii) Xp ≤ 4β log n.

Conditioned on event (i), it is easy to verify that 2−ip ≤ (β log n)/mp, and hence every point q ∈ Pip ∩ BP (p, r̂p) has
Xp(q) = 1. This, in turn, implies that |Pip ∩BP (p, r̂p)| ≤ Xp ≤ 4β log n. The last inequality holds conditioned on event
(ii). This concludes the proof.

Claim 4.8. Condition on the (high probability) events described in the statements of Claim 4.6 and Claim 4.7. Consider any
point p ∈ P . Then, with constant probability, we have jq ̸= jq′ for all q, q′ ∈ Pip ∩BP (p, r̂p) with q ̸= q′.

Proof. Since |Pip ∩ BP (p, r̂p)| ≤ 4β log n and each jq is chosen independently and u.a.r. from [1, Lβ ] where Lβ ≥
16β2 log2 n, the claim follows from a balls-into-bins argument (specifically, from Birthday paradox).
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