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Understanding-Based Segmentation
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Figure 1: ARGenSeg is a unified framework for visual understanding, segmentation, and generation.
It supports semantic, instance, interactive, and zero-shot reasoning segmentation, as well as anomaly
detection, by leveraging strong visual understanding capabilities.

Abstract

We propose a novel AutoRegressive Generation-based paradigm for image
Segmentation (ARGenSeg), achieving multimodal understanding and pixel-level
perception within a unified framework. Prior works integrating image segmen-
tation into multimodal large language models (MLLMs) typically employ either
boundary points representation or dedicated segmentation heads. These meth-
ods rely on discrete representations or semantic prompts fed into task-specific
decoders, which limits the ability of the MLLM to capture fine-grained visual
details. To address these challenges, we introduce a segmentation framework for
MLLM based on image generation, which naturally produces dense masks for
target objects. We leverage MLLM to output visual tokens and detokenize them
into images using an universal VQ-VAE, making the segmentation fully dependent
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on the pixel-level understanding of the MLLM. To reduce inference latency, we em-
ploy a next-scale-prediction strategy to generate required visual tokens in parallel.
Extensive experiments demonstrate that our method surpasses prior state-of-the-art
approaches on multiple segmentation datasets with a remarkable boost in inference
speed, while maintaining strong understanding capabilities.

1 Introduction

The emergence of large language models (LLMs) [8, [17, [52] has significantly accelerated the
development of artificial general intelligence (AGI) [9]. Breakthroughs like ChatGPT [40]] enable
the transformer-based [54] autoregressive framework to unify diverse tasks of natural language
processing [1} 4]. As for multimodal task, LLaVA [34] employs visual adaptor to map visual features
into the embedding space of LLMs, establishing a universal paradigm for multimodal large language
models [33 15,15, 56]. Recent studies [48} 164} 149} 167,51} 161} [2, [3} 122]] explore the unified framework
for multimodal understanding and generation. However, integrating fundamental visual perception
tasks into a unified AGI framework remains an open challenge. While sparse-output tasks such as
visual grounding can be directly addressed via text expression [[14], tasks requiring dense outpus like
image segmentation are inherently difficult to represent through natural language.

Previous methods that incorporate image segmentation into MLLMs typically fall into two categories.
The first discretizes dense masks into boundary point sequences [11 142} 58], which inevitably leads to
incomplete segmentation masks and unnatural object boundaries. The second achieves segmentation
through downstream dedicated decoders (e.g., SAM [27], Mask2Former [[16]), which are conditioned
on either textual prompts [12] or hidden states [29, 45, [75] generated by MLLMs. This not only
results in complex model architectures, but also leads to insufficient understanding of pixel-level
information for LLM due to its reliance on specialized task head.

To address the above challenges, we propose ARGenSeg, which leverages the image generation-
based paradigm to integrate image segmentation into a unified MLLM framework. To retain the
strong understanding capability of MLLMs, we use continuous image features as the input. For the
generation output, we train the model to directly predict quantized image tokens, aligning with the
next-token autoregressive prediction mechanism of language models. We use a pre-trained VQ-VAE
as image tokenizer to quantize and detokenize images, with its visual tokens added to the codebook
of MLLM. By leveraging the understanding ability of MLLM, ARGenSeg is capable of additional
complex reasoning segmentation [29], anomaly detection [7} 6] and other image segmentation tasks
[75] as shown in Fig.[1] The image tokenizer is kept frozen throughout training, thereby avoiding the
dependence of LLM on subsequent decoders when learning pixel-level information.

In real-world application, image segmentation often requires fast response times. For this purpose,
we adopt a next-scale prediction strategy for image generation. On one hand, the multi-scale mask
generation process aligns with the intuitive process of object segmentation, which typically involves
coarse localization followed by fine-grained boundary refinement. On the other hand, generating
visual tokens in parallel provides a significant efficiency advantage, achieving over 4x speedup
compared to sequential generation methods [[19, 59].

Some methods also propose to use image generation for image segmentation. UniGS [43] uses
diffusion model [21} 46| to achieve image segmentation. However, its U-Net structure causes
lack of understanding ability. HiMTok [S57] proposes an innovative mask tokenizer that enables
decoding discrete outputs from the MLLM into binary masks via image generation. However, the
task-specific tokenizer limits its generality and extensibility. Moreover, both of these methods suffer
from significant disadvantages in inference speed.

Extensive experiments demonstrate that the proposed ARGenSeg outperforms existing MLLM-based
segmentation methods, while also achieving significantly faster inference. Notably, our method
achieves superior performance using substantially less segmentation data compared to prior state-
of-the-art approach [57]. In addition, the use of a general-purpose visual tokenizer provides the
flexibility to extend the framework to additional tasks. As a demonstration, by fine-tuning on a small
amount of image generation data, we successfully unlock the image generation capability of our
framework, as illustrated in Fig. E}

The main contributions of this paper include:



* We propose a novel image segmentation framework based on a unified multimodal under-
standing and generation paradigm. To our knowledge, we are the first to show that unified
MLLM:s can achieve SOTA segmentation results without any extra segmentation heads.

* We leverage a universal image tokenizer, allowing segmentation to fully rely on the pixel-
level visual understanding of the MLLM. We further show that direct image token prediction
by the MLLM is important for achieving high segmentation accuracy.

* We propose to use next-scale prediction to speed up inference. And we observe that the
coarse-to-fine multi-scale mask generation process also boosts segmentation robustness.

2 Related Work

Integrating image segmentation into MLLMs not only equips them with fine-grained visual percep-
tion, but also enables more complex reasoning-based segmentation tasks by leveraging understanding
capabilities. However, representing segmentation masks within the MLLM framework remains
a significant challenge. PolyFormer [35] and VistaLLM [42] represent masks as polygons using
point sequences, which are easy to express but struggle with complex shapes. LISA [29] aggregates
segmentation information using special tokens and predicts masks through a SAM [27] decoder.
Subsequent works such as GLaMM [44]], PixelLM [45]], GSVA [65]], and PSALM [75] build upon
this paradigm, and still rely on special tokens and dedicated segmentation decoders. These methods
essentially aim to extract semantic embeddings of target objects and then obtain dense segmenta-
tion masks by computing similarity with image features. Such representations tend to emphasize
high-level semantics rather than true pixel-level understanding. HiMTok [57] explores an alternative
that removes the reliance on special tokens and SAM-like decoders. However, it still depends on a
dedicated mask tokenizer trained on binary masks. Moreover, the expressiveness of the tokenizer is
limited and cannot be extended to support other tasks such as image generation. This suggests that
segmentation representation in MLLMSs remains an open challenge, which we think can be effectively
addressed through autoregressive image generation.

Unified multimodal understanding and generation models have recently attracted increasing
attention for their ability to seamlessly perform both understanding and generation tasks within a
single framework. Several works [48, 201163} 51] leverage diffusion models for image generation by
regressing visual embeddings from MLLM outputs and using them as conditional inputs. TransFusion
[77] and Show-O [67] unify next-token prediction and diffusion-based generation within a single
transformer framework. Chameleon [49] and Emu3 [59] adopt a shared discrete visual embedding
space for both understanding and generation, decoding images through VQ-based tokenizers [[19,[71].
Janus [61]] decouples the encoder for multimodal understanding and generation, using discrete visual
tokens for generation while retaining continuous visual features for better understanding accuracy.
VARGPT [78] proposes next-token prediction for understanding and next-scale prediction for image
generation, but relies on an additional transformer-based visual decoder.

Image tokenization enables discrete outputs from autoregressive models to be reconstructed into
images. VQ-VAE [53] encodes images into a downsampled latent space and quantizes the features into
discrete token IDs, simplifying the learning process for generative models. VQGAN [19] improves
reconstruction quality and training efficiency through adversarial training. TiTok [72] significantly
reduces the number of tokens required for image representation, improving generation speed, and
further shows that increasing the number of latent tokens consistently enhances reconstruction quality.
VAR [50] reformulates visual autoregressive generation as a next-scale prediction task, achieving
high efficiency while maintaining a relatively large number of visual tokens.

3 Method

In this paper, we propose a novel image segmentation framework based on autoregressive image
generation model, using a Vector-Quantized (VQ) autoencoder [53| [19] to tokenize images into
discrete tokens and reconstruct them from generated outputs. To address the unique challenges
of segmentation, we introduce two key designs. (1) The MLLM is trained to directly output
image tokens, which is crucial for achieving high pixel-level accuracy. (2) We utilize a multi-scale
generation process that performs coarse-to-fine refinement. This not only enhances segmentation
robustness but also improves inference efficiency. This section first presents the background of the



image tokenizer (Sec.[3.1)), then details the architecture (Sec. [3.2)), training procedure (Sec.[3.3), and
inference process (Sec. of our proposed model.

3.1 Preliminary

Vector-Quantized Autoencoder The standard VQ model learns to encode images into a latent
space and reconstruct them from discrete tokens. Given an input image I € R <" 3 the encoder £
maps it to a latent feature space:

f=E@T), feRT*TxD (1)

where [ is the spatial downsampling factor and D denotes the feature dimesion. The latent features f
are then quantized by a vector quantizer Q into discrete token indices ¢ € [V] T

q=0(f), ¢ =argmin|f") — |, )
ve[V]

where c? is the v-th embedding vector in the visual codebook C € RV *Land [V] denotes the set of
codebook indices {1,2,...,V}.

The reconstruction of the image can be interpreted as detokenizing discrete visual tokens into an
image. In this procedure, the quantized indices ¢ are used to index the corresponding embedding

from the visual codebook C, producing the estimated latent feature map f . The estimated feature
map is then passed through the decoder D to generate the reconstructed image I:

D(f). 3)

f =1ookup(C,q), 1

Multi-Scale VQ Autoencoder When using VQ-VAE for autoregressive image generation, the
inference process typically requires O(n?) steps. To address this inefficiency, VAR[50] introduces a
next-scale prediction paradigm for visual token generation. Specifically, the feature map f is quantized
into K multi-scale token maps (1,72, ...,7x) , where each map corresponds to a different resolution.
At each inference step, the model generates all hj, X wy, tokens required for the current scale 7y, in
parallel, repeating this process until r i reaches the target resolution of % X % Moreover, the coarse-
to-fine predictions can enhance the generation quality. Based on this paradigm, an image of resolution
256 x 256 can be represented using 680 visual tokens, while requiring just K autoregressive inference
steps, significantly improving generation efficiency. Given the fast response requirements of image

segmentation tasks, we adopts this paradigm to enable efficient autoregressive image generation.
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Figure 2: The architecture of ARGenSeg and its training and inference procedures. Left: ARGenSeg
integrates image segmentation into the MLLM via an autoregressive image generation paradigm. A
unified classification prediction head is used to generate both text and visual tokens. Right: Visual
tokens are generated in parallel using the next-scale prediction strategy. During training, a VAE
encoder is used to construct supervision for cross-entropy loss. During inference, the VAE decoder
reconstructs the image from the predicted visual tokens. [S]/[E] denotes <gen_start>/<gen_end>.




3.2 Architecture

Multimodal Understanding ARGenSeg uses a unified autoregression framework for image un-
derstanding and generation as shown in Fig.[2l Our framework employs the built-in tokenizer of the
LLM to convert text input into discrete token IDs and corresponding embeddings. For image input, a
vision encoder is used to extract features, which are then mapped to the LLM’s embedding space
via a vision projector. After the concatenated embeddings are fed into the LLM, the model performs
next-token prediction to sequentially generate token embeddings. These embeddings are then passed
through a classification head to sample discrete token IDs, which are subsequently detokenized
into meaningful text. For multimodal understanding tasks, decoupling the framework from image
generation preserves the native understanding capabilities of the LLM.

Image Generation To integrate image generation into the framework, we introduce special tokens
<gen_start> and <gen_end> to mark the beginning and end of the generation process. Additionally,
the visual token IDs from the visual tokenizer are added to the LLM’s vocabulary in the form of
<visual_token_ID>. When image generation is required, the framework autonomously determines
whether to initiate generation based on the input instruction. Upon encountering the <gen_start>
token, multi-scale image generation begins, where visual tokens for each scale are predicted in
parallel. At k-th scale, the visual feature corresponding to the visual token map from the previous
scale is retrieved by looking up the visual codebook C and then upsampled to match the resolution
of the current scale. A lightweight linear layer, referred to as the generation projector, maps these
upsampled visual features into the embedding space of LLM, serving as input for the next scale. This
design allows one-step parallel inference to obtain all visual tokens at the current scale. Importantly,
the unified prediction head is used to generate visual tokens, which are then directly converted to the
corresponding index IDs in the codebook C. Once all visual tokens across scales are generated, they
are detokenized by the visual tokenizer to reconstruct the final image.

3.3 Training Procedure

Training Strategy In our framework, the vision encoder, large language model, vision projector
and classification prediction head are initialized using InternVL 2.5[13]], while the multi-scale visual
tokenizer is initialized from VAR [50]. During training, the vision encoder and visual tokenizer are
kept frozen to reduce the model’s reliance on dedicated decoders for pixel-level understanding. By
leveraging pre-trained multimodal understanding, the framework converges rapidly when training on
image segmentation data. Thus, we employ a single-stage supervised finetuning (SFT) strategy, jointly
optimizing both image segmentation and multimodal understanding data. For image generation,
we further finetune the pre-trained ARGenSeg model using image generation data to unlock its
text-to-image generation capabilities.

Training Objective Since our framework unifies both text and image generation outputs within the
LLM codebook, the entire training process is directly supervised using cross-entropy loss, as shown in
Fig.[2| During supervision construction, the <gen_start> token is added as a marker before image
generation begins. The model is expected to learn both when to initiate image generation and how
to generate all the required visual tokens. The ground-truth visual tokens are obtained using the
encoder and quantizer of the VQ-VAE. When constructing input embeddings, the visual tokens for
the first scale are obtained by using the <gen_start> token as the query. For each subsequent scale,
the input embeddings are derived by upsampling the visual token map 77 of the previous scale
to match the size of the current scale. Finally, the <gen_end> token is added to ensure the proper
progression of subsequent predictions.

3.4 Inference

During inference, our model follows a next-token prediction strategy, generating outputs sequentially
until the <gen_start> token is produced. This token then serves as a query to initiate the generation
of visual tokens for the first scale. For the subsequent K —1 scales, query embeddings of size hj, X wy
are obtained by upsampling and projecting the visual token map 75 predicted at the previous scale,
enabling parallel generation of all visual tokens at the current scale. Since the upsampling process
determines the number of queries, our framework naturally ensures alignment between the number of
generated tokens and the input size required by the VQ-VAE decoder. Once the visual tokens for



Table 1: Performance comparison with state-of-the-art methods on three referring image segmentation
benchmarks using cloU. (ft) indicates models further finetuned on RefCOCO/+/g after mixed training.

RefCOCO RefCOCO+ RefCOCOg
val testA testB | val testA testB | val test

Boundary PolyFormer-B [42] 748 766 71.1 | 67.6 729 593 | 67.8  69.1

Paradigm Method

Point-based | VistaLLM-7B [42] 745 760 727 | 69.1 737 640 | 69.0 709
LISA-7B(ft) [29] 749 791 723 | 651 708 58.1 | 679 70.6
PixelLM-7B [45] 73.0 765 682 | 663 71.7 583 | 693 705
GSVA-7B [65] 764 774 728 | 645 677 58,6 | 71.1 720
GSVA-7B(ft) 772 789 735 1659 696 598 | 727 733
LaSagnA-7B [60] 76.8 787 73.8 | 664 706 60.1 | 70.6 719

VisionLLM v2 [62] 76.6 793 743 | 645 698 615 | 707 712
Dedicated OMG-LLAVA [73] 75.6 777 712 | 656 69.7 589 | 70.7 70.2

Segmentation | OMG-LLAVA(ft) 78.0 803 741 | 69.1 731 630 | 729 729
Head-based | GLaMM [44] 79.5 832 769 | 726 787 646 | 742 749
u-LLAVA [68] 830 8.1 805|771 817 706 | 77.1 78.0
PSALM [75] 83.6 847 816 | 729 755 70.1 | 738 744

GroundHog-7B [74] 785 799 757 | 705 750 649 | 741 746
SAMAMLLM-8B [42] | 79.8 8277 747 | 746 800 672 | 755 764
LMMguimtok-8B [57] 81.1 812 792 | 771 788 715 | 758  76.7
LMMuimtok-8B(ft) 8.0 852 835|797 827 76.0 | 80.0 80.6

Generation | ARGenSeg 822 840 80.1 | 779 81.8 733 | 784 79.6
based ARGenSeg (ft) 863 875 827 |83 858 770 | 81.7 835

all K scales are obtained, the VAR tokenizer decodes them into the final image. To ensure smooth
progression of subsequent inference, the <gen_end> token is manually added.

4 Experiments

4.1 Experimental Setup

Datasets As described in Sec. we perform a single-stage supervised finetuning to jointly train
on both image segmentation and multimodal understanding data. Details of all datasets used are
provided in Appendix [A] The training of ARGenSeg relies entirely on publicly available external
datasets. Specifically, we use 402K image segmentation samples, which are significantly fewer than
the 2.91M samples used by HiMTok[57] and constitute a strict subset of their data. For multimodal
understanding, we use 1.25M samples derived from the open-source dataset of InternVL 1.2 [14].

Implementation Details Our model accepts input images of arbitrary resolutions, while the output
images are generated at the resolution of 256 x 256. The image tokenizer uses a downsampling ratio
I = 16, with a feature dimension D = 32 and a visual codebook size V' = 4096. The model operates
with K = 10 scales. During training, we use the AdamW [36] optimizer with a maximum learning
rate of 4 x 10~° and employ cosine learning rate scheduling. The batch size is set to 128.

4.2 Referring Segmentation

Referring Expression Segmentation Recent works have increasingly focused on equipping multi-
modal large language models with image segmentation capabilities, aiming to leverage their strong
language understanding for more complex segmentation tasks. Referring Expression Segmentation
(RES) requires models to segment target objects in an image based on natural language descriptions.
We evaluate our approach on standard RES benchmarks RefCOCO/+/g [37,70]]. Following prior
works [29, 57]], we assess two versions of our model: one trained on the mixed dataset, and another
further finetuned on the in-domain training sets of RefCOCO/+/g. As shown in Tab. |1} our method
consistently outperforms the previous state-of-the-art, HIMTok [57]], across both versions, despite
training on fewer segmentation data. It is worth noting that, our approach achieves superior results
without relying on a dedicated segmentation head, demonstrating the effectiveness of our unified
multimodal understanding and generation framework.



Table 2: Performance comparison with state-of-the-art methods on generalized referring expression
segmentation. * indicates zero-shot performance.

val testA testB

Method cloU gloU | cloU gloU | cloU gloU Average
LISA-7B [29] 387 322 | 526 485 | 448 397 42.8
LISA-7B(ft) 61.8 61.6 | 685 663 | 60.6 5838 62.9
GSVA-7B [63] 61.7 633 | 69.2 70.1 | 603 613 64.3
GSVA-TB(ft) 633 665 | 699 71.1 | 605 622 65.6
LaSagnA* [60] 38.1 324 | 504 473 | 42.1 389 41.5
PSALM* [[75] 420 433 | 524 545 | 506 525 49.2
GroundHog-7B [[74] - 66.7 - - - - 66.7
SAM4MLLM-8B [42]] | 67.8 719 | 722 742 | 634 653 69.1
LMMpimrok-8B [57] 66.8 68.7 | 68.6 67.6 | 658 64.1 66.9

ARGenSeg | 722 747 | 736 737 | 700 704 | 724

(e) scale at k =‘; 6] scal atk =‘A8) (g) scale at k =3 (h) scale at k = ﬂ)
Figure 3: Multi-scale generation process of the segmentation mask. The model first localizes the
target object and then progressively refines its boundaries.

Fig. B]illustrates the multi-scale mask generation process of ARGenSeg. The model first locates
the target object and then progressively refines the segmentation boundaries. This coarse-to-fine
reasoning process aligns with human intuition and enhances the robustness of image segmentation.

Generalized Referring Expression Segmentation We further evaluate our model on the more
challenging gRefCOCO benchmark [32]], where segmentation instructions may refer to multiple
objects or none at all. As shown in Tab. 2| our method outperforms all prior approaches that rely on
dedicated segmentation heads, highlighting the strong understanding and segmentation capabilities of
our unified framework.

4.3 Multumodal Understanding

Our model adopts InternVL 2.5 [13]] as the underlying MLLM and is finetuned on both understanding
and segmentation data. To fairly assess the effect of adding segmentation supervision on the model’s
understanding capability, we finetune a baseline using only understanding data. We evaluate the
model’s understanding performance using two tasks. The first task is visual grounding, where we
use the RefCOCO/+/g datasets for referring expression comprehension (REC). As shown in Tab. 3]
our model successfully retains and even slightly enhances its grounding ability while acquiring
segmentation capabilities. The second task evaluates object hallucination in MLLMs using POPE
[30] as the benchmark. Results in Tab. [3|also demonstrate a performance improvement of our model
compared to the baseline. These results highlight the effectiveness of our proposed framework
in unifying understanding and segmentation tasks. A further discussion on the understanding
performance is provided in Appendix [C.1]



Table 3: Multimodal understanding performance compared with the baseline. * indicates further
finetuning on understanding data.

Method RefCOCO RefCOCO+ ‘ RefCOCOg

‘ val  testA testB‘ val testA testB | val test
InternVL2.5-8B* [13]] ‘ 89.0 92.6 843 ‘ 834 89.1 76.5 ‘ 83.5 85.0 ‘ 86.73

‘ POPE

ARGenSeg 89.6 928 844 | 838 888 765 | 8.1 85.6 | 87.57

4.4 Function Extension

Interactive Segmentation Interactive segmentation allows users to provide diverse input prompts
during segmentation tasks to meet varying application needs. We finetune ARGenSeg on the COCO-
Interactive dataset [[75] to unlock its interactive segmentation capabilities. During training, various
forms of interactive prompts are used, including points, scribbles, and bounding boxes. Bounding
boxes are provided as textual input to the MLLM, while points and scribbles are represented as binary
masks and fed in as additional visual inputs. We observe that, building upon pre-trained segmentation
capabilities, the model quickly adapts to interactive segmentation tasks. Qualitative results are shown
in the top portion of Fig.[d while the quantitative evaluation can be found in the Appendix [C.2]

Image Generation Our model leverages a universal image tokenizer, enabling the potential for
image generation. We finetune ARGenSeg on 1.28M class-based samples from the ImageNet-
Instruct-class dataset [78]], using a batch size of 512 for 20k iterations. This successfully enables
class-conditional image generation, as illustrated in Fig.[T} We then continue training for an additional
30k iterations with a batch size of 256 on the ImageNet-Instruct1270K dataset [78]], which is based
on instruction-conditioned generation. The results of instruction-based image generation are shown
in the bottom of Fig.[d] Notably, our model achieves these results without relying on pre-trained
generation model, using only a small amount of data and training iterations.

Scribble

Can you produce a Please render a I would like a crafted  Can you design a I need a sketched Please craft a

painting of a large designed photo of a figure of a great white crafted image of a figure of the ocean visualized figure of
white house with a baseball in the grass.  shark swimming in starfish on the beach. is very rocky and a large volcano in
large porch. the ocean. has waves. the distance.

Figure 4: Top: Visualization of interactive segmentation. Points and scribbles are provided as visual
prompts, while bounding boxes are input via text. Bottom: Visualization results of instruction-based
image generation. The model is trained on image generation data for only 50k iterations.

4.5 Efficiency Analysis

We compare ARGenSeg with previous autoregressive generation models and MLLM-based segmen-
tation methods in terms of inference time required to generate a 256 x 256 image or mask. All
experiments are conducted using official implementations on an NVIDIA A100 GPU. Segmentation
performance is evaluated using cIoU on RefCOCO-val. Detailed results are provided in Tab. [}

Compared to sequential token generation approaches such as Emu3 [59], our parallel inference
achieves more than 10x speedup. While VARGPT [78] also employs VAR as its visual tokenizer,



Table 4: Computational efficiency comparison.  Table 5: Ablation study on the impact of under-
"Num." represents the number of required tokens.  standing capability, pretraining-stage, and gener-

Time is tested by seconds per image. ation projector on segmentation performance.
Method Paradigm Num. cloU  Time Experiment Ref. Ref+ Ref.g Average
Emu3 [S9] VQ-GAN[19] 1024 - 59.4 :

VARGPT [78] VAR + Vis.Dec 680 - 264 Baiehne 82'% ;;9 ;8§ ;2;
PixeLM [45] Query + Seg.Dec 6 730 091 Only-Seg. 80. 8 73 :

HiMTok [57]  Mask Tokenizer 32 8.1 1.89 Gen Projetctor  80.5 73.7 734 75.9
ARGenSeg VAR Tokenizer ~ 680 822 1.28 Pretrain 80.8 74.9 74.1 76.6

Table 6: Ablation study on the visual tokenizer. All results are reported on the val splits, using gloU
(per-sample IoU averaged over the dataset) as the segmentation metric.

Tokenizer Type Prediction RefCOCO RefCOCO+ RefCOCOg Average Time

Single-scale next-token 82.1 71.8 65.8 73.23 5.50s
Multi-scale next-scale 80.5 76.7 70.4 75.87 1.28 s

our method is approximately 2x more efficient, due to its simplified architecture. In contrast to
VARGPT, our model directly uses the classification head to predict token IDs from the VAR codebook,
eliminating the need for an additional transformer-based visual decoder. PixelLM [435]], a identifier-
based approach, uses only six tokens and a dedicated segmentation decoder, making it slightly faster
than ARGenSeg. However, its segmentation performance is significantly lower. While HiMTok
[57] employs a dedicated mask tokenizer to achieve notable segmentation performance using only
32 visual tokens for efficiency, our method achieves superior performance while offering a clear
advantage in inference speed.

4.6 Ablation Study

Ablation on Understanding Data We compare our baseline, fine-tuned on both understanding
and segmentation data, against a counterpart trained solely on segmentation data. As shown in
Tab. 3] incorporating understanding data significantly improves performance on reasoning-based
segmentation, particularly on the semantically challenging RefCOCO+/g dataset. This highlights the
value of unifying segmentation with a multimodal large language model.

Ablation on Model Architecture and Training Strategy We analyze the effects of model archi-
tecture and training strategy. First, to ablate the architecture, we replace our default single-layer
generation projector with a two-layer variant. Results indicate that the simpler design is sufficient.
Second, to assess the training strategy, we introduce a pre-training phase where only the generation
projector is trained, followed by a full fine-tuning stage. As shown in Tab. [3] this two-stage approach
offers only marginal gains on RefCOCO+/g and little impact on RefCOCO, while increasing training
complexity. Therefore, for efficiency, our final model adopts a direct, single-stage fine-tuning strategy.

Ablation on Visual Tokenizer We ablate our multi-scale visual tokenizer by comparing it against a
single-scale tokenizer, for which we adopt the pre-trained VQ-GAN [39] from Janus [61]. As shown
in Tab. [6] using multi-scale scheme not only demonstrates a clear speed advantage but also improves
robustness through its inherent coarse-to-fine refinement process. Further ablations, including an
analysis of using semantic embeddings instead of visual tokens, are provided in Appendix

5 Conclusion

In this paper, we present ARGenSeg, a unified framework that integrates image segmentation into
multimodal large language models through an image generation paradigm. To address the unique
challenges of segmentation, we design the framework so that the MLLM directly outputs image
tokens for pixel-level accuracy and utilizes multi-scale image generation for high responsiveness
and robustness through coarse-to-fine refinement. Our experiment results are the first to show that
unified MLLM models can perform state-of-the-art segmentation without any extra task-specific
segmentation heads, providing an effective technical pathway for unified AGI.
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Justification: The contents in the abstract and Instruction clearly reflect the contribution of
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Justification: We analyzed the computational efficiency and included the Limitations subsec-
tion in the appendix.
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 The authors are encouraged to create a separate "Limitations" section in their paper.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
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* The authors should reflect on the scope of the claims made, e.g., if the approach was
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* The answer NA means that the paper does not include experiments.
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appropriate to the research performed.
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
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the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
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authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data and the underlying model used in this article have provided detailed
information and are publicly accessible.
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» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details of the training and test have been explained in the Experiment
section of the text.
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» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Due to the resource limitation, we do not report error bars.
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The platform and running time for the experiment are given in the main paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research in this article is in line with NeurIPS Code of Ethics.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss societal impact of the work in the appendix.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: We do not plan to release any data. For the model, we currently do not have
safeguards for releasing it. We will make sure that the guidelines and instructions are in
place when we release the model.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes, we have.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets

has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are provided.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix of ARGenSeg

A Implementation Details

Datasets The datasets used for image segmentation, multimodal understanding, and image genera-
tion are listed in Tab.[/| To ensure a fair comparison, we exclusively use subsets of the data employed
by the previous state-of-the-art method, HiMTok [57]]. Specifically, we train on 402K segmentation
samples compared to HiMTok’s 2.91M, and 1.25M multimodal understanding samples compared to
HiMTok’s 4.2M. Image generation data are used only in the optional function-extension stage.

Table 7: Training data used in our experiments.

Task \ Datasets
Image ADE20K(20K) [76], COCO-Panoptic(118K) [31], gRefCOCO (79K) [32],
Segmentation RefCOCO/+/g(127K) [371[70], LISA++ Inst.Seg(58K) [69]
Multimodal AI2D [25], ChartQA[38], COCO-Text[55], DocVQA[18], LLaVA-150K[34],
Understandin GQA[23], DVQA[R4], OCR-VQA[39], TextVQA[47], SynthDoG-EN [26],
g InternVL-SA1B-Caption [[14], VisualGenome [28], GeoQA+[10]
Image Generation \ ImageNet-Instruct-class [78], ImageNet-Instruct1270K [78]

Inference Details During inference, we get visual outputs exclusively from the logits corresponding
to visual tokens in the MLLM codebook. This constraint ensures compatibility with the visual
tokenizer and enables successful reconstruction of the image. For image segmentation tasks, we
adopt a deterministic argmax sampling strategy to obtain the predicted visual tokens. For image
generation tasks, we apply classifier-free guidance (CFG) to compute the output distribution over
visual tokens, followed by top-k sampling to enhance the diversity and quality of generated images.

B Additional Qualitative Results

Multi-scale Image Generation We provide visualization of segmenting similar objects in the
same image using different instructions, as shown in Fig[5] From the multi-scale mask generation
process, it is evident that our model can correctly understand and localize the target based on the
given instructions. The ability to correctly follow distinct segmentation commands indicates that
ARGenSeg possesses a robust understanding of both spatial positions and semantic relationships.

Comparison with Single-scale Generation We compare our method with HiMTok [57], treating
it as a representative single-scale generative segmentation approach. We conducted a thorough
evaluation on the test set and visualized cases where ARGenSeg succeeds while HiMTok fails.
As shown in Fig. [6] these cases reveal two primary advantages of our coarse-to-fine, multi-scale
generation scheme: (1) Robust Target Identification in Multi-object Scenarios. The initial coarse
localization stage effectively identifies the target object even when multiple similar objects are present.
(2) Enhanced Mask Quality through Progressive Refinement. Following target identification, the
multi-scale refinement process progressively improves mask precision for higher-quality segmentation.
For instance, in the case of a partially occluded teddy bear, both HiMTok and our coarse localization
stage initially segment only a visible part. However, our model’s subsequent fine-grained refinement
successfully reconstructs the entire object while correctly excluding the occluder.

C Additional Quantitative Results

C.1 Performance on Multimodal Understanding

We further assess the multimodal understanding capabilities of ARGenSeg. As shown in Tab. [§] the
inclusion of segmentation data does not cause the model to lose its reasoning capability. While we
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Figure 5: Visualization of using different segmentation instructions in the same image.
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Figure 6: Comparison between multi-scale and single-scale generative segmentation approach. The
examples highlight scenarios where the multi-scale approach excels.
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observe slight performance drops on some benchmarks, we attribute this minor degradation not to the
segmentation task itself, but to the significantly smaller and lower-quality understanding corpus used
for fine-tuning (1.25M vs. the 16.3M samples used for InternVL-2.5 [13]]). To validate this hypothesis,
we conducted a control experiment: fine-tuning InternVL-2.5 solely on the same understanding data
for an increasing number of steps. The performance declined monotonically, mirroring the trend
observed with joint segmentation training and thus confirming our attribution.

Table 8: Multimodal understanding results across benchmarks.

Method | POPE  TextVQA VQAv2 MMMU-val AI2D
InternVL2.5-ft-1ep | 86.73 63.54 80.40 43.7 78.7
InternVL2.5-ft-4ep | 86.01 59.73 79.28 36.8 74.8
ARGenSeg 87.57 56.98 77.87 334 69.6

C.2 Results on Interactive Segmentation

To ensure a fair comparison with HiMTok, which was Table 9: Quantitative results on interac-
not trained on interactive-segmentation data, we omitted tjve segmentation. The results for SAM
this task from our main experiments. Here, we evaluate and PSALM are sourced directly from
our model on the COCO-Interactive benchmark [75], re- the PSALM paper.

porting the cloU metric. It is worth noting that while
PSALM [75]] was fine-tuned for 10 epochs according to its  Method ‘ Point Scribble Box
official implementation, our model is fine-tuned for only a X

single epoch due to computational constraints. As shown gﬁl\l\fl:ﬁ [%;JJ 2;2 _ g?g
in Tab.[9] ARGenSeg significantly outperforms SAM [27] PSALM [75] | 7 4'0 80.0 80'9
in interactive segmentation. Moreover, it achieves per- - - -
formance comparable to PSALM with substantially less ~ARGenSeg | 656 68.6 79.1
fine-tuning, which underscores the strong generalization

capabilities of our model.

D Additional Ablation Studies

Table 10: Ablation study of MLLM backbones and image generation strategies. The segmentation
performance is measured in cloU.

Method | Backbone | Generation Strategy | RefCOCO RefCOCO+ RefCOCOg
HiMTok [57] InternVL-2.5 | Single-scale VQ 81.1 77.1 75.8
ARGenSeg-LLaVA LLaVA-1.5 Multi-scale VQ 72.7 68.3 69.1
ARGenSeg-InternVL | InternVL-2.5 | Multi-scale VQ 82.2 77.9 78.4
ARGenSeg-DiT InternVL-2.5 | Diffusion Head 59.0 62.7 64.1

D.1 Ablation on MLLM Backbone

Our approach, which integrates a VQVAE codebook into the MLLM’s token space, is designed to be
model-agnostic. To demonstrate this portability, we replaced the default InternVL-2.5 backbone with
LLaVA-1.5 [33], a LLaMA-2-based MLLM. As shown in Tab. our pipeline successfully imparts
segmentation capabilities to LLaVA-1.5.

As established in Sec. [4.6] referring segmentation performance is highly correlated with the MLLM’s
underlying understanding ability. Consequently, given LLaVA-1.5’s weaker understanding capa-
bilities compared to InternVL-2.5, the resulting segmentation performance is expectedly lower.
Nevertheless, Tab. [10]shows that with the same powerful InternVL-2.5 backbone, our method out-
performs HiMTok. This confirms that our performance gains are inherent to our approach and not
merely a byproduct of a stronger backbone.
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Figure 7: Comparison between direct visual token generation and DiT-based generation. The
DiT-based approach, which uses semantic embeddings from the MLLM, struggles with pixel-level
accuracy, leading to artifacts like spatial shifts and imprecise boundaries.

D.2 Ablation on Image Generation Strategy

To further validate our choice of generation strategy, we explore an alternative approach where the
MLLM outputs semantic embeddings to a separate diffusion head (DiT) for segmentation, inspired
by MetaQuery [41]. Specifically, we configure the MLLM to generate learnable queries, which are
then mapped to the feature space of the pre-trained SANA-1.5 1.6B [66] via a connector module.

This alternative strategy, labeled as ARGenSeg-DiT in Tab.[I0] led to a severe performance degrada-
tion. As show in Fig.[7} while the model could roughly localize the target region, the generated masks
suffered from significant artifacts, such as spatial shifts and inflation, indicating poor pixel-level
accuracy. This experiment underscores the importance of the MLLM directly generating discrete
image tokens to maintain the high pixel-level precision crucial for segmentation tasks.

E Limitations

This paper proposes a novel image segmentation paradigm based on autoregressive image generation,
integrating multimodal understanding, generation, and image segmentation into a unified framework.
Our model demonstrates strong performance across a range of segmentation tasks, and further shows
the potential to extend to more complex scenarios, such as interactive segmentation and text-to-image
generation. The unified framework also shows promise for expanding to broader tasks, such as image
editing and depth estimation. However, due to resource constraints, exploring these extensions is
beyond the scope of this work, and we consider them as promising directions for future research.

F Broader Impacts

This work contributes to the development of unified multimodal frameworks by integrating dense
image segmentation into the unified multimodal understanding and generation models. The proposed
framework may inspire future research toward more generalizable, modular, and efficient visual-
language models that require fewer task-specific components. Potential applications include human-
robot interaction, assistive vision systems, and real-world visual understanding under low supervision.
However, like most large-scale models, ARGenSeg may inherit biases from pre-trained components
or datasets. Care should be taken to evaluate fairness and robustness when deploying it in real-world
scenarios, especially in sensitive domains such as healthcare or surveillance.
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