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Abstract

Creating a Cross-Document Event Coreference001
(CDEC) dataset is complex and labor-intensive.002
As a result, existing CDEC data sets are small003
in the size of event mentions and limited in the004
number of event types that are covered. This005
is a substantial hurdle in training robust CDEC006
systems. In this paper, we propose to leverage007
large language models (LLMs) to address this008
bottleneck. Specifically, to enrich trigger va-009
riety and word order variation, we introduce010
two Data Multiplication (DM) techniques that011
employ GPT-4 to generate realistic synthetic012
training data, effectively increasing the vol-013
ume of existing annotated CDEC data sets with014
high-quality annotations. We demonstrate the015
effectiveness of our approach by conducting016
experiments on the ECB+ and Aylien Covid017
datasets, and show that adding LLM-generated018
CDEC data improves the performance on the019
two benchmarks by up to 1.8 and 3 points re-020
spectively in CoNLL F1. We believe that our021
method is generally applicable to other tasks as022
well and underscores the potential of LLMs in023
addressing data scarcity challenges in natural024
language processing tasks. All the data and025
source code are publicly available. 1026

1 Introduction027

Cross-Document Event Coreference (CDEC) is028

the task of identifying and linking event mentions029

across multiple documents that refer to the same030

real-world event. Recent approaches in CDEC in-031

volve training an transformer-based scorer to assess032

the likelihood of a pair of event mentions referring033

to the same event. This requires training data metic-034

ulously annotated by human annotators who com-035

pare each event mention against all others across036

documents, a costly and time-consuming process.037

To make it feasible, the scope of the annotation038

often needs to be restricted by selecting specific039

topics and predefined event types (Cybulska and040

1Anonymized for reviewing.

Vossen, 2014). As a result, the resulting annotated 041

data sets tends to be small in size and limited in 042

event type. There also have been efforts to auto- 043

matically generate CDEC datasets by exploiting 044

hyperlinks in Wikipedia articles, but the resulting 045

data sets tend to focus more on referential events 046

that are Wikipedia worthy, as opposed to unlimited 047

descriptive events frequently found in news reports 048

(Eirew et al., 2021). These limitations make it chal- 049

lenging to apply models trained on these datasets 050

effectively to real-world scenarios. The collection 051

and curation of diverse, high-quality data sets are 052

crucial for enhancing the performance of CDEC 053

models and their application in downstream tasks. 054

In this paper, we introduce two innovative 055

Data Multiplication (DM) methods for generat- 056

ing CDEC-annotated data using GPT-4 (OpenAI, 057

2023), and demonstrate their effectiveness in ex- 058

tending both the ECB+ (Cybulska and Vossen, 059

2014) and Aylien Covid datasets (Zhao et al., 2023). 060

Specifically, we prompt GPT-4 to generate para- 061

phrases of the event mentions in the two data sets 062

without changing their referential properties and 063

multiply the resulting coreferent event mention 064

pairs by exploiting their transitive properties. We 065

show that models trained on just the generated data 066

points are almost as good as that trained on the 067

original data sets, and models trained on combined 068

(original and generated) data sets yield significant 069

improvements over that trained on the original data 070

sets alone. Our approach differs from previous data 071

augmentation approaches in that rather than pre- 072

dicting annotation on additional unannotated data, 073

we generate additional new synthetic data in zero- 074

shot setting for small human annotated data sets by 075

taking advantage of the strong language generation 076

capability of LLMs. We believe that our approach 077

is not limited to CDEC and can be generalized to 078

other tasks. The implication of our research is that 079

the impact of human-annotated data can be magni- 080

fied by generating similar data points with LLMs, 081

1



thus reducing the need for human annotated data.082

The rest of the paper is organized as follows. In083

§2, we discuss related work on data augmentation084

using LLMs, CDEC data creation and modeling.085

§3 describes our DM methods. §4 describes the086

construction of new data by applying DM on two087

existing CDEC datasets. We present our experi-088

mental results on two datasets in §5, we discuss089

error analysis in §6 and conclude in §7.090

2 Related Work091

The utilization of data generated by language mod-092

els has become increasingly prevalent across var-093

ious NLP tasks (Chowdhury and Chadha, 2023;094

Su et al., 2023; Mekala et al., 2022). Recently,095

LLMs have been particularly effective in generat-096

ing in-context training data for sentence-level tasks097

such as slot tagging (Lee et al., 2021) intent classi-098

fication (Sahu et al., 2022), and paraphrasing (Tu099

et al., 2023). These techniques have been success-100

ful in augmenting training sets and enhancing the101

performance of text classification models. How-102

ever, they often struggle to simultaneously generate103

text and accurate labels, typically requiring post-104

processing for data cleaning, human supervising105

for relabelling, filtering, additional word alignment106

model or controlling the outputs to adhere to spe-107

cific slot types. Zhao et al. (2023) employ GPT-4108

to label event coreference pairs automatically and109

comparing with human annotations. However, the110

generated dataset label accuracy is not comparable111

with gold data. Our approach is different because112

it requires minimal postprocessing while achieving113

data quality comparable to gold-standard data in114

terms of text authenticity and label accuracy. In-115

stead of using LLMs for predicting labels, our DM116

method strategically manipulates text while retain-117

ing high-quality labels, thereby streamlining the118

process and enhancing data accuracy.119

Recent advancements in CDEC modeling uses120

neural cross encoders for event mention pairwise121

classification (Yu et al., 2022; Held et al., 2021;122

Caciularu et al., 2021b; Zeng et al., 2020; Cattan123

et al., 2020; Meged et al., 2020; Barhom et al.,124

2019). These methods typically encompass pro-125

processing steps of document topic modeling and126

event arguments labeling, and then the use of neural127

classifiers to analyze pairs of event mentions. This128

classification involves developing a scoring sys-129

tem based on the distance between event mentions130

within specific topics, which then use agglomer-131

ative clustering for the formation of coreference 132

event clusters. Former state-of-the-art pairwise 133

model (Yu et al., 2022) marked a significant in- 134

novation by shifting the focus to the representation 135

learning of mention pairs rather than individual 136

mentions. Building on this, Caciularu et al. (2021b) 137

set a new standard on the ECB+ dataset. Their 138

approach involved pretraining the model on docu- 139

ments within the same topic to facilitate learning 140

of cross-document relations. Moreover, they imple- 141

mented a bigger context window to cross-encode 142

and classify pairs of event mentions on document 143

level. Our experiments evaluate the effectiveness 144

of the DM approaches on sentence level, therefore 145

we adopted the pairwise cross encoder settings in 146

Yu et al. (2022). 147

Recent efforts in creating CDEC datasets, includ- 148

ing ECB+ (Cybulska and Vossen, 2014), MEAN- 149

TIME (Minard et al., 2016), EER (Hong et al., 150

2016), and RED (O’Gorman et al., 2016) face sim- 151

ilar challenges primarily due to the intensive labor 152

required for annotation. Annotators are tasked with 153

meticulously comparing event mentions across var- 154

ious documents to determine coreference relations, 155

a process that often results in smaller dataset sizes, 156

shorter articles, limited trigger word ambiguity and 157

diversity. Additionally, the sparsity of co-referring 158

events in texts frequently leads to the necessity of 159

restricting annotations to certain topics and event 160

types. To address these scalability challenges, semi- 161

automatic or automatic methods have been adopted 162

for CDEC annotation. For instance, the GVC 163

database (Pavlick et al., 2016) employs a struc- 164

tured, semi-automatic approach for marking event 165

references, though it is exclusively focused on gun 166

violence events. Similarly, HyperCoref (Bugert 167

and Gurevych, 2021) and WEC-Eng (Eirew et al., 168

2021) have leveraged Wikipedia hyperlinks for au- 169

tomated data generation. However, this method 170

might suffer from inconsistencies due to relying on 171

the hyperlinks and generally focus on events that 172

are significant enough for Wikipedia entries, and 173

often overlook a range of descriptive or anecdotal 174

events that are prevalent in news reports. These 175

constraints underscore the difficulties in produc- 176

ing extensive and authentic CDEC datasets that 177

accurately reflect the complexity and diversity of 178

real-world events. In this work, we utilize GPT-4 179

to generate authentic text and coreference labels 180

together at scale and requiring minimal human ef- 181

forts. 182
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3 Method183

3.1 Motivation184

The analysis of error distributions in latest CDEC185

models (Caciularu et al., 2021b; Yu et al., 2022),186

reveals that these systems still struggle with sev-187

eral types of errors. Common issues include the188

lack of direct evidence, events that are identical189

but share minimal contextual overlap, contextually190

similar but distinct events, and insufficient argu-191

ment matches, among others. We hypothesize that192

enriching the model’s training data with a broader193

array of examples that specifically address these194

challenges will lead to enhanced performance. Our195

strategy focuses on addressing the three false nega-196

tive error types listed in Table 1 by employing DM197

techniques to directly tackle and mitigate these198

identified issues.199

The errors observed in rows 1 and 2 can be at-200

tributed to the fact that idiom trigger words or ab-201

stract trigger words are less seen in training set.202

To mitigate this, we leverage the capabilities of203

GPT-4 to produce paraphrased sentences based on204

the source sentence, incorporating synonyms of205

the trigger words with nuanced differences in gran-206

ularity, concreteness, or perspective. The usage207

of GPT-4 ensures the generation of coherent and208

grammatically sound sentences, rendering the arti-209

ficially generated data more lifelike compared to210

mere synonym substitutions.211

In cases of errors in row 3, Sentence 1 is in active212

voice, with “Sudan” as the subject performing the213

action of Bombs. Sentence 2 is in passive voice.214

The subject, “a refugee camp”, is the recipient of215

the action bombed, and the doer of the action is216

mentioned later in the sentence. Missing the coref-217

erence link between the two bombing events could218

stem from the under-representation of specific argu-219

ment structures or word orders in the training data.220

To address this type of error, we utilize GPT-4 to221

generate sentences covering a spectrum of different222

word orders that reflect changes in voice, emphasis,223

or stylistic nuances within the sentences.224

3.2 Prompting for Data Multiplication225

GPT-4 demonstrates a remarkable ability to gen-226

erate text that is both realistic and coherent, espe-227

cially when guided by specific constraints. Lever-228

aging this capability, we utilize GPT-4 to create229

two types of synthetic data to augment the diver-230

sity of our source datasets: one through variations231

in trigger words and the other by modifying word232

orders. The text produced by GPT-4 closely re- 233

sembles the style, structure, and patterns found in 234

actual data, thereby effectively creating scenarios 235

that were underrepresented in the original datasets. 236

To guarantee that this generated data aligns pre- 237

cisely with the unique demands of our task, we 238

carefully craft the prompts guiding GPT-4’s text 239

generation. 240

Figure 1: Examples of GPT-4 prompt and output for
generating trigger variation dataset and word order vari-
ation dataset.

Trigger Variation Prompt We utilize GPT-4 to 241

paraphrase sentences from the ECB+ and Aylien 242

Covid training datasets, specifically focusing on 243

creating sentences with distinct trigger words. Fig- 244

ure 1 illustrates the process we apply to all the 245

training data. The clusters for these generated 246

events can be easily identified, as they belong to 247

the same clusters as their corresponding source 248

event mentions in the original dataset. In the ex- 249

ample provided, the event mention represented by 250

trigger word launched in the generated sentence 251

is associated with the same cluster as “Microsoft 252

released security update” in the original sentence. 253

This approach ensures that paraphrased sentences 254

effectively retain the coreference links of the source 255
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ERROR TYPE EXAMPLES IN TEST SET EXPLANATION

idiomatic trigger
1. Advanced Micro Devices will acquire server vendor SeaMicro in an
attempt to <make a run> at Intel in the microserver market.

fail to identify the coref link
with a less seen trigger <make a
run> in training data

2.AMD Buys SeaMicro, <Enters> Server Hardware Business.

abstract trigger

1. In a <move> that will expand its services division, Hewlett - Packard
will acquire EYP Mission Critical Facilities, a New York company that
offers data center consulting services.

fail to identify the coref link
between a concept-instance re-
lationship: <move> is a ab-
stract term of corporate actions,
whereas <buy> focuses specif-
ically on the act of acquisition,
which is an instance of <move>.

2. Hewlett - Packard to <buy> consulting firm EYP Mission Critical
Facilities news

voice change
1. Breaking News: Sudan <Bombs> Yida Refugee Camp in South
Sudan

fail to identify the coref link be-
tween two <bombing> events
with underrepresented argument
structure.

2. A refugee camp in South Sudan’s Unity state was <bombed> on
Thursday, South Sudan officials and witnesses said

Table 1: Persisting errors in SOTA models we want to address with Data Multiplication.

event mentions, albeit with generated different trig-256

ger words.257

Word Order Variation Prompt Similarly, We258

utilize GPT-4 to create varied arguments order for259

all sentences in both training datasets. Figure 1260

demonstrates this paraphrasing process involving261

altering the word order but carefully maintaining262

the original trigger words. Identifying the clusters263

for the generated events is also straightforward, as264

they are part of the same clusters as their respective265

source event mentions in the original dataset. The266

majority of these paraphrased sentences success-267

fully preserve the original event mentions, repre-268

sented by the same trigger words. For example,269

in the source sentence, “Microsoft” is the active270

subject addressing the “IE bug”. Conversely, in271

the generated sentence, “The IE bug” becomes the272

subject, with the sentence now adopting a passive273

voice. This structure implies that the IE bug is274

the entity being affected, with Microsoft executing275

the action. Refer to Appendix A.2 for additional276

discussions regarding the impact of word order al-277

terations on argument structure change.278

4 Datasets279

We show the utility of DM by applying it on ECB+280

and Aylien Covid (hereon, Covid), two exisiting281

CEDC datasets. For the construction of the aug-282

mentation data with variated triggers and word or-283

der, we apply GPT-4 with different prompts to para-284

phrase the training sentences from the datasets.285

To create training pairs, we pair up all the event286

mentions under the same topic. Figure 2 illustrates287

Train pairs Dev pairs Test pairs

ECB+ 185,493 56,534 93,878
Aylien Covid 18,867 2,358 2,358

Table 2: Data splits statistics of original ECB+ and
Aylien Covid Datasets

how the event mentions are paired across the origi- 288

nal and DM datasets. DMTV and DMWOV only con- 289

sists of pairs from the DM datasets (purple lines in 290

Figure 2). In order to use the DM datasets to do con- 291

tinued training on models trained on original pairs, 292

we also create ECB+TV and ECB+WOV datasets to 293

combine all the pairs. ECB+TV and ECB+WOV con- 294

sists of pairs from the DM datasets (purple lines), 295

and pairs between mentions in original ECB+ and 296

DM datasets (blue lines). The Covid datasets pairs 297

are created the same way. 298

ECB+ DMTV DMWOV ECB+TV ECB+WOV

Mentions 3,808 2,674 2,561 6,482 6,369
Pairs 185,493 96,756 89,144 360,838 341,703

Covid DMTV DMWOV CovidTV CovidWOV

Mentions 560 552 523 1,112 1,083
Pairs 18,867 18,004 17,962 44,457 43,859

Table 3: Augumented training sets of ECB+ and Covid
through different DM prompts. TV =Trigger Variation,
WOV =Word Order Variation.

4.1 DM for ECB+ 299

ECB+ comprises 45 unique topics, each split into 300

two similar yet distinct subtopics. For generating 301

original training pairs, we pair all the events within 302
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Figure 2: Generate pairs among original and DM datasets. The sentence pair in green boxes are from original
dataset. The sentence pair in purple boxes are in GPT-4 generated DM datasets. Green lines are coreference links of
original datasets. Purple lines are coreference links of DM datasets. Purple lines + blue lines are coreference links
of ECB+TV, ECB+WOV, CovidTV or CovidWOV datasets.

each of the 25 topics in training. Following the data303

split proposed by Cybulska and Vossen (2014), we304

use the ECB+ training set, as shown in table 2, as305

our source dataset to create two DM datasets: Trig-306

ger Variation (TV) dataset (DMTV) and Word Order307

Variation (WOV) dataset (DMWOV), as detailed in308

Table 3. These methods augment the dataset with309

additional sentences and new event mentions de-310

rived from the original sentences and mentions.311

The new mentions are added in original clusters,312

thus the number of clusters stays the same.313

During paraphrasing, some event trigger words314

might be altered or omitted. For instance, “nomi-315

nated” is rephrased as “candidate”, which is much316

less eventive, leading to the loss of the original317

event mention “nominating” in the generated sen-318

tence. As a result, our DMTV dataset gains an addi-319

tional 2,674 event mentions and 96,756 pairs. Sim-320

ilarly, some trigger words were lost during word321

order paraphrasing, such as “being arrested” chang-322

ing to “in jail”. Consequently, we add 2,561 more323

event mentions and 89,144 training pairs to the324

DMWOV dataset .325

4.2 DM for Aylien Covid Dataset326

Our evaluation of the DM method also employs327

the Aylien Covid dataset (Zhao et al., 2023), which328

comprises 4,000 coreference pairs preselected by329

CDLM event coreference model (Caciularu et al.,330

2021b) across 10 topics that are covid related and331

later manually annotated for CDEC. This dataset332

contains coreference pairs with positive (corefer-333

ence) ratio of 47.5%, markedly higher than the334

8.1% ratio observed in ECB+, and too evenly bal-335

anced for realistic scenarios where the coreference336

pairs are sparse. We add additional negative sam-337

ples from lower-ranked pairs from the same top-338

ics to align the positive ratio more closely with339

ECB+. Table 2 shows the statistics of our modified340

Covid Dataset. The Covid dataset annotates six 341

event relations. We categorize Identity, Concept- 342

instance, and Whole-Subevent relations into coref- 343

erence relation, while Not-Related, Cannot-Decide, 344

and Set-Member relations were grouped into non- 345

coreference relation. 346

Following the original Covid data split of 8:1:1, 347

we utilize the training set as the source dataset to 348

generate two DM datasets. Details are in Table 3. 349

Like the ECB+ paraphrasing, some event trigger 350

words are omitted. Consequently, we have 552 ad- 351

ditional event mentions and 18,004 additional pairs 352

in DMTV, and an increase of 523 event mentions 353

and 17,962 event pairs in DMWOV. 354

5 Experiments 355

To evaluate the effectiveness of our DM methods, 356

we conduct the experiments on the CDEC task with 357

ECB+ and Covid datasets. Following recent ap- 358

proaches for CDEC (Caciularu et al., 2021a; Yu 359

et al., 2022), we apply a cross-encoder based pair- 360

wise scorer on each event mention pair, followed 361

by the agglomerative clustering to form the corefer- 362

nece clusters. We use pairwise F1 score and four 363

common coreference resolution metrics to evalu- 364

ate the model’s performance: MUC (Vilain et al., 365

1995), B3 (Bagga and Baldwin, 1998), CEAFe 366

(Luo, 2005), and the cumulative CoNLL F1 score. 367

5.1 CDEC on ECB+ 368

Experimental Settings We use PAIRWISERL, 369

the end-to-end CDEC system described in Yu et al. 370

(2022) as our baseline model.2 PAIRWISERL 371

2The CDEC models from Caciularu et al. (2021a) and
Held et al. (2021) had a better performance than PAIRWISERL
on the ECB+ (85.6 and 85.7 CoNLL F1 respectively). How-
ever, Caciularu et al. (2021a) utilized the whole document
as the event context to train the pairwise scorer, and Held
et al. (2021) proposed a two-step method that optimized the
clustering with gold event mentions, both of which are not
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MUC B3 CEAFe CoNLL Pairwise

Model R P F1 R P F1 R P F1 F1 F1

PAIRWISERL (Yu et al., 2022) 91.6 83.1 87.2 89.4 81.1 85.1 70.5 85.5 79.9 84.0 N/A
PAIRWISERL (reproduced) 84.2 84.6 84.4 84.1 84.9 84.5 79.7 79.2 79.5 82.8 75.66

PAIRWISERL + ECB+TV 89.4 84.5 86.9 88.3 83.4 85.8 78.3 84.2 81.1 84.6 77.69
PAIRWISERL + ECB+WOV 88.8 84.6 86.6 85.9 84.3 85.1 78.4 83.5 80.9 84.2 77.09
PAIRWISERL + both 89.8 83.4 86.5 88.7 82.6 85.5 76.1 83.9 79.9 84.0 77.73

RoBERTaLARGE + DMTV 89.2 82.4 85.7 88.3 80.7 84.3 74.7 83.0 78.6 82.9 72.72
RoBERTaLARGE + DMWOV 87.4 81.6 84.4 86.1 80.6 83.3 73.9 80.9 77.3 81.7 72.11

Table 4: CDEC performance of unstructured pairwise model on ECB+. Top section shows the baseline results
from models trained on original ECB+ dataset. Middle section shows the results from continued training on the
reproduced baseline model with DM data. Bottom section shows the results from training on the derived DM
datasets only.

MUC B3 CEAFe CoNLL Pairwise

Model R P F1 R P F1 R P F1 F1 F1

PAIRWISERLCOVID 73.4 86.3 79.3 78.0 87.8 82.6 83.1 70.5 76.3 79.4 71.37

PAIRWISERLCOVID + CovidTV 85.5 83.7 84.6 84.5 83.0 83.8 77.9 80.1 79.0 82.4 73.79
PAIRWISERLCOVID + CovidWOV 80.2 84.8 82.4 82.6 84.6 83.6 80.3 75.4 77.8 81.3 72.36
PAIRWISERLCOVID + both 83.9 83.8 83.5 83.3 83.5 83.4 78.0 78.1 78.0 81.7 73.61

RoBERTaLARGE + DMTV 79.6 84.6 82.0 82.2 85.1 83.6 80.4 75.0 77.6 81.1 70.89
RoBERTaLARGE + DMWOV 73.5 85.7 79.1 77.9 87.3 82.3 82.6 70.5 76.1 79.2 70.65

Table 5: CDEC performance of unstructured pairwise model on Aylien Covid Dataset. Top section displays baseline
results from the model trained on original Covid dataset. Middle section displays evaluation results of continued
training on baseline model with DM datasets. Bottom section displays evaluation results on models trained on only
DM datasets.

learns local contexts by using transformer mod-372

els to encode the concatenated sentences pair with373

marked event mentions. Trigger token representa-374

tions is then aggregated into a unified feature vector375

for pairwise classification and event clustering. We376

use the unstructured version of PAIRWISERL with377

RoBERTaLARGE as the pair encoder. All the other378

model settings are the same with those reported in379

(Yu et al., 2022).3380

For the experiments, we start by training the381

PAIRWISERL model from scratch with the origi-382

nal ECB+ data as our baseline results. Then we383

conduct a sequence of continued trainings on the384

PAIRWISERL with ECB+TV, ECB+WOV or both.385

We also train the PAIRWISERL model solely on386

the DMTV and DMWOV datasets created from ECB+387

to evaluate the quality and reliability of the GPT-4388

generated DM data.389

directly comparable to our work under the sentence-level DM
methods.

3Structured PAIRWISERL used additional annotation of
event arguments as model input.

Results Table 4 outlines the evaluation results 390

on the ECB+ and derived DM datasets. We show 391

PAIRWISERL baseline results from both our repro- 392

duced model and reported model in Yu et al. (2022) 393

(82.8 and 84.0 CoNLL F1 respectively). Reproduc- 394

tion details and performance difference is discussed 395

in the Appendix A.1. All the continued trainings 396

are applied on the produced PAIRWISERL model 397

for consistency. 398

Overall, our DM methods lead to notable perfor- 399

mance enhancements, with improvements ranging 400

from 1.4 to 1.8 in CoNLL F1 over the reproduced 401

PAIRWISERL, and gains of 0.2 to 0.6 over the re- 402

ported PAIRWISERL. Comparing to the continued 403

training with ECB+WOV, ECB+TV has a better per- 404

formance, indicating that paraphrasing event trig- 405

gers are more effective than swapping word order. 406

Combining both ECB+WOV and ECB+TV does 407

not show better performance than each individual 408

dataset, suggesting that too much data variation 409

and context repetition might bring in more noise 410

to the event clustering. However it achieves the 411
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highest pairwise F1 score, showing its capability to412

make the best binary coreference/non-coreference413

decisions through the training from the additional414

DM pairs.415

5.2 CDEC on Covid416

Experimental Settings Similar to the previous417

experiment, we use the unstructured PAIRWISERL418

as the CDEC model. Since there is no previous419

results reported on the Covid dataset, we train the420

PAIRWISERL model with the original Covid data421

as the baseline. We then continue the training of422

the model with CovidTV, CovidWOV and both.423

Results Table 5 shows the CDEC results on424

the Covid and its derived DM datasets. PAIR-425

WISERLCOVID is the baseline result from training426

on the original Covid dataset. Similar to the pre-427

vious experiment, our DM methods improve the428

baseline results through continued training on the429

additional data. Comparing to the ECB+, PAIR-430

WISERLCOVID + CovidTV shows the most signif-431

icant improvement across all evaluation metrics,432

boosting the CoNLL F1 by 3 and the pairwise F1433

by 2.42. This may be due to the much smaller size434

of the Covid dataset, and additional DM data has435

bigger positive impact on the results.436

5.3 CDEC on DM Datasets437

As shown in Table 4 and 5, for both ECB+ and438

Covid, training solely with GPT-generated DM439

datasets (DMTV and DMWOV) yields comparable440

or even better results than the baseline trained on441

the original gold dataset (+0.1 CoNLL F1 on ECB+442

and +1.7 on Covid). Changing the triggers and the443

word order do change the style, focus or empha-444

sis of the sentence, but it usually does not change445

the transitive properties of the events, indicating446

the high quality and reliability of the DM datasets447

and potential their potential usage as “near gold”448

CDEC datasets in the future.449

We further evaluate the quality of the DM data450

by sampling 50 paraphrased sentences from each451

of the four DM datasets. Out of a total of 200 sam-452

ples, we only find 12 noise occurrences: 8 cases453

of unnatural sounding sentences such as “He was454

<found> <dead>” is paraphrased into “He was <un-455

covered> <expired>...”, uncovered expired is not a456

natural English sentence and does not form a coher-457

ent meaning with found dead. 4 cases of changing458

trigger causes event change, such as “John Jenk-459

ins, <charged> with murder...” is paraphrased into460

“John Jenkins, <arraigned> for ...”. To arraign 461

somebody is a legal process that occurs after a 462

person has been charged. They are falsely con- 463

sidered as coreferential. Overall, the consistent 464

improvements achieved by the two augmentation 465

approaches across these DM datasets underscore 466

their effectiveness and potential applicability in di- 467

verse settings. 468

6 Analysis 469

To delve deeper into the underlying factors con- 470

tributing to the performance enhancements ob- 471

served with the DM datasets, we conduct an error 472

analysis on the models trained with additional TV 473

data, which are proven to be the most effective in 474

our experiments. 475

Increased Trigger Distribution In the original 476

ECB+ training set, the average count of unique 477

trigger lemma types per cluster was 1.36, which 478

increased to 3.30 upon incorporating the trigger 479

variation dataset. A comparative error analysis be- 480

tween the reproduced model and the PAIRWISERL 481

+ ECB+TV on the ECB+ test set reveals that the 482

latter successfully corrected 883 error pairs involv- 483

ing 166 different trigger word lemma types initially 484

made by the baseline model. Notably, 56 trigger 485

lemma types appear in a greater number of clusters 486

in the combination of ECB+ and ECB+TV compar- 487

ing to that in ECB+, and 15 trigger lemma types 488

are exclusively found in the combination of ECB+ 489

and ECB+TV data. In Covid training set, the av- 490

erage count of unique trigger lemma types rise 491

from 2.40 to 3.40. The the PAIRWISERLCOVID + 492

CovidTV model rectified 45 errors involving 15 lem- 493

mas, 13 of which are present in more clusters in 494

the combination of covid and CovidTV than in the 495

original data. Through the trigger variation method, 496

the models learn to better distinguish the triggers 497

through being exposed to more diversified trigger 498

distribution over clusters. 499

Increased Trigger Appearance For example, 500

trigger words with lemma disclose only appears 501

in cluster “Lohan undisclosed why in rehab” in 502

original data. In DM data, disclose also appears 503

in clusters “Isna agency reports earthquake”, “hol- 504

lywood reports movie”, “publicist statement on 505

Reid”, “speaker confirms death”. PAIRWISERL + 506

ECB+TV rectifies 11 errors related to trigger word 507

disclose without introducing any new error. 508
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Confusion from Unseen Triggers While the509

DMTV is able to help the models learn better the510

trigger distribution, it can introduce new errors511

through coreference pairs from unseen triggers in512

the original training set. For example, trigger ac-513

quire is absent in any clusters in the original train-514

ing set, but DM introduces acquire in the cluster515

related to “gaining control of Windows machines”.516

In the test set, it helps the model correct 36 error517

pairs with different trigger words as shown in Ex-518

ample 1. However it also generate 19 new errors.519

Example 2 show a new error pair that is predomi-520

nantly due to falsely established coreference links521

between acquisition and nominal trigger words like522

deal, it, and offer that are paraphrased events of523

deal in the DM data.524

(1) Sentence 1: If the deal is completed , it would be HP ’s525
biggest <acquisition> since it bought Compaq Computer526
Corp. for $ 19 billion in 2002.527
Sentence 2: Hewlett-Packard is negotiating to <buy>528
technology services provider Electronic Data Systems529
in a deal that could help the world ’s largest personal530
computer maker snap up more data management and531
consulting contracts.532
Gold / Prediction: Coref. / Coref.533

(2) Sentence 1: Hewlett - Packard Engineers <Deal> for534
EYP.535
Sentence 2: Extending its reach into the ripening green536
- consulting space, HP today announced the <acquisi-537
tion> of EYP Mission Critical Facilities, a consulting538
company specializing in strategic technology planning,539
design and operations support for large-scale datacen-540
ters.541
Gold / Prediction: Non-Coref. / Coref.542

Ambiguous Triggers Highly ambiguous triggers543

remain challenging to models trained with DM544

data. In reviewing triggers in both the corrected er-545

rors and newly introduced errors, no model demon-546

strates an enhanced capability in resolving errors547

associated with ambiguous triggers. For example,548

the false positive errors involving trigger lemma549

Indonesia earthquake in ECB+ and false negative550

assets freeze in Covid dataset still persist.551

In the ECB+ testing data, the term earthquakes552

appears only in two clusters, however, these pairs553

are especially hard because they refer to the “6.1554

Indonesia earthquakes in 2009” and “6.1 Indone-555

sia earthquake in 2013”. It presents a significant556

disambiguation challenge even only between two557

clusters. If the time information is not in local con-558

text, it is difficult to tell which year’s earthquake559

struck Indonesia or caused house damage. In the560

following example 3, the context similarity is high,561

but the pair is non-coreferential. ECB+TV enriches562

trigger earthquake to temblor, quake and shake, but 563

it does not help in this case. 564

(3) Sentence 1: Strong <earthquake> hits Indonesia’s Aceh 565
province. 566
Sentence 2: A powerful <6.1-magnitude earthquake> 567
struck the Indonesian province of Aceh with no tsunami 568
warning issued. 569
Gold / Prediction: Non-Coref. / Coref. 570

In contrast, the Covid dataset features the same 571

trigger word across numerous clusters, distributed 572

more uniformly. For instance, the trigger word 573

freeze is associated with a variety of different 574

money freezing events: “Isabella’s bank accounts 575

freeze”, “couple’s company holding freeze”, “Is- 576

abella asset freeze”, “board director bank account 577

freeze”, “Isabella brother asset freeze”. In example 578

4, two sentences are focus on the different aspects 579

related to the same asset freeze event. Little over- 580

lap in context still poses great ambiguities for the 581

CovidTV model to correctly establish the corefer- 582

ence link. 583

(4) Sentence 1: The asset <freeze> follows an injunction 584
application by the government, which is seeking to re- 585
cover around $1 billion of funds that it says it is owed 586
by Isabel dos Santos and her associates. 587
Sentence 2: Angolan court orders <seizure> of ex- 588
president’s daughter’s assets in graft probe. 589
Gold / Prediction: Coref. / Non-Coref. 590

7 Conclusion 591

The development of CDEC datasets is challeng- 592

ing due to the inherent complexity and demanding 593

labor requirements of the process, often resulting 594

in datasets that are constrained in both size and 595

scope. We this data these bottleneck by effectively 596

utilizing the advanced capabilities of GPT-4 to en- 597

hance existing CDEC datasets. By introducing 598

two innovative DM techniques, we successfully 599

generate “near gold” synthetic data that is both 600

realistic and of high quality, significantly enrich- 601

ing the volume and diversity of annotations within 602

CDEC datasets. This method offers a substantial 603

advantage in terms of swift data generation, elimi- 604

nating the need for extensive manual collection or 605

detailed curation. Evaluations on the CDEC mod- 606

els training on the combination of our DM ECB+ 607

and Aylien Covid datasets show improvement over 608

baseline model and demonstrate the effectiveness 609

of our DM methods, underscoring the potential of 610

our approach in enhancing CDEC datasets. In fu- 611

ture work, we would like to evaluate our methods 612

on more datasets, languages and model architec- 613

tures, and extend our methods to a broader range 614

of NLP tasks beyond CDEC. 615
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8 Limitations616

We propose the data multiplication methods with617

LLMs to enrich the existing CDEC datasets. Given618

the enrichment is sentence-level and only applied619

to the source sentence with event mentions, one620

limitation is the new enriched datasets cannot be621

intuitively used to train the state-of-the-art model622

like CDLM (Caciularu et al., 2021a) that takes the623

whole documents as model input. Future work624

includes the accommodation of the DM datasets to625

other CDEC model structures.626

9 Ethical issues627

There are potential copyright issues when gener-628

ating new points based on existing data points,629

and we selected data sets governed by the Cre-630

ative Commons Attribution 3.0 Unported License.631

This license explicitly permits the redistribution632

and modification of the data, thereby providing a633

legal and ethical foundation for our work. In cre-634

ating our generated dataset, we are committed to635

adhering to the terms of this license, which includes636

proper attribution and ensuring that any modifica-637

tions or derivative works are also shared under the638

same or compatible terms.639
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Setting Pairwise F1 (Dev) Pairwise F1 (Test) CoNLL F1 (Test)
Titan XP, 2 GPUs, bs=8 80.63 75.66 82.8
V100, 2 GPUs, bs=32 80.09 74.11 81.8
V100, 1 GPU, bs=32 79.35 76.01 82.7

Table 6: Different reproduced unstructured PAIR-
WISERL models (Yu et al., 2022). bs = batch size.

A Appendix782

A.1 Model Reproduction Attempts783

In table 6, We display the evaluation on different784

PAIRWISERL models we trained with the same785

hyperparameters except the training platform, num-786

ber of gpus and batch size. We choose the best787

performing model for our continued training in the788

paper.789

A.2 Word Order Variation Types790

In DMWOV dataset, GPT-4 creates a more varied791

collection of sentence structures by manipulating792

word order as shown in Example 5:793

(5) Voice change:794
The software patch has <closed> a loophole ... / A795
loophole ... has been <closed> by a software patch796
Predicate nominalization:797
After three submarine cables were <damaged>... / The798
<damaged> state of three submarine cables ...799
Fronting:800
Klitschko <stopped> Thompson in the sixth round to801
retain his title belts .../ To retain his title belts, Klitschko802
<stopped> Thompson ...803
Causative construction:804
Several <die> in south Iran quake / Quake in south Iran805
results in several <deaths>806

807

The first sentence pair involves the voice change808

from active to passive. In the original sentence, the809

agent patch precedes the predicate close, and the810

recipient loophole follows it. The DMWOV reverses811

this argument order.812

The second pair shows the transformation from813

predicate adjective to nominal adjective construc-814

tions. Originally, damaged functions as a predi-815

cate adjective following the linking verb are and816

describes cables, then it is tranformed to be an at-817

tributive adjective, modifying cables directly by818

preceding it, thereby reversing the order of the pa-819

tient cables and the predicate damaged.820

The third pair makes syntactic rearrangement by821

fronting the goal of stopped being "to retain his822

title belts", altering the emphasis focus of the goal823

argument.824

The introduction of "results in" in the four pair825

adds a causal relationship between the earthquake826

and the event deaths.827

By introducing such diverse sentence structures, 828

the likelihood of underrepresented argument orders 829

in each cluster is reduced, thereby enhancing the 830

robustness of the model. 831
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