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Abstract

Diffusion models, which can be viewed as a special case of hierarchical variational autoen-
coders (HVAEs), have shown profound success in generating photo-realistic images. In
contrast, standard HVAEs often produce images of inferior quality compared to diffusion
models. In this paper, we hypothesize that the success of diffusion models can be partly
attributed to the additional self-supervision information for their intermediate latent states
provided by corrupted images, which along with the original image form a pseudo video.
Based on this hypothesis, we explore the possibility of improving other types of generative
models with such pseudo videos. Specifically, we first extend a given image generative model
to their video generative model counterpart, and then train the video generative model on
pseudo videos constructed by applying data augmentation to the original images. Further-
more, we analyze the potential issues of first-order Markov data augmentation methods,
which are typically used in diffusion models, and propose to use more expressive data aug-
mentation to construct more useful information in pseudo videos. Our empirical results on
the CIFAR10 and CelebA datasets demonstrate that improved image generation quality can
be achieved with additional self-supervised information from pseudo videos.

1 Introduction

Sequential models form a popular framework for generating images (Gulrajani et al., 2017; Sønderby et al.,
2016a; Ho et al., 2020; Liu et al., 2022; Albergo et al., 2023; Lipman et al., 2023; Shi et al., 2023; Wang et al.,
2024). Instead of generating images from noise in one shot, which can be challenging, these models gradually
transform noise into images using multiple intermediate steps. Among them, diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Song et al., 2021b) and their variants (Kingma et al., 2021; Nichol & Dhariwal,
2021; Song et al., 2021a; Rissanen et al., 2022; Bansal et al., 2023; Hoogeboom & Salimans, 2023) have shown
impressive ability to generate high quality images in recent years.

While diffusion models can be viewed as a special case of a traditional sequential generative model, i.e., hi-
erarchical variational autoencoders (HVAEs) (Sønderby et al., 2016a; Maaløe et al., 2019; Vahdat & Kautz,
2020), they tend to outperform standard HVAEs significantly in practice. The major differences between
diffusion models and standard HVAEs are two-fold. First, diffusion models tend to have much more interme-
diate states, which may help improve the generation quality (Huang et al., 2021). Second, diffusion models
incorporate exact self-supervised information for their intermediate states: they are supposed to match the
corrupted (e.g., noisy or blurred) versions of the original target image at different corruption levels. These
additional information helps regularize training and guide generation in diffusion models. On the other hand,
the intermediate states in standard HVAEs are unobserved and one does not have explicit control of them.
Consequently, there may be many different distributions over the intermediate states that are capable of
generating images (i.e., the issue of unidentifiability (Locatello et al., 2019; Khemakhem et al., 2020)). The
lack of identifiability of the intermediate states may poses challenges to the optimization during training
since it suggests a huge hypothesis space with many sub-optimal solutions.

In this paper, we hypothesize that incorporating such self-supervised information into flexible generative
models, as in diffusion models, may be one of the key reasons that they achieve good generation performance.
Based on this assumption, we explore the possibility of improving other types of image generative models by
extending them to video generative models and artificially injecting self-supervised information in the form
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of pseudo videos whose frames are created by applying data augmentation to the original images. These
pseudo videos are then used to train our video generative models. After that, we compare the generation
quality of the last frame of the pseudo video (corresponding to the original image) generated by the video
generative model with that of the images generated by the original image generative model. Empirically,
we observe improved image generation quality via pseudo video generation compared to the images directly
generated by the original image generative model. Theoretically, we provide intuitions on why designing
better pseudo videos with data augmentation beyond first-order Markov chains can be helpful.

The contributions of our paper are summarized below.

• (Section 2) Our key insight is that pseudo videos created by corrupting the original target image
may provide useful self-supervised information for training generative models. This is demonstrated
by a comparison between diffusion models and standard HVAEs as a motivating example.

• (Sections 3 and 4) We attempt to improve two popular generative model frameworks, VQVAE (Van
Den Oord et al., 2017) and Improved DDPM (Nichol & Dhariwal, 2021), by extending them to their
video generative model counterparts and training them on pseudo videos. Empirically, we show that
this procedure improves the image generation quality with pseudo videos of just a few frames. In
general, our proposed framework provides a new way of scaling up any image generative model with
its video generative model counterpart for improved performance.

• (Section 4) Theoretically, we analyze the potential issue of certain pseudo videos, including those in
the form of first-order Markov chains, in autoregressive video generation frameworks. Based on our
theoretical results, we propose a simple and effective approach which avoids the potential issues by
constructing higher-order Markov pseudo videos.

2 Motivation

2.1 Preliminaries: Sequential Generative Models

Let x ∈ Rn be an observed variable of interest. The task of generative modeling aims to fit a parametric
model pθ(x) to estimate the data distribution p(x) using samples from p(x).

Hierarchical variational autoencoders (HVAEs) (Sønderby et al., 2016a; Maaløe et al., 2019; Vahdat &
Kautz, 2020) employ a sequence of latent variables x1, · · · , xT ∈ Rd (d ≤ n) to capture low dimensional
representations of the data x0 := x at different fidelity (Salimans, 2016):

pθ(x0) =
∫

p(xT )
T∏

t=1
pθ(xt−1|xt)dx1:T , (1)

where the prior distribution over the last latent variable xT is often set to standard Gaussian p(xT ) =
N (xT |0, I), and the means of the likelihoods (or generation models) are parameterized by neural networks:

pθ(xt−1|xt) = N (xt−1|µθ(xt, t), σ2
t I). (2)

HVAEs approximate the intractable posterior

pθ(x1:T |x0) =
p(xT )

∏T
t=1 pθ(xt−1|xt)
pθ(x0) (3)

with a variational distribution (or inference model) qϕ(x1:T |x0). Different design choices for the factorization
of the inference model have been proposed, including “bottom-up” factorization (Burda et al., 2015):

qϕ(x1:T |x0) =
T∏

t=1
qϕ(xt|xt−1), (4)
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Figure 1: Diffusion model vs HVAE: compared to standard HVAEs, diffusion models incorporate inductive
bias for its intermediate latent states with self-supervised signals.

and “top-down” factorization (Sønderby et al., 2016a):

qϕ(x1:T |x0) = qϕ(xT |x0)
T∏

t=1
qϕ(xt−1|xt, x0), (5)

where the factors qϕ(xt|xt−1) and qϕ(xt−1|xt, x0) are mean-field Gaussian distributions with mean and diag-
noal variance parameterized by neural networks. Notably, HVAEs only require the prior over the last latent
variable be a fixed distribution (e.g., standard Gaussian) as shown in Figure 1 and let the model figure out
all the intermediate latent variables by maximizing the the tractable evidence lower bound (ELBO) with
respect to the parameters of both generation and inference models:

max
θ,ϕ
F(θ, ϕ) = Eqϕ(x1:T |x0)

[
log

p(xT )
∏T

t=1 pθ(xt−1|xt)
qϕ(x1:T |x0)

]
≤ log pθ(x0). (6)

Such flexibility makes HVAEs very expressive but also very difficult to train in practice (Kingma et al., 2016;
Sønderby et al., 2016b), despite the efforts of restricting the flexibility of the network architectures such as
sharing the parameters of the inference and generation models as in the top-down inference model (Sønderby
et al., 2016a; Vahdat & Kautz, 2020; Child, 2021).

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b), on the other hand, have
achieved state-of-the-art generation performance for images. Similar to HVAEs, diffusion models also employ
a sequence of latent variables in the generation process (or denoising process) as in Eq. 1 with a similar
parameterization to that in Eq. 2. However, unlike HVAEs, diffusion models define a fixed “bottom up”
inference model (or diffusion process):

q(x1:T |x0) =
T∏

t=1
q(xt|xt−1) =

T∏
t=1
N (xt|

√
αtxt−1, (1− αt)I), (7)

where q(xt|xt−1) are pre-defined Gaussian convolution kernels, and no dimensionality reduction is performed
(i.e., d = n). Diffusion models are also trained by maximizing the ELBO but only with respect to the
parameters θ of the generation model. Due to the simple form of the inference model, Ho et al. (2020) shows
that the “top-down” form of the inference model is analytically tractable with the form:

q(xt−1|xt, x0) = N (xt−1|µ̃(xt, x0), β̃2
t ), (8)
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(a) HVAE with heat equation encoder. (b) Standard HVAE with learnable encoder.

Figure 2: Generated digits from HVAE with encoder fixed according to the heat equation and standard
HVAE with learnable encoder. Both HVAEs use the same decoder architecture as in Rissanen et al. (2022)

where µ̃ and β̃t have analytical solutions with closed-form expressions. As a result, the ELBO of diffusion
models can be further simplified using variance reduction tricks:

max
θ
F(θ) = Eq(xt−1|xt,x0)

[
log pθ(x0|x1)−

T∑
t=1

KL(q(xt−1|xt, x0)||pθ(xt|xt−1))
]

(9)

= Eq(xt−1|xt,x0)

[
log pθ(x0|x1)−

T∑
t=1

∥µθ(xt, t)− µ̃(xt, x0)∥2

2σ2
t

]
. (10)

2.2 Diffusion Model vs Hierarchical VAE

Compared to the objective for training standard HVAEs (Eq. 6), one can see that the objective for training
diffusion models (Eq. 10) incorporates direct control for the intermediate states. Due to the fixed pre-
defined inference model, the objective in Eq. 10 is simplified. In particular, its second term suggests that
at each intermediate step t, the mean function µθ(xt, t) in the generation model is trained by matching a
noisy version µ̃(xt, x0) of the original target image x0. In contrast, the objective for standard HVAEs has
no such information to impose any control over their intermediate states since their inference models are
parameterized by flexible neural networks and keep being updated along with the generation model by end-
to-end training. Figure 1 illustrates this difference between diffusion models and standard HVAEs. Without
the aid of the self-supervised information, the intermediate states in standard HVAEs are very flexible,
which implies that they are unidentifiable in the sense that there could be many plausible distributions over
them that can generate images (i.e., many sub-optimal solutions), which makes the optimization harder as
T becomes larger. In contrast, diffusion models may benefit from the self-supervised information (i.e., noisy
images) for their intermediate states, for which optimization can be less challenging even with large T , since
this inductive bias pins down one specific route of generation, which eliminates other solutions that are
inconsistent with this inductive bias.

To show the critical role of self-supervised information, we train an HVAE with a similar architecture as in
Rissanen et al. (2022) on the binarized MNIST dataset (Salimans et al., 2015) as a proof of concept, where
the encoder is fixed according to the heat equation (Rissanen et al., 2022):

q(x1:T |x0) =
T∏

t=1
q(xt|x0) =

T∏
t=1
N (xt|Fh(t)x0, σ2

h), (11)
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where Fh is the matrix for simulating the heat equation until time t. This can be seen as an HVAE trained
with explicit supervision signals from pseudo videos created by the heat equation. We create T = 18 frames
of pseudo videos for each training image. Figure 2 demonstrates that the HVAE trained with pseudo videos
created by the heat equation can generate much sharper and diverse digits than a standard HVAE which
uses the same architecture but with a learnable encoder. Here, we deliberately use heat equation instead of
Gaussian noise to create pseudo frames to show that there are plenty of choices to create pseudo videos that
contain useful self-supervised information besides adding Gaussian noise as in standard diffusion models.

2.3 Improving Image Generation via Pseudo Video Generation

With the concept of pseudo videos and their effectiveness in diffusion models, we are interested in the
following open generic question in this paper:

Is it possible to improve other types of image generative models by jointly modelling the distribution
of the original image and its corresponding pseudo video which contains self-supervised information?

The answer is affirmative. In this paper, we show empirical evidence of the advantages of pseudo videos on
two types of generation models, namely improving VQVAE (Van Den Oord et al., 2017) (Section 3) and
DDPM (Nichol & Dhariwal, 2021) (Section 4.2) with Phenaki (Villegas et al., 2022) and Video Diffusion
(Harvey et al., 2022) trained on pseudo videos, respectively. Moreover, we provide theoretical arguments
favouring the use of more expressive ways of creating pseudo videos in the autoregressive video generation
framework (Section 4.1), beyond the first-order Markov strategy as typically used in the forward process of
standard diffusion models.

3 Improved Reconstruction and Generation in VQ-VAE with Pseudo Videos

In this section, we utilize pseudo videos to improve image generation quality of Vector Quantized Variational
Autoencoder (VQ-VAE) (Van Den Oord et al., 2017), where the latent variables z are discrete tokens.
Specifically, we employ its video generative model counterpart C-ViViT (Villegas et al., 2022) to compress
the pseudo videos into latent discrete tokens. C-ViViT is trained by reconstructing the pseudo videos with
L2 reconstruction loss (Kingma & Welling, 2013), Vector Quantization (VQ) loss (Van Den Oord et al.,
2017), GAN style adversarial loss (Karras et al., 2020), and image perceptual loss (Johnson et al., 2016;
Zhang et al., 2018). For the latent space created by a C-ViViT, we consider two generative models to fit a
prior p(z) for the latent tokens:

• VideoGPT (Yan et al., 2021) uses an autoregressive (AR) Transformer (Brown et al., 2020) to
factorize p(z) =

∏d
i=1 p(zi|z<i) in an autoregressive manner with masked self-attention, where d is

the total number of the tokens, and is trained with maximum likelihood. VideoGPT is the video
generative model counterpart extended from ImageGPT (Chen et al., 2020a).

• Phenaki (Villegas et al., 2022) uses a bidirectional Transformer (Vaswani et al., 2017) to predict
all tokens in one shot rather than in an autoregressive manner. At each training step, one samples
a masking ratio γ ∈ (0, 1), and the model is trained by predicting the masked tokens given the
unmasked ones. During generation, all tokens are masked initially, and the model predicts all tokens
simultaneously. The generation will then be refined following a few steps of re-masking and re-
prediction, with a decreasing masking ratio as we proceed. Phenaki is the video generative model
counterpart extended from MaskGit (Chang et al., 2022).

We compare the generation quality of the last frames (corresponding to the original images) in the generated
videos from the video generative model trained on pseudo videos to the images generated by the original
image generative model trained on the original target images.

Datasets. We create 8-frame and 18-frame pseudo videos using images from two benchmark datasets,
CIFAR10 (32 × 32) (Krizhevsky et al., 2009) and CelebA (64 × 64) (Liu et al., 2015), with the blurring
technique from Bansal et al. (2023). To create 8-frame pseudo videos, we blur the images recursively 7 times
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Figure 3: An example of pseudo video constructed by transforming an image of a dog using blurring.

with a Gaussian kernel of size 11×11 and standard deviation growing exponentially at the rate of 0.05. For
18-frame pseudo videos, we blur the images 17 times with same Gaussian kernel but with a standard deviation
growing exponentially at the rate of 0.01. The pseudo videos are organized such that the last frames are
the original target images and the first frames are the blurriest images. Figure 3 shows an example of such
a pseudo video. We use 1-frame to denote images generated by the original image autoencoder/generative
model trained on the original target images.

Network Architectures.1 We train VQ-VAE based generative models with a codebook size of 1024 for
the discrete latent tokens. Specifically, we use C-ViViT as compression model (autoencoder) for pseudo
videos. For a pseudo video with shape (T, H, W, C), we compress it to discrete latent tokens with shape
( T

2 , H
4 , W

4 , C). For images with shape (1, H, W, C), we use VQ-VAE to compress them to tokens with shape
(1, H

4 , W
4 , C). We then consider two video generative models, VideoGPT and Phenaki (and their image

generative model counterparts, ImageGPT and MaskGit), to fit the prior over the latent tokens.

• VQ-VAE/C-ViViT (reconstruction). We use a similar architecture as in Villegas et al. (2022),
which has a 4-layer spatial Transformer and a 4-layer temporal Transformer, with a hidden dimension
of 512. For 1-frame VQ-VAE model, we consider a 8-layer spatial Transformer.

• ImageGPT/VideoGPT (AR generation). We use a similar architecture as in Yan et al. (2021),
which has a 8-layer autoregressive (AR) Transformer with 4 attention heads and a hidden dimension
of 144.

• MaskGit/Phenaki (latent masked generation). We use a similar architecture as in Villegas
et al. (2022), which has a 6-layer bidirectional Transformer with a hidden dimension of 512.

Evaluation Metric. We compute Frechet Inception Distance (FID) (Heusel et al., 2017) with 50k samples
to evaluate the quality of images, either from the last-frames of videos generated by video models trained on
pseudo videos, or images generated by image models trained on the original target images.

(a) Ground-truth (b) 1-frame reconstruction (c) 8-frame reconstruction (d) 18-frame reconstruction

Figure 4: Ground-truth images and reconstructed images from VQ-VAE/CViViT trained on CIFAR10.
1For 1-frame models, we have tried using deeper architectures but observed no improvement in performance, which suggests

that our pseudo video framework can help further improve the performance of generative models while simply increasing the
model size becomes ineffective.
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(a) Ground-truth (b) 1-frame reconstruction (c) 8-frame reconstruction (d) 18-frame reconstruction

Figure 5: Ground-truth images and reconstructed images from VQ-VAE/CViViT trained on CelebA.

Table 1: Last-frame FID of images produced by C-ViViT (reconstruction), VideoGPT (AR generation)
and Phenaki (latent masked generation) trained on pseudo videos constructed from CIFAR10 and CelebA
images. 1-frame results are obtained from their image counterparts VQ-VAE (reconstruction), ImageGPT
(AR generation) and MaskGit (latent masked generation) trained on original CIFAR10 and CelebA images.

CIFAR10 CelebA
1-frame 8-frame 18-frame 1-frame 8-frame 18-frame

Reconstruction 84.25 13.81 11.26 24.62 5.72 2.27
AR Generation 91.65 54.60 69.23 32.98 30.19 28.08

Latent Masked Generation 89.78 35.50 47.65 27.34 16.87 16.66

Results. Table 1 shows the last-frame FID of C-ViViT for reconstruction and that of VideoGPT and Phenaki
for AR and masked generation on CIFAR10 and CelebA, respectively. The 1-frame results correspond to
the performance of their image model counterparts (i.e., VQ-VAE for image reconstruction, and ImageGPT
and MaskGit for AR and masked image generation, respectively). We observe that pseudo videos indeed
help improve the training of the C-ViViT as the reconstruction quality of the last frame is significantly
improved with a few more frames. We show reconstructed CIFAR10 and CelebA images from different
C-ViViT models in Figures 4 and 5, respectively. It can be seen that for both datasets, the reconstructed
images trained with 1-frame models are over-smoothed and this issue is resolved by using pseudo videos
which produce much sharper images. Quantitatively, reconstruction FID improves as more frames are used.
Pseudo videos also improve the image generation performance compared to the 1-frame results. Interestingly,
we see a diminishing return as we include more frames. For CelebA images, 18-frame pseudo videos help
achieve the best image generation performance for both AR and latent masked generation, but 8-frame
models achieve a comparable performance. For CIFAR10 images, 8-frame pseudo videos result in better
image generation performance than 18-frame pseudo videos, which suggests the latent codes have a more
complex prior distribution in order to reconstruct model pseudo videos with 18 frames well and therefore
this prior is more difficult for VideoGPT or Phenaki to capture. In summary. while pseudo videos help
improve the performance, the optimal number of frames may depend on the dataset and the augmentation
strategy. This diminishing return is not a severe issue in practice since practitioners may prefer to improve
the generation with just a few more pseudo frames to avoid introducing a high computational cost.

4 Improved Generation via Higher-order Markov Pseudo Videos

Since pseudo video contains extra information on the target image, we would like to better understand what
type of additional information can be leveraged to achieve better image generation quality. In practice, since
there are infinitely many data augmentation strategies to create pseudo videos, we would like to study which
types of data augmentation are more favourable to shed light on the practical design of pseudo videos.
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4.1 Is First-order Markov Chain the Optimal Choice for Creating Pseudo Videos?

Consider pseudo video x1:T , where xT is the target image2, and xt’s (t < T ) are some noisy measurements of
xT created with some data augmentation. We show that generative models that utilize more pseudo frames
to generate xT are more likely to achieve better performance, and passing information of the target image to
the pseudo frames with a first-order Markov chain as in standard diffusion models may not be the optimal
choice. We demonstrate it with the following autoregressive video generation example.

Consider building a generative model g that predicts xT by taking advantage of the information in xT −1
alone. We train the model by minimizing the reconstruction error. The minimum of this loss is

L∗
1 = min

g
Ep(xT ,xT −1)[||xT − g(xT −1)||22] = Ep(xT −1)[Varp(xT |xT −1)(xT )], (12)

which is achieved at the non-parametric optimum g∗(xT −1) = Ep(xT |xT −1)[xT ], where Varp(xT |xT −1)(xT ) =
Ep(xT |xT −1){(xT − Ep(xT |xT −1)[xT ])⊤(xT − Ep(xT |xT −1)[xT ])}. Now consider another model h that predicts
xT using both xT −1 and xT −2 by minimizing the reconstruction error again. The minimum reconstruction
error this time is

L∗
2 = min

h
Ep(xT ,xT −1,xT −2)[||xT − h(xT −1, xT −2)||22] = Ep(xT −1,xT −2)[Varp(xT |xT −1,xT −2)(xT )], (13)

which is achieved at the non-parametric optimum h∗(xT −1, xT −2) = Ep(xT |xT −1,xT −2)[xT ]. The benefit
of using more pseudo frames to generate the target image can be seen from the fact that the minimum
reconstruction error will never increase by using more pseudo frames since by the law of total variance,

L∗
2 − L∗

1 = −Ep(xT −1){Varp(xT −2|xT −1)(Ep(xT |xT −1,xT −2)[xT ])} ≤ 0. (14)

Moreover, the non-optimality of creating pseudo video via first-order Markov chain becomes clear: the first-
order Markov data augmentation implies that p(xT |xT −1) = p(xT |xT −1, xT −2) and consequently L∗

2 = L∗
1.

More specifically, for strict inequality in Eq 14, we need to avoid p(xT |xT −1) = p(xT |xT −1, xT −2), which is
equivalent to avoiding the use of either first-order Markov chain xT → xT −1 → xT −2 or xT ← xT −1 → xT −2.
This analysis is informative for us to design better pseudo videos, for example through data augmentation
with higher-order Markov chains. We formalize the above informal reasoning into Theorem 4.1 and provide
the formal proof in Appendix A.
Theorem 4.1. Consider two video generative models that predict the last-frame xT some previous frames.
Suppose that they take the form of x̂

(g)
T = g(xs1 , xs2 , · · ·, xsk

) and x̂
(h)
T = h(xs1 , xs2 , · · ·, xsl

), respectively,
where T > s1 > · · · > sk > · · · > sl. Then, we have

min
x̂

(h)
T

Ep(xT ,xs1 ,···,xsl
)[||xT − x̂

(h)
T ||

2
2] ≤ min

x̂
(g)
T

Ep(xT ,xs1 ,···,xsk
)[||xT − x̂

(g)
T ||

2
2], (15)

where the equality attains if xT |xs1 , · · ·, xsk

d= xT |xs1 , · · ·, xsl
.

Remark 4.2. The minimum reconstruction errors above are obtained with non-parametric optima. In
practice, this corresponds to the assumption that our neural networks gθ and hϕ are flexible enough to
accurately approximate the non-parametric optima for the theorem to hold. Besides, the analysis is based
on the assumption that {xsi

}l
i=1 are drawn from the ground-truth distribution, while in practice they also

need to be generated with their associated previous frames, which means when the generated {x̂si
}l

i=1 are far
away from their ground-truth distribution, the theorem would not hold. Nevertheless, the analysis provides
intuitions of the benefit of conditional generation with longer past contexts and the potential improvement
in performance by using more expressive pseudo videos rather than the ones created with first-order Markov
transition as in standard diffusion models, which we empirically verify with experiments in the following
section.

2Unlike diffusion models where x0 denotes the original image, from here onwards we will denote the original image by xT

since it is the last frame of the pseudo video.
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(a) First-order

(b) High-order

Figure 6: Examples of a pseudo video constructed by adding Gaussian noise to a CIFAR10 image using
first-order Markov chain (top) and high-order Markov chain (bottom).

4.2 Experiments

We consider generating each frame of the pseudo videos using the information provided in the previously
generated frames. In particular, we use a video diffusion model (Harvey et al., 2022) trained by predicting
frames autoregressively conditioning on the most recent previous frames in a context window. We compare
the performance of video diffusion models trained on pseudo videos created by both standard first-order
Markov transformation and higher-order Markov transformation to empirically verify our argument in Section
4.1. We describe the detailed experimental setup below.

Datasets. We create 4-frame and 8-frame pseudo videos using images from CIFAR10 (32 × 32) and CelebA
(64 × 64). We use Gaussian noise as data augmentation and we consider two strategies:

• First-order Markov. We add Gaussian noise recursively 3 or 7 times to create first-order Markov
pseudo videos with a linear schedule (Ho et al., 2020) with β ranging from 0.0001 to 0.05.

• High-order Markov. While using the same noise schedule to create xT −t, instead of adding
Gaussian noise to xT −t+1, we use a simple strategy to create high-order Markov pseudo videos by
adding Gaussian noise to the mean of {xT −s+1}t

s=1.

We plot examples of pseudo videos created with the above two strategies in Figure 6. We again use 1-frame
to denote the results of the image generative model counterparts, improved DDPM (Nichol & Dhariwal,
2021), trained on the original target images. We also consider blurring as the data augmentation, however,
its performance is worse than the performance of using Gaussian noise (see the Results paragraph below).

Network Architectures. We use a similar UNet architecture as in Harvey et al. (2022), with 2 residual
blocks in each downsampling and upsampling layer and a base channel size of 128 across all models. Notice
that Harvey et al. (2022) is built based on the same architecture as the 1-frame image diffusion model (Nichol
& Dhariwal, 2021), and these hyperparameters are kept the same for the 1-frame image diffusion model.
During generation, we use the “Autoreg” sampling scheme from Harvey et al. (2022) so that each frame xt is
generated by conditioning on the most recently generated frames in a context window, {xt−c}C

c=1. The sizes
of the context window C (i.e., the time lag) are 2 and 4 for 4-frame and 8-frame models, respectively. We
consider 1,000 diffusion steps every time we generate a new frame. Since 4-frame and 8-frame models jointly
generate the first 2 and the first 4 frames (the initial context window) at the beginning, respectively, they use
overall 3,000 and 5,000 diffusion steps to generate the whole pseudo videos, respectively. We also consider
increasing the number of diffusion steps from 1,000 to 4,000 when training the 1-frame image diffusion model
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(a) CIFAR10 (b) CelebA

Figure 7: Generated images from the video diffusion models trained on 4-frame high-order Markov pseudo
videos of CIFAR10 and CelebA, respectively.

Table 2: Last-frame FID of images generated by video diffusion models trained on pseudo videos constructed
from CIFAR10 and CelebA images (with both first-order Markov or high-order Markov Gaussian noise data
augmentation). 1-frame results are obtained from an image diffusion model trained on the original CIFAR10
and CelebA images with equivalent UNet architecture.

CIFAR10 CelebA
1-frame 4-frame 8-frame 1-frame 4-frame 8-frame

First-order Markov 12.90 17.30 15.90 7.76 13.61 12.64
High-order Markov 12.90 12.58 12.80 7.76 6.88 7.55

and compare it with the 4-frame video diffusion models with 3,000 diffusion steps in total to ensure the
performance gain in video diffusion models is not simply because we have more diffusion steps overall.

Results. We again compute FID (based on 10k samples) to evaluate the models. Table 2 shows the
last-frame FID of pseudo videos generated by video diffusion models for CIFAR10 and CelebA images,
respectively. The 1-frame results correspond to the performance of their image counterparts (i.e., improved
DDPM). While video diffusion models trained on first-order Markov pseudo videos do not outperform the 1-
frame image diffusion model, both 4-frame and 8-frame video diffusion models trained on high-order Markov
pseudo videos can achieve better results on both datasets, which empirically justify the non-optimality of
first-order Markov chains in terms of passing information from the target images to the pseudo frames as
shown in Section 4.1, and our proposal of using more expressive pseudo videos rather than the ones created
with first-order Markov chains. Notice that the 4-frame models outperform the 8-frame models, which may
be due to the complex nature of the ground-truth distribution of longer pseudo videos, and thus more
expressive architecture may be required to achieve optimal results (see Remark 4.2), while here we use the
same UNet architecture across all models for fair practical comparison. Again, this U-turn should not be a
severe issue in practice since practitioners may prefer to improve the generation with as few pseudo frames
as possible to reduce additional computational cost. We visualize some generated images from the 4-frame
models trained on CIFAR10 and CelebA in Figure 7.
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Table 3 compares the 4-frame model with an 1-frame model but with 4,000 diffusion steps. While the
performance of the 1-frame model with more overall diffusion steps improves for CIFAR10 and outperforms
the 4-frame model, its performance on CelebA is worse than the 4-frame model. Moreover, on CelebA, it
even becomes worse than the baseline 1-frame model with only 1,000 diffusion steps while the 4-frame video
diffusion model consistently improves the performance on both datasets, which suggests simply increasing
the number of diffusion steps in an image diffusion model may not always be effective.

Instead of Gaussian noise, we also tried using Gaussian blur to create pseudo videos as in Section 3. However,
our experiments on CIFAT10 with Gaussian blur suggest worse results than adding Gaussian noise (see
Table 4), and we decided not to consider it for further experiments. This suggests that in practice the
well-performed data augmentation strategies may vary across different classes of video generative models.

Table 3: Last-frame FID of images generated by video diffusion models trained on pseudo videos constructed
from CIFAR10 and CelebA images with high order Markov Gaussian noise data augmentation. 1-frame
results are obtained from an image diffusion model trained on the original CIFAR10 and CelebA images.
Here, the 1-frame models use 4,000 diffusion steps, while the 4-frame models use 3,000 diffusion steps overall.

1-frame (1k steps) 1-frame (4k steps) 4-frame (3k steps overall)
CIFAR10 12.90 11.95 12.58
CelebA 7.76 7.87 6.88

Table 4: Last-frame FID of images generated by video diffusion models trained on pseudo videos constructed
from CIFAR10 images with high-order Markov data augmentation (either Gaussian noise or Gaussian blur).

4-frame 8-frame
Gaussian noise 12.58 12.80
Gaussian blur 15.33 22.63

5 Related Work

5.1 Sequential generative Models

Hierarchical variational autoencoders (HVAEs) (Sønderby et al., 2016a; Maaløe et al., 2019; Vahdat & Kautz,
2020; Child, 2021; Xiao & Bamler, 2023) are a class of sequential generative models constructed by stacking
standard VAEs (Kingma & Welling, 2013). Although HVAEs represent a rich class of expressive generative
models, they are hard to train in practice due to optimization difficulty, as discussed in Section 2. Diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b; Kingma et al., 2021; Nichol &
Dhariwal, 2021; Song et al., 2021a; Rissanen et al., 2022; Bansal et al., 2023; Hoogeboom & Salimans, 2023)
can be seen as a special case of HVAEs where the encoders are fixed, pre-defined Gaussian convolution
kernels. Specifically, they essentially regress a sequence of noisy images created from the target image with
self-supervision, as described in Section 2. Despite its similarity to HVAEs, diffusion models, and latent
diffusion models (Rombach et al., 2022) which apply diffusion models in the lower dimensional latent space
of another latent variable model (e.g., VQVAE (Van Den Oord et al., 2017)), have achieved state-of-the-art
performance partially due to the additional self-supervision signal provided by the noise-corrupted images.
Flow matching (Lipman et al., 2023; Liu et al., 2022; Albergo et al., 2023; Gat et al., 2024; Wang et al., 2024)
is another state-of-the-art sequential generative modelling technique that trains continuous normalizing flows
(Chen et al., 2018) by regressing a sequence of vector fields inducing a probability path that connects the
data distribution and prior distribution with direct self-supervision. It has been show that flow matching
can learn more straight trajectories than diffusion models, which requires less number of discretization steps
at generation time. Furthermore, flow matching allows us to relax the Gaussian assumption for the prior
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distribution and thus enables coupling between arbitrary distributions (Albergo et al., 2023). In contrast,
our proposed framework introduces a new family of approaches that leverage video generative models and
pseudo videos with self-supervised frames to improve any given image generative models.

5.2 Self-Supervised Learning

Self-supervised learning (Liu et al., 2021; Shwartz Ziv & LeCun, 2024) turns an unsupervised learning
problem into a supervised learning problem by handcrafting pseudo labels for unlabeled data. There are
two common approaches to self-supervised learning. 1) Contrastive learning (Chen et al., 2020b; Tian et al.,
2020; Wu et al., 2020), predicts whether two inputs are different augmentations of the same original data. 2)
Masked learning (Devlin et al., 2019; He et al., 2022; Fang et al., 2023) predicts randomly masked parts of
an input given the unmasked parts. While our approach of fitting a video model to pseudo video sequences
created by augmenting the original images does not belong to either of these families, it is essentially a new
form of self-supervised learning since the pseudo video sequences can be seen as handcrafted pseudo labels
for our model to predict, which provides the model with extra information (e.g., different fidelity of the
original image).

6 Conclusion and Discussions

Summary. We drew our key insight from comparing standard HVAEs and diffusion models: the additional
self-supervised information on the intermediate states provided by the noise corrupted pseudo frames in
diffusion models may contribute to their success. Based on this insight, we proposed to leverage the self-
supervised information from the pseudo videos constructed by applying data augmentation to the target
images to improve the performance of image generative models. This was done by extending image generative
models to their video generative models counterparts and training video generative models on pseudo videos.
We show in our experiments that for two popular image generative models, VQVAE and Improved DDPM,
their video generative model counterparts trained on pseudo videos of just a few frames can improve image
generation performance, which empirically verified the benefit of the additional self-supervised information
in the pseudo videos.

Discussions and Future Work. Our proposed framework provides an alternative approach of scaling
up any given generative models: instead of making generative models larger by stacking more layers, we
demonstrated that it was possible to improve the generation quality by turning an image generative model
trained on images into its video generative model counterpart trained on pseudo videos, which is usually
straightforward since many video generative models are built upon image generative models. On the other
hand, this raises challenges on how to design informative pseudo videos. In autoregressive video generation
frameworks, we show the potential issue of first-order Markov pseudo videos theoretically and propose to
use higher-order Markov pseudo videos instead to address this issue. However, it is in general unclear
what the optimal pseudo videos are within such a large design space, which we leave as a future research
question. Another interesting future direction is to explore whether the same principle can be applied to
other data modalities. While self-supervised signals can be easily obtained using data augmentation for
images, it remains unclear whether there are proper ways to inject self-supervised information for other data
modalities, such as text or molecules.
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A Proof of Theorem 4.1

Proof. To derive x̂
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T (xs1 , ···, xsk
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Setting the above gradient to 0 gives us
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The minimum reconstruction error is obtained by plugging x̂
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We now show that the reconstruction error can never increase with more previous frames as inputs by
observing that with T > s1 > · · · > sk > · · · > sl,
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Indeed,
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Notice that if xT |xs1 , · · ·, xsk

d= xT |xs1 , · · ·, xsl
, then the above difference will become 0:
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since Ep(xT |xs1 ,···,xsk
)[xT ] is a function of xs1 , · · ·, xsk

only.

Therefore, for strict inequality, it is necessary to avoid xT ⊥⊥ xsk+1 , · · ·, xsl
| xs1 , · · ·, xsk

, which includes
first-order Markov chain (xT → · · ·xsk

→ xsl
) as a special case.
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B Reproducibility Statement

To our knowledge, the official implementation of Phenaki (Villegas et al., 2022) has not been re-
leased upon submission of this paper. As a result, the experiments in Section 3 are based on the
implementation from https://github.com/lucidrains/phenaki-pytorch. The experiments in Sec-
tion 4.2 are based on the official implementation of Flexible Video Diffusion Model (FDM) (Harvey
et al., 2022) and Improved DDPM (Nichol & Dhariwal, 2021), from https://github.com/plai-group/
flexible-video-diffusion-modeling and https://github.com/openai/improved-diffusion.
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