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ABSTRACT

The reasoning traces generated by Large Language Models (LLMs) are increas-
ingly used to improve final predictions, enable reinforcement learning based on
reasoning trace correctness, and justify model outputs to users. Their recognized
utility spurred a line of works on evaluating LLM reasoning quality. However,
such current reasoning evaluation methods are typically generic and do not shed
light on the different reasoning types that may be required for various complex
tasks. In this paper, we investigate reasoning quality for the prominent task of Fact
Verification, where a model should determine whether a given claim is entailed by
a reference source text, a fundamental process known as Natural Language Infer-
ence (NLI). Specifically, we propose a novel evaluation framework that considers
the prominent types of inference steps involved in NLI reasoning: hypothesis de-
composition into individual facts, followed by source attribution and entailment
decision for each fact, and finally aggregation of fact level decisions into the final
entailment classification. Our protocol introduces fine-grained metrics to assess
both the existence (whether a step was performed) and the quality (how well it was
performed) for each inference type. Following this framework, we first conduct a
meticulous manual evaluation of six prominent LLMs, and then scale the evalua-
tion using LLM-as-a-Judge. Our analysis reveals several insights, including: (1)
a significant positive correlation exists between the quality of the reasoning trace
and the correctness of the final prediction; (2) models often omit necessary reason-
ing steps, leading to incomplete justifications; and (3) guiding the LLM towards
a systematic reasoning trace based on our framework often improves the quality
of both the reasoning trace and the overall entailment classification, specifically
for “non-reasoning” models. Overall, our work provides a more diagnostic and
nuanced approach to understanding and evaluating LLM reasoning trace, demon-
strated specifically for NLI reasoning in fact verification, proposing insights for
future improvements in reasoning quality and its downstream usage.

1 INTRODUCTION

Explicit reasoning traces have important benefits like improving final answer prediction (Wei et al.,
2022; Sprague et al., 2025); guiding search algorithms over potential reasoning paths to improve
model predictions (Hao et al., 2024; Sun et al., 2024); providing granular feedback for fine-tuning
models via reinforcement learning, where the reward is based on the quality of intermediate steps
(Lai et al., 2024; Lu et al., 2024; Sun et al., 2024); and might serve as a verification and justification
of the final predictions in human-AI collaboration scenarios (Barez et al., 2025).

The growing importance of these reasoning traces has spurred research into methods for evaluating
their quality. Existing approaches typically fall into two categories. Some provide a single, holistic
score for an entire reasoning trace (Saparov & He, 2023; He et al., 2024), while others adopt a more
granular, step-by-step analysis, evaluating generic properties of inference steps, such as ground-
edness or faithfulness (Prasad et al., 2023; Li et al., 2025). However, a key limitation of these
step-by-step methods is that they often apply a uniform set of criteria to every step, disregarding the
distinct functional role that each type of step plays within a larger, structured reasoning process (like
those elaborated below for NLI reasoning).
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Real Time with Bill Maher: In September 2020, HBO announced
that the show had been renewed for two additional seasons,

keeping the show on the air through 2022. The show's nineteenth
season premiered on January 15, 2021. ...

Source

Real Time with Bill Maher will start again on January 19, 2021.
Claim

To determine if the sentence ... is factually consistent ...

Let's break down the claim into two parts: 
1. Real Time with Bill Maher has a scheduled start date. 
2. The show starts on January 19, 2021.

1. “Real Time with Bill Maher..”
The document discusses... but does not mention a start date of
January 19, 2018. Therefore, this part is neutral.

2. “The show starts on...”
The document mentions specific premiere date of January 15,
2021... Therefore, this part is contradicted.

Given the analysis, since one of the sub-claims is
contradicted... the overall claim cannot be considered factually
consistent... The answer is: no.

Decomposition

Attribution & Entailment (sub-claim 1)

Aggregation

Quality Measures

Input LLM Reasoning

Attribution & Entailment (sub-claim 2)

Decomposition Attribution AggregationEntailment

Analyzer

Figure 1: Overview of our evaluation framework. A model produces a reasoning trace before its
final prediction on the verification of a given claim. Our framework then evaluates the quality of this
trace across four distinct components: Decomposition, Attribution, Entailment, and Aggregation.

This limitation is particularly salient for complex, multi-stage tasks. In this work, we focus on
entailment classification, specifically in the prominent context of fact verification, as often applied
either to LLM- or human-generated claims (Tian et al., 2020; Thorat et al., 2025; Ádám Kovács
& Recski, 2025; Paudel et al., 2025). The underlying reasoning required in this setting is Natural
Language Inference (NLI, aka as textual entailment), where a model should determine if a reference
text (premise) entails a given claim (hypothesis) (Dagan et al., 2005; Bowman et al., 2015). A robust
reasoning process for NLI typically involves several distinct types of reasoning steps: decompos-
ing the claim into sub-claims, attributing each sub-claim to supporting or refuting evidence in the
source, classifying the entailment status of each sub-claim, and finally, aggregating these individual
judgments into a final verdict for the entire original claim (see Fig. 1).

Building on this structured view of NLI reasoning, we introduce a novel evaluation protocol de-
signed to assess a model’s proficiency at each distinct type of reasoning steps. Our scheme evaluates
each component – from decomposition to aggregation – along two axes: its existence (i.e., whether
the model included the step in the reasoning trace) and its quality (e.g., the correctness of the step).
This protocol is designed for both human evaluation as well as for scalable automated evaluation
using an LLM-as-a-Judge.

Our experiments reveal that models often fail to produce a complete and valid reasoning trace, and
often omit some necessary steps. Often, guiding the LLM to generate a complete reasoning trace,
consisting of all required inference stages, successfully encourages this behavior, and in some cases
improves the quality of both reasoning and final task accuracy. Furthermore, our analysis confirms
a substantial correlation between the quality of individual reasoning steps and the final prediction.
Specifically, the correctness of the Attribution and Entailment components for each sub-claim are
strong predictors of a correct final answer, increasing confidence in the model’s conclusion when
these steps are performed correctly.

Overall, our contributions include: (1) a novel evaluation methodology for NLI reasoning, that
decomposes the complex, multi-stage task of fact verification into distinct, functionally-motivated
components; (2) a set of fine-grained metrics for evaluating both the existence and the quality of each
reasoning component, enabling a more precise diagnosis of model performance; (3) an extensive
empirical analysis of six prominent LLMs, with both unguided and guided prompting, providing a
detailed comparison of their capabilities at each stage of the NLI reasoning process.

2 BACKGROUND

Fact Verification. Fact verification was first formally defined as a computational task by Vlachos
& Riedel (2014), where the goal is to assess the faithfulness of a given claim. This process typically
involves two main stages: retrieving a relevant evidence document and then verifying the claim
against that evidence. The focus of our project is on the verification step, assuming an evidence
document has already been retrieved. While the main body of fact verification research has focused
on textual evidence (Wang, 2017; Thorne et al., 2018; Kamoi et al., 2023; Schuster et al., 2021),
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a few studies have also built datasets with other evidence types, such as tables and images (Chen
et al., 2020; Yao et al., 2023). Many approaches have been proposed for the verification step itself.
A dominant paradigm is to frame the problem as an entailment decision (Dagan et al., 2005), where
the system must determine if the evidence supports or refutes the claim. A few methods relied
on fine-tuned models (Yang et al., 2021; Chen et al., 2022; Tang et al., 2024), while more recent
approaches have leveraged LLMs (Zeng & Gao, 2023; Li et al., 2024; Parvez, 2025). We focus on
this latter approach, specifically on cases of prompting LLMs to produce explicit reasoning tokens
Lei et al. (2023); Wadhwa et al. (2024); Wan et al. (2025).

Reasoning Steps Usefulness. The role and usefulness of intermediate reasoning text, aka Chain-
of-Thought tokens, is a subject of ongoing debate in the community. A significant body of work
argues that chain-of-thought (CoT) tokens are not faithful explanations of a model’s decision-making
process; that is, they do not necessarily reflect the internal computations that produce the final answer
(Kambhampati et al., 2025; Barez et al., 2025). These studies show that reasoning traces may be
partially incorrect, omit critical information, or present a plausible but fabricated justification for an
incorrect prediction (Turpin et al., 2023; Stechly et al., 2025; Bhambri et al., 2025).

At the same time, there is compelling counterevidence that higher-quality reasoning traces demon-
strably improve final task performance (Liao et al., 2025; Gandhi et al., 2025). Their practical utility
has been shown in several applications, such as guiding search over multiple reasoning paths or
providing reward signals for fine-tuning models via reinforcement learning (Hao et al., 2024; Sun
et al., 2024; Lai et al., 2024; Lu et al., 2024). This has led to the perspective that CoT should be
treated as a valuable communication tool, provided its quality is systematically evaluated (Barez
et al., 2025). Our work is motivated by this view: rather than demanding strict faithfulness to the
model’s internal process, we propose a protocol to rigorously evaluate the reasoning trace’s quality
for the downstream task of justifying an NLI decision.

Reasoning Steps Evaluation. Prior evaluations of reasoning traces proceed along three main
lines. (i) A unified score methods score the entire reasoning process as a whole (Saparov & He,
2023; Han et al., 2024; He et al., 2024). (ii) Reference-based approaches compare each generated
step to some gold steps (Hao et al., 2024; Li et al., 2025). (iii) Reference-free approaches propose
generic, step-level criteria – including groundedness, semantic consistency, logical validity, fluency,
minimality, and efficiency (Prasad et al., 2023; Golovneva et al., 2023; Saparov & He, 2023; Zhou
et al., 2025; Qiu et al., 2025; Chen et al., 2025; Li et al., 2025).

While flexible, the primary limitation of most of the existing reference-free metrics is their generic
nature. They either treat each step in isolation or, at best, check for local consistency with the
preceding steps. Crucially, they neglect the fact that steps within a complex reasoning process serve
distinct functions, yet they apply a uniform set of evaluation criteria to all of them. This approach
fails to provide a nuanced understanding of a model’s capabilities at different stages of a task. In
contrast, we argue for a type-aware evaluation. We propose to distinguish between step types and
evaluate each based on its specific function. This methodology enables a more fine-grained analysis
of a model’s ability to execute the different kinds of reasoning steps necessary to produce a final,
aggregated answer.

3 A PROTOTYPICAL NLI REASONING SCHEME

A prerequisite for assessing current models’ entailment reasoning capabilities is understanding the
expected structure of a complete reasoning process. A prominent available source for this purpose
can be found in the annotation guidelines used in previous works that constructed NLI and fact
verification datasets. These guidelines often instruct annotators to follow a systematic workflow
before deciding on the entailment judgment of a claim. Additionally, we are inspired by established
system architectures for entailment classification models, where often different components were
responsible for different types of reasoning steps.

A common first step, particularly relevant in real-world scenarios where the given claims are nat-
urally occurring fairly long sentences, is to decompose the claim into smaller sub-claims, making
it easier to verify each sub-claim separately (Min et al., 2023; Kamoi et al., 2023; Mishra et al.,
2024; Mitra et al., 2025). This decomposition necessitates two subsequent steps: determining the

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Attribution & Entailment
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Figure 2: Overview of a comprehensive NLI reasoning process. (i) Decomposition: the original
claim is split into individual sub-claims. (ii) Attribution & Entailment: each sub-claim is checked
against the source for supporting evidence, refuting evidence, or no evidence. (iii) Aggregation: if
all sub-claims are supported, the claim is accepted; otherwise, it is rejected.

entailment status for each sub-claim (i.e., whether it is supported or not by the given source, op-
tionally distinguishing contradiction vs neutral cases), and then an aggregation of these individual
judgments into a final decision. The aggregation logic dictates that the entire claim is supported
only if all sub-claims are entailed; otherwise, it is considered not supported. As a special case, if no
decomposition occurs, the entailment decision is simply made for the claim as a whole, where no
aggregation is needed.

The reasoning process must also include a meaningful step of attribution (i.e. evidence detection),
where the model searches the source for evidence that either supports or refutes a sub-claim (Cam-
buru et al., 2018; Niu et al., 2024; Wang & Atanasova, 2025). If such evidence is found the sub-claim
entailment status is classified accordingly (entailed/supported or contradicted/refuted); otherwise the
entailment status is neutral/unknown.

Finally, the correctness of a sub-claim is not always directly derivable from the evidence but may
require some inference (Camburu et al., 2018; Bhagavatula et al., 2020; Niu et al., 2024; Havaldar
et al., 2025). For example, given the sub-claim “The adult interrupted Donald Trump’s speech” and
the evidence “A 50-year-old man interrupted Donald Trump’s speech”, an inference that ‘a 50-year-
old man is an adult’ leads to determining the entailment status. Thus, an inference step serves as a
complementary bridge between attribution and the final entailment classification. The flow including
the above reasoning stages is illustrated in Fig. 2.

4 NLI REASONING EVALUATION

The previous section outlined four key components of NLI reasoning: decomposition, attribution,
entailment classification, and aggregation. Building on these, we propose several metrics that each
assess a different aspect of the reasoning process. Taken together, these metrics provide a com-
prehensive analysis of NLI reasoning. The following metrics comprise the evaluation scheme for
annotators, as detailed in Section 5.

We divide the evaluation metrics into two groups: existence metrics and quality metrics. The first
group measures whether each component is present in the model’s reasoning process, while the
second group evaluates the quality and correctness of those components when they are executed.

4.1 EXISTENCE METRICS

The existence metrics are binary values that indicate, for each reasoning instance, whether a model
produces each of the reasoning components: decomposition - whether the model decomposes the
claim into smaller sub-claims; attribution - whether the model searches evidence for each sub-
claim; inference - whether the model describe the inference required for an entailment classification
for each sub-claim, entailment - whether the model determines the entailment status of each sub-
claim and aggregation - whether the model aggregates the entailment decisions of all sub-claim
(when there are a few sub-claims). The decomposition and aggregation metrics are binary values
for each reasoning trace. In contrast, the other existence metrics are calculated as the proportion
of sub-claims for which the component is present. Next, we describe the quality metrics for each
component, which we only evaluate if the component exists in the reasoning trace of the respective
instance.

4
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4.2 DECOMPOSITION

Granularity. Inspired by (Wanner et al., 2024), we define the decomposition granularity for a
reasoning instance as the number of distinct sub-claims H = {h1, h2, . . . , hn} generated at the
decomposition step. If no decomposition occurs, H contains a single element. The granularity score
is then defined as: G := |H|. This metric has no ground-truth value, but it can influence later steps.
Low granularity leads to longer and more complex sub-claims, making attribution and entailment
classification harder. High granularity increases the risk of unfaithful or incomplete decompositions.
In Fig. 1 example, the granularity value is 2.

Soundness. As part of the decomposition step, we assess whether the model, in its reasoning steps,
generates sub-claims that are semantically entailed by the claim. The soundness metric measures
the proportion of generated sub-claims that are consistent with the claim. The soundness score (for
a reasoning instance) is defined as: S := 1

|H|
∑|H|

i=1 1{hi is sound}. Intuitively, a low soundness score
suggests the model introduces extraneous or fabricated sub-claims during decomposition, risking
incorrect entailment judgments. In Fig. 1, both sub-claims are sound, therefore the value of this
metric is 1.

Completeness. For a complete view of the decomposition step, we evaluate whether the model
refers all the semantic content of the original claim. The completeness metric checks if any part was
omitted during decomposition. It is a binary value: 1 if all information is covered by the model’s sub-

claims, and 0 if any is missing. The completeness score is then defined as: C :=

{
1 if H ⊆

⋃
i hi

0 otherwise
.

Intuitively, this metric highlights cases where the model omits parts of the claim, potentially leading
to incorrect predictions like falsely labeling it as entailed. In Fig. 1, there is no missing information,
resulting in a value of 1.

4.3 ATTRIBUTION

Attribution Correctness. The second component in a comprehensive reasoning trace begins with
an attribution for each sub-claim.1 This metric assesses whether the model correctly identifies sup-
porting or contradicting evidence from the source, or indicates that no evidence exists, for each sub-
claim. An attribution is considered correct if it justifies the sub-claim’s entailment label. Formally,
the metric is defined as: Att :=

1
|H|

∑|H|
i=1 1{hi is correctly attributed}. Intuitively, missing or incorrect at-

tribution can cause sub-claim misclassification, leading to an incorrect overall entailment decision.
For instance, in Fig. 1, the incorrect attribution for one of the two sub-claims results in a score of
1/2.

Furthermore, we distinguish between three types of attribution: (i) extractive – the model copy
the exact evidence span(s) from the document; (ii) paraphrase – the model does not extract the
exact span but paraphrases the relevant content from the document; and (iii) abstract – the model
provides a higher-level explanation of the relevant information in the document. While the specific
type of attribution is not necessarily critical for the correctness of the reasoning trace, it might affect
the usefulness of the reasoning trace. For example, an extractive attribution can assist a human in
verifying the final answer more easily than an abstractive attribution can. Therefore, this distinction
serves an analytical purpose and should not be interpreted as a measure of quality.

4.4 ENTAILMENT

The second phase in the Attribution & Entailment step is to determine the entailment status of each
sub-claim. If the model has produced an attribution, it may also perform an inference step, as
described in Section 3.

Entailment Inference Correctness. This metric evaluates the correctness of an entailment infer-
ence, when it exists. Infer :=

1
|H|

∑|H|
i=1 1{hi is correctly inferred}

1If no sub-claims are generated, we treat the whole claim as a single sub-claim.

5
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Entailment Classification Correctness. This metric evaluates whether the model correctly pre-
dicts the entailment label for each sub-claim by comparing the predicted label ŷi with the gold label
yi (provided by an oracle or human annotator).2 Entail :=

1
|H|

∑|H|
i=1 1{ŷi=yi} Intuitively, misclas-

sifying even a single sub-claim can affect the overall claim prediction, making this step crucial for
reliable performance. In Fig. 1, the model makes an inference and classification decision for both
sub-claims, but since the inference and the classification of the first sub-claim are incorrect, the
corresponding correctness metrics are both 1/2.

4.5 AGGREGATION

Aggregation Correctness. This metric is a binary score (0 or 1) that verifies if the model’s final
decision logically follows from its judgments on the sub-claims. The aggregation is considered
correct if the final prediction is supported only when all sub-claims are supported, and not supported
otherwise. This metric specifically captures inconsistencies between the reasoning trace and the
final answer; for example, the correct aggregation in Fig. 1 earns a score of 1.

Overall Entailment Classification. The Overall Entailment Judgment is the final, bottom-line
metric that measures the accuracy of the model’s prediction against the gold-standard label, primar-
ily used to analyze the correlation between reasoning quality and final task accuracy. A key property
of our framework is its diagnostic completeness: an incorrect final prediction must originate from
a flaw in at least one of the preceding reasoning components, ensuring the error is captured by our
metrics. For example, the correct final answer in Fig. 1 results in a score of 1 for this metric.

5 EVALUATION & ANALYSIS

We begin by describing the experimental setup for our manual evaluation and then present the re-
sults of this meticulous evaluation over a representative sample, discussing key insights for both
the existence and quality metrics. Following, we conduct a correlation analysis to investigate the
relationships between the different reasoning components. Finally, we scale up our evaluation us-
ing a validated LLM-as-a-Judge to analyze the entire dataset, which allows us to assess a broader
generalizability of our human evaluation findings.

5.1 EXPERIMENTAL SETUP

To analyze the reasoning traces produced by LLMs, we evaluated six prominent
models: Llama-3-1B, Llama-3-8B, Llama-3-70B, Gemini-2.0-Flash,
Gemini-2.5-Flash, and DeepSeek-R1-32B-Distill. The latter two are reasoning
models, which are specifically optimized for reasoning tasks. For our evaluation, we randomly
selected 30 samples from the recent ClearFacts dataset, which combined 14 different fact-checking
benchmarks (Seo et al., 2025). We tested two prompt variants for each model: (i) an unguided CoT
prompt, which allows the model to generate its own reasoning structure to reach a final prediction,
and (ii) a guided CoT prompt, where we explicitly instruct the model to follow the structured
three-steps reasoning process described in Section 3. The full prompts are provided in Appendix F.

The generated outputs were evaluated by three annotators all having extensive experience in similar
annotation tasks. Prior to the main annotation, they completed a dedicated training session on our
specific evaluation protocol. In total, our manual evaluation comprises 360 annotated reasoning
instances (30 samples × 6 models × 2 prompt variants).

A detailed inter-annotator agreement analysis, described in Appendix A, shows strong results on
Gwet’s score (Gwet, 2008) (score range between -1 and 1): 10 of our 13 metrics achieve ‘Almost
Perfect’ agreement, while 3 are rated as ‘Substantial’ – according to the common interpretation of
Landis & Koch (1977). This validates the high-quality data used in our main evaluation.

2For binary classification, the neutral and contradicted classes may be merged into a single not supported
class.
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Table 1: Manual evaluation results on the quality metrics across models. The results are the average
scores across all the sampled instances. Results are split into (a) decomposition and attribution, and
(b) entailment, aggregation, and overall correctness. Each cell shows unguided CoT (left) vs. guided
CoT (right). The highest score in each column is bold. The two models below the horizontal line
are reasoning models.

Model Decomposition Attribution

Granularity Soundness Completeness

Llama-3-1B 1.56 / 5.04 0.41 / 0.46 0.38 / 0.61 0.55 / 0.71
Llama-3-8B 2.32 / 2.87 0.97 / 0.82 0.93 / 0.93 0.97 / 0.89
Llama-3-70B 2.54 / 2.73 0.97 / 0.89 0.88 / 0.90 0.93 / 0.86
Gemini-2.0-Flash 2.11 / 2.33 1.00 / 0.96 0.67 / 1.00 0.88 / 0.90

DeepSeek-R1-distill 2.15 / 2.93 0.93 / 0.86 0.95 / 0.86 0.96 / 0.90
Gemini-2.5-Flash 2.20 / 3.03 1.00 / 0.93 0.88 / 0.88 1.00 / 0.96

Model Inference Entailment Aggregation Overall

Llama-3-1B 0.40 / 0.79 0.70 / 0.73 1.00 / 0.75 0.40 / 0.69
Llama-3-8B 0.82 / 0.81 0.90 / 0.83 0.91 / 1.00 0.73 / 0.75
Llama-3-70B 0.86 / 0.85 0.89 / 0.85 0.92 / 1.00 0.87 / 0.90
Gemini-2.0-Flash 0.80 / 0.99 0.75 / 0.99 0.89 / 1.00 0.77 / 0.90

DeepSeek-R1-distill 0.92 / 0.98 0.86 / 0.85 0.95 / 0.97 0.83 / 0.80
Gemini-2.5-Flash 0.95 / 0.96 0.94 / 0.96 1.00 / 1.00 0.90 / 0.87

5.2 MANUAL EVALUATION RESULTS

We begin with a manual evaluation of a representative sample of model outputs. This evaluation
allows us to establish a high-quality, gold-standard dataset for our core findings.

5.2.1 EXISTENCE METRICS

Figure 3: Manual evaluation average results on
the existence metrics across models, grouped by
unguided CoT and guided CoT.

The average results of our manual evaluation
for the existence metrics, across all the models,
are presented in Fig. 3. The figure details the
frequency with which each reasoning compo-
nent was included in the reasoning trace, com-
paring the performance of unguided CoT (left
of each cell) and guided CoT (right of each cell)
for each model. The full results are presented in
Appendix B, Table 3.

We observe, from both tables, several key
trends. First, models frequently omit the var-
ious types of reasoning steps when unguided.
This tendency is most pronounced for the de-
composition step, which models often skip
entirely unless explicitly prompted. Second,
model scale appears to be a factor; larger mod-
els are more likely to spontaneously perform
these steps even without guidance, though this
behavior is inconsistent. Finally, the results highlight the effectiveness of guided prompting. Most
models successfully adhere to the provided instructions and generate the required reasoning steps.
The primary exception is the Llama-3-1B model, which struggles to consistently execute the guided
steps, suggesting a potential capability threshold for following complex procedural instructions.
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5.2.2 QUALITY METRICS

The results of our manual evaluation for the quality metrics are presented in Table 1, where the
quality of a given step is evaluated for the instances where the model actually performed that step.

The manual evaluation of model performance reveals several distinct patterns. Llama-3-1B is a clear
outlier, struggling to produce complete and correct reasoning traces even when guided, which cor-
relates with its low overall prediction accuracy. While both Llama-3-8B and -70B outperform their
smaller counterpart, the relationship with scale is not linear; although the 70B model achieves a 15%
higher overall score, it performs worse than the 8B model on several individual reasoning compo-
nents. This indicates that larger model size does not necessarily guarantee a higher-quality reasoning
trace. In contrast, Gemini-2.0-Flash benefits the most from a guided reasoning prompt, showing a
13% improvement in its overall score and significant gains across most components when guided.
Generally, LLMs produce high-quality reasoning traces and final classifications when guided, and
reasoning models achieve strong performance even in the unguided setting.

Finally, while the specialized reasoning models generally perform well, guided prompting offers
them little benefit and, in some cases, even slightly degrades their performance. Notably, when
provided with guided reasoning, the performance of non-reasoning models becomes comparable to
that of the reasoning models. These findings suggest that guided non-reasoning models can offer
equivalent quality to reasoning models. Given that our cost analysis (Table 9) shows that non-
reasoning models are cheaper and more token-efficient, we suggest that using them in a guided
scenario is more efficient than using unguided reasoning models.

Additionally, four general key findings emerge from this analysis:

1. Guided prompting, while increasing the granularity of decompositions, reveals a critical
trade-off between soundness and completeness. Asking for a more comprehensive break-
down improves completeness but often at the cost of soundness, as models generate sub-
claims not strictly entailed by the original statement. This suggests that the decomposition
capabilities of current LLMs can be further improved.

2. Attribution correctness is high in the unguided reasoning setting, except for Gemini-2 and
Llama-1B, though the scores are slightly lower in the guided setting. Additionally, both the
inference and entailment steps achieve medium-to-high correctness (above 80% for most
models) in both conditions.

3. The Aggregation step, when performed, is executed with almost-perfect accuracy across all
models, meaning they almost consistently apply the correct aggregation logic.

4. With the notable exception of Llama-8B, we observe a consistent trend: for models
where guided prompting enhanced the component-wise reasoning quality (e.g., Llama-1B,
Gemini-2.0), there was a corresponding improvement in their overall prediction accuracy.

5.3 ATTRIBUTION TYPES

A deeper analysis of the attribution types reveals a clear hierarchy in their correctness. Extrac-
tive attribution, where the model directly quotes evidence from the source, is the most reliable,
with an accuracy of 93%. Paraphrase attribution, where the model rephrases the source text, also
demonstrates high correctness at 90%. In stark contrast, the accuracy of abstract attribution—which
requires the model to provide a high-level summary of the relevant information—drops significantly
to 69%.

5.4 INTER-METRIC CORRELATIONS

To understand how the quality of one reasoning step relates to others, we computed the Spearman
correlation between all quality metrics. We chose this coefficient because it is robust to outliers
and non-linear relationships, making it well-suited for our medium-sized dataset. While we do not
expect perfect correlations – as errors in one step can be corrected in a later one (e.g., in the Fig. 1
example, an error in one sub-claim’s entailment decision does not prevent a correct final answer) –
we hypothesized that a significant positive relationship exists.
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The correlation matrix in Fig. 4 confirms this and reveals several key insights. The strongest cor-
relations are between the later-stage components, with Inference and Entailment correctness being
highly correlated with each other (ρ = 0.83) and with the Overall score (ρ = 0.59 and ρ = 0.62,
respectively). This suggests that proficiency in these steps may be the most critical driver of a cor-
rect answer. We also observe a strong correlation between Soundness and Completeness (ρ = 0.52),
indicating that models capable of producing sound decompositions also tend to produce complete
ones. Conversely, Granularity shows a negligible correlation with all other metrics, reinforcing that
simply creating more sub-claims is not an indicator of higher-quality reasoning traces. More corre-
lation results are in Appendix C

5.5 LLM-AS-A-JUDGE

To scale our analysis, we employed Gemini-2.5-Flash as an LLM-as-a-Judge, which we first
evaluated for agreement against our human-annotated judgments, calculating Gwet’s score between
the LLM’s judgments and the manual judgments (full details are in Appendix D). The LLM usually
demonstrated reliable performance, achieving ‘Almost Perfect’ or ‘Substantial’ agreement on 11 of
our 13 key metrics, while only the inference and entailment metrics were rated ‘Moderate’. This
suggests that the LLM-as-a-Judge struggles to evaluate components where LLMs often produce
errors in their reasoning process (as observed in Table 1). We then used this judge to evaluate the
reasoning traces generated for the entire ClearFacts dataset, for the same models and prompts as in
the manual analysis.

The full results of this large-scale analysis are presented in Appendix D. The results for the existence
metrics (see Appendix D.2, Table 6) are consistent with the trends identified in our manual analysis
(Section 5.2.1), confirming that models frequently omit reasoning steps unless explicitly guided,
that larger models tend to spontaneously provide the NLI reasoning components, and that guided
reasoning helps the model to actually perform those steps. Additionally, some of the results for the
quality metrics (from Table 1) are observed in the automatic analysis of the entire dataset (full results
in Appendix D.2, Table 7), while the ranking of the models performing the reasoning trace is similar
to the ranking in the manual evaluation. Additionally, although the model is worse at evaluating the
inference and entailment metrics (per the lower agreement with the manual evaluation for these two
metrics), it still identifies that LLMs struggle to correctly provide those components, and it identifies
that the better performing reasoning components are attribution and aggregation. This suggests that
while there are phenomena we can observe using the LLM-as-a-Judge, there is still room for future
work to improve the automatic evaluation of NLI reasoning.

6 CONCLUSION

In this work, we proposed a novel methodology for evaluating the reasoning traces of LLMs in
the context of NLI reasoning for fact verification. Our framework moves beyond generic, step-by-
step metrics by decomposing the NLI reasoning process into four distinct, functionally-motivated
components: decomposition, attribution, inference, and aggregation, while evaluating the existence
and quality of each component separately. Our manual and automated analyses of reasoning traces
shed light on specific weaknesses in current models’ reasoning, such as the frequent omission of
reasoning steps and the trade-offs in quality that emerge with guided prompting. This diagnostic
allows for a more targeted approach to improving model reliability.

Our findings open up several avenues for future work. The high-quality reasoning traces we iden-
tified can provide the basis for extracting concise justifications that will help users verify a model’s
final prediction, with a guided Gemini-2.0-Flash being a particularly cost-effective choice for this
task. Additionally, these traces could be used as training data to distill the reasoning abilities of
large models into smaller, more efficient ones like Llama-8B or Llama-70B. Finally, our evaluation
approach itself can inspire the development of similar reasoning evaluation for other prominent NLP
tasks, to enable a more fine-grained analysis of their reasoning processes.
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A INTER-ANNOTATOR AGREEMENT (IAA)

To ensure the reliability of our annotations and establish a gold-standard evaluation set, we measured
inter-annotator agreement (IAA). A subset of 30 randomly selected instances was independently
annotated by all three annotators.

A key challenge of IAA measurement in this task is the frequent occurrence of highly imbalanced
labels. For example, for the Aggregation step, nearly all instances include this component, leading to
a skewed distribution. This phenomenon can cause traditional coefficients like Fleiss’ Kappa to be
misleadingly low despite high actual agreement (a.k.a the ‘kappa paradox’ (Feinstein & Cicchetti,
1990)).

Table 2: Inter-annotator agreement results,
showing Gwet’s score and Raw Percent Agree-
ment (RA) values.

Metric Existence Correctness

Gwet RA Gwet RA

Decomposition

Decomposition 0.66 0.78 – –
Granularity (F1) – – 0.81 -
Soundness – – 0.97 0.98
Completeness – – 0.70 0.76

Attribution & Entailment

Attribution 0.92 0.96 0.82 0.91
Inference 0.96 0.96 0.87 0.90
Entailment 0.84 0.87 0.75 0.81

Aggregation

Aggregation 0.92 0.93 0.87 0.89
Overall Decision – – 0.89 0.91

To address this, we selected two complementary
metrics:

1. Gwet’s AC1/AC2 Coefficient: As
our primary chance-corrected metric,
we use Gwet’s agreement coefficients,
which are specifically designed to be ro-
bust in scenarios with skewed label dis-
tributions (Gwet, 2008; 2014). We use
AC1 for binary metrics and AC2 for
numerical metrics. This metric ranges
from -1 to 1. We interpret the scores
using the benchmarks from (Landis &
Koch, 1977), where scores below 0.20
are considered ‘poor’, 0.21–0.40 ‘fair’,
0.41–0.60 ‘moderate’, 0.61–0.80 ‘sub-
stantial’, and above 0.80 ‘almost per-
fect’.

2. Raw Percent Agreement (RA): For
maximum transparency, and similar to
(Wu et al., 2025), we also report Raw
Agreement. This intuitive metric mea-
sures the proportion of agreeing pairs
among all possible rater pairs for a given
item, averaged across all items.

Since the metrics for Soundness, Attribution, and Entailment are evaluated on a per-sub-claim basis,
and annotators might identify different sets of sub-claims from the same unstructured LLM output,
we first established a consistent basis for comparison. We performed a pairwise alignment of the
sub-claims extracted by each annotator and calculated the F1-Score to measure the consistency of
their decompositions. This score, which balances precision and recall between the sets of extracted
sub-claims (calculated as the number of sub-claims identified by both annotators, divided by the
total number of sub-claims identified by annotator A; and vice versa), is reported as Granularity
(F1) in Table 2. With this alignment established, we then calculated pairwise agreement for all other
metrics and averaged the results across the three pairs of annotators (A-B, B-C, A-C).

The results demonstrate a high degree of reliability in our annotation scheme. Across the 12 core
quality and existence metrics, the average chance-corrected agreement (Gwet’s score) is 0.85 (‘Al-
most Perfect’), and the average Raw Agreement is 0.89. A more detailed breakdown shows that 10
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Table 3: Performance of the existence metrics of NLI reasoning across models annotated by the
manual analysis. Each cell shows unguided CoT (left) vs. guided CoT (right). Highest values are in
bold.

Model Decomposition Attribution Inference Entailment Aggregation
Llama-3-1B 0.57 / 0.97 0.47 / 0.80 0.62 / 0.65 0.44 / 0.67 0.54 / 0.77
Llama-3-8B 0.93 / 1.00 0.83 / 0.97 0.89 / 0.92 0.67 / 0.94 0.88 / 0.93
Llama-3-70B 0.80 / 1.00 0.98 / 1.00 0.90 / 1.00 0.87 / 1.00 1.00 / 1.00
Gemini-2.0-Flash 0.30 / 0.90 0.97 / 1.00 0.83 / 0.98 0.87 / 0.98 1.00 / 1.00
DeepSeek-R1-distill 0.67 / 0.97 1.00 / 1.00 0.98 / 0.95 0.92 / 0.98 1.00 / 1.00
Gemini-2.5-Flash 0.83 / 1.00 0.88 / 1.00 0.96 / 1.00 0.80 / 0.97 0.92 / 0.97

metrics achieved ‘Almost Perfect’ agreement, with the remaining 3 rated as ‘Substantial’, providing
strong evidence for the validity of our data. The full results are available in Table 2.

We did observe that the lowest agreement scores were for the existence of the Decomposition and
its Completeness. We hypothesize that this stems from the often unstructured and ambiguous nature
of the LLM’s output, which can make the identification of distinct sub-claims subjective. This
was particularly true in the unguided CoT setting, where varied reasoning traces corresponded to
lower IAA. In contrast, the uniform structures produced by guided prompts led to markedly higher
agreement, though this trend was not statistically significant given our limited sample size.

B MANUAL ANALYSIS RESULTS

Table 4: Correlation of reasoning metrics with
final prediction correctness. Values are point-
biserial correlation coefficients (rpb) with asso-
ciated p-values. ‘(?)’ indicates an existence
metric, while ‘(#)’ indicates a correctness met-
ric. The two strongest correlates are highlighted
in bold.

Metric rpb p-value

Decomposition (?) 0.11 0.045
Granularity (#) -0.06 0.283
Soundness (#) 0.21 8.0× 10−5

Completeness (#) 0.22 2.5× 10−5

Attribution (?) 0.18 4.6× 10−4

Attribution (#) 0.28 1.9× 10−7

Inference (?) 0.20 1.3× 10−4

Entailment (?) 0.25 1.3× 10−6

Inference (#) 0.44 2.7× 10−16

Entailment (#) 0.55 1.5× 10−25

Aggregation (?) 0.19 3.9× 10−4

Aggregation (#) 0.25 1.7× 10−6

The full setup of the manual analysis is described
in Section 5. The results for each model for each
prompt, for the existence metrics are presented in
Table 3. The results for the quality metrics are
presented in Table 1.

C CORRELATION
WITH FINAL PREDICTION

The correlation metrics between all the quality
metrics are presented in Fig. 4 and described in
Section 5.4.

To understand which reasoning steps correlate
with the overall NLI decision, we conducted a
correlation analysis. We measured the relation-
ship between each metric’s value and the final bi-
nary outcome (i.e., whether the model’s overall
prediction was correct). Given the binary nature
of the outcome variable and the continuous nature
of our metric scores, we used the Point-Biserial
correlation coefficient (rpb; Tate (1954)). In this
setup, we investigate the relationship between the
performance on each reasoning component and
the final answer’s correctness.

The analysis, presented in Table 4, yields a crucial high-level insight: with the sole exception of
granularity, all of our proposed reasoning metrics show a statistically significant, positive correlation
with the final prediction’s correctness. This demonstrates that the structured reasoning process, when
performed correctly, is not merely superfluous text; it serves as a reliable witness to the validity of
the final answer. The presence and quality of these intermediate steps are meaningfully linked to the
model’s success on the task.
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Figure 4: Spearman correlation matrix for the reasoning quality metrics. Yellow indicates a strong
positive correlation, while dark purple indicates a weak or no correlation.
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Table 6: LLM-as-a-Judge analysis results of the existence metrics across models. Each cell shows
unguided CoT (left) vs. guided CoT (right), rounded to two decimals. Highest scores in bold.

Model Decomposition Attribution Inference Entailment Aggregation

Llama-3-1B 0.22 / 0.90 0.62 / 0.62 0.57 / 0.63 0.57 / 0.73 0.80 / 0.66
Llama-3-8B 0.72 / 1.00 0.96 / 0.94 0.90 / 0.91 0.86 / 0.99 0.93 / 0.93
Llama-3-70B 0.85 / 1.00 0.99 / 0.98 0.94 / 0.94 0.94 / 1.00 1.00 / 1.00
Gemini-2.0-Flash 0.09 / 1.00 0.99 / 0.98 0.83 / 0.88 0.94 / 1.00 0.96 / 0.99

DeepSeek-R1-distill 0.24 / 0.93 0.99 / 0.98 0.87 / 0.93 0.97 / 0.99 0.99 / 1.00
Gemini-2.5-Flash 0.44 / 1.00 0.97 / 0.99 0.87 / 0.90 0.92 / 1.00 0.98 / 1.00

Drilling deeper into these correlations, the results reveal a clear hierarchy of importance among
the reasoning components. The strongest predictors of a correct final answer are, by a significant
margin, the metrics evaluating the correctness of the entailment classification step. Specifically, en-
tailment classification correctness shows the highest correlation (rpb = 0.55, p < 0.001), followed
by entailment inference correctness (rpb = 0.44, p < 0.001). This finding underscores the intu-
itive conclusion that correctly solving the individual sub-problems is the most direct path to overall
success on the NLI task.

Table 5: Agreement between LLM-as-a-Judge
and the evaluation set. Each cell shows the
Judge value.

Metric Existence Quality

Gwet RA Gwet RA

Decomposition

Decomposition 0.75 0.84 – –
Granularity – – 0.86 0.87
Soundness – – 0.67 0.71
Completeness – – 0.81 0.85

Attribution & Entailment

Attribution 0.78 0.80 0.63 0.67
Inference 0.72 0.75 0.56 0.61
Entailment 0.75 0.77 0.58 0.63

Aggregation

Aggregation 0.89 0.90 0.77 0.83
Overall Decision – – 0.60 0.75

Furthermore, the results highlight that the qual-
ity of a reasoning step is a more reliable indicator
of success than its mere existence. For instance,
attribution correctness (rpb = 0.28) has a con-
siderably stronger correlation than attribution ex-
istence (rpb = 0.18). The only metric with no
statistically significant correlation is granularity
(p = 0.28), indicating that the number of sub-
claims a model generates has no bearing on its
success.

D LLM-AS-A-JUDGE

D.1 LLM-AS-A-JUDGE AGREEMENT

To further ground our insights of the quality of the
reasoning steps of models in entailment decision,
we use LLM-as-a-Judge to evaluate the reasoning
trace of the whole dataset. We instruct a model
to produce all the existence and quality metrics,
similar to the annotators. Out of 13 metrics, 1
metric is ‘Almost Perfect’, 10 are ‘Substantial’,
and 2 are in the high range of ‘Moderate’. The
full results are in Table 5.

D.2 RESULTS

The full LLM-as-a-Judge experiment setup is described in Section 5.5. The results on the existence
metrics are in Table 6. The results on the quality metrics are presented in Section 5. The differences
in the observations between the manual and the automated evaluations are described in Section 5.5.

When we group the agreement data by prompt type, a gap in a few metrics becomes distinguishable.
The agreement on the existence of decomposition in the unguided CoT setting was low (a Gwet’s
score of 0.41), compared to a near-perfect score of 0.98 in the guided setting. A similar gap was
observed for granularity, with a Gwet’s score of 0.75 for unguided prompts versus 0.96 for guided
prompts. The full results are in Table 8.
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Table 7: LLM-as-a-Judge analysis results on the correctness metrics. Each cell shows unguided
CoT (left) vs. guided CoT (right), rounded to two decimals. Highest values in each column are in
bold.

Model Granularity Soundness Completeness Attribution

Llama-3-1B 2.89 / 3.46 0.70 / 0.45 0.60 / 0.30 0.63 / 0.54
Llama-3-8B 2.57 / 2.96 0.94 / 0.82 0.93 / 0.78 0.89 / 0.80
Llama-3-70B 3.01 / 2.95 0.97 / 0.93 0.96 / 0.95 0.97 / 0.94
Gemini-2.0-Flash 2.71 / 2.37 0.96 / 0.94 0.96 / 0.97 0.97 / 0.94

DeepSeek-R1-distill 3.04 / 2.96 0.98 / 0.96 0.98 / 0.99 0.97 / 0.95
Gemini-2.5-Flash 2.89 / 3.35 0.96 / 0.98 0.98 / 0.99 0.98 / 0.98

Model Inference Entailment Aggregation Overall

Llama-3-1B 0.46 / 0.41 0.46 / 0.35 0.38 / 0.28 0.53 / 0.54
Llama-3-8B 0.77 / 0.71 0.77 / 0.69 0.70 / 0.66 0.65 / 0.68
Llama-3-70B 0.92 / 0.90 0.91 / 0.89 0.90 / 0.93 0.84 / 0.85
Gemini-2.0-Flash 0.89 / 0.91 0.87 / 0.90 0.92 / 0.90 0.82 / 0.85

DeepSeek-R1-distill 0.92 / 0.91 0.90 / 0.90 0.91 / 0.96 0.84 / 0.84
Gemini-2.5-Flash 0.93 / 0.97 0.91 / 0.95 0.94 / 0.98 0.87 / 0.86

Table 8: Comparison between unguided and guided CoT prompts for the agreement between the
LLM-as-a-Judge and the human annotations. AC = Gwet’s AC1, RA = Raw Agreement.

Metric Existence Correctness

Unguided Guided Unguided Guided

AC RA AC RA AC RA AC RA

Decomposition

Decomposition 0.41 0.70 0.98 0.98 – – – –
Atomicity – – – – 0.75 0.78 0.96 0.97
Soundness – – – – 0.62 0.67 0.71 0.74
Completeness – – – – 0.84 0.87 0.78 0.83

Attribution & Entailment

Attribution 0.67 0.71 0.87 0.88 0.60 0.65 0.65 0.69
Inference 0.60 0.65 0.83 0.84 0.54 0.60 0.57 0.62
Entailment 0.61 0.66 0.87 0.88 0.55 0.60 0.61 0.65

Aggregation

Aggregation 0.83 0.86 0.94 0.95 0.76 0.82 0.78 0.84
Overall Decision – – – – 0.65 0.79 0.55 0.72

E NUMBER OF TOKENS AND COST

An analysis of the computational cost, presented in Table 9, reveals important efficiency trade-offs.
Excluding Llama-1B, we find that non-reasoning models generally produce fewer output tokens
than their reasoning-focused counterparts, even in the guided scenario. However, the average cost
for a guided non-reasoning model is substantially lower than for an unguided reasoning model.
Given that the quality of the reasoning and the overall performance are equivalent between these
two configurations (as established in Section 5.2), our findings suggest that using guided prompting
with non-reasoning models is a more efficient and cost-effective strategy.
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Table 9: Average output tokens and cost across models. Results are reported for unguided CoT and
guided CoT. Costs are based on the current price of the models in the OpenRouter supplier, in US
dollars.

Model Unguided CoT Guided CoT

Output Tokens Cost (×10−3$) Output Tokens Cost (×10−3$)

Llama-3-1B 312.7 0.003 844.5 0.008
Llama-3-8B 243.9 0.007 346.9 0.010
Llamam-3-70B 285.5 0.010 329.3 0.012
Gemini-2.0-Flash 121.6 0.049 289.0 0.116

DeepSeek-R1-distill 443.9 0.120 548.8 0.148
Gemini-2.5-Flash 247.4 0.619 1398.1 3.495

F PROMPTS

We evaluated all models using two distinct prompt conditions. The unguided CoT condition utilized
a standard chain-of-thought prompt, taken from (Wan et al., 2025), which encourages the model to
produce a free-form reasoning trace. The guided CoT condition augmented this prompt with explicit
instructions, directing the model to adhere to the specific, systematic reasoning structure defined in
Section 3. The unguided CoT prompt is Prompt no. 1, and the guided CoT prompt is Prompt no. 2.

Prompt 1: NLI Unguided CoT

Document: {document}

Sentence: {claim}

Determine if the sentence is factually consistent with the document provided above. A sen-
tence is factually consistent if it can be entailed (either stated or implied) by the document.
If any part of the claim is not substantiated, it should be considered inconsistent.

Let’s think step by step.

Conclude your response with either “yes” (the claim is consistent) or “no” (the claim is incon-
sistent).
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Prompt 2: NLI Guided CoT

Document: {document}

Sentence: {claim}

Determine if the sentence is factually consistent with the document provided above. A sen-
tence is factually consistent if it can be entailed (either stated or implied) by the document.
If any part of the claim is not substantiated, it should be considered inconsistent.

Steps:
- Decompose the claim into distinct sub-claims.
- For each sub-claim:

1. Identify the exact text in the document that supports or contradicts it, or note that there is no
relevant information.

2. Classify the sub-claim as:
• entailed – fully supported or implied by the document
• contradicted – directly refuted by the document
• neutral – neither supported nor contradicted (no evidence)

- Provide your reasoning by listing each sub-claim with its classification and evidence.
- Finally, decide:

• “yes” if all sub-claims are entailed
• “no” if any sub-claim is contradicted or neutral

Conclude your response with either “yes” (the claim is consistent) or “no” (the claim is incon-
sistent).

G LLM USAGE

Throughout the writing process of this paper, we utilized LLMs to assist with polishing the text,
including correcting grammatical errors and improving clarity through paraphrasing.
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