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Abstract
Visual localization aims to predict the absolute
camera pose for a single query image. However,
predominant methods focus on single-camera im-
ages and scenes with limited appearance varia-
tions, limiting their applicability to cross-domain
scenes commonly encountered in real-world ap-
plications. Furthermore, the long-tail distribu-
tion of cross-domain datasets poses additional
challenges for visual localization. In this work,
we propose a novel cross-domain data genera-
tion method to enhance visual localization meth-
ods. To achieve this, we first construct a cross-
domain 3DGS to accurately model photometric
variations and mitigate the interference of dy-
namic objects in large-scale scenes. We intro-
duce a text-guided image editing model to en-
hance data diversity for addressing the long-tail
distribution problem and design an effective fine-
tuning strategy for it. Then, we develop an anchor-
based method to generate high-quality datasets
for visual localization. Finally, we introduce
positional attention to address data ambiguities
in cross-camera images. Extensive experiments
show that our method achieves state-of-the-art
accuracy, outperforming existing cross-domain
visual localization methods by an average of
59% across all domains. Project page: https:
//yzwang-sjtu.github.io/CDG-Loc.

1. Introduction
Visual localization is the process of estimating the position
and orientation of a query image in 3D space. It is crucial
in applications such as robotics, autonomous driving, and
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Figure 1. Demonstration of the proposed method. Our method
achieves state-of-the-art cross-domain localization performance by
rendering domain-consistent images with positional attention for
data augmentation.

augmented reality. Successful visual localization methods
have been developed, such as feature matching-based tech-
niques (Zhou et al., 2022; Sarlin et al., 2021; Zhou et al.,
2025), scene coordinate regression methods (Wang et al.,
2023; Brachmann et al., 2023; 2025; Wang et al., 2024a),
and absolute pose regression methods (Chen et al., 2024b;
Shavit & Keller, 2022; Chen et al., 2022a; Shavit et al.,
2021). Current methods focus on single-domain visual lo-
calization, typically applied to images from a single camera
(e.g., pinhole cameras) and scenes with limited appearance
variations. However, single-domain methods encounter two
major challenges in real-world applications: 1) Query im-
ages captured by pinhole cameras, 360 cameras, fisheye
cameras, and other cameras exhibit significant differences
due to variations in distortion and field of view. 2) The
appearance of scenes undergoes substantial variations over
time, influenced by factors such as lighting conditions and
dynamic objects. Due to the limited training data of single-
domain methods, significant domain differences arise be-
tween these methods and the real-world domain, leading to a
drop in localization performance. Recently, 360Loc(Huang
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et al., 2024) pioneered the exploration of these challenges
by mapping limited 360 images to cross-camera images for
data augmentation, achieving state-of-the-art performance.
However, there remains considerable room for improvement
due to the limited diversity of the generated data.

In light of these challenges, our research focuses on devel-
oping an advanced cross-domain dataset generation method
to enhance visual localization performance, as illustrated
in Fig. 1. This paper concentrates on data augmentation
for absolute pose regression (APR) methods, which require
image-pose pairs as training datasets. To achieve this, we
adopt 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023)
for its capability to synthesize high-fidelity images from
arbitrary views in real time, thus enhancing the diversity
of data for visual localization. However, generating cross-
domain datasets based on 3DGS faces two main challenges:
1) Photometric variations and dynamic objects disrupt the
multi-view consistency required by 3DGS methods, making
it difficult to reconstruct accurate and domain-consistent
scene appearances. 2) Due to the high costs in time and la-
bor, training datasets often exhibit a long-tail distribution,
which prevents 3DGS from fully learning the scene repre-
sentations across all domains. For instance, data collected
under daytime conditions is abundant (primary domain),
while data from nighttime conditions is extremely sparse
(secondary domain) in our evaluated dataset.

To address these challenges, we propose a novel cross-
domain 3D Gaussian Splatting to model large-scale scene
photometric variations while mitigating the interference
of dynamic objects. We introduce learnable photometric
embeddings that encode image photometric histograms to
represent scene photometry. These embeddings are inte-
grated with the anchor-based Gaussian features proposed
by Scaffold-GS(Lu et al., 2024) to model scene photomet-
ric variations, achieving strong scene fitting and reduced
Gaussian storage. Additionally, we introduce dynamic pho-
tometric embeddings, Gaussian dynamic confidence, and
Gaussian dynamic photometry to ignore dynamic objects
and compensate for photometric losses. Unlike WildGaus-
sians (Kulhanek et al., 2024), our method encodes pho-
tometric histograms and is not constrained by the perfor-
mance bottlenecks of pre-trained detectors (Oquab et al.,
2023). Considering that sparse secondary domain images
hinder 3DGS from accurately learning cross-domain scene
representations, we employ a text-guided image editing
model (Brooks et al., 2023) to augment secondary domain
images by transforming primary domain images. Recog-
nizing the domain inconsistencies between the pre-trained
editing model and real-world domains, as well as the pres-
ence of hallucination noise, we carefully design an efficient
fine-tuning strategy to adapt the editing model to our task.
Furthermore, we propose a two-phase training strategy for
cross-domain 3DGS to mitigate hallucination noise intro-

duced by the editing model.

To ensure that cross-domain 3DGS generates high-quality
images for visual localization, we develop an anchor-based
image generation method. This method guarantees that the
generated images are correctly associated with photometric
embeddings and uniformly distributed within the range of
accurate reconstruction. We then generate cross-camera
images by leveraging the camera models. These images
exhibit different distortions and fields of view, leading to the
misalignment of appearance features across images corre-
sponding to the same pose. This introduces data ambiguity,
making it difficult for visual localization methods to learn ef-
fectively. To address this, we propose an efficient positional
attention mechanism to align appearance features, thereby
eliminating data ambiguity.

Extensive experiments demonstrate that our method
achieves state-of-the-art visual localization performance,
with more than 59% average improvement across domains.
Our main contributions are summarized as follows:

• We developed a cross-domain 3DGS to generate real-
domain consistent images by modeling photometric
variations and mitigating the interference of dynamic
objects in large-scale scenes. Furthermore, we de-
signed a two-stage training strategy to reduce the inter-
ference of hallucination noise.

• We introduce a text-guided image editing model to
enhance data diversity for addressing the long-tail dis-
tribution problem and design an efficient fine-tuning
strategy to adapt the model to our task.

• We develop an anchor-based method to generate high-
quality datasets for visual localization and introduce
positional attention to eliminate data ambiguity.

2. Related Work
2.1. Visual Localization

Several studies have explored cross-domain visual localiza-
tion under pinhole camera settings. To enhance localization
performance, (Porav et al., 2018) uses invertible genera-
tors to produce synthetic images, while (Anoosheh et al.,
2019) converts nighttime images to a more discriminative
daytime representation. Other methods focus on learning
domain-invariant features to bridge the gap between varying
environmental conditions (Hu et al., 2019). Additionally,
several works (Tang et al., 2020; Chen et al., 2023) advo-
cate for disentangling image representations into separate
codes that isolate place-specific cues from appearance and
occlusion factors, ensuring reliable place recognition. How-
ever, these methods are limited to single-camera localization
and rely on image retrieval. Compared to APR methods
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(Clark et al., 2017; Moreau et al., 2022; Chen et al., 2024a),
the retrieval-based methods suffer from significantly higher
computational costs and storage requirements due to the
need to construct and maintain a retrieval database. This
paper enhances APR-based cross-domain localization, in-
cluding cross-camera scenarios, by proposing a novel cross-
domain image generation method. Unlike the prior method
(Huang et al., 2024) with limited image augmentation, our
method facilitates diverse cross-domain image generation.

2.2. Neural Rerendering for Unconstrained Scenes

Recent advances in neural rendering have enabled the 3D
reconstruction from unconstrained scenes. Neural Rerender-
ing in the Wild (Meshry et al., 2019) combines traditional
3D reconstruction with neural networks to handle uncon-
strained scenes. Extensions to the Neural Radiance Field
(NeRF) (Martin-Brualla et al., 2021; Chen et al., 2022b)
further address challenges in unconstrained scenes by em-
bedding appearance information and transient uncertainty.
In addition, methods such as Neural Scene Chronology
(Lin et al., 2023) focus on capturing temporal variations
by employing modules for appearance hallucination and
temporal step function encoding. However, their slow train-
ing and rendering make large-scale scene modeling and
data generation time-consuming. Additionally, the limited
parameters of NeRF (Mildenhall et al., 2021) hinder its abil-
ity to effectively represent large outdoor scenes. Recently,
3DGS-based methods have garnered attention due to their
faster optimization and rendering efficiency compared to
NeRF. Among them, SpotLessSplats (Sabour et al., 2025),
GS-W (Zhang et al., 2025), WE-GS (Wang et al., 2024b),
and WildGaussians (Kulhanek et al., 2024) have shown
potential in modeling appearance variations and dynamic
objects in wild scenes. However, they cannot explicitly
control photometric properties and are constrained by the
performance bottlenecks of pre-trained detectors (Oquab
et al., 2023). Existing methods are also not suitable for
scenes with long-tail distribution problems. In this paper,
we propose a method that models appearance variations by
encoding photometric histograms, mitigates the impact of
dynamic objects without relying on pre-trained detectors,
and employs a fine-tuned image editing model to effectively
address the long-tail distribution problem.

2.3. Image Editing

Traditional methods focused on tasks like style transfer
(Gatys, 2015; Liu et al., 2024; Ojha et al., 2021), while re-
cent approaches incorporate text-based guidance (Bao et al.,
2023) (e.g., CLIP embeddings) to enhance editing. Recent
progress in image editing (Zhang et al., 2023; Chefer et al.,
2023; Li et al., 2024; Ceylan et al., 2023) leverages large
pretrained models and generative techniques for targeted
manipulations. Text-to-image diffusion models like Stable

Diffusion (Rombach et al., 2022) enable complex trans-
formations through realistic image generation from text
prompts. In 3D scene editing, instruction-guided methods
(Chen et al., 2024c; Haque et al., 2023) allow manipula-
tion of scene elements, such as object location, shape, and
lighting, using natural language instructions. The state-of-
the-art techniques (Tschernezki et al., 2022) distill knowl-
edge from generated multi-view images using pre-trained
models. However, the images generated directly using the
pre-trained model are misaligned with the target domain,
which undermines localization accuracy. To address this,
we carefully design an effective fine-tuning strategy to train
the editing model to generate domain-consistent images.

3. Preliminaries
Scaffold-GS (Lu et al., 2024) uses a set of 3D anchor struc-
tures to model the entire scene. Each anchor stores learnable
Gaussian features fgs and employs a multilayer perceptron
to predict the properties of Gaussians inherited from the an-
chor representation. Compared to the original 3D Gaussian
structure (Kerbl et al., 2023), Scaffold-GS offers a more
compact representation and stronger scene modeling capa-
bilities, allowing for flexible modeling of dynamic scene ap-
pearances. Similar to traditional 3DGS, it utilizes tile-based
rasterization for efficient image rendering. The geometry of
each 3D Gaussian Gi is defined in world space:

Gi(x) = e−
1
2 (x−pi)

TΣ−1
i (x−pi), (1)

where x is an arbitrary position within the 3D scene, pi and
Σi denote the position and covariance matrix of 3D Gaus-
sians, respectively. Σi uses semi-definite parameterization
to constrain itself to the space of valid covariance matrices:

Σ = RSSTRT , (2)

where R is rotation matrix and S is scaling matrix. Addi-
tionally, each 3D Gaussian includes opacity αi and color
ci for image rendering. To render an image from a given
view, 3D Gaussians are first projected onto the image plane
to obtain 2D Gaussians G′

i. The 2D Gaussians are then
processed using tile-based rasterization and alpha-blending
to produce the final rendered image:

C(x′) =
∑
i∈N

ciαiG
′
i(x

′)

i−1∏
j=1

(1− αjG
′
j(x

′)), (3)

where x′ and N denote the queried pixel position and the
number of 2D Gaussians associated with the queried pixel,
respectively. All parameters of the 3D Gaussians are opti-
mized end-to-end using a differentiable rasterizer.

4. Method
We aim to develop a visual localization method to accurately
estimate the poses of cross-domain query images, given a
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Figure 2. Overview of our method. We first construct a cross-domain 3DGS to accurately model photometric variations and mitigate the
interference of dynamic objects. Specifically, we construct learnable embeddings to encode photometric histograms. These embeddings,
along with Gaussian features, are fed into two separate MLPs to predict the static and dynamic attributes of the Gaussians. We fine-tune
an image editing model to generate secondary domain images for augmenting the sparse secondary domain dataset. Furthermore, we
propose a two-stage training strategy for cross-domain 3DGS to mitigate the hallucination noise introduced by the editing model. Next,
we develop an anchor-based generation method to create high-quality datasets for visual localization. Finally, we implement an online
mapping mechanism to reduce data storage costs and introduce positional attention to resolve data ambiguities.

limited training set consisting of 360 image-pose pairs as
shown in Fig. 2. To achieve this, we first construct a cross-
domain 3DGS to accurately model photometric variations
and mitigate the interference of dynamic objects in large-
scale scenes. Next, we introduce image editing models
that transform images from the primary domain to augment
sparse secondary domains, addressing the long-tail distribu-
tion problem. Finally, we propose an anchor-based method
to generate high-quality datasets for visual localization and
introduce positional attention to resolve data ambiguities.

4.1. Cross-Domain 3D Gaussian Splatting

To accurately model photometric variations and ignore the
interference from dynamic objects in the large scenes, we
carefully design an efficient cross-domain 3DGS. The main
components of this module include: (a) photometric varia-
tion modeling, (b) suppression of dynamic objects, and (c)
a two-phase training strategy.

Photometric Variation Modeling. The photometry in
images varies significantly with position and time in real-
world scenes, leading to the failure of 3DGS that depends
on multi-view consistency. To address this challenge, we
construct L learnable photometric embeddings e uniformly
distributed across the entire scene based on mapping images.
These embeddings encode the photometric histogram H of
the corresponding mapping images, introducing photometric

priors that vary with position and time. We employ the multi-
layer perceptron (MLP) to predict Gaussian attributes by
combining Gaussian features fgs proposed by Scaffold-GS
(Lu et al., 2024) with the photometric embeddings, thereby
achieving strong scene modeling capabilities. Please refer
to the supplementary materials for more details.

Dynamic Object Suppression. Dynamic objects intro-
duce noise that hinders the accurate reconstruction of scenes.
To suppress the influence of dynamic objects, we introduce
dynamic confidence β for the Gaussian attributes and render
dynamic confidence maps M using alpha-blending:

M(x) =
∑
i∈N

βiσi

i−1∏
j=1

(1− σj), (4)

Inspired by NeRF-W (Martin-Brualla et al., 2021), we as-
sign lower weights to the training loss in the regions with
high dynamic confidence to ignore the dynamic objects.
However, varying photometry is partially treated as dynamic
objects and thus ignored, distorting the photometric render-
ing of the scene. To address this, we introduce a dynamic
photometric embedding ed to incorporate photometric varia-
tion priors, assisting in the prediction of dynamic confidence.
We also add a dynamic photometric hd to the Gaussians to
compensate for photometric loss. To prevent entanglement,
two separate MLP networks MLPs, MLPd are used to
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predict static and dynamic attributes independently:

cs =MLPs(es, fgs),

hd, β =MLPd(ed, fgs),
(5)

where cs and es represent static color and static photometric
embeddings. We can obtain the rendered image Ĉ:

Ĉ(x) =
∑
i∈N

(cs + hd)σi

i−1∏
j=1

(1− σj), (6)

Two-phase Training Strategy. Since the training dataset
consists of only 360 images, we first convert them into pin-
hole camera images for training the cross-domain 3DGS,
then map the rendered pinhole images back to 360 im-
ages. Due to the significant photometric differences in cross-
domain images and hallucination noise in the augmented
secondary domain images (Sec. 4.2), directly training cross-
domain 3DGS on all domain images makes it difficult to
learn accurate scene representations. Therefore, we train
cross-domain 3DGS in two stages. In the first stage, we
only use images from the primary domain, learning the ac-
curate appearance of the primary domain and the global
scene geometry. Inspired by NeRF-W (Martin-Brualla et al.,
2021), we use D-SSIM loss and the photometric loss with
uncertainty to mitigate the interference of dynamic objects:

L = λ(
∥C− Ĉ∥22

2M2
+

logM2

2
) + (1− λ)LD-SSIM,

(7)

Where λ is the loss weight, C and Ĉ represent the ground
truth and the rendered result, respectively. In the second
stage, we fine-tune the first-stage 3DGS using augmented
secondary domain images. Specifically, we freeze parame-
ters related to scene geometry and only train parameters re-
lated to photometric variations. This prevents hallucination
noise from damaging the already reconstructed scene geom-
etry. Finally, we use L1(C, Ĉ) and LPIPS losses (Haque
et al., 2023) effectively reduce the hallucination noise.

4.2. Secondary Domain Augmentation.

The scarcity of secondary domain data due to the long-
tailed distribution problem of cross-domain datasets limits
the ability of cross-domain 3DGS to learn accurate scene
representations. We introduce a text-guided image editing
model to address the long-tail distribution problem and de-
sign an efficient fine-tuning strategy to adapt the model to
our task, as shown in Fig. 3. Inspired by the powerful In-
structPix2Pix (Brooks et al., 2023) based on diffusion, we
define a temporal prompt Tc for temporal transformation
(e.g., make it nighttime) and leverage the editing model to
transform primary domain images into the secondary do-
main. However, directly using the pre-trained model results
in domain inconsistencies. To address this, we fine-tune

Add dynamic objects to the scene

Finetune

Primary Domain 

 Make it nightime

Temporal 

Prompt

Temporal Transformation Dataset

Scene Prior Dataset
Image

Editor
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Figure 3. Illustration of secondary domain augmentation.

the image editing model using a carefully constructed tem-
poral transformation dataset. Specifically, we render the
primary domain images Ia corresponding to the sparse sec-
ondary domain images Ib using the first-stage 3DGS. Then,
the temporal transformation datasets pair the original im-
ages Ia, the edited images Ib, and the editing text Tc. We
further randomly rotate the 360 images Io by the latitude θi
and longitude ϕi using the 360-camera projection function
ψo for dataset augmentation:

Îo = ψo(R(θi, ϕi)ψ
−1
o (Io)). (8)

Considering that sparse temporal transformation datasets
fail to cover the entire global scene, leading to hallucination
phenomena when the model encounters unseen areas. We
constructed a scene prior dataset, which also helps prevent
dynamic objects in the fine-tuning dataset from introducing
dynamic noise into the model. Specifically, the scene prior
datasets pair the rendered static images and dynamic images
from the primary domain with editing text, such as add
dynamic objects to the scene.

4.3. Training for Visual Localization

Anchor-based Image Generation Method. To generate
high-quality datasets for training visual localization meth-
ods, we need to ensure that the generated images are cor-
rectly associated with photometric embeddings and uni-
formly distributed within the range of accurate reconstruc-
tion. Therefore, we develop an anchor-based image gener-
ation method. Specifically, photometric embeddings uni-
formly distributed across the scene are used as anchors, with
each anchor associated with a pose Pa, where Pa denotes
the pose of the image encoded by the photometric embed-
ding. Then, we randomly generate m poses Pg within a
3D spherical range with a radius L, centered at the anchor.
The radius is empirically determined as the distance be-
tween adjacent anchors to ensure that the generated images
fall within the range of accurate reconstruction. The pose
Pg is computed using random displacements t and random
rotation R:

Pg = RPa + t, ∥t− ta∥ ≤ L, (9)

5



Enhancing Visual Localization with Cross-Domain Image Generation
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Figure 4. Visualization of positional attention mapping across dif-
ferent camera domains in the global coordinate space.

where ta represents the position of the anchor. Finally, we
render the image using the pose Pg and the photometric
embedding of its anchor. This ensures that the correct pho-
tometric embedding is associated during image rendering,
which is crucial for generating domain-consistent images.

Online Cross-Camera Images Generation. The gener-
ated images are currently in the 360 format, we need to gen-
erate cross-camera images. Thanks to the full field of view
of 360 images, any camera image can be directly mapped
from the 360 images using the mapping Φi:

Icn = Φi(Io) = ψcn(ψ
−1
o (Io)), (10)

where ψ−1
o denote the unprojection function of 360 camera

and ψcn is the projection function of camera domain cn. If
there are j camera domains, this requires generating m× j
images for each anchor. However, storing images for all
camera domains incurs high storage costs. To address this,
we store only the mapping relationships Φi, rendering the
cross-camera images online during the training of the visual
localization method. Since the mapping relationships are
precomputed offline and dominate the computational cost of
cross-camera mapping, the additional overhead introduced
by online mapping is acceptable.

Positional Attention. The appearance features of cross-
camera images with the same pose are not aligned in the
image coordinate space due to different distortions and fields
of view. We define this problem as data ambiguity, which
lowers the accuracy of visual localization methods. To
address this, we propose position attention to guide the
alignment of appearance features. First, we construct a
global image coordinate space So based on 360 images,
which can cover the field of view of any camera domain.
Then, we convert the image coordinates Scn from different
camera domains to the global coordinate space So

cn as shown
in Fig. 4, which are used as position attention:

So
cn = ψo(ψ

−1
cn (Scn). (11)

Table 1. The settings for the mapping and query datasets.

Mapping

Scene Atrium Concourse Hall Piatrium

Primary/Secondary
(Frames) 581/10 491/10 540/20 632/20

Camera Model 360 360 360 360

Spatial Extent (m2) 2340 1395 5460 6860

Query

Camera Model 360 Fisheye1/Fisheye2/Fisheye3 Pinhole

Field of View 360◦ 120◦/150◦/195◦ 85◦

Resolution 6144×3072 1280×1024 1920×1200

We obtain the normalized positional attention Sn
cn by using

the dimensions D of the global coordinate space:

Sn
cn =

2So
cn

D − 1
− 1. (12)

Finally, the positional attention maps are concatenated with
the images along the channel and fed into the visual local-
ization method, guiding cross-camera image alignment.

5. Experiments
5.1. Datasets and Baselines

We conduct experiments using the large-scale dataset
360Loc (Huang et al., 2024), which includes dynamic ob-
jects and significant variations in lighting conditions. The
dataset consists of five camera domains, covering both day-
time (primary domain) and nighttime (secondary domain).
We construct a long-tailed distribution dataset by selectively
sparse secondary domain data based on scene size. The set-
tings for the mapping and query datasets are detailed in the
Tab. 1. To facilitate training and evaluation, we use SAM2
(Ravi et al., 2024) to remove the fixed base at the bottom of
the image. For comparison, we employ state-of-the-art base-
lines provided by cross-domain visual localization bench-
marks (Huang et al., 2024). To ensure a fair comparison, we
reproduce the baselines using the same setup as our method.
Please refer to the supplementary materials for more details.

5.2. Implementation Details

Our method is built upon the widely-used open-source
Scaffold-GS (Lu et al., 2024) codebase and employs the
MS-T (Shavit et al., 2021) for visual localization. During
cross-domain 3DGS training, we scale images to 400×400
and train for 60,000 iterations in the first stage, followed by
fine-tuning for 20,000 iterations in the second stage. For the
editing model, we fine-tune it for 10,000 iterations at a reso-
lution of 512×512. The number L of photometric embed-
dings is set to half the number of the mapping dataset and the
parameter m is set to 24. During visual localization training,
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Table 2. Comparison of median translation and orientation error (m, ◦) on the primary domain dataset.

Scene Atrium Day Concourse Day
Camera Pinhole Fisheye1 Fisheye2 Fisheye3 360 Average Pinhole Fisheye1 Fisheye2 Fisheye3 360 Average
PN (Kendall et al., 2015) 15.5/85.5 11.8/79.9 11.3/80.4 10.1/79.8 4.5/82.6 10.6/81.6 18.6/95.0 10.7/88.7 10.1/87.7 7.7/85.9 2.6/39.0 9.9/79.3
MS-T (Shavit et al., 2021) 20.1/77.7 14.5/73.7 14.0/71.7 12.5/65.6 13.2/54.7 14.9/68.7 17.0/69.1 11/60.8 10.5/59.6 9.9/63.4 4.9/34.6 10.7/57.5
PN-VC2 (Huang et al., 2024) 11.5/31.2 9.1/19.5 8.9/19.3 8.4/18.1 7.7/17.1 9.1/21.0 7.0/18.9 4.7/11.5 4.4/11.2 3.9/9.9 3.2/6.9 4.6/11.7
MS-T-VC2 (Huang et al., 2024) 10.0/46.7 6.3/36.3 6.2/36.5 4.9/28.1 5.2/47.6 6.5/39.0 3.5/19.6 1.9/12.7 1.8/12.8 1.7/12.7 1.6/13.5 2.1/14.3
Ours 5.2/21.8 2.2/12.7 2.1/12.3 1.8/11.5 1.6/14.1 2.6/14.5 2.7/9.7 1.5/5.7 1.3/5.5 1.1/5.4 1.0/5.7 1.5/6.4
Scene Hall Day Piatrium Day
Camera Pinhole Fisheye1 Fisheye2 Fisheye3 360 Average Pinhole Fisheye1 Fisheye2 Fisheye3 360 Average
PN (Kendall et al., 2015) 19.8/90.8 11.1/95.7 10.4/95.9 7.5/92.3 2.7/97.3 10.1/96.1 21.3/88.0 13.8/86.5 13.0/87.1 10.9/84.4 5.7/69.8 12.9/83.2
MS-T (Shavit et al., 2021) 21.8/96.0 14.1/94.0 13.5/92.7 11.2/91.7 11.4/88.5 14.4/92.6 30.0/78.5 23.4/71.3 22.7/72.7 19.3/72.6 11.3/52.0 21.3/69.4
PN-VC2 (Huang et al., 2024) 7.0/26.4 4.4/15.5 4.3/14.7 3.9/14.2 3.2/12.2 4.6/16.6 10.4/24.5 6.9/13.3 6.8/12.8 6.8/11.5 5.0/9.8 7.2/14.4
MS-T-VC2 (Huang et al., 2024) 4.0/36.9 2.2/25.8 2.1/25.2 1.8/26.2 1.7/26.9 2.4/28.2 8.1/32.7 4.0/24.5 3.9/23.6 3.8/24.1 3.3/22.1 4.6/25.4
Ours 2.3/17.4 1.0/8.9 1.0/8.6 0.9/8.4 0.7/7.5 1.2/10.2 4.4/18.0 2.5/11.3 2.4/10.5 2.4/10.1 2.3/10.1 2.8/12.0

Table 3. Comparison of median translation and orientation error (m, ◦) on the secondary domain datasets.

Scene Atrium Night Concourse Night
Camera Pinhole Fisheye1 Fisheye2 Fisheye3 360 Average Pinhole Fisheye1 Fisheye2 Fisheye3 360 Average
PN (Kendall et al., 2015) 19.8/90.8 16.4/87.3 16.1/86.7 15.7/83.5 8.7/22.8 15.3/74.2 19.8/96.2 13.3/85.5 13.0/88.4 11.1/87.5 5.5 / 45.6 12.5/80.6
MS-T (Shavit et al., 2021) 24.8/84.7 17.8/80.5 17.0/80.1 15.1/80.0 5.0/46.3 15.9/74.3 22.1/74.7 17.7/69.5 17.0/68.3 17.2/72.7 8.4/57.3 16.5/68.5
PN-VC2 (Huang et al., 2024) 13.6/50.2 11.5/38.1 11.6/38.3 11.4/ 37.8 9.7/45.7 11.6/42.0 10.7/25.4 8.3/ 16.4 8.4/15.7 8.1/ 14.7 5.5/13.5 8.2/17.1
MS-T-VC2 (Huang et al., 2024) 13.5/70.6 9.1/64.1 9.0/63.8 8.6/ 64.4 7.3/ 61.5 9.5/64.9 5.5/28.7 4.0/ 20.1 3.9/20.3 3.5/20.9 3.4/23.7 4.1/22.7
Ours 4.6/25.3 1.8/11.0 1.7/10.1 1.6/10.1 1.4/7.3 2.2/12.8 3.3/11.4 1.7/6.6 1.6/6.3 1.4/6.9 1.1/6.1 1.8/7.5
Scene Hall Night Piatrium Night
Camera Pinhole Fisheye1 Fisheye2 Fisheye3 360 Average Pinhole Fisheye1 Fisheye2 Fisheye3 360 Average
PN (Kendall et al., 2015) 22.8/95.6 18.3/93.8 17.9/93.6 16.8/91.3 10.9 /100.1 17.3/94.9 33.2/89.7 29.3/89.6 28.8/90.4 29.2/89.8 30.6/98.5 30.2/91.6
MS-T (Shavit et al., 2021) 32.1/96.1 29.9/94.2 29.7/93.6 31.8/93.1 22.3/94.4 29.2/94.3 37.7/91.3 37.3/89.1 36.2/89.0 35.7/85.6 37.2/83.0 36.8/87.6
PN-VC2 (Huang et al., 2024) 13.1/56.1 10.5/43.7 10.1/43.0 9.7/40.5 7.5/34.7 10.2/43.6 15.8/51.9 13.2/ 34.9 12.8/ 34.8 12.5/ 32.6 10.6/ 30.9 13.0/37.0
MS-T-VC2 (Huang et al., 2024) 8.9/73.1 5.6/ 67.6 5.3/ 66.3 4.8/ 68.9 3.8/ 67.2 5.7/68.6 16.0/ 63.9 13.0/ 53.8 12.4/53.7 11.9/,49.9 11.9/,49.9 13.0/54.2
Ours 4.2/32.5 2.2/18.5 2.1/17.5 1.9/15.7 1.5/18.0 2.4/20.4 7.2/27.9 4.6/16.1 4.3/16.1 3.7/14.1 2.6/9.6 4.5/16.8

images from all domains are resized to 256×256. Training
and evaluation are performed on an NVIDIA GeForce GTX
4090 GPU. Please refer to the supplementary materials for
more details.

5.3. Quantitative and Qualitative Results

Quantitative Results. To evaluate the performance of
cross-domain localization, we apply the widely-used me-
dian translation (m) and rotation (◦). The cross-domain
localization performance is reported in Tab. 2 for daytime
and Tab. 3 for nighttime. Our method achieves state-of-
the-art results across all cross-domain scenes, significantly
outperforming the previously leading MS-T-VC2 by an av-
erage of 51% during the day and 67% at night. Additionally,
our method significantly outperforms the original MS-T
without data augmentation, achieving an 85% improvement
in domain average. This demonstrates that visual localiza-
tion is highly data-hungry, particularly in more challenging
large-scale cross-domain scenes. Although MS-T-VC2 also
utilizes data augmentation methods, it relies on limited map-
ping data, which restricts the diversity of the augmented
data. Furthermore, the baselines fail to address the long-tail
problem of cross-domain data, preventing visual localiza-
tion methods from learning sufficient scene features and
leading to poor performance in secondary domains. This
emphasizes the importance of augmenting data diversity

for visual localization and validates the effectiveness of our
secondary domain augmentation method.

According to the cross-camera localization results, we ob-
serve that visual localization performance decreases as the
field of view (FOV) of the camera narrows. Notably, for
pinhole images with a small FOV, localization performance
is significantly worse than the average of the other four cam-
eras with a wide FOV (5.2/21.8 vs. 1.9/12.7 in Atrium Day),
even when effective data augmentation methods are em-
ployed. The poor performance of pinhole images signifi-
cantly lowers the overall average localization accuracy of
our method. This demonstrates that visual localization per-
formance faces a bottleneck due to the inherent limitations
of a narrow FOV. These findings suggest that selecting cam-
eras with a wide FOV is crucial for achieving better perfor-
mance in practical visual localization applications.

Qualitative Results. The Fig. 5 shows the cross-domain
image generation results of our method, covering both di-
verse appearance domains and camera domains. It is evi-
dent that our method generates domain-consistent images
across all target domains, even in highly sparse secondary
domain scenes. Moreover, the generated images success-
fully ignore dynamic interference to ensure accurate scene
reconstruction, which is essential for achieving robust visual
localization performance. These results demonstrate that

7



Enhancing Visual Localization with Cross-Domain Image Generation

Fisheye1Fisheye2Fisheye3 Pinhole360

G
ro

u
n

d
 T

ru
th

C
ro

ss
-D

o
m

ai
n

 I
m

ag
e 

G
en

er
at

io
n

Figure 5. Cross-domain image generation results. Our method can generate accurate and domain-consistent images, even in sparse sec-
ondary domain scenes. Furthermore, our generated images effectively ignore dynamic interference to ensure accurate scene reconstruction.

the proposed method can generate high-quality and diverse
training data for cross-domain visual localization.

5.4. Ablation Study

Effectiveness of Cross-Domain 3DGS. To evaluate the
effectiveness of cross-domain 3DGS, we conducted a quali-
tative comparison with the Scaffold-GS in terms of dynamic
interference removal, photometric variation modeling, and
sparse secondary domain scene reconstruction, as shown
in Fig. 6. Our method achieves accurate static appearance
reconstruction by effectively suppressing dynamic interfer-
ence while precisely reconstructing domain-consistent ap-
pearances in regions with significant photometric variations.
As shown in the bottom row of the figure, the baseline fails
to model scenes in the sparse secondary domain, while our
method successfully reconstructs domain-consistent scenes.
We perform a quantitative comparison using PSNR and
LPIPS metrics on the Atrium datasets. As shown in Tab.
4, our method significantly outperforms the baseline. This
demonstrates that cross-domain 3DGS can accurately recon-
struct scene representations across all domains, even in the
sparse secondary domain.

Table 4. Ablation study on cross-domain 3DGS with metrics
”PSNR ↑ / LPIPS ↓”. The symbol “/” indicates an invalid result.

Domain day night Domain day night

Scaffold-GS 22.38/0.38 / Ours 24.64/0.23 26.07/0.22

Effectiveness of Fine-Tuning Strategy. We effectively fine-
tune the image editing model to generate domain-consistent
images while reducing hallucinations and dynamic noise.
To better demonstrate the effectiveness of this strategy, we
perform a qualitative comparison with a pre-trained model,
as shown in Fig. 7. The top row shows that the pre-trained
editing model fails to generate domain-consistent images,
such as in photometric distribution and color. In contrast,
our fine-tuned model generates domain-consistent images.
Furthermore, as illustrated in the middle and bottom rows,
our fine-tuned model effectively prevents the introduction
of hallucinations and dynamic noise. We also conducted
quantitative experiments on the atrium scene. We employed
image similarity metrics SSIM and LPIPS to evaluate the

8
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Ground Truth Scaffold-GS Ours

Figure 6. Ablation study on cross-domain 3DGS. The top two
rows show qualitative comparisons in scenes with dynamic object
interference and significant photometric variations, respectively.
The bottom two rows show the comparison results for panoramic
images. The red box indicates the zoomed-in region.

Table 5. Ablation study on fine-tuning strategy.

Metrics SSIM ↑ LPIPS ↓
Pretrained Model 0.338 0.428
Finetuned Model 0.709 0.337

similarity between the images generated and the ground
truth. As shown in the Tab. 5, the image similarity sig-
nificantly improved after fine-tuning. It demonstrates that
our fine-tuning strategy effectively reduces the domain in-
consistencies between the pre-trained editing model and
real-world domains.

Effectiveness of Positional Attention. Positional attention
effectively resolves data ambiguity by aligning appearance
features of cross-camera images in global coordinate space,
thereby enhancing visual localization performance. To eval-
uate the effectiveness of positional attention, we assess the
visual localization performance without positional attention
in the primary domain scenes, as shown in Tab. 6. The posi-
tional attention significantly improves overall localization
performance (2.0/10.8 vs. 2.8/14.6), demonstrating that it
effectively resolves data ambiguity.

6. Limitation
In real-world scenarios, the geometric structure of the scene
may change over time. Significant geometric changes within

 

Ground Truth Pretrained Model

Finetuned Model

Finetuned Model

Global Scene Prior Dataset

Figure 7. Ablation study on fine-tuning strategy. Top row: Our
fine-tuned model generates domain-consistent images compared to
the pre-trained model. Middle row: Our fine-tuned model reduces
hallucination noise relative to the pre-trained model. Bottom row:
Our method introduces scene priors to the model without introduc-
ing dynamic noise.

Table 6. Ablation study on positional attention on primary datasets.

Camera Pinhole Fisheye1 Fisheye2 Fisheye3 360 Average

w/o Positional Attention 4.7/20.6 2.4/12.9 2.3/12.6 2.3/12.6 2.1/14.4 2.8/14.6
Full Model 3.7/16.7 1.8/9.7 1.7/9.2 1.6/8.9 1.4/9.4 2.0/10.8

the query images can impair cross-domain localization per-
formance. Future improvements could involve continual
learning to adapt the model to evolving scene geometry.

7. Conclusion
In conclusion, this work presents a novel cross-domain data
generation method designed to enhance visual localization
performance. We develop a cross-domain 3DGS that accu-
rately models photometric variations while effectively sup-
pressing dynamic object interference in large-scale scenes.
We introduce an image editing model to enhance data di-
versity for addressing the long-tail distribution problem and
design an effective fine-tuning strategy for it. Furthermore,
we propose an anchor-based dataset generation method to
produce high-quality training data for visual localization and
incorporate positional attention to address data ambiguities
in cross-camera images. Experimental results demonstrate
that our method significantly improves the performance of
visual localization methods, providing a promising direction
for advancing cross-domain visual localization.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Implementation Details
Cross-Domain 3D Gaussian Splatting. We use static photometric embeddings with a dimension of L× 5 and dynamic
photometric embeddings with a dimension of L×2, while the photometric histogram has a dimension of 10. The photometric
embeddings encoding the histogram are concatenated with the Gaussian features and fed into two separate MLPs to predict
the static and dynamic attributes of the Gaussians. Each MLP has a depth of 2 and hidden layer dimensions of 64. To avoid
division by zero in the training loss, we add a bias of 0.1 to the dynamic confidence map. For the first stage of cross-domain
3DGS, we set the loss weight λ = 0.8. The loss weight of the second stage is set to 1 for both components. We utilize
even-indexed images for training the cross-domain 3DGS, while using odd-indexed images for evaluation purposes. We
map panoramic images to pinhole images using cubemap projections to train the 3DGS.

For data augmentation, we rotate the temporal transformation dataset by 8 randomly sampled angles. During fine-tuning
of the instruct-pix2pix editing model, we set the random flip, mixed precision, an initial learning rate of λ = 10−5, and a
batch size of 4. When converting primary domain data to secondary domain data, we set the image-guided and text-guided
weights to 1.5 and 7, respectively, and configure 50 iterations for inference.

Training for Visual Localization. The original mapping dataset (Huang et al., 2024) does not contain any secondary
domain (nighttime) scenes. Therefore, we construct a long-tailed distribution mapping dataset by selecting secondary
domain images from the query set based on scene size. The specific sources of the selected images are shown in Tab. 7. To
prevent data leakage, the selected mapping images are removed from the query images. For a fair comparison, we reproduce
all baselines on the long-tailed distribution data constructed in this paper. Additionally, all images from all domains are
resized to 256×256. We set an initial learning rate of λ = 10−4 and a batch size of 32 for 300 epochs for both our method
and the baselines.

Relationship between Rendering Quality and Localization Performance. To evaluate the impact of rendering quality,
we conduct a quantitative experiment on the Atrium scene. Specifically, we compare the original Scaffold-GS (which
produces lower-quality renderings compared to our cross-domain 3DGS) combined with our proposed data generation and
positional attention mechanism. Localization performance drops (2.4/13.65 vs. 5.95/27.85) when using the lower-quality
images generated by Scaffold-GS. This result demonstrates a positive correlation between rendering quality and localization
accuracy.

Table 7. The specific sources of sparse secondary domain images.

atrium/query 360/nighttime 360 1

24 58 114 221 226 283 353 394 527 576

concourse/query 360/nighttime 360 0

2 53 132 155 232 257 321 366 410 461

hall/query 360/nighttime 360 1

12 54 80 110 136 162 188 214 240 266

292 318 348 374 403 426 452 555 582 607

piatrium/query 360/nighttime 360 0

2 26 50 74 98 122 146 170 194 218

254 266 362 386 410 434 458 482 663 674

B. More Results
Effectiveness of Cross-Domain 3DGS. We have included comparative experiments with the advanced GS-W (Zhang
et al., 2024), which is designed for unconstrained scenes. Since GS-W does not address the long-tail data distribution issue,
we conduct quantitative experiments on the Atrium Day scene, which contains sufficient data. Additionally, we extend
its training iterations to 140,000 for the large-scale evaluation scene. As shown in the Tab. 8, our method significantly
outperforms GS-W while using fewer iterations (60,000). This demonstrates that our method has stronger scene modeling
capabilities for large-scale scenes.
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Table 8. Ablation study on fine-tuning strategy.

Metrics PSNR ↑ SSIM ↑ LPIPS ↓
GS-W (Zhang et al., 2024) 18.85 0.635 0.594
Cross-domain 3DGS (Ours) 24.64 0.758 0.231

Effectiveness of Anchor-Based Image Generation. To ensure that randomly generated images for visual localization are
correctly associated with photometric embeddings and uniformly distributed within the range of accurate reconstruction, we
develop an anchor-based image generation method. To validate the effectiveness of anchor-based approach, we compare
it qualitatively with the method that randomly associates photometric embeddings. As shown in Fig. 8, it is evident that
random association of photometric embeddings often leads to inconsistency with the photometric distribution of the current
pose, resulting in domain-inconsistent images. Since we first render pinhole images and then map them to 360 images, this
process exacerbates the aforementioned photometric inconsistencies, leading to issues such as the formation of dark or
bright spots. In contrast, our method is associated with accurate photometric embeddings, generating domain-consistent
and globally photometrically consistent images. This demonstrates the effectiveness of our proposed anchor-based image
generation method.

Effectiveness of Fine-Tuning Strategy. We designed an effective fine-tuning strategy to train the image editing model
(Brooks et al., 2023) in order to transfer the pre-trained domain to the real domain. To demonstrate the effectiveness of the
proposed fine-tuning strategy, we compare it qualitatively with the pre-trained model, as shown in Fig. 9. It is evident that
the pre-trained model not only generates images that are inconsistent with the real domain in terms of photometric and color
distribution but also suffers from hallucination effects due to the lack of scene prior knowledge. In contrast, our method
generates domain-consistent images and reduces hallucination noise by incorporating scene priors.
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Figure 8. Ablation study on anchor-based image generation, we observe that using random embeddings to generate images results in
photometric inconsistencies with the current pose, leading to global photometric artifacts such as bright and dark spots. In contrast, our
method accurately associates the generated images with precise photometric embeddings, ensuring globally photometrically consistent
images. The experimental results validate the effectiveness of the Anchor-Based Image Generation method.
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Figure 9. Ablation study on the fine-tuning strategy, we observe that the pre-trained model not only generates images that are inconsistent
with the real domain but also suffers from hallucination effects due to the lack of scene information. In contrast, our fine-tuned model
generates domain-consistent images and reduces hallucination noise by incorporating scene prior knowledge.
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