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Abstract

Dense retrieval calls for discriminative embed-001
dings to represent the semantic relationship be-002
tween query and document. It may benefit from003
the using of large language models (LLMs),004
given LLMs’ strong capability on semantic un-005
derstanding. However, the LLMs are learned006
by auto-regression, whose working mechanism007
is completely different from representing whole008
text as one discriminative embedding. Thus, it009
is imperative to study how to adapt LLMs prop-010
erly so that they can be effectively initialized011
as the backbone encoder for dense retrieval.012

In this paper, we propose a novel approach,013
called LLaRA (LLM adatpeted for dense014
RetrivAl), which performs unsupervised adap-015
tation of LLM for its dense retrieval applica-016
tion. LLaRA consists of two pretext tasks:017
EBAE (Embedding-Based Auto-Encoding) and018
EBAR (Embedding-Based Auto-Regression),019
where the LLM is prompted to reconstruct the020
input sentence and predict the next sentence021
based on its text embeddings. LLaRA is sim-022
ple, lightweight, but highly effective. It is used023
to adapt LLaMA-2-7B on the Wikipedia corpus.024
With a moderate steps of adaptation, it substan-025
tially improves the model’s fine-tuned perfor-026
mances on on a variety of dense retrieval bench-027
marks. Notably, it results in the new state-of-028
the-art performances on popular benchmarks,029
such as passage and document retrieval on MS-030
MARCO, and zero-shot retrieval on BEIR. The031
model and source code will be made publicly032
available to facilitate the future research.033

1 Introduction034

Dense retrieval is a new paradigm of IR empowered035

by deep neural networks. It represents query and036

document as embeddings within the same latent037

space, where the semantic relationship between038

query and document can be reflected by their em-039

bedding similarity. Nowadays, dense retrieval has040

been a critical component in many real-world sce-041

narios, like open-domain QA, fact verification, and042

retrieval-augmented generation (Karpukhin et al., 043

2020; Thorne et al., 2018; Lewis et al., 2020). 044

The capacity of text encoder is a critical factor 045

of dense retrieval. In the past few years, the pre- 046

trained language models, e.g., BERT (Devlin et al., 047

2019), RoBERTa (Liu et al., 2019), T5 (Raffel et al., 048

2020), were widely applied to generate high-quality 049

representations for query and document, which sub- 050

stantially contributed to the accuracy and generaliz- 051

ability of dense retrieval. Besides, it was also found 052

that dense retrieval’s performance can further ben- 053

efit from the continual growth of model size and 054

training scale (Ni et al., 2021; Izacard et al., 2021; 055

Wang et al., 2022b; Xiao et al., 2023). Recently, 056

large language models (LLMs) have emerged as a 057

unified foundation for general NLP tasks (Brown 058

et al., 2020; Wei et al., 2021; Chowdhery et al., 059

2023). Given the LLMs’ superior capability on se- 060

mantic understanding, it will be promising to take 061

advantage of such powerful models as new back- 062

bones for dense retrieval. With this consideration, 063

there have been pioneering efforts where LLMs are 064

trained to generate discriminative text embeddings 065

to facilitate the retrieval tasks in many different 066

scenarios (Muennighoff, 2022; Neelakantan et al., 067

2022; Ma et al., 2023; Zhang et al., 2023). 068

Despite the preliminary progress, it remains an 069

open problem to fully unleash the LLM’s underly- 070

ing potential for dense retrieval. Particularly, the 071

typical LLMs are pre-trained by text generation 072

tasks, especially auto-regression, where the text 073

embeddings are learned to predict the next tokens. 074

Consequently, the LLMs’ text embeddings will fo- 075

cus on representing the local (i.e. the next step) 076

semantic of the context. However, dense retrieval 077

calls for text embeddings to represent the global 078

semantic about the query and document. Such a 079

big discrepancy will severely restrict the direct ap- 080

plication of LLMs for dense retrieval. 081

To address the above problem, we propose a 082

novel approach LLaRA (Figure 1), which per- 083
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Norwegian forest cat  is a breed cat originating in Northern Europe.

This natural breed is adapted to a very cold climate.

Norwegian forest cat  is a breed cat originating in Northern Europe.

the original sentence: <\s>

LLM

the next sentence: <\s>

Norwegian forest cat  is a breed cat originating in Northern Europe.

This natural breed is adapted to a very cold climate.

<s> Norwegian forest cat … Northern Europe. 

EBAE

EBAR

Figure 1: LLaRA. The LLM is prompted to generate the inductive embedding for EBAE (green), where the original
sentence is predicted, and the deductive embedding for EBAR (blue), where the next sentence is predicted.

forms unsupervised adaptation of LLMs to facili-084

tate their usage in dense retrieval. LLaRA works085

as a continuation of pre-training. On top of the086

tailored unsupervised learning tasks, it transforms087

the LLM’s text embeddings to represent the global088

semantic about the input text, which makes the089

LLM a better initialized encoder for dense re-090

trieval. LLaRA is made up of two pretext training091

tasks: EBAE (embedding-based auto-encoding)092

and EBAR (embedding-based auto-regression). On093

top of EBAE, the LLM is prompted to generate the094

inductive text embedding, which can be used to095

predict the vocabularies of the input sentence itself.096

With EBAR, the LLM is prompted to generate the097

deductive text embedding, which can be used to098

predict the vocabularies for the next sentence.099

The joint conduct of the above pretext tasks bring100

forth two benefits. Firstly, the text embeddings101

from LLM can be adapted from local semantic rep-102

resentation (predicting the next tokens) to global103

semantic representation (predicting the sentence-104

level features), which aligns with the expected prop-105

erty of dense retrieval. Secondly, by learning to106

generate inductive and deductive text embeddings107

with different prompts, the LLM-based retriever108

can flexibly handle diversified semantic relation-109

ships about correlation (e.g., QA) and paraphrasing110

(e.g., NLI), which presents a strong foundation to111

develop versatile retrieval models. It’s worth noting112

that the prediction is realized in the form of multi-113

classification, where the LLM’s text embedding114

is the input and the vocabularies within the target115

sentence are employed as the labels. Therefore,116

LLaRA is extremely lightweight and simple to real-117

ize based on the existing auto-regression pipeline. 118

We apply LLaRA for LLaMA-2-7B (base) (Tou- 119

vron et al., 2023) over the Wikipedia corpus, where 120

it substantially improves the LLM’s downstream 121

retrieval performance. With standard fine-tuning, 122

the well-adapted model is able to notably outper- 123

form all existing dense retrieval methods, where it 124

establishes new state-of-the-art performances on a 125

variety of popular benchmarks, including the super- 126

vised tasks like passage and document retrieval of 127

MSMARCO (Nguyen et al., 2016), and the zero- 128

shot retrieval of BEIR (Thakur et al., 2021). 129

To summarize, our work is highlighted by the 130

following technical contributions. 1) We propose 131

a new unsupervised learning method LLaRA. To 132

the best of our knowledge, this is the first research 133

work which explores the adaptation of LLMs for 134

dense retrieval. 2) LLaRA is designed with simple 135

but effective pretext tasks, which substantially im- 136

proves the quality of LLM-based dense retriever in 137

a cost-effective way. 3) The empirical studies ver- 138

ify the effectiveness of LLaRA, where substantial 139

improvements can be achieved for both supervised 140

and zero-shot retrieval tasks. 141

2 Related Works 142

In this section, the related works are discussed from 143

two perspectives: the background of dense retrieval, 144

and the previous efforts on leveraging the LLMs 145

for dense retrieval applications. 146

• Dense retrieval. Dense retrieval is to repre- 147

sent query and document as embeddings within the 148

same latent space, where relevant documents can 149

be retrieved by embedding similarity. Nowadays, it 150
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is widely utilized in many important applications,151

such as open-domain QA and retrieval-augmented152

generation (Karpukhin et al., 2020; Lewis et al.,153

2020). The performance of dense retrieval is in-154

fluenced by many factors. For example, dense re-155

trieval models are learned by contrastive learning,156

where the discriminativeness of text embeddings157

are largely influenced by the scale and hardness158

of negative sample (Qu et al., 2020; Izacard et al.,159

2021; Xiong et al., 2020). Besides, the learning of160

dense retrieval models can benefit from knowledge161

distillation, where fine-grained teacher labels are162

derived from the ranking models (Hofstätter et al.,163

2021; Ren et al., 2021). Apart from the above164

training algorithms, the backbone architecture is165

one decisive factor for dense retrieval. In the past166

few years, pre-trained language models (PLMs),167

like BERT (Devlin et al., 2019), RoBERTa (Liu168

et al., 2019), T5 (Raffel et al., 2020), have been169

widely adopted for the encoding of query and doc-170

uments. Thanks to the large-scale model architec-171

ture and pre-training, PLMs were able to produce172

fine-grained semantic representation of input data,173

which substantially benefit the quality of dense174

retrieval. Besides, it was found that with the ex-175

pansion of model and training scale, and the op-176

timization of pre-training algorithm, the accuracy177

and generality of the PLM-based dense retrieval178

can be further improved. (Ni et al., 2021; Izacard179

et al., 2021; Wang et al., 2022b; Xiao et al., 2023;180

Gao and Callan, 2021; Liu and Shao, 2022; Liu181

et al., 2023; Wang et al., 2022a).182

• Dense retrieval with LLM. The LLMs have183

been a unified foundation for many NLP tasks be-184

cause of its superior capabilities. As a result, it is185

instinctive to leverage such powerful models to fa-186

cilitate dense retrieval. LLMs can substantially con-187

tribute to many critical aspects of dense retrieval.188

For example, it can help to model the complex189

relationship between query and document consid-190

ering LLMs’ strong semantic understanding capa-191

bility (Brown et al., 2020; Chowdhery et al., 2023;192

Touvron et al., 2023). Besides, it will benefit the193

learning of multi-task retrievers because of LLMs’194

versatility and instruction following capability (Wei195

et al., 2021; Chung et al., 2022). It also presents196

a powerful foundation to develop long-document197

retrievers, given its dramatically extended context198

lengths. Recently, there have been several prelim-199

inary works which made important progresses on200

LLM-based dense retrieval (Muennighoff, 2022;201

Neelakantan et al., 2022; Ma et al., 2023; Zhang 202

et al., 2023). However, the existing methods simply 203

made direct use of LLMs. Because of the discrep- 204

ancy between language modeling and text embed- 205

ding, much of the LLMs’ underlying potential is 206

unexploited. In fact, it is still an open problem to 207

study the proper adaptation of LLMs so that they 208

can better contribute to dense retrieval. 209

3 LLaRA 210

3.1 Preliminary 211

Dense retrieval utilizes a text embedding model to 212

produce the query and document’s embedding: eq 213

and ed. The relevance of query and document is 214

reflected by their embedding similarity: ⟨eq, ed⟩. 215

As such, the relevant documents for the query (Dq) 216

can be retrieved via the ANN search within the em- 217

bedding space: Dq ← Top-k({d : ⟨eq, ed⟩|D}). 218

The pre-trained language models used to be the 219

backbone architecture of the embedding model. 220

Take BERT as an example. The input text is tok- 221

enized as the sequence T : [CLS], t1, ..., tN, [EOS]. 222

Then, the tokenized sequence is encoded by BERT, 223

where the output embeddings are integrated as the 224

text embedding. There are two common options to 225

perform the integration: [CLS], or mean-pooling: 226

et ← BERT(T )[CLS] or AVG
(
BERT(T )

)
. 227

When using LLMs as the encoding architecture, 228

the text embedding needs to be generated in a dif- 229

ferent way. Since the existing LLMs mainly use 230

the decoder-only architecture (Brown et al., 2020; 231

Chowdhery et al., 2023; Touvron et al., 2023), the 232

global context can only be accessed by the very last 233

tokens of the input sequence. Therefore, the output 234

embedding from the special token ⟨\s⟩ or [EOS] 235

is utilized to represent the input text (Zhang et al., 236

2023; Ma et al., 2023). Taking LLaMA (Touvron 237

et al., 2023) as the example, we have the following 238

updated form of text embedding: 239

et ← LLaMA(T )[⟨\s⟩]. (1) 240

3.2 Unsupervised Adaptation 241

As introduced, the LLM’s output embedding tends 242

to foucs on local semantic because of its language 243

modeling-based pre-training. To facilitate the ap- 244

plication in dense retrieval, we perform unsuper- 245

vised adaptation of LLM, where the LLM’s text 246

embedding can be transformed into a semantic rep- 247

resentation of the global context. 248
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Figure 2: The attention scheme of LLaRA.

• Objective. The retrieval tasks can be roughly249

divided into two types. One is to find the correlated250

data, e.g., question-answering (QA). The other one251

is to identify paraphrasing data, e.g., natural lan-252

guage inference (NLI). To confront these tasks, text253

embeddings are expected to fulfill two objectives:254

• Induction. The representation of global seman-255

tic about the input text itself.256

• Deduction. The representation of global seman-257

tic for the correlated text of the input.258

• Pretext tasks. With the above objectives, we259

present two pretext training tasks of LLaRA. One is260

called EBAE (Embedding-based Auto-Encoding),261

where the text embedding et is used to induct the262

sentence-level feature about input sentence itself.263

The other one is called EBAR (Embedding-based264

Auto-Regression), where the text embedding et is265

used to deduct the sentence-level feature for the266

next sentence of the input. We argue that the strong267

induction and deduction capability of text embed-268

ding will be sufficient to handle the diversified re-269

trieval scenarios, considering that arbitrary corre-270

lations can always be abstracted into the general271

form of input (e.g., question), retrieval purpose272

(e.g., get its answer), next sentence (e.g, answer).273

• Text Embedding. The LLM is prompted by274

two different templates to generate the text em-275

beddings for EBAE and EBAR (Figure 1). For276

EBAE, the LLM is prompted by: “[Placeholder277

for input] SELF ⟨\s⟩”, where the inductive text278

embedding is generated by the following function:279

eαt ← LLaMA(T, SELF, ⟨\s⟩)[−1]. (2)280

SELF stands for the prompt of EBAE: “The input281

sentence is:”. For EBAR, the LLM is prompted by282

template: “[Placeholder for input] NEXT ⟨\s⟩”,283

based on which the deductive text embedding is 284

generated by the following function: 285

eβt ← LLaMA(T,NEXT, ⟨\s⟩)[−1], (3) 286

In this place, NEXT stands for the prompt of 287

EBAR: “The next sentence is:”. 288

The direct computation of the two embeddings 289

will lead to substantial unnecessary costs because 290

the input text T is repetitively processed for two 291

times. To alleviate this problem, we propose to 292

compute eαt and eβt in one pass. Particularly, 293

the prompts of EBAE and EBAR are merged 294

into one joint prompt for LLM: “[Placeholder for 295

input] SELF ⟨\s⟩ NEXT ⟨\s⟩”. Because the 296

two text embeddings need to be computed inde- 297

pendently, we modify the typical attention mask 298

of casual language modeling, where “SELF ⟨\s⟩” 299

and “NEXT ⟨\s⟩” are mutually invisible (Figure 300

2). Now, the output embeddings of the first and 301

second ⟨\s⟩ tokens are used for eαt and eβt , respec- 302

tively. Given that the input text T account for the 303

majority of length for the joint prompt, such an 304

operation will save almost 50% of the computation 305

cost compared with the naive method. 306

• Training. As introduced, the text embeddings 307

of LLaRA are adapted to capture the global seman- 308

tic of the input sentence itself and the next sentence 309

of the input. In this place, we propose a simple 310

but effective training objective to accomplish such 311

an adaptation. We argue that if one embedding is 312

able to accurately predict the vocabularies in a 313

specific context all by itself, the embedding must 314

be a strong representation of the global semantic 315

for the corresponding context. Based on this fun- 316

damental principle, the training of text embedding 317

is formulated as a multi-classification problem. It 318

linearly projects the text embedding into the vocab- 319

ulary space, where the vocabulary IDs of all tokens 320

within the target context are predicted. Specifically, 321

the objective function of this problem is derived as: 322

min .− 1

|T |
∑
t∈T

log
exp (eTW t)∑

v∈V exp (eTW v)
. (4) 323

In this place, W ∈ Rd×|V | is the projection head of 324

LLM; V indicates the vocabulary space; T stands 325

for the collection of tokens of the target context 326

(input text itself for eαt , the next sentence for eβt ). 327

The above training objective is lightweight and 328

simple to realize, which can be directly conducted 329

based on the typical language modeling pipeline. 330
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- Dev DL’19 DL’20

Method Size FT. M@10 R@1000 N@10 N@10

BM25 (Lin et al., 2021) – – 18.4 85.3 50.6 48.0
ANCE (Xiong et al., 2020) 125M hard 33.0 95.9 64.8 –
ADORE (Zhan et al., 2021) 110M hard 34.7 – 68.3 –
Condenser (Gao and Callan, 2021) 110M hard 36.6 97.4 69.8 –
coCondenser (Gao and Callan, 2022) 110M hard 38.2 98.4 71.7 68.4
TAS-B (Hofstätter et al., 2021) 55M distill 34.3 97.6 72.2 69.2
RocketQAv2 (Ren et al., 2021) – distill 38.8 98.1 – –
AR2+SimANS (Zhou et al., 2022) 110M distill 40.9 98.7 – –
GTR-XXL (Ni et al., 2021) 4.8B – 38.8 99.0 – –
SimLM (Wang et al., 2022a) 110M hard 39.1 98.6 69.8 69.2
SimLM+distill (Wang et al., 2022a) 110M distill 41.1 98.7 71.4 69.7
RetroMAE (Liu and Shao, 2022) 110M hard 39.3 98.5 – –
RetroMAE+distill (Liu and Shao, 2022) 110M distill 41.6 98.8 68.1 –
RetroMAEv2+distll (Liu et al., 2023) 110M distill 42.6 98.9 75.1 –
LLaMA2-RepLLaMA (Ma et al., 2023) 7B hard 41.2 99.4 74.3 72.1
OpenAI-Ada-002 (Neelakantan et al., 2022) – – 34.4 98.6 70.4 67.6

LLaMA2-LLaRA 7B hard 43.1 99.5 73.4 72.9

Table 1: MS MARCO passage retrieval (performance measured by MRR@10, Recall@1000, NDCG@10).

• Fine-Tuning. The well-adapted LLM from331

LLaRA is fine-tuned for dense retrieval applica-332

tions through contrastive learning. Because the333

majority of the fine-tuning datasets for dense re-334

trieval are collected for correlation scenarios, such335

as QA (Nguyen et al., 2016) and Natural Ques-336

tion (Kwiatkowski et al., 2019), which are made337

up of tuples of (query, answer), we can derive the338

following general form of objective function:339

min
∑
q

− log
exp(⟨eαq , e

β
a⟩)∑

a′∈A′ exp(⟨eαq , e
β
a′⟩)

, (5)340

where eαq is the query’s embedding prompted by341

NEXT, and eβa is the answer’s embedding prompted342

by SELF. Despite the fixed formulation during343

training, the prompt scheme can be flexibility ad-344

justed for each individual downstream scenario.345

Particularly, when dealing with the correlation rela-346

tionships, e.g., question-answering, we hold on to347

NEXT and SELF to prompt the query and answer’s348

embeddings. However, when handling other situa-349

tions about paraphrasing relationships, the prompt350

scheme is as follows. To analyze the paraphrasing351

relationship between two long documents, we use352

SELF to prompt the query and answer’s embed-353

dings given its nature of summarizing the semantic354

of complex input. Meanwhile, we employ NEXT355

as the prompt for both inputs when dealing with356

two short sentences because of its nature of deduct-357

ing the semantic for the related texts.358

4 Experiment 359

4.1 Settings 360

The experimental study is performed to explore 361

three important issues: 1) LLaRA’s retrieval perfor- 362

mance after fine-tuning, 2) LLaRA’s generalization 363

across diversified scenarios, 3) the impact of tech- 364

nical factors in LLaRA. With such objectives, we 365

use the MS MARCO (Nguyen et al., 2016) as our 366

fine-tuning dataset, and perform the evaluation on 367

the passage retrieval and document retrieval task. 368

We also take advantage of the BEIR benchmark 369

(Thakur et al., 2021), where the fine-tuned retriever 370

from MS MARCO is evaluated under the zero-shot 371

setting to analyze its generalization capability. 372

• Training. LLaRA is applied to the LLaMA-2- 373

7B (base) model. The unsupervised adaptation 374

is performed based on the unlabeled corpus of 375

Wikipedia curated by DPR (Karpukhin et al., 2020). 376

We perform 10,000 steps of LLaRA adaptation in 377

total, with a batch size of 256, a sequence length of 378

1024, and a learning rate of 1e-5. LLaRA is fine- 379

tuned based on the training recipe presented by 380

RepLLaMA (Ma et al., 2023): it leverages LoRA 381

(Hu et al., 2021) for the parameter efficient train- 382

ing of LLM, and simply relies on the ANN hard 383

negatives (Xiong et al., 2020) to fine-tune the em- 384

bedding model with contrastive learning. 385

4.2 Supervised Performance 386

First of all, we analyze the supervised retrieval qual- 387

ity of LLaRA, where the model is fine-tuned with 388
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- Dev DL’19 DL’20

Method Size FT. MRR@100 R@100 NDCG@10 NDCG@10
BM25 (Lin et al., 2021) – – 27.7 80.9 51.9 52.9
PROP (Ma et al., 2021a) 110M – 39.4 88.4 59.6 –
B-PROP (Ma et al., 2021b) 110M – 39.5 88.3 60.1 –
COIL (Gao et al., 2021) 110M hard 39.7 – 63.6 –
ANCE (first-p) (Xiong et al., 2020) 125M hard 37.7 89.3 61.5 –
ANCE (max-p) (Xiong et al., 2020) 125M hard 38.4 90.6 62.8 –
ADORE (Zhan et al., 2021) 110M hard 40.5 91.9 62.8 –
COSTA (Ma et al., 2022) 110M hard 42.2 91.9 62.6 –
LLaMA2-RepLLaMA (Ma et al., 2023) 7B hard 45.6 – 65.0 63.2
LLaMA2-LLaRA 7B hard 47.9 94.1 68.2 63.6

Table 2: MS MARCO document retrieval

the training queries from MS MARCO passage and389

document retrieval, respectively.390

• Passage Retrieval. The experiment results on391

MS MARCO passage retrieval are shown in Ta-392

ble 1. We make comparison with a wide variety393

of baseline methods on passage retrieval, which394

include the following categories: 1) basic lexi-395

cal retriever: BM25 (Lin et al., 2021); 2) dense396

retrievers fine-tuned from BERT or RoBERTa:397

ANCE (Xiong et al., 2020), ADORE (Zhan et al.,398

2021), AR2+SimANS (Zhou et al., 2022), Rock-399

etQAv2 (Ren et al., 2021); 3) dense retrievers fine-400

tuned from the enhanced PLMs: Condenser (Gao401

and Callan, 2021), coCondenser (Gao and Callan,402

2022), RetroMAE (Liu and Shao, 2022; Liu et al.,403

2023), SimLM (Wang et al., 2022a); 4) dense re-404

trievers based on LLMs: GTR-XXL based on T5-405

4.8B (Ni et al., 2021), SGPT (Muennighoff, 2022)406

and OpenAI-Ada-002 (Neelakantan et al., 2022)407

based on GPT, RepLLaMA (Ma et al., 2023) based408

on LLaMA-2-7B. RepLLaMA is the closest base-409

line to our method, which directly fine-tunes the410

original LLaMA-2-7B backbone without any adap-411

tation. There are two different fine-tuning meth-412

ods (FT.): one is based on hard-negative sampling413

(hard): which is simple and low-cost; the other one414

is based on knowledge distillation (distill), which415

is accurate but expensive due to its demand of a416

precise ranker and complicated training process.417

The primary observations are presented as fol-418

lows. First of all, LLaRA achieves a superior re-419

trieval performance in every evaluation scenario.420

Remarkably, it achieves a MRR@10 of 43.1 and421

a Recall@1000 of 99.5, which notably improves422

the performance of the baselines and presents a423

new state-of-the-art result on the large-scale dev424

set. Its performance is also highly competitive425

on DL’19 and DL’20, though it’s slightly lower426

on DL’19 due to the randomness of the small test 427

set. Besides, it leads to a notably improvement 428

over the closest baseline RepLLaMA (based on 429

the same backbone but without adaptation), which 430

indicates the effect introduced by the adaptation 431

of LLaRA. Finally, we can observe the the LLM- 432

based retrievers’ overwhelming advantages in com- 433

parison with the previous ones based on smaller 434

PLMs, despite that the they are usually fine-tuned 435

with a relatively simple approach (hard). Com- 436

pared with the best PLM baseline fine-tuned by 437

hard negatives, RetroMAE+hard and SimLM+hard, 438

the switch to LLaRA brings forth almost +4% gains 439

in MRR@10. Such a dramatic improvement vali- 440

dates the LLMs’ huge potential for dense retrieval, 441

and with proper adaptation, such a potential can be 442

exploited more effectively. 443

• Document Retrieval. We report the evalu- 444

ation results on MS MARCO document retrieval 445

in Table 2. We make comparison with popular 446

document retrieval methods, including BM25 (Lin 447

et al., 2021), ADORE (Zhan et al., 2021), ANCE 448

first-p and max-p (Xiong et al., 2020), PROP (Ma 449

et al., 2021a), B-PROP (Ma et al., 2021b), COIL 450

(Gao et al., 2021), COSTA (Ma et al., 2022), Re- 451

pLLaMA (Ma et al., 2023), which fall into the same 452

categories as the passage retrievers. 453

Our observations on document retrieval is very 454

similar with our previous result on passage retrieval. 455

In particular, LLaRA achieves a superior empirical 456

performance in every evaluation, where it notably 457

improves the previous BERT-based methods by 458

+5.7% point in MRR@100. Both LLM-based re- 459

trievers, RepLLaMA and LLaRA, are able to dom- 460

inate the PLM-based baselines. Besides, LLaRA 461

continues to outperform RepLLaMA, with a +2.3% 462

improvement in MRR@100 on the large-scale dev 463

set and consistent advantages on DL’19 and DL’20. 464
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Method BM25 BERT GTR-XXL CPT-XL Ada-2 SGPT RepLLaMA LLaRA
Size – 110M 4.8B 175B – 5.8B 7B 7B
T-COVID 59.5 61.5 50.1 64.9 81.3 87.3 84.7 86.9
NFCorpus 32.2 26.0 34.2 40.7 35.8 36.2 37.8 38.2
NQ 30.6 46.7 56.8 – 48.2 52.4 62.4 64.6
HotpotQA 63.3 48.8 59.9 68.8 65.4 59.3 68.5 70.1
FiQA 23.6 25.2 46.7 51.2 41.1 37.2 45.8 48.5
ArguAna 39.7 26.5 54.0 43.5 56.7 51.4 48.6 56.5
Touche 44.2 25.9 25.6 29.1 28.0 25.4 30.5 34.2
Quora 78.9 78.7 89.2 63.8 87.6 84.6 86.8 88.3
DBPedia 31.8 31.4 40.8 43.2 40.2 39.9 43.7 45.9
SCIDOCS 14.1 11.3 16.1 – 18.6 19.7 18.1 18.9
FEVER 65.1 68.2 74.0 77.5 77.3 78.3 83.4 81.3
C-FEVER 16.5 18.7 26.7 22.3 23.7 30.5 31.0 38.2
SciFact 67.9 53.3 66.2 75.4 73.6 74.7 75.6 74.8
AVERAGE 43.7 40.1 49.3 – 52.1 52.1 55.1 57.4

Table 3: Zero-shot retrieval on BEIR benchmark. (The performances are measured by NDCG@10)

The above observations further affirm our previous465

conclusions about the advantage of LLM backbone466

and the benefit from LLaRA. It’s worth noting that467

the LLM presents a powerful backbone to support468

document retrieval, because of not only its high469

expressiveness but also its long context, which en-470

ables the input document to be fully encoded in-471

stead of chunked into smaller segments.472

4.3 Zero-shot Performance473

We further investigate LLaRA’s impact on the gen-474

eralization. We leverage the BEIR benchmark for475

the evaluation of zero-shot performances, where476

the fine-tuned model from MS MARCO is directly477

applied to its included datasets (Table 3).478

The major observations about the evaluation re-479

sult are presented as follows. First of all, LLaRA480

exhibits a remarkable performance on BEIR, where481

it achieves a average performance of 57.4. Such a482

performance is not only much higher than the rest483

of the baselines, but also establishes a new state-of-484

the-art result on BEIR (zero-shot). More impres-485

sively, it maintains the leading (bold) or the 2nd-486

place performance in almost every dataset, which487

indicates its superior versatility across different488

scenarios. Besides, LLaRA substantially outper-489

forms RepLLaMA in most of the scenarios (11/13),490

which indicates the comprehensive improvement491

of the retriever’s generalization. It is also worth492

to emphasize the comparison between BM25 and493

dense retrievers. When the BEIR benchmark was494

first launched two years ago, none of the dense495

retrievers (BERT and many others) were able to496

outperform BM25 despite their competitive per-497

formances in the supervised scenarios. However,498

the previous situation has been largely overturned 499

with the adoption of LLM-based text encoders, as 500

LLaRA outperforms BM25 on 12/13 datasets and 501

goes beyond its average performance by 32% rela- 502

tively. The dramatic improvement can attribute to 503

three merits of LLMs: 1) the superior expressive- 504

ness to model complex semantics, 2) the expanded 505

context to handle long inputs, and 3) the rich knowl- 506

edge to understand common-sense relationships. 507

4.4 Technical Factors 508

Further study is made for three factors: unsuper- 509

vised adaptation, prompt scheme, embedding size. 510

• Adaptation. Our previous experiments verify 511

the effectiveness of unsupervised adaptation given 512

its substantial improvement over LLaMA-2-7B. In 513

this place, we focus on exploring the the underlying 514

reason of the empirical advantage. As introduced, 515

the unsupervised adaptation is performed to trans- 516

form the text embedding such that it can become a 517

global semantic representation and make accurate 518

predictions for the vocabularies within the target 519

context (§3.2). We perform the following experi- 520

ment on MS MARCO to evaluate the adaptation ef- 521

fect. Firstly, the query and answer embeddings are 522

projected into distributions in the vocabulary space: 523

dq ∈ R|V |×1 ← eαq
TW ,da ∈ R|V |×1 ← eβa

T
W 524

(W is the decoding head of the LLM). Then, the 525

top-N vocabs are predicted for the query and an- 526

swer: vq ← top-N(dq),va ← top-N(da). If the 527

transformation works, there will be an increased 528

lexical similarity between query and answer. In 529

this place, we use BM25 to compute the similarity 530

score: BM25(vq,va). As shown in Table 5, the 531

adaptation (Adapt) exhibits a much higher vocab 532
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Pro. Avg AR CF DB FV FQ HQ NF NQ QR SD SF TO TC

N2S 56.1 50.5 27.7 45.9 83.5 48.5 70.1 38.2 64.6 83.7 18.9 76.5 34.2 86.9

S2S 30.2 56.5 20.6 10.4 33.1 16.7 27.4 18.3 8.8 88.0 7.1 67.8 3.1 34.2

N2N 52.3 49.9 38.2 40.5 81.3 43.8 65.5 35.3 54.9 88.3 20.5 74.8 22.6 63.9

None 47.6 53.8 26.7 40.0 72.3 38.9 63.8 32.3 46.1 88.3 17.7 74.3 15.0 49.6

Ada* 57.4 56.5 38.2 45.9 81.3 48.5 70.1 38.2 64.6 88.3 18.9 74.8 34.2 86.9

Table 4: Impact of the adaptive usage of prompt (Ada*) evaluated on BEIR.

Top-N Initial Adapt Fine-Tune
10 1.85 2.74 13.83

100 18.01 47.68 84.08

500 93.68 205.42 307.30

1000 219.09 392.80 542.89

Table 5: Impact on lexical similarity.

similarity over the initial LLaMA-2 backbone (Ini-533

tial). Interestingly, we also observe that the lexical534

similarity can be improved by fine-tuning as well.535

In fact, the improved lexical similarity is beneficial536

to the performance of dense retrieval, as studied by537

previous works on query and document expansion538

(Nogueira et al., 2019; Mao et al., 2020). With the539

unsupervised adaptation, such a transformation is540

implicitly accomplished for the text embedding.541

• Prompt. The well-adapted LLM encoder is542

able to make adaptive usage of SELF and NEXT543

prompt to handle different correlation and para-544

phrasing relationships (Ada*). Particularly, NEXT-545

SELF (N2S) is used for correlation, SELF-SELF546

(S2S) is used for paraphrased documents, and547

NEXT-NEXT (N2N) is used for paraphrased short548

texts. The impact of prompt scheme is analyzed549

with BEIR, which contains retrieval tasks of diver-550

sified semantic relationships: for correlation, we551

have DBPedia (DB), FIQA (FQ), HotpotQA (HQ),552

NFCorpus (NF), NQ, SCIDOCS (SD), Touch (TO);553

for long-paraphrasing, we have Arguana (AR); for554

short paraphrasing, we have Climate-FEVER (CF),555

FEVER (FV), Quora (QR), SciFact (SF). The result556

is shown in Table 4, where the prompt utilization557

exerts a major impact. The majority of tasks are558

about correlation; thus, N2S works the most ef-559

fectively in those scenarios. In other paraphrasing560

cases, S2S (e.g., Arguana) and N2N (e.g., Quora)561

can help to achieve a better result.562

• Dimension. The LLMs are more expressive563

than smaller PLMs; however, they also come with564

higher costs in many perspectives. In this place,565

we focus on the impact from embedding size, i.e.566

dimension, which not only affects the computation567

but also determines the space cost of the vector568

Dim. DimRed DimRed* Sparse
768 41.0 41.2 41.5

1024 41.0 41.3 41.9

2048 41.1 41.4 42.3

4096 43.1 43.1 43.1

Table 6: Impact of embedding dimension.

database. We evaluate alternative dim reduction 569

methods where the embedding size is gradually 570

reduced from 4096 to 768 (Table 6). One is to 571

jointly learn the LLM and a projection head dur- 572

ing fine-tuning (DimRed); another one is to fixed 573

the well fine-tuned LLM retriever and learn the 574

projection head via distillation (Liu et al., 2022) 575

(DimRed*). Unfortunately, both methods suffer 576

from notably performance loss after dim reduction. 577

We further replace linear projection with sparsifica- 578

tion (Formal et al., 2021), where the top-N entries 579

are selected for the embedding (Sparse). Compared 580

with the first two options, sparsification turns out 581

to be more effective in preserving retrieval perfor- 582

mance. The above observations also suggest the 583

necessity of light-weight processing of LLM-based 584

retrievers in the future. 585

5 Conclusion 586

In this paper, we present LLaRA to enhance the 587

LLM-based dense retrieval via unsupervised adap- 588

tation. LLaRA is composed of two pretext tasks, 589

EBAE and EBAR, where the LLM is prompted 590

to reconstruct the input sentence and predict the 591

following sentence purely with its text embeddings. 592

On top of the unsupervised adaptation, the LLM’s 593

text embedding can be transformed into a strong 594

representation of global context. By using suitable 595

prompts, it can flexibly support the semantic match- 596

ing of different correlation and paraphrasing rela- 597

tionships. The effectiveness of LLaRA is verified 598

by comprehensive experiments, where the adapted 599

LLM achieves new state-of-the-art performances in 600

both supervised and zero-shot evaluations, indicat- 601

ing the substantial improvements on both accuracy 602

and generalization capability of the retrieval model. 603
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6 Limitation604

While LLaRA has made a substantial progress in605

adapting the LLM as a strong dense retriever, the606

current work can still be improved in the following607

ways. Firstly, the current method is only applied to608

a 7B model, it remain to explore its impact on larger609

LLMs. Secondly, the current model is for English610

centric scenario, it is necessary to make extensions611

for other languages. Thirdly, it is also important to612

find effective ways to maintain an efficient running613

cost for such large-scale embedding models.614

7 Ethical Consideration615

LLaRA is built upon LLaMA-2, it inherits potential616

biases, toxicity, and other problems present in the617

underlying LLM. Therefore, we do not recommend618

utilizing LLaRA for retrieval purposes in sensitive619

contexts. Moreover, the embedding may be influ-620

enced by the training data, potentially leading to621

biased or discriminatory results.622
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