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Abstract

Graph Structure Learning (GSL) focuses on001
capturing intrinsic dependencies and interac-002
tions among nodes in graph-structured data003
by generating novel graph structures. Graph004
Neural Networks (GNNs) have emerged as005
promising GSL solutions, utilizing recursive006
message passing to encode node-wise inter-007
dependencies. However, many existing GSL008
methods heavily depend on explicit graph struc-009
tural information as supervision signals, leav-010
ing them susceptible to challenges such as data011
noise and sparsity. In this work, we propose012
GraphEdit, an approach that leverages large lan-013
guage models (LLMs) to learn complex node014
relationships in graph-structured data. By en-015
hancing the reasoning capabilities of LLMs016
through instruction-tuning over graph struc-017
tures, we aim to overcome the limitations as-018
sociated with explicit graph structural informa-019
tion and enhance the reliability of graph struc-020
ture learning. Our approach not only effectively021
denoises noisy connections but also identifies022
node-wise dependencies from a global perspec-023
tive, providing a comprehensive understanding024
of the graph structure. We conduct extensive025
experiments on multiple benchmark datasets026
to demonstrate the effectiveness and robust-027
ness of GraphEdit across various settings. We028
have made our model implementation available029
at: https://anonymous.4open.science/r/030
GraphEdit-41B3.031

1 Introduction032

Graph Structure Learning (GSL) is a burgeoning033

field of research that strives to unveil the underlying034

patterns and relationships within graph-structured035

data (Jin et al., 2020; Fatemi et al., 2021). In GSL,036

the primary focus lies in unraveling the latent rela-037

tionships and dependencies that may not be imme-038

diately discernible from the raw data. By generat-039

ing these novel graph structures, GSL empowers us040

to gain a more comprehensive understanding of the041

data, thereby facilitating various downstream tasks, 042

such as node classification (Zhao et al., 2021a). 043

In recent years, graph neural networks (GNNs) 044

have indeed captured significant attention and pop- 045

ularity due to their remarkable capacity to model 046

and leverage relationships within graph-structured 047

data (Garg et al., 2020; Buterez et al., 2022). GNNs 048

excel in learning node-level representations by ef- 049

fectively aggregating and propagating information 050

from neighboring nodes in a graph. This excep- 051

tional capability has sparked a revolution in the 052

analysis of graph-structured data, enabling a more 053

comprehensive understanding of the underlying 054

node-wise connection patterns and interactions. 055

The ability to capture and leverage the intri- 056

cate dependencies within graphs has undoubtedly 057

propelled graph neural networks (GNNs) to the 058

forefront of graph structure learning (Zhou et al., 059

2023). Notably, approaches like SLAPS (Fatemi 060

et al., 2021), Nodeformer (Wu et al., 2022), and 061

GT (Shi et al., 2021) incorporate neural networks 062

that collaborate with GNNs to generate novel graph 063

structures. These models undergo co-optimization, 064

ensuring a seamless and integrated learning pro- 065

cess. Moreover, recent studies such as SEGSL (Zou 066

et al., 2023) and CoGSL (Liu et al., 2022a) have 067

introduced dynamic methods for learning the graph 068

structure. These approaches adaptively learn the 069

graph structure based on predictions or representa- 070

tions generated by optimized GNNs. 071

While graph neural networks (GNNs) have 072

demonstrated their high effectiveness, it is impor- 073

tant to acknowledge that many of these approaches 074

heavily depend on explicit graph structures, such as 075

node links, as supervision signals for learning ac- 076

curate representations. However, real-world graph 077

domains often encounter challenges such as data 078

noise and sparsity, which can compromise the reli- 079

ability of these explicit graph structures. 080

To illustrate, let’s consider a social network 081

dataset where certain links are missing or incom- 082
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plete due to privacy settings or limited data avail-083

ability (Dai et al., 2022). Additionally, in recom-084

mender systems, the user-item interaction graph085

may involve cold-start users or items, resulting in086

highly sparse links (Lin et al., 2021). Furthermore,087

various types of bias present in recommender sys-088

tems introduce noise into the data (Wang et al.,089

2021b). In such cases, relying solely on explicit090

graph structures as supervision signals can lead to091

representations that are either inaccurate or biased.092

These challenges necessitate the development of093

more robust graph structure learning framework094

that can adapt to and overcome the impact of data095

imperfections in graph-structured data.096

097 Contributions. In light of the challenges outlined098

earlier, this study seeks to explore how large lan-099

guage models (LLMs) can contribute to reason-100

ing about the underlying graph structures. We in-101

troduce our proposed model, GraphEdit, which102

is designed to effectively refine graph structures.103

Our model’s objective is twofold: first, to iden-104

tify and address noisy connections between irrele-105

vant nodes, and second, to uncover implicit node-106

wise dependencies. To achieve these goals, our107

model leverages the rich textual data associated108

with nodes in graph-structured data. By incorporat-109

ing the text understanding ability of LLMs, specifi-110

cally through the instruction-tuning paradigm, we111

enhance the understanding and representation of112

graph structures. This allows us to capture implicit113

dependencies among individual nodes that may not114

be explicitly encoded in the graph structure itself.115

To thoroughly evaluate the performance of116

GraphEdit framework, we conducted extensive ex-117

periments, comparing it with state-of-the-art so-118

lutions. Additionally, we performed an in-depth119

ablation study and robustness analysis to validate120

the advantages and rationale behind our model.121

2 Preliminaries122

Graph-Structured Data. We define a graph using123

the tuple G = (V,A, T ). Here, V represents a set124

of N = |V| nodes, A ∈ RN×N is the adjacency125

matrix that captures the connections between nodes.126

Additionally, tn ∈ T denotes the textual data as-127

sociated with each node n ∈ V in graph G, which128

consists of a sequence of Ln language tokens.129

130 Graph Representation Learning. focuses on cap-131

turing meaningful and informative representations132

of nodes in a graph, enabling the analysis and133

modeling of intricate relationships and patterns134

within the graph data (Buterez et al., 2022). In 135

recent years, Graph Neural Networks (GNNs) have 136

emerged as promising approaches for capturing 137

complex node-wise dependencies (Jin et al., 2020; 138

Ji et al., 2019). By allowing nodes to exchange in- 139

formation with their neighbors, GNNs update their 140

own representations and facilitate the propagation 141

of information throughout the graph structure, en- 142

hancing our ability to understand and analyze the 143

underlying graph data. However, in real-world 144

graphs, noisy and missing connections are preva- 145

lent, and they significantly impair the performance 146

of existing graph representation learning methods. 147

148Problem Statement. Given the observed graph 149

G = (V,A, T ) with noisy structural information, 150

our objective is to improve the graph topology. This 151

involves denoising the noisy connections within 152

the graph data and uncovering the implicit rela- 153

tionships among nodes. By refining the original 154

adjacency matrix A and obtaining a more informa- 155

tive graph structure Ã, we can better capture the 156

underlying node-wise dependencies, resulting in 157

an updated graph G̃ = (V, Ã). This refinement 158

process leads to a deeper understanding of the un- 159

derlying graph structure, thereby improving the 160

performance of downstream tasks by leveraging 161

the updated graph structures G̃ = (V, Ã). 162

3 Methodology 163

3.1 Instruction-Tuning LLM 164

Taking inspiration from the homophily property as- 165

sumption discussed in studies such as (Gong et al., 166

2023; Li et al., 2023), it is suggested that nodes 167

with similar attributes tend to have stronger con- 168

nections. This concept has further evolved to ex- 169

plore the label consistency between nodes based on 170

their connection patterns (Ma et al., 2021). Specif- 171

ically, in the context of node classification tasks 172

that rely on graph structures, the optimal situa- 173

tion involves maximizing connections within the 174

same class while minimizing inter-class connec- 175

tions. Guided by this principle, our approach aims 176

to leverage the knowledge of Large Language Mod- 177

els (LLMs) to reason about potential dependencies 178

among nodes, taking into account the textual se- 179

mantics associated with individual nodes. 180

During the prompt creation phase, we have 181

meticulously defined two separate objectives 182

within each prompt. The first objective is to eval- 183

uate the consistency of labels for the node pairs. 184

This objective holds immense importance as it en- 185
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Figure 1: The model architecture of our proposed GraphEdit framework for graph structure learning.

Table 1: Prompt Instructions for Tuning LLMs.

Q: Based on the title and abstract of the two paper
nodes. Do they belong to the same category among
{Category_0}, {Category_1}, {Category_2}, ... ? If
the answer is "True", answer "True" and the category,
otherwise answer "False". The first paper: {Title}, {Ab-
stract}. The second paper: {Title}, {Abstract}.
A: {True or False}, {Category}.

ables the language model to grasp the desired graph186

structures accurately. The second objective, which187

builds upon label consistency, involves determining188

the specific category to which these nodes belong.189

These carefully crafted prompts, encompassing190

these dual objectives, serve as valuable resources191

for instruction tuning of the language model.192

In our methodology, we utilize a random sam-193

pling technique to select node pairs (ni, nj) from194

our training data Ntrain. These node pairs, used195

for tuning the LLMs, are randomly sampled from196

the training set Ntrain, where i and j represent two197

distinct nodes, and k represents any other node.198

(ni, nj) ∼ Uniform(Ntrain ×Ntrain−
{(nk, nk)|nk ∈ Ntrain}).

(1)199

3.2 LLM-based Edge Predictor200

To further enhance our analysis, we acknowledge201

the significance of identifying potential candidate202

edges in addition to the original graph structure.203

However, employing the trained language model204

(LLM) directly to traverse and reason over the en-205

tire graph presents a computational challenge, par-206

ticularly for large graphs, due to the O(n2) com-207

plexity, n represents the number of nodes in the208

graph. This computational complexity quickly be-209

comes impractical as the graph size increases. To210

overcome this challenge, we propose the introduc-211

tion of a lightweight edge predictor that aids the212

LLM in the selection process of candidate edges 213

among the nodes in the graph G. 214

In this approach, we leverage the node pairs that 215

were previously sampled as the training set for the 216

edge predictor. To ensure semantic consistency, we 217

utilize the representations derived from the trained 218

LLM for each node. This can be expressed as: 219

hi = LLM(si), hj = LLM(sj), (2) 220

We utilize the notation < i, j > to represent a pair 221

of nodes. The textual attributes associated with 222

nodes i and j are denoted by si and sj , respec- 223

tively. The resulting representations, hi and hj , 224

correspond to their respective nodes and retain the 225

semantic knowledge and reasoning abilities trans- 226

ferred from the large language models. 227

After obtaining the node representations, we pro- 228

ceed to construct the training set labels ye based on 229

the node labels cn using the following procedure: 230

ye =

{
1 if ci = cj

0 if ci ̸= cj
(3) 231

Next, we concatenate the representations of the two 232

nodes in each node pair. We then feed the concate- 233

nated representation into a prediction layer denoted 234

as η(hi||hj), which allows us to obtain the probabil- 235

ity of the edge’s existence. We utilize cross-entropy 236

as the loss function, denoted as LCE(ye, ŷe): 237

ŷe = η(hi||hj) (4) 238

239
LCE(ye, ŷe) = −[yelog(ŷe

+ (1− ye)log(1− ŷe)]
(5) 240

ye denotes the ground truth label, and ŷe represents 241

the predicted probability of the edge’s existence. 242

3



Table 2: Statistics of Experimental Datasets.

Dataset # Nodes # Edges # Feat. Classes

Cora 2708 5429 1433 7
Citeseer 3186 4277 3703 6
PubMed 19717 44335 500 3

3.3 LLM-enhanced Structure Refinement243

To refine the graph structure, we employ the pre-244

viously developed edge predictor to identify the245

top-k candidate edges for each node based on their246

estimated likelihood of existence. These candidate247

edges, along with the original edges of the graph,248

are then subjected to evaluation by the large lan-249

guage model (LLM) through a prompt, as depicted250

in Table 1. The LLM utilizes this information to251

determine which edges should be incorporated into252

the final graph structure. The graph structure re-253

finement process can be summarized as follows:254

A′ = EdgePredictor(Hn) +A, (6)255

Â = LLM(Prompt(A′)) (7)256

The updated adjacency matrix, denoted as A′, is257

obtained by combining the outputs of the edge pre-258

dictor with the original adjacency matrix A. This259

fusion process incorporates the edge predictor’s260

predictions into the existing graph structure. Sub-261

sequently, the refined adjacency matrix Â is gener-262

ated through the LLM’s evaluation of the prompt263

applied to A′. The LLM leverages its reasoning264

capabilities to make decisions regarding both the265

addition and deletion of edges in the final graph266

structure. Therefore, the refined adjacency matrix267

Â represents the LLM’s informed choices, encom-268

passing both the inclusion and exclusion of edges.269

This refined adjacency matrix serves as an input for270

downstream graph tasks, e.g., node classification.271

In summary, our framework enhances the quality272

and structure of the final graph by incorporating273

the edge predictor’s predictions and leveraging the274

reasoning capabilities of the LLM. This leads to275

the uncovering of implicit global node-wise depen-276

dencies and the denoising of noisy connections,277

resulting in an improved graph representation.278

4 Evaluation279

4.1 Experimental Settings280

4.1.1 Datasets281

To evaluate the performance of our GraphEdit282

method, we carefully selected three representa-283

tive datasets: Cora, PubMed, and Citeseer. These284

datasets are widely recognized as benchmarks for 285

graph learning tasks. In these datasets, each node 286

represents a publication, and the edges represent 287

citations between them. i) Cora dataset comprises 288

papers classified into seven computer science do- 289

mains: Case-Based, Genetic Algorithms, Neural 290

Networks, Probabilistic Methods, Reinforcement 291

Learning, Rule Learning, and Theory. It provides 292

a diverse range of topics within the field of com- 293

puter science. ii) PubMed dataset focuses on med- 294

ical literature and categorizes papers into three dis- 295

tinct categories: Diabetes Mellitus, Experimental, 296

Diabetes Mellitus Type 1, and Diabetes Mellitus 297

Type 2. This dataset offers valuable insights into 298

various aspects of diabetes research. iii) Citeseer 299

dataset consists of academic papers from six differ- 300

ent areas within computer and information science: 301

Agents, Machine Learning (ML), Information Re- 302

trieval (IR), Databases (DB), Human-Computer In- 303

teraction (HCI), and Artificial Intelligence (AI). 304

4.1.2 Baselines 305

To comprehensively validate the effectiveness of 306

our GraphEdit model, we compare it with 13 graph 307

structure learning baselines, categorized into three 308

groups based on their training strategies. 309

Pre-Training Models. GSR (Zhao et al., 2023), 310

STABLE (Li et al., 2022), and SUBLIME (Liu 311

et al., 2022b) are advanced pre-training models 312

specifically designed to refine graph quality and 313

enhance the effectiveness of graph representation 314

learning. The training process involves two stages: 315

first, enhancing the graph structure through pre- 316

training, and then utilizing this refined structure to 317

train GNNs for various downstream tasks. 318

319Iter-Training Models. SEGSL (Zou et al., 2023), 320

CoGSL (Liu et al., 2022a), and GEN (Wang et al., 321

2021a) employ the iterative training where two 322

components are developed simultaneously. They 323

adaptively learn the graph structure based on pre- 324

dictions or representations generated by an opti- 325

mized GNN. The learned structure is then used to 326

train a new GNN model in the subsequent iteration. 327

328Co-Training Models. Notable examples of co- 329

training models include Nodeformer (Wu et al., 330

2022), WSGNN (Lao et al., 2022), GT (Shi et al., 331

2021), SLAPS (Fatemi et al., 2021), Gaug (Zhao 332

et al., 2021b), IDGL (Chen et al., 2020), and GRCN 333

(Yu et al., 2020). In these models, the neural net- 334

works responsible for generating the graph struc- 335

ture are co-optimized alongside GNNs. This co- 336
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Table 3: Accuracy comparison between GraphEdit and
various state-of-the-art baselines. These refined struc-
tures are then fed into the downstream GCN encoder for
representation learning in the node classification task.

Model Cora Citeseer PubMed
GCN 87.36 ± 1.60 78.87 ± 2.18 87.37 ± 0.77

GRCN 84.13 ± 0.37 74.23 ± 1.18 85.20 ± 0.10
IDGL 88.63 ± 0.44 80.85 ± 0.07 88.30 ± 0.12
GAug 86.72 ± 0.63 77.61 ± 1.02 84.48 ± 0.37
GEN 86.53 ± 0.63 80.38 ± 0.72 87.04 ± 0.11

SLAPS 81.99 ± 1.57 73.17 ± 0.87 85.21 ± 0.18
GT 88.34 ± 0.35 78.46 ± 0.48 86.69 ± 0.19

CoGSL 82.07 ± 0.51 78.84 ± 0.11 OOM
WSGNN 89.59 ± 0.17 80.88 ± 0.48 87.17 ± 0.19

SUBLIME 85.04 ± 0.37 43.73 ± 7.08 86.03 ± 0.33
STABLE 88.75 ± 0.35 75.67 ± 0.98 86.30 ± 0.15

Nodeformer 88.56 ± 1.01 80.28 ± 0.57 87.93 ± 0.26
GSR 87.56 ± 1.19 78.77 ± 1.56 85.61 ± 0.55

SEGSL 87.49 ± 0.66 78.91 ± 0.52 87.57 ± 0.37
GraphEdit 90.90 ± 1.16 81.85 ± 1.42 94.09 ± 0.28

optimization ensures a more integrated and effec-337

tive learning process, as both components mutually338

benefit from each other’s improvements.339

4.1.3 Implementation Details340

In our GraphEdit model, we use Vicuna-v1.5 as our341

LLM, trained using the LoRA method. The model342

backbone consists of a two-layer GCN with a hid-343

den size of 128. For our experiments, we divide344

the Cora, Citeseer, and PubMed datasets into three345

parts: training, validation, and testing. Following346

a ratio of 6:2:2, as mentioned in (He et al., 2023;347

Tang et al., 2023; Wen and Fang, 2023), ensures348

a consistent approach to dataset division. To train349

both the LLM and the Edge Predictor, we randomly350

sample 20,000 node pairs from the training set as351

training data. During the selection of candidate352

edges, we experiment with different top-k values353

ranging from 1 to 5. This exploration enables us354

to investigate the impact of varying the number of355

selected edges and determine the optimal setting.356

To ensure the robustness of our results, we repeat357

all experiments 10 times and calculate the mean358

and standard deviation of the outcomes. To facil-359

itate fair comparisons, we tune the parameters of360

various baselines using a grid search strategy.361

4.2 Performance Comparison362

In our analysis of node classification tasks across363

three datasets, we compare our GraphEdit model364

against various GSL baselines. The results are pre-365

sented in Table 3, where "OOM" denotes out of366

memory error. Following existing GSL methods367

(Zhou et al., 2023; Wu et al., 2022), we utilize accu- 368

racy as the evaluation metric. From the comprehen- 369

sive data analysis, we draw three key observations: 370

371

Obs 1: Remarkable Performance of GraphEdit. 372

Our GraphEdit model demonstrates superior per- 373

formance compared to existing graph structure 374

learning methods across the three datasets, estab- 375

lishing itself as a state-of-the-art solution. The 376

remarkable outcomes underscore the capacity of 377

GraphEdit to enhance graph structures by unveiling 378

implicit global dependencies and efficiently elimi- 379

nating noisy connections among nodes in a graph. 380

Through this process, GraphEdit not only improves 381

the accuracy of graph structure learning but also 382

enhances the overall quality and reliability of the 383

learned graph representations. 384

385

Obs 2: Limitation of Existing GSL Approaches. 386

Among the various GSL baselines, only a subset 387

consistently outperforms the standard GCN, while 388

some even impede the performance of downstream 389

graph representation. These findings shed light on 390

the limitations of alternative solutions that heavily 391

rely on the original graph structures for supervision 392

labels. However, it is crucial to acknowledge that 393

the observed connections between nodes can of- 394

ten be noisy and incomplete, posing challenges for 395

GSL methods in generating high-quality graph rep- 396

resentations. In contrast, our GraphEdit capitalizes 397

on the reasoning capabilities of LLMs to incor- 398

porate external semantics into the graph structure 399

learning. By doing so, we enhance the overall qual- 400

ity of the learned representations in downstream 401

tasks with our refined graph structures. 402

403

Obs 3: Performance Variation across Datasets. 404

When analyzing the performance of GraphEdit, we 405

observe a significant improvement on the PubMed 406

dataset compared to Cora and Citeseer. Unlike 407

Cora and Citeseer, PubMed has a larger number of 408

nodes. Consequently, when training with an equal 409

number of node pairs, the LLM encounters a more 410

diverse range of situations in PubMed. Moreover, 411

unlike Cora where missing abstracts are common, 412

the textual information in PubMed’s nodes is con- 413

sistently abundant and detailed. Additionally, with 414

only three categories, the PubMed dataset presents 415

a less complex classification challenge. The same 416

volume of sampling in PubMed enables the LLM to 417

encounter a greater variety of edges associated with 418

each category compared to the other two datasets. 419
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Table 4: Model ablation study of our GraphEdit framework in terms of accuracy.

Model Cora Citeseer PubMed

GCN 87.36 ± 1.60 78.87 ± 2.18 87.37 ± 0.77
MLP 77.32 ± 3.23 71.63 ± 1.47 85.83 ± 0.62
w/o GNN 72.75 68.52 90.15

Instruction -prompt -prompt-w/o-ca -prompt -prompt-w/o-ca -prompt -prompt-w/o-ca

GraphEdit w/o Add 88.38 ± 1.06 87.90 ± 1.89 80.03 ± 2.16 79.61 ± 2.20 91.83 ± 0.38 90.63 ± 0.51
GraphEdit w/o Del 90.52 ± 1.26 89.96 ± 1.25 81.43 ± 1.97 80.19 ± 2.11 89.63 ± 0.50 88.60 ± 0.60
GraphEdit 90.90 ± 1.16 89.52 ± 1.49 81.85 ± 1.42 79.84 ± 1.95 94.09 ± 0.28 91.98 ± 0.45

4.3 Model Ablation Study420

To analyze the impact of different components on421

the performance of GraphEdit, we conducted abla-422

tion experiments from two key perspectives. The423

experimental results are presented in Table 4.424

425 Instruction-Tuning Paradigm. In Table 4, the426

"-prompt" notation refers to the utilization of a427

two-stage instruction-tuning paradigm (as shown428

in Table 1) to fine-tune the LLM. These instructions429

include the task of predicting both the existence of430

edges and the specific category of connected nodes.431

On the other hand, "-prompt-w/o-ca" indicates fine-432

tuning the LLM with simplified instructions that do433

not involve forecasting the specific node category.434

435 Graph Structure Refinement. The "GraphEdit436

w/o Add" variant denotes that the GraphEdit is de-437

signed specifically for the deletion of edges from438

the original graph. This variant’s primary objective439

is to identify and remove unnecessary or irrelevant440

edges, thus refining the graph structure. In contrast,441

the "GraphEdit w/o Del" variant refers to the func-442

tionality of the GraphEdit in appending candidate443

edges to the original graph structure. This approach444

aims to enrich the graph by introducing potentially445

valuable connections between nodes.446

Based on the findings presented in Table 4, we447

can observe three significant phenomena:448

449 • (i) These findings emphasize the importance450

of considering both edge existence and type pre-451

diction tasks within the fine-tuning process of452

GraphEdit. The exclusion of node type prediction453

in the "-prompt-w/o-ca" condition results in a loss454

of precision in node category matching.455

456 • (ii) The performance of "GraphEdit w/o Add"457

sheds light on the impact of solely denoising the458

edges of the original graph, revealing limited ef-459

fectiveness, particularly in datasets like Cora and460

Citeseer where the original edges are relatively461

sparse. However, the significant performance boost462

observed when adding candidate edges to the GCN463

highlights the ability of GraphEdit to capture im- 464

plicit global dependencies among different nodes. 465

These findings underscore the importance of lever- 466

aging both edge deletion and addition strategies, 467

along with the reasoning capabilities of the LLM, 468

to optimize the original graph structures. 469

470
• (iii) The performance difference between 471

GraphEdit and "w/o GNN" emphasizes the need 472

to incorporate GNN-encoded structural informa- 473

tion for node classification tasks. "w/o GNN" 474

solely relies on LLMs to infer node class based 475

on GraphEdit’s text understanding ability, with- 476

out integrating the downstream GNN encoder to 477

preserve graph topology. Therefore, including the 478

GNN encoder is crucial for improved node classifi- 479

cation performance as it captures the graph struc- 480

ture within the latent representation space. 481
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Figure 2: Impact study of edge candidate selection.

4.4 Impact of Edge Candidate Selection 482

To investigate the impact of different quantities of 483

candidate edges on the model effectiveness, we ana- 484

lyze the performance across three datasets by vary- 485

ing the k-values from 1 to 5 (Figure 2). Generally, 486

we observe that higher k-values tend to improve the 487

model’s performance. However, on the Cora and 488

Citeseer data, the performance boost plateaus be- 489

yond k = 3, while on PubMed, it stabilizes around 490

k = 4. This suggests that there is a threshold k- 491

value beyond which the performance of GraphEdit 492

stabilizes without significant further improvements. 493

These findings provide insights for determining an 494

optimal quantity of candidate edges, ensuring effi- 495

cient utilization of computational resources while 496

maintaining satisfactory performance. 497
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Table 5: GraphEdit’s performance in capturing inherent
node relationships without explicit graph structure.

Method Cora Citeseer PubMed
GCN 87.36 ± 1.60 78.87 ± 2.18 87.37 ± 0.77
MLP 77.32 ± 3.23 71.63 ± 1.47 85.83 ± 0.62
GraphEdit-con 83.27 ± 2.02 77.71 ± 2.17 93.12 ± 0.29

4.5 Graph Structure Construction498

To further showcase the capability of our pro-499

posed GraphEdit framework in uncovering im-500

plicit node inter-dependencies, we assess its per-501

formance on the three datasets without the origi-502

nal graph structure. Results are shown in Table503

5, where "GraphEdit-con" denotes the use of the504

graph structure constructed by GraphEdit alone.505

Remarkably, even in the absence of the original506

graph structure, GraphEdit delivers commendable507

performance. Notably, on the PubMed dataset,508

GraphEdit outperforms the original graph struc-509

ture, highlighting its potential in text-rich scenarios.510

While GraphEdit falls short of surpassing the orig-511

inal structure on Citeseer, it achieves comparable512

results. Thus, this analysis confirms the effective-513

ness of our model in capturing inherent node rela-514

tionships, even without an explicit graph structure.515

Table 6: Performance on the PubMed with injected
noisy edges at different rates (0.05, 0.1, 0.15, 0.2, 0.25).

Method Attack Rate

0.05 0.1 0.15 0.2 0.25

GCN 86.06 85.13 84.28 83.61 83.26
IDGL 86.20 85.29 83.54 84.18 82.39

WSGNN 85.94 85.24 84.59 83.64 84.21

GraphEdit 94.07 94.14 94.16 94.20 94.27

4.6 Model Robustness Study against Noise516

To investigate the noise resistance of GraphEdit,517

we injected varying proportions of noise (0.05 to518

0.25) into the original graph structures of the three519

datasets. IDGL and WSGNN were selected as520

benchmarks and subjected to the same noisy condi-521

tions. Results are detailed in Table 6. The analysis522

reveals limited noise resistance in IDGL and WS-523

GNN. In contrast, our GraphEdit method maintains524

stable performance. Surprisingly, on the PubMed525

dataset, increasing random noise edges actually im-526

proves GraphEdit’s performance. This suggests527

effective noise edge elimination while retaining528

beneficial edges introduced as noise.529

4.7 Comparison with other LLMs530

We compared GraphEdit with commonly used531

LLMs (Brown et al., 2020; Sun et al., 2020; Chi-532

Table 7: Performance comparison with other LLMs.

Model Cora Citeseer

GCN 87.36 ± 1.60 78.87 ± 2.18
ChatGPT 3.5 85.30 ± 2.15 78.76 ± 2.19
ERNIE-Bot-turbo 86.99 ± 1.50 79.20 ± 2.25
Vicuna-7B 87.47 ± 1.22 79.55 ± 2.17
BLOOMZ-7B 84.87 ± 1.58 79.47 ± 2.28
Llama-2-7B 84.83 ± 1.94 78.65 ± 1.93
ChatGLM2-6B 80.92 ± 2.53 74.47 ± 2.09
AquilaChat-7B 86.31 ± 2.05 78.17 ± 2.42
GraphEdit 88.38 ± 1.06 80.03 ± 2.16

ang et al., 2023; Yong et al., 2022; Touvron et al., 533

2023; Du et al., 2021; BAAI, 2023) to evaluate 534

their denoising capabilities on the original graph 535

structures of the Cora and Citeseer datasets, us- 536

ing the same prompt shown in Table 1. The re- 537

sults are summarized in Table 7. GraphEdit out- 538

performs other LLMs significantly in denoising on 539

both datasets, demonstrating the effectiveness of 540

our instruction tuning approach. Notably, ERNIE- 541

Bot-turbo, Vicuna-7B, and BLOOMZ-7B perform 542

well on the Citeseer dataset, although their perfor- 543

mance is less impressive on the Cora dataset. This 544

discrepancy can be attributed to the frequent occur- 545

rence of missing abstracts in Cora’s nodes, which 546

hampers the decision-making process of the LLMs 547

and impacts the final graph structure. 548

Original Structure Add and DeleteDelete Only

Figure 3: Visual analysis with random sampled 20 nodes
and their 1-hot neighbors on the PubMed dataset.

4.8 Visual Analysis 549

In this section, we visually compare the original 550

graph structure of PubMed with the optimized 551

graph structure using Figure 3. The figures are 552

arranged as follows: the original graph structure is 553

on the left, the GraphEdit removed structure is in 554

the middle, and the structure after adding and then 555

removing edges is on the right. In the original graph 556

structure, the central node faced classification chal- 557

lenges due to its neighboring nodes belonging to 558

three different categories. However, GraphEdit 559

effectively addressed this issue by removing the 560

neighbors of different categories around the central 561

node, enabling accurate category determination. 562
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Table 8: Case study of GraphEdit on PubMed data

Query: Based on the title and abstract of the two papers.
Do they belong to the same category among Diabetes
Mellitus Type 1, Diabetes Mellitus Type 2, or Diabetes
Mellitus, Experimental? If the answer is "True", answer
"True" and the category, otherwise answer "False". The
first paper: Title: {Node 2601 Title} Abstract: {Node
2601 Abstract}. The second paper: Title: {Node 6289
Title} Abstract: {Node 6289 Abstract}.
GT: True. Diabetes Mellitus Type 1.
The prediction results of our GraphEdit: True. Dia-
betes Mellitus, Experimental.

Additionally, the original structure had a mixed563

area of three categories, which was successfully564

split into two distinct substructures after GraphEdit565

processing, simplifying the classification task.566

Moreover, the modified structure on the right main-567

tained intra-class connections while eliminating568

inter-class links. These observations highlight the569

ability of GraphEdit not only to denoise the graph570

but also to restructure it in a way that greatly facili-571

tates the task of node classification for the GCN.572

4.9 Case Study573

To demonstrate the advantages of predicting node574

consistency rather than directly predicting node575

categories, we present a clear example from the576

PubMed dataset. Table 8 showcases a straightfor-577

ward case where nodes 2601 and 6289 are con-578

nected in the original PubMed graph structure and579

belong to the same category. During the inference580

process of GraphEdit, although it did not precisely581

predict the specific category of these two nodes, it582

successfully identified the consistency of their cat-583

egories. This instance highlights how the training584

approach of GraphEdit effectively reduces the error585

rate in the LLM’s inference, focusing on capturing586

the underlying consistency rather than precise cat-587

egorization. This example serves to illustrate the588

benefits of prioritizing node consistency prediction,589

emphasizing the ability of the GraphEdit approach590

to capture meaningful patterns and relationships in591

the graph structure, even if it falls short of precisely592

categorizing individual nodes.593

5 Related Work594

Graph Structure Learning. Various models have595

been developed to enhance our understanding and596

optimization of graph structures. Early works like597

Dropedge (Rong et al., 2019) and Neuralsparse598

(Zheng et al., 2020) focused on graph denoising599

through edge-dropping. LDS (Franceschi et al.,600

2019) modeled structures using Bernoulli distribu-601

tions. More recent approaches, like IDGL (Chen 602

et al., 2020) and GRCN (Yu et al., 2020), leverage 603

node representations for structure formation. IDGL 604

employs a weighted cosine function, while GRCN 605

uses dual GNNs for structure derivation. WSGNN 606

(Lao et al., 2022) employs variational inference for 607

joint learning of node labels and graph structure. In 608

contrast, SUBLIME (Liu et al., 2022b) explores un- 609

supervised learning with a structure bootstrapping 610

contrastive framework. However, these methods 611

heavily rely on explicit node connections, making 612

them susceptible to data noise and sparsity. 613

614Large Language Models for Graphs. Recent 615

research has begun exploring the application of 616

LLMs in learning with graph-structured data (Wei 617

et al., 2023). For instance, TAPE (He et al., 618

2023) utilizes LLMs to predict ranked classifica- 619

tion lists for nodes, providing detailed explanations. 620

KEA (Chen et al., 2023) enriches node text by in- 621

corporating knowledge entities. RLMRec (Ren 622

et al., 2023) proposes to align GNN embeddings 623

with LLM’s knowledge. Additionally, ENG (Yu 624

et al., 2023) leverages LLMs to generate new nodes, 625

enhancing GNN performance in few-shot learn- 626

ing. GraphGPT (Tang et al., 2023) investigates 627

the fusion of GNNs and LLMs, developing a cus- 628

tomized LLM for graphs. However, none of these 629

approaches address the challenges of noisy and 630

incomplete data commonly found in graphs. In 631

contrast, this work harnesses the reasoning capabil- 632

ities of LLMs to robustly and effectively optimize 633

the structure of graph-structured data. 634

6 Conclusion 635

We introduce a groundbreaking large language 636

model called GraphEdit, specifically designed for 637

learning graph structures. Our model possesses the 638

remarkable ability to identify noisy connections be- 639

tween nodes and uncover implicit relations among 640

non-connected nodes, thereby enabling the opti- 641

mization of the graph structure. To achieve this, 642

we seamlessly integrate the power of LLMs with 643

our lightweight edge predictor, which we have de- 644

veloped. This integration empowers our model to 645

refine the graph structures, aligning them with the 646

reasoning knowledge of LLMs. To rigorously eval- 647

uate the performance of our model, we conducted 648

extensive experiments across various settings. The 649

results consistently demonstrate the exceptional 650

superiority of GraphEdit. Moreover, through thor- 651

ough investigation, we provide further validation 652

for the rationale behind our model design. 653
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7 Limitation654

It is important to acknowledge that, although the655

results of this study are promising, there are still656

limitations that need to be addressed in future.657

Firstly, while our GraphEdit has demonstrated658

promising results, it is crucial to examine its per-659

formance across a wider range of graph structures.660

Future studies should explore different types of661

graph data, such as knowledge graphs and biolog-662

ical networks, to assess the generalizability and663

adaptability of our model to diverse domains.664

Secondly, real-world graph structures often un-665

dergo changes over time, making it essential to in-666

vestigate how GraphEdit can handle dynamic and667

evolving graphs. Future research should explore668

strategies to adapt and update the model as new669

nodes, edges, or attributes are added or modified670

within the graph. This investigation will enable the671

model to stay up-to-date and maintain its effective-672

ness in dynamic environments.673

Lastly, enhancing the interpretability and ex-674

plainability of GraphEdit is an important avenue675

for further investigation. Developing techniques to676

extract meaningful insights and explanations from677

the model’s reasoning process will help users better678

understand and trust the model’s decisions.679

Addressing these limitations in future studies680

will not only strengthen the overall understanding681

and applicability of GraphEdit. By exploring dif-682

ferent graph structures, adapting to dynamic envi-683

ronments, and enhancing interpretability, we can684

foster the development of more robust and reliable685

graph-based learning models that can effectively686

handle a wide range of real-world scenarios.687
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