InceptionXML: A Lightweight Framework with Synchronized Negative
Sampling for Short Text Extreme Classification

Anonymous ACL submission

Abstract

Automatic annotation of short-text data to a
large number of target labels, referred to as
Short Text Extreme Classification, has found
numerous applications including prediction of
related searches and product recommendation
tasks. In this paper, we propose a convolutional
architecture INCEPTIONXML which is light-
weight, yet powerful, and robust to the inher-
ent lack of word-order in short-text queries en-
countered in search and recommendation tasks.
We demonstrate the efficacy of applying con-
volutions by recasting the operation along the
embedding dimension instead of the word di-
mension as applied in conventional CNNs for
text classification. Towards scaling our model
to datasets with millions of labels, we also pro-
pose INCEPTIONXML+ framework which im-
proves upon the shortcomings of the recently
proposed dynamic hard-negative mining tech-
nique for label shortlisting by synchronizing
the label-shortlister and extreme classifier. IN-
CEPTIONXML+ not only reduces the inference
time to half but is also an order of magnitude
smaller than previous state-of-the-art ASTEC
in terms of model size. Through our proposed
models, we outperform all existing approaches
on popular benchmark datasets.

1 Introduction

Extreme Multi-label Classification (XML) in-
volves classifying instances into a set of most rel-
evant labels from an extremely large (on the or-
der of millions) set of all possible labels. For
scenarios when the input instances are short text
queries, many successful applications of the XML
framework have been found in ranking and rec-
ommendation tasks such as prediction of Related
Search on search engines (Jain et al., 2019), sug-
gestion of query phrases corresponding to short
textual description of products on e-stores (Chang
et al., 2020) and product-to-product recommenda-
tion (Dahiya et al., 2021a; Chang et al., 2021).
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Figure 1: INCEPTIONXML(+) (Ours) hits the sweet
spot in terms of performance on the P@ 1 metric, train-
ing time, model size and inference times.

Challenges in Short-Text XML: (i) Unlike regu-
lar documents, most short text queries are sparse
and contain very few words and (ii) are typically
plagued with noise and non-standard phrases which
do not always observe the syntax of a written lan-
guage. For instance, queries “best wireless head-
phones 2022" and “2022 best headphones wire-
less" should invoke similar search results on an
e-commerce website (Tayal et al., 2020). Short text
input data in search and recommendation, there-
fore, give rise to a significant amount of ambigu-
ity (Wang and Wang, 2016). Furthermore, (iii) a
large fraction of classes are tail labels, which are
paired with a handful of positive samples (Jain
et al., 2016). Taken together, the above charac-
teristics, pose a challenge in learning rich feature
representations for the task at hand.

Need of lightweight architectures in Short-Text
XML: While large pre-trained language models are
the default choice for most down-stream language
tasks, we argue that (i) using such computation-
ally intensive architectures for modeling short-text
queries is rather overcompensating for the XML
task at hand. Further, (ii) the real-world use cases of
short-text extreme classification require very fast in-
ference times. The deployment of large pre-trained



language models such as BERT, RoBERTa and
XLNet as in LightXML (Jiang et al., 2021), APLC-
XLNet (Ye et al., 2020) and X-Transformer (Chang
et al., 2020) adds heavily to the already existing
compute costs in XML tasks leading to slower train-
ing and inference times (Table: 2). Finally, (iii)
extremely large number of possible labels leads to
memory bottlenecks in XML tasks. As a result,
these transformer-based methods become unscal-
able to millions of labels (Table: 1) while staying
within reasonable hardware constraints.
InceptionXML: To address the above, we (i)
develop INCEPTIONXML, a lightweight CNN-
based encoder, which goes against the traditional
paradigm (Kim, 2014; Liu et al., 2017) of con-
volving over the words dimension in favor of the
embedding dimension, (ii) propose an embedding-
enhancement module for learning a word-order ag-
nostic representation, making our approach more
robust to lack of structure in short-text queries,
(ii1) develop a very fast and computationally inex-
pensive INCEPTIONXML+ framework, which syn-
chronizes the label-shortlisting and extreme tasks
making it scalable to millions of labels.
Highlights: We (i) further the state-of-the-art on
23 out of 24 metrics across 4 popular benchmark
datasets (ii) reduce the inference time to half of the
previous fastest state-of-the-art, and (iii) require
only 1/53x FLOPS as compared to previous pre-
trained transformer based approaches.

2 Related Work

Extreme Classification: The focus of a majority
of initial works in this domain has been on de-
signing one-vs-rest (Babbar and Scholkopf, 2017),
tree-based (Prabhu et al., 2018; Chalkidis et al.,
2019; Khandagale et al., 2020) or label embedding
based (Bhatia et al., 2015) classifiers with fixed
features in the form of bag-of-words representation.
With advances in deep learning, jointly learning
label and input text embeddings has also been de-
veloped (Tang et al., 2015; Wang et al., 2018). For
XML tasks, recent techniques based on attention
mechanism (You et al., 2019) and pre-trained trans-
former models (Chang et al., 2020; Ye et al., 2020;
Jiang et al., 2021; Yu et al., 2020) have shown great
promise. In the context of CNNs for text classifi-
cation, while (Wang et al., 2017) extended (Kim,
2014) for short input sequences, (Liu et al., 2017)
built upon the same for XML tasks.

Short-text Extreme Classification: In XML tasks

where the inputs are short text queries, there has
been a slew of recent works. Based on the avail-
ability of label meta-data, these works can be di-
vided into two categories: (i) ones which make no
assumptions regarding label text, i.e., labels are
numeric identifiers, such as ASTEC (Dahiya et al.,
2021b) and (ii) others which assume that the labels
are endowed with clean label text which include
DECAF (Mittal et al., 2021a), GALAXC, ECLARE
(Mittal et al., 2021b), and SIAMESEXML (Dahiya
et al., 2021a). Even though the additional label
meta-data is useful, it is usually only known for
only a small subset of all labels. Further, the for-
mer problem setup, which is the focus of this work,
makes no assumption about label-text, and hence
is a harder, more general and widely applicable.

We compare our model vis-a-vis the frugal
ASTEC baseline, which uses a tfidf-weighted sum
of word embeddings as inputs and comprises only
of a single residual layer as its encoder. ASTEC
further relies on the capabilites of ANNs (Malkov
and Yashunin, 2020) for label-shortlisting while we
create our scalable extension INCEPTIONXML +
through dynamic hard-negative mining of labels.

Drawbacks of conventional CNNs in short-text
classification: Traditionally, in the usage of CNNs
over words in text classification, the intent is to
capture the occurrences of n-grams for represen-
tation learning (Kim, 2014; Liu et al., 2017). We
argue that this formulation is unsuitable for short-
text classification problems as (i) the implicit but
incorrect assumption of proper word-ordering in
short-text queries (Wang and Wang, 2016), and
(i1) as explained next, the much smaller sequence
length that restricts the effectiveness of convolution
in CNNs over the inputs.

In the datasets derived from Wikipedia titles,
98% documents have 8 or less words, while 82%
have 4 words or less (Table: 5 in Appendix). More-
over, 70% of the instances in AmazonTitles-670K
consist of 8 words or less (Figure: 6). This makes
the convolutional filters spanning over 4-8 words
in Kim (2014); Liu et al. (2017); Wang et al. (2017)
behave analogously to a weak fully connected layer
with very few hidden units, and hence leading to
feature maps with very few activations which are
sub-optimal for representation learning. In con-
text of the aforementioned problems, we hypothe-
size and empirically demonstrate the suitability of
convolving over the embedding dimensions of the
inputs instead of the words for short-text queries.
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Figure 2: INCEPTIONXML(+) Framework. The convolution filters on the input data span only a subset of adjacent
dimensions in the word embeddings while covering all the input tokens (‘who let the dogs out’). The Embedding-
enhancement module is shown in detail with its orthogonal self-attention layers followed by a projection layer.

3 Embedding Convolutions

By convolving over embeddings in a stacked set-
ting, we enable the model to detect correlations or
“coupled semantics” between different dimensions
in the embedding space by processing a limited
subset of semantics at a time. As compared to tradi-
tional convolutional operation, embedding convolu-
tions create significantly larger and enriched activa-
tion maps for the same inputs, while requiring sub-
stantially lesser parameters by using smaller filters
of size R9*16, where S is the maximum sequence
length of the input. We show empirically that this
modified approach works well for both short as
well as medium queries of up to 32 words, sig-
nificantly outperforming conventional CNN-based
approaches (Liu et al., 2017; Kim, 2014) for short-
text XML task.

As some readers might rightfully argue, pre-
trained word embeddings are typically not trained
with any incentive for localizing semantic infor-
mation in the embedding dimension. To this end,
we process the stacked word embeddings with self-
attention based embedding enhancement module
before applying embedding convolutions. This lets
information flow across every pair of semantics
irrespective of the spatial distance between them.

4 Proposed Model - InceptionXML

Problem Setup : Given a training set {z;, y; } Y ;,
x; represents an input short-text query, and the cor-
responding label set is represented by y; € {0, 1}
where L denotes the total number of labels. It may
be noted that even though L ~ 10, an instance is
only annotated with a few positive labels (Table: 5).

The goal is to learn a classifier which, for a novel

test instance x’/, predicts the top-k labels towards
better precision@k and propensity-scored preci-
sion@k (Bhatia et al., 2016) metrics. Towards this
goal, the main body of our encoder consists of three
modules that are applied sequentially on the word
embeddings (Fig. 2). These are (i) an embedding
enhancement module, (ii) embedding convolution
layers and (iii) an extreme linear classifier.

4.1 Embedding Enhancement Module

This module takes stacked word embeddings lack-
ing structure and context as input and makes it word
order agnostic. Specifically, the module consists
of two orthogonal attention layers (Doria, 2019)
applied sequentially on the word and the embed-
ding dimensions followed by a projection layer,
effectively encoding global information both, on a
word-level and on a semantic-level (Figure 4).

The sequential attention formulation in our em-
bedding enhancement module is given by:

Zsqa = SA(q = E(x), k= E(x), v
Tsa =SA(q=zL, k= E(z)T, v

sa’

where F(z) denotes the stacked word embeddings
for a sample text input 2 such that E(z) € RS,
Finally, each dimension of the intermediate em-
beddings x4, is then projected to a p-dimensional
space where p = 32 to obtain the final enhanced
embeddings x.,, € RP *d_ The information flow
across the embeddings in this module followed by
per-dimension projection makes z., independent
of the word order in short-text queries and makes
our model more robust to their lack of structure.



4.2 Embedding Convolution Layers

We employ three parallel branches of one-
dimensional convolution layers V;, i € [1,2,3]
with filter sizes of w; where w; € [4,8,16] each
with a stride of 4 along the embedding dimension
and p output channels. Let h,,, be the result of ap-
plying V; over SAy,:. We concatenate all resultant
h.,; row-wise before passing them to the next layer.

hwi = VixZenn
hy = Vi [hw, huy, hu,]

A final embedding convolutional layer V; with ker-
nel size of 16 and stride 4 is applied on the con-
catenated feature map, which is further flattened to
form the final feature representation /¢. This for-
mulation allows V to have an effective receptive
field spanning 1/4" of the enhanced embeddings,
further obviating the locality constraints of CNNs
as highlighted in section 3.

4.3 Extreme Linear Classifier

The first layer R transforms the feature map from
the encoder with a skip-connection while keeping
the dimensions same. The next linear layer W has
one-vs-all classifiers for each label in the dataset
which projects the features to the label space.

g=o(W - (relu(R-hys)+ hy))

The model is trained end-to-end using binary cross
entropy loss.

BCE(y, §) = — > _(1-y;)log(1—j;)+y; log(i;)
JeL

S InceptionXML+ Framework

INCEPTIONXML described previously scales to
datasets with hundreds of thousands of labels. How-
ever, scaling up to millions of labels in its existing
form is difficult as the loss computation in equa-
tion above involves calculation of loss over all L
labels, a very large majority of which are negative
labels for a given instance. Even with sufficient
hardware resources, scaling up over the entire la-
bel space requires very large training times (Chang
et al., 2020). We thus propose INCEPTIONXML+
framework, which improves existing hard-negative
mining to enable scaling to output spaces in the
order of millions along with an updated training
schedule. Not only does the framework scale our
encoder, but also significantly reduces the training
time and computational cost (Table 6).

Hard Negative-Mining of Labels: While tech-
niques have been studied for efficient hard-negative
label mining under fixed representation of data
points (Jain et al., 2019; Dahiya et al., 2021b),
only recent algorithms (Jiang et al., 2021) have
come up with dynamic hard negative-mining tech-
niques. Following the approach popularized by
these recent methods, our model makes predictions
in two stages: (i) shortlisting top K label-clusters
or “meta-labels" using a meta-classifier, and (ii)
employing a computationally feasible number of
one-vs-all classifiers corresponding to the labels
included in the shortlisted clusters to get the final
predicted labels and perform backpropagation.
Label Clustering To perform label clustering, we
construct Hierarchical Label Tree (HLT) using
the labels’ Positive Instance Feature Aggregation
(PIFA) representation over sparse BOW features of
their training samples (Chang et al., 2020; Dahiya
et al., 2021b). Specifically, we use balanced 2-
means clustering to recursively partition the label
set until we have a mapping C from L labels to L'
label clusters where L’ < L (Table:5).
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Figure 3: Progress of training (Precision@1) for the
extreme and meta-classifier of LIGHTXML and INCEP-
TIONXML+ frameworks on AmazonTitles-670K

Drawbacks of LIGHTXML framework: When
scaling our model using hard-negative mining as
done in LIGHTXML (Jiang et al., 2021), we no-
ticed that the performance of our encoder is bot-
tlenecked by a poorly performing meta-classifier.
From the training metrics (Fig: 3), we see a smooth
increment in the P@1 values for the extreme clas-
sifier (dashed blue) while the meta-classifier is un-
able to catch-up (dashed red). This indicates that
these two sub-tasks are not aligned well enough for
the encoder to learn suitable common representa-
tions that work well simultaneously for both the



sub-tasks. Our observations also indicate the fact
that the extreme task is easier to learn on shortlisted
labels than the meta-task on label clusters, and the
model tends to learn representations that benefit
the extreme task at the expense of the meta-task.
Key Improvements Our changes to the hard-
negative mining framework can be broadly grouped
into two sets. Firstly, we propose architectural im-
provements meant to synchronize the two tasks in
order to enable the encoder to learn better common
representations. Secondly, we make modifications
to the training loop in order to force the encoder to
learn representations that improve the performance
of the meta-classifier while remaining in sync with
the extreme task. Next, we discuss these in detail.

5.1 Synchronized Architecture

To synchronize the training of extreme and meta-
classifier tasks, we give them similar structures
by adding a linear layer W,,, with a residual con-
nection R, before the meta-classifier. Using the
intermediate representation /¢ from equation (1),
this is given by :

Um = 0(Whp, - (relu(Ry, - hy) + hy))

We create a shortlist S of all the labels in the top
K label clusters as predicted by the meta-classifier
using a label cluster to label mapping C . Via the
linear mapping W, extreme classifier then predicts
the probability of the query belonging to only these
shortlisted labels, instead of all L labels.

~

S =C 7' (topk (Gm. k) )
ge = relu(Re - hy) + hy
Jeg=0(Wey-ge), VIES

Architectural similarity of branches alone does not
ensure strong common representation learning. To
help the encoder learn suitable common represen-
tations, we further sync the two branches by (i) in-
creasing the “extremeness” of the meta-task by en-
larging the fan out of label clusters, and (ii) adding
spectral norm to the penultimate linear layers of
both heads to prevent the final features from drift-
ing too far from each other (Dahiya et al., 2021b).
Not only does this heavily improve (Table: 3) upon
the original implementation of dynamic negative-
hard mining as proposed in (Jiang et al., 2021), but
also inherently combines the task of the two stages
of the DeepXML pipeline (Dahiya et al., 2021b)
into an end-to-end trainable model. Though sub-
stantial gains are observed from enlarging the fan

out, this comes at a computational cost. Thus, in
practice we aim to strike a balance (Table: 3) be-
tween number of clusters and model efficiency for
non-trivial gains in accuracy.

5.2 Detached Training Schedule

To force the encoder to learn representations ben-
efiting the meta-task, we detach i.e. stop the flow
of gradients from the extreme classifier head to the
encoder (Algorithm 1), for the initial 25% of the
training loop. This results in shortlisting of harder
negative labels for the extreme classifier to learn
during training time and ensures higher recall dur-
ing inference time (Table: 3). Detaching instead
of simply removing the extreme classification head
enables the module to continuously adapt to the
changing encoder representations without allowing
it to affect the training of the meta-classifier. This
setting is possible because of the spectral norm
applied to the weights of the penultimate layers
in both the heads which ensures that the encoder
learnt for the meta-task remains relevant for the
extreme task when its gradients are re-attached.

Algorithm 1: Training algorithm for INCEPTIONXML+

1 for epoch in (1, epochs):

2 for x, y in data:

3 z = E(X)

4 h = encoder(z)

5 y_meta = meta_classifier (h)

6 y_cluster = label_to_cluster (y)

7 meta_loss = bce(y_meta, y_cluster)

8

9 # shortlisting top K clusters

10 top_k = get_top_K clusters(y_meta, k)
11 candidates = cluster_to_label (top_k)
12 # add missing positive labels

13 candidates = add_missing(candidates,y)
14

15 # detached training

16 if epoch <= epochs/4:

17 h = h.detach()

18 y_ext = ext_classifier (h, candidates)
19 ext_loss = bce(y_ext, y, candidates)
20 loss = meta_loss + ext_loss
21 loss.backward()
22
23 # gradient descent
24 update (E, encoder, meta_classifier,

ext_classifier)

Loss: The losses for the meta-classifier and the
extreme classifier are given by:

Emeta = BCE(ym ) @m)a
£ezt = BCE(yeJ s ﬁe’l> Vi e 3

The final loss is the sum of the above losses i.e.
L = Loeta+Legt. For prediction, the final ranking



is produced by only using the logits of the extreme
classifier.

6 Experiments

Implementation Details: We initialize our embed-
ding layer with 300-dimensional pre-trained GloVe
embeddings (Pennington et al., 2014). Embeddings
of words that do not exist in GloVe are initialized
with a random vector sampled from the uniform
distribution ¢/(—0.25, 0.25). Following (Liu et al.,
2017), we use a use white space separated pre-
processing function for tokenization and remove
the stop words and punctuation from the raw data
using NLTK library. We train all our models on
a single 32GB Nvidia V100 GPU. Further imple-
mentation details about batch size, learning rate,
epochs etc. can be found in table 6 in the appendix.
Datasets: We evaluate the proposed INCEP-
TIONXML(+) frameworks on 4 publicly available
benchmarks from the extreme classification reposi-
tory (Bhatia et al., 2016). The details of the datasets
are given in Table 5 (Appendix), the number of
labels range from 350,000 (WikiSeeAlsoTitles-
350K) to 2.8 Million (AmazonTitles-3M).

6.1 Main Results

INCEPTIONXML+ finds a sweet-spot (Fig. 1) be-
tween the two extreme ends of modern deep ex-
treme classification pipelines - heavy transformer-
based methods, and frugal architectures such as
ASTEC. We show that replacing the pre-trained
transformer encoder with our lightweight CNN-
based encoder, combined with further improve-
ments to the hard-negative mining pipeline leads
to better prediction performance apart from faster
training and the ability to scale to millions of labels.
As shown in Table 1, for most of the dataset-
metric combinations, the proposed models, INCEP-
TIONXMUL(+), not only outperform the previous
state-of-the-art ASTEC and but also its ensemble
version ASTEC-3 with non-trivial gains. Notably,
INCEPTIONXML gains an average of 3.9% and
6.9% over ASTEC on all three datasets except
AmazonTitles-3M on the P@1 and PSP@1 metrics.
Also, the following observations can be made :

* The proposed models achieves at least 10% rel-
ative improvement as compared to XML-CNN
(Liu et al., 2017), which captures n-grams for
representation learning showing the effectiveness
of our approach as compared to conventional
CNNs-based approaches.

Method ‘P@l P@3 P@5 | PSP@1 PSP@3 PSP@5

| AmazonTitles-670K

INCEPTIONXML+ | 41.28 37.04 3392 | 27.02 30.05 32.72
INCEPTIONXML | 41.78 37.47 34.15 | 28.17 30.96 33.31
ASTEC 3997 3573 3259 | 27.59 29.79 31.71
ASTEC-3 40.63 36.22 33.00 | 28.07 30.17 32.07
LIGHTXML 41.57 37.19 3390 | 25.23 28.79 31.92
APLC-XLNET | 34.87 30.55 27.28 | 20.15 21.94 23.45
ATTENTIONXML | 3792 3373 30.57 | 24.24 26.43 28.39
XML-CNN 35.02 3137 2845| 21.99 24.93 26.84

DISMEC 38.12 34.03 31.15| 2226 25.45 28.67
PARABEL 38.00 33.54 30.10 | 23.10 25.57 27.61
BONSAI 38.46 3391 30.53 | 23.62 26.19 28.41
MACH 3492 31.18 28.56 | 20.56 23.14 25.79
WikiSeeAlsoTitles-350K

INCEPTIONXML+ | 20.77 14.61 11.44 | 10.26 12.41 14.15
INCEPTIONXML | 21.54 15.19 1197 | 10.93 13.05 14.92

ASTEC 2042 1444 11.39 9.83 12.05 13.94
ASTEC-3 20.61 14.58 11.49 9.91 12.16 14.04
LIGHTXML 21.25 1436 11.11 9.60 11.48 13.05

APLC-XLNET | 2042 1422 11.17 7.44 9.75 11.61
ATTENTIONXML | 15.86 1043 8.01 6.39 7.20 8.15
XML-CNN 1775 1234 9.73 8.24 9.72 11.15

DISMEC 16.61 11.57 9.14 7.48 9.19 10.74
PARABEL 17.24 11.61 892 7.56 8.83 9.96
BONSAI 17.95 1227 9.56 8.16 9.68 11.07
MACH 1479 9.57 17.13 6.45 7.02 7.54
WikiTitles-500K
INCEPTIONXML+ | 4524 2591 1836 | 19.24 19.38 19.50
INCEPTIONXML | 47.28 27.14 19.39 | 20.79 21.01 21.17
ASTEC 46.01 25.62 18.18 | 18.62 18.59 18.95
ASTEC-3 46.60 26.03 18.50 | 18.89 18.90 19.30

LIGHTXML 47.17 2585 18.14 | 17.64 17.54 17.50
APLC-XLNET | 43.56 23.01 16.58 | 14.73 13.19 13.47
ATTENTIONXML | 42.89 22.71 15.89 | 15.12 14.32 14.22
XML-CNN 4345 2324 1653 | 15.64 14.74 14.98

DISMEC 39.89 21.23 1496 | 15.89 15.15 15.43
PARABEL 4250 23.04 16.21 16.55 16.12 16.16
BONSAI 42,60 23.08 1625 | 17.38 16.85 16.90
MACH 33.74 15.62 1041 11.43 8.98 8.35

AmazonTitles-3M
INCEPTIONXML+ | 46.95 4528 4345 | 16.02 18.94 21.03

ASTEC 47.64 44.66 42.36 | 1588  18.59  20.60
ATTENTIONXML | 46.00 42.81 40.59 | 12.81 15.03 16.71
DISMEC 41.13 3889 37.07 | 11.98 14.55 16.42
PARABEL 46.42 4381 41.71 12.94 15.58 17.55
BONSAI 46.89 4438 4230 | 13.78 16.66 18.75
MACH 37.10 33.57 3133 7.51 8.61 9.46

Table 1: Comparison of InceptionXML to state-of-
the-art algorithms on benchmark datasets. The best-
performing approach is in bold and the second best is
underlined. The algorithms omitted in AmazonTitles-
3M do not scale for this dataset on 1 Nvidia V100 GPU.

* Significant gains of up to 20% in are obtained
compared to the transformer based APLC-
XLNET (Ye et al., 2020). We also outper-
form LIGHTXML (Jiang et al., 2021) on all
benchmarks despite having a comparatively light-
weight architecture. Notably, none of these ar-
chitectures scale to AmazonTitles-3M dataset,
demonstrating the efficacy and scalability of
the proposed light-weight encoder in INCEP-
TIONXML+ framework.

* Our models also significantly outperform non-
deep learning approaches using bag-of-words



representations such as the label-tree based al-
gorithms like BONSAT (Khandagale et al., 2020)
and PARABEL (Prabhu et al., 2018), and D1S-
MEC (Babbar and Scholkopf, 2017) which is an
embarrassingly parallel implementation of LIB-
LINEAR (Fan et al., 2008).

* It maybe noted that INCEPTIONXML outper-
forms its scaled counterpart on all benchmarks,
especially for the PSP metrics. While INCEP-
TIONXML always gets information about all
negative labels instead of only hard-negatives
during training, it also makes prediction over the
entire label space. On the other hand, INCEP-
TIONXML+ has to rely on the meta-classifier for
label shortlisting. As a 100% recall rate cannot
be ensured for label-shortlisting, some positive
label-clusters are occasionally missed leading to
slightly reduced performance.

6.2 Discussion on Computational Cost

Training time: As shown in Table 2, training time
of INCEPTIONXML+ ranges from 4.3 hours on
WikiSeeAlsoTitles-350K & AmazonTitles-670K
datasets to 27.2 hours on AmazonTitles-3M. We ob-
serve a ~44% decrement in training time by scaling
our encoder in the INCEPTIONXML+ Framework
as compared to the unscaled INCEPTIONXML. As
expected, our models train much faster than trans-
former based approaches (LIGHTXML, APLC-
XLNET) while being comparable with ASTEC.
Model Size: INCEPTIONXML is extremely
lightweight in terms of model size containing only
400K parameters while INCEPTIONXML+ con-
tains only 630K parameters, which is multiple or-
ders of magnitude lesser compared to pretrained
transformer based models with ~110 million pa-
rameters. Further, our models are approximately
8-10x smaller compared to ASTEC which needs to
store ANNS graphs for label centroids and training
data-points for performance leading to exception-
ally large model size (Table 2).

Flops: To compute flops, we use the stan-
dard FVCORE library! from facebook. No-
tably, INCEPTIONXML+ performs favourably with
LIGHTXML while requiring only 1/53x flops on
average, and INCEPTIONXML significantly outper-
forms the same with 1/8x flops (Table: 2).
Inference Time: Inference time has been calcu-
lated considering a batch size of 1 on a single

"https://github.com/facebookresearch/
fvcore/blob/main/docs/flop_count.md

Nvidia 32GB V100 GPU. We note that our pro-
posed INCEPTIONXML(+) architectures not only
have the lowest inference times on all datasets, but
also our framework reduces the inference time to
half as compared to the previous fastest ASTEC.
However, using transformer based models results
in 3-5x slower inference as compared to INCEP-
TIONXML+.

To summarize, our models improve by approxi-
mately an order of magnitude on both model sizes
and floating point operations compared to recent
state-of-the-art approaches, and are economical
in terms of training time with very low inference
times, all while achieving state-of-the-art perfor-
mance on all important metrics and benchmarks.

Giga Training Inference Model
FLOPS Time (hr) Time (msec) Size (GB)
Method AmazonTitles-670K

INCEPTIONXML+ | 0.049 43 4.67 14
INCEPTIONXML 0.334 7.7 7.97 1.3

ASTEC * 3.0 8.17 10.93
LIGHTXML 2.775 13.5 13.11 1.6
APLC-XLNET 3.564 16.1 24.66 1.8

WikiSeeAlsoTitles-350K

INCEPTIONXML+ | 0.027 4.3 4.36 0.80
INCEPTIONXML 0.176 6.3 5.60 0.73
ASTEC * 29 9.70 7.41
LIGHTXML 1.214 14.5 10.35 1.0
APLC-XLNET 2.248 16.0 18.39 1.5

WikiTitles-500K

INCEPTIONXML+ | 0.029 10.3 4.37 1.2
INCEPTIONXML 0.247 20 6.45 1.1

ASTEC * 7.3 9.97 15.15
LIGHTXML 1.742 224 11.33 1.5
APLC-XLNET 2.51 25.1 20.25 1.9

Table 2: Comparison of algorithms in terms of Giga-
Flops, Training/Inference Time and Model Size. * Due
to the external ANNS module used in ASTEC for label
shortlisting, it is not possible to compute its flops.

6.3 Ablation Results

Self-Attention Layers: The sequentially applied
self-attention layers improve INCEPTIONXML’s
performance by only 1% at max on the perfor-
mance metrics as shown in Fig. 4. This further
demonstrates the superior representation learning
capability of our encoder for short-text queries as
even without the self-attention layers, our model
outperforms the ensemble model ASTEC-3 and the
transformer model LIGHTXML.

InceptionXML+: Table 3 shows a comparison of
the proposed INCEPTIONXML+ pipeline vis-a-vis
LIGHTXML for AmazonTitles-670K dataset. It is
clear that the INCEPTIONXML+ framework sig-
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Figure 4: Performance with and w/o the self-attention layers on WikiSeeAlsoTitles-350K & AmazonTitles-670K

nificantly improves upon the hard-negative mining
technique as proposed in LIGHTXML in terms of
performance in both P@K and PSP@K metrics.
Note that we keep the shortlisted labels consistent
by doubling the number of shortlisted meta-labels
as the fan-out doubles. It may be also be noted
that as the fan-out increases, our detached train-
ing method improves the results more prominently.
This can be attributed to the increased “extreme-
ness” of the meta-task which ensures that the rep-
resentations learnt by the encoder for the meta-task
become increasingly more relevant to the extreme-
task when the gradients of the extreme classifier
are re-attached during training.

(', Topx) | Model | P@1 P@5 | PSP@1 PSP5
Ours 4026 3275] 2605 3121

8K, 100 Ours w/o Detaching | 40.13  32.68 | 2575 31.07
in LightXML Framework | 39.40 32.36 | 25.14 30.38

Ours 4067 3327 2634 3181

16K, 200 Ours w/o Detaching | 40.51 3295 | 26.03 31.36
in LightXML Framework | 39.47 3243 | 24.89 30.67

Ours 4101 33.65| 2675 3232

32K, 400 Ours w/o Detaching | 40.24 33.09 | 2607 31.67
in LightXML Framework | 39.58 34.81 2445  30.73

Ours 4128 3392 | 27.02 3272

65K, 800 Ours w/o Detaching | 4047 3323 | 2640 31.97
in LightXML Framework | 39.27 32.77 | 23.54 30.54

_ | inDeepXML Pipeline | 38.53 32.21 | 27.80 31.62

Table 3: Impact of increasing fan-out of label clus-
ters (L") on InceptionXML+ Framework (Ours) and
LightXML Framework over AmazonTitles-670K.

Robustness to Lack of Word-order: For testing
the robustness of our method to the order of words
in input data, we train the InceptionXML+ on the
original training data for AmazonTitles-670K, but
randomly permute the words in test set, and eval-
uate the performance. This is repeated 10 times
with different test set permutations (Table 4). We
witness only a minor dip in performance across the
metrics still outperforming ASTEC-3 and demon-
strating the robustness of our encoder to lack of

structure in short-text queries.

Test data | Pe3 P@5

Original AmazonTitles-670K 37.04 33.92
Permuted Word-order 36.01 £ 0.05 32.86 £ 0.03

Original WikiSeeAlsoTitles-350K 14.61 11.44
Permuted Word-order 14.45+0.03 11.32£0.02

Table 4: Comparison of results with original test data
and that obtained by permuting the word order in the
test set for INCEPTIONXML+

InceptionXML in DeepXML Framework: We
integrate our encoder with the DeepXML (Dahiya
et al., 2021b) pipeline as used by ASTEC and find it
inflexible to improve upon due to the requirement
of fixed representations for their label shortlisting
strategy. Moreover, when using our encoder as a
drop-in replacement, we find our encoder’s perfor-
mance degrades in terms of precision in the Deep-
XML Framework as compared to the performance
in the vanilla LIGHTXML Framework (Table 3:
last row). This indicates the overall advantage of
using dynamic hard-negative mining as compared
to techniques requiring fixed representations.

7 Conclusion

In this work, we develop a lightweight CNN-based
encoder for the task of short-text extreme classi-
fication. Augmented with a self-attention based
word-order agnostic module, the proposed encoder
betters state-of-the-art performance on all popular
benchmark datasets. By synchronizing the training
of extreme and meta-classifiers, we make improve-
ments to the label hard-negative mining pipeline
and develop a framework INCEPTIONXML+ that
scales our encoder to dataset million of labels. Im-
portantly, these capabilities are achieved while be-
ing computationally inexpensive in training, infer-
ence, and model size.
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A Appendix

A.1 Evaluation Metrics

As stated earlier, the main application of short-
text XML framework is in recommendation sys-
tems and web-advertising, where the objective of
an algorithm is to correctly recommend/advertise
among the top-k slots. Thus, for evaluation of
the methods, we use precision at k£ (denoted by
PQ@k), and its propensity scored variant (denoted
by PSPQ¥k) (Jain et al., 2016). These are standard
and widely used metrics by the XML community
(Bhatia et al., 2016).

For each test sample with observed ground truth
label vector y € {0, 1}* and predicted vector § €
RL, PQk is given by :

N
PQk(y, ) =

>

L € topQk(g)

Ye

where top@Fk(y) returns the k largest indices of .

Since PQF treats all the labels equally, it doesn’t
reveal the performance of the model on tail labels.
However, because of the long-tailed distribution
in extreme classification datasets, one of the main
challenges is to predict tail labels correctly, which
are more valuable and informative compared to
head classes, and it is essential to measure the per-
formance of the model specifically on tail labels.
By alluding to the phenomenon of missing labels
in the extreme classification setting and its rela-
tion to tail-labels, P.S PQk was introduced in Jain
et al. (2016) as an unbiased variant of original pre-
cision at k£ under no missing labels. This is widely
used by the community to compare the relative per-
formance of algorithms on tail-labels, and is also
another metric used in our relative comparisons
among various extreme classification algorithms in
Tables 1 and 3 for main results and ablation tests
respectively.

A.2 Vocabulary & Word Embedding

As opposed to taking their TF-IDF weighted linear
combination as used in some recent works (Dahiya
etal., 2021b,a; Mittal et al., 2021a) or the more con-
ventional bag-of-words representations approaches
like (Babbar and Scholkopf, 2017; Prabhu et al.,
2018), we use the approach of stacking Glove em-
beddings (Pennington et al., 2014) as done in (Kim,
2014; Liu et al., 2017; Wang et al., 2017). For a fair
comparison, we use exact same size of vocabulary
space as (Dahiya et al., 2021b) for all benchmark
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datasets. As state before, we use wide-space tok-
enizer and find empirically that our model works
better without using sub-word tokenizers like word-
piece or sub-word based embeddings like fastText
(Joulin et al., 2016).

A.3 Impact of Permuting Embedding
Dimensions:

To show that INCEPTIONXML is independent of
the order of embedding dimensions, we randomly
permute the dimensions of the input word embed-
dings before start of the training, train with this
fixed permuted order and evaluate in the standard
manner. This is repeated 10 times with different
permutations before training. Only slight variation
in performance metrics can be observed in figure 5
with respect to the median of each boxplot which
implies that the order of embedding dimensions has
little or no impact over the results of our model.
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Figure 5: Variation in scores after shuffling embed-
ding dimensions randomly before start of training for
AmazonTitles-670K dataset. The boxplot only shows a
variation in the performance metrics from the 10 runs.
Different scores and statistics can be obtained by adding
the values in the y-axis to the base scores on the x-axis.

A.4 Dataset Details

The key statistics of the datasets used in our evalu-
ation are given in Table 5. These are open bench-
mark datasets taken from the Extreme Classifica-
tion repository 2. Figure 6 details the distribution
of sequence lengths in AmazonTitles-670K dataset.
Also, through the last two columns in Table 5 we
confirm the short-text nature of these datasets.

http://manikvarma.org/downloads/XC/
XMLRepository.html
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Datasets | #Features | #Labels | # Training | #Test | APpL | ALpP | #W<4 | #W<8
WikiSeeAlsoTitles-350K 91,414 352,072 629,418 162,491 5.24 2.33 82% 98%
WikiTitles-500K 185,479 501,070 1,699,722 | 722,678 | 23.62 4.89 83% 98%
AmazonTitles-670K 66,666 670,091 485,176 150,875 5.11 5.39 40% 70%
AmazonTitles-3M 165,431 2,812,281 1,712,536 | 739,665 | 31.55 36.18 15% 52%

Table 5: Dataset Statistics. APpL denotes the average data points per label, ALpP the average number of labels per
point. #W is the number of words in the training samples.

Model ‘ #epochs Batch Size [7,,4, ‘ r Topx ALpC
\ AmazonTitles-670K
INCEPTIONXML 42 128 0.005 - -
INCEPTIONXML+ 35 256 0.008 | 65536 800 11
‘ WikiSeeAlsoTitles-350K
INCEPTIONXML 42 128 0.005 - -
INCEPTIONXML+ 30 256 0.008 | 32768 800 10
| WikiTitles-500K
INCEPTIONXML 42 128 0.005 - -
INCEPTIONXML+ 27 256 0.008 | 32768 800 11

‘ AmazonTitles-3M

INCEPTIONXML
INCEPTIONXML+

35 128 0.008 ‘ 131072 800 22

Table 6: Hyperparameters of INCEPTIONXML(+) ar-
chitectures. For INCEPTIONXML+, L' and Topy de-
note the number of label-clusters and the number of
clusters shortlisted per dataset while ALpC denotes the
average labels per cluster.

A.5 Hyperparameters

We present the details of our hyperparameters like
learning rate, batch size and number of epochs in
table 6 along with the details of the label-clusters
as used in INCEPTIONXML+. Note that we train
our models using a cyclic learning rate and 7,4,
denotes the maximum learning rate in the cycle.

B Responsible NLP Research Checklist

B.1 Limitations

* Given that the convolution operation spans
over the entire document length, the proposed
method is mostly suited for short and medium
length text sequences.

* Our method is agnostic to the presence of
label texts, which despite constraining the
problem to a much smaller subset, have been
shown to help in achieving better prediction
performance.

B.2 Potential Risks

We do not foresee any potential risks of our meth-
ods. Rather, it should be seen to be as energy-
efficient alternatives to large-transformer models
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for the core textual and language problems encoun-
tered in search and recommendation.

AmazonTitles-670K
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Figure 6: Sequence lengths of the input instance plot-
ted against corresponding frequency for AmazonTitles-
670K dataset. For this dataset, 70% of training instances
have < 8 words, and 30% have < 4 words.



