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Abstract

Automatic annotation of short-text data to a001
large number of target labels, referred to as002
Short Text Extreme Classification, has found003
numerous applications including prediction of004
related searches and product recommendation005
tasks. In this paper, we propose a convolutional006
architecture INCEPTIONXML which is light-007
weight, yet powerful, and robust to the inher-008
ent lack of word-order in short-text queries en-009
countered in search and recommendation tasks.010
We demonstrate the efficacy of applying con-011
volutions by recasting the operation along the012
embedding dimension instead of the word di-013
mension as applied in conventional CNNs for014
text classification. Towards scaling our model015
to datasets with millions of labels, we also pro-016
pose INCEPTIONXML+ framework which im-017
proves upon the shortcomings of the recently018
proposed dynamic hard-negative mining tech-019
nique for label shortlisting by synchronizing020
the label-shortlister and extreme classifier. IN-021
CEPTIONXML+ not only reduces the inference022
time to half but is also an order of magnitude023
smaller than previous state-of-the-art ASTEC024
in terms of model size. Through our proposed025
models, we outperform all existing approaches026
on popular benchmark datasets.027

1 Introduction028

Extreme Multi-label Classification (XML) in-029

volves classifying instances into a set of most rel-030

evant labels from an extremely large (on the or-031

der of millions) set of all possible labels. For032

scenarios when the input instances are short text033

queries, many successful applications of the XML034

framework have been found in ranking and rec-035

ommendation tasks such as prediction of Related036

Search on search engines (Jain et al., 2019), sug-037

gestion of query phrases corresponding to short038

textual description of products on e-stores (Chang039

et al., 2020) and product-to-product recommenda-040

tion (Dahiya et al., 2021a; Chang et al., 2021).041

Figure 1: INCEPTIONXML(+) (Ours) hits the sweet
spot in terms of performance on the P@1 metric, train-
ing time, model size and inference times.

Challenges in Short-Text XML: (i) Unlike regu- 042

lar documents, most short text queries are sparse 043

and contain very few words and (ii) are typically 044

plagued with noise and non-standard phrases which 045

do not always observe the syntax of a written lan- 046

guage. For instance, queries “best wireless head- 047

phones 2022" and “2022 best headphones wire- 048

less" should invoke similar search results on an 049

e-commerce website (Tayal et al., 2020). Short text 050

input data in search and recommendation, there- 051

fore, give rise to a significant amount of ambigu- 052

ity (Wang and Wang, 2016). Furthermore, (iii) a 053

large fraction of classes are tail labels, which are 054

paired with a handful of positive samples (Jain 055

et al., 2016). Taken together, the above charac- 056

teristics, pose a challenge in learning rich feature 057

representations for the task at hand. 058

Need of lightweight architectures in Short-Text 059

XML: While large pre-trained language models are 060

the default choice for most down-stream language 061

tasks, we argue that (i) using such computation- 062

ally intensive architectures for modeling short-text 063

queries is rather overcompensating for the XML 064

task at hand. Further, (ii) the real-world use cases of 065

short-text extreme classification require very fast in- 066

ference times. The deployment of large pre-trained 067
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language models such as BERT, RoBERTa and068

XLNet as in LightXML (Jiang et al., 2021), APLC-069

XLNet (Ye et al., 2020) and X-Transformer (Chang070

et al., 2020) adds heavily to the already existing071

compute costs in XML tasks leading to slower train-072

ing and inference times (Table: 2). Finally, (iii)073

extremely large number of possible labels leads to074

memory bottlenecks in XML tasks. As a result,075

these transformer-based methods become unscal-076

able to millions of labels (Table: 1) while staying077

within reasonable hardware constraints.078

InceptionXML: To address the above, we (i)079

develop INCEPTIONXML, a lightweight CNN-080

based encoder, which goes against the traditional081

paradigm (Kim, 2014; Liu et al., 2017) of con-082

volving over the words dimension in favor of the083

embedding dimension, (ii) propose an embedding-084

enhancement module for learning a word-order ag-085

nostic representation, making our approach more086

robust to lack of structure in short-text queries,087

(iii) develop a very fast and computationally inex-088

pensive INCEPTIONXML+ framework, which syn-089

chronizes the label-shortlisting and extreme tasks090

making it scalable to millions of labels.091

Highlights: We (i) further the state-of-the-art on092

23 out of 24 metrics across 4 popular benchmark093

datasets (ii) reduce the inference time to half of the094

previous fastest state-of-the-art, and (iii) require095

only 1/53x FLOPS as compared to previous pre-096

trained transformer based approaches.097

2 Related Work098

Extreme Classification: The focus of a majority099

of initial works in this domain has been on de-100

signing one-vs-rest (Babbar and Schölkopf, 2017),101

tree-based (Prabhu et al., 2018; Chalkidis et al.,102

2019; Khandagale et al., 2020) or label embedding103

based (Bhatia et al., 2015) classifiers with fixed104

features in the form of bag-of-words representation.105

With advances in deep learning, jointly learning106

label and input text embeddings has also been de-107

veloped (Tang et al., 2015; Wang et al., 2018). For108

XML tasks, recent techniques based on attention109

mechanism (You et al., 2019) and pre-trained trans-110

former models (Chang et al., 2020; Ye et al., 2020;111

Jiang et al., 2021; Yu et al., 2020) have shown great112

promise. In the context of CNNs for text classifi-113

cation, while (Wang et al., 2017) extended (Kim,114

2014) for short input sequences, (Liu et al., 2017)115

built upon the same for XML tasks.116

Short-text Extreme Classification: In XML tasks117

where the inputs are short text queries, there has 118

been a slew of recent works. Based on the avail- 119

ability of label meta-data, these works can be di- 120

vided into two categories: (i) ones which make no 121

assumptions regarding label text, i.e., labels are 122

numeric identifiers, such as ASTEC (Dahiya et al., 123

2021b) and (ii) others which assume that the labels 124

are endowed with clean label text which include 125

DECAF (Mittal et al., 2021a), GALAXC, ECLARE 126

(Mittal et al., 2021b), and SIAMESEXML (Dahiya 127

et al., 2021a). Even though the additional label 128

meta-data is useful, it is usually only known for 129

only a small subset of all labels. Further, the for- 130

mer problem setup, which is the focus of this work, 131

makes no assumption about label-text, and hence 132

is a harder, more general and widely applicable. 133

We compare our model vis-à-vis the frugal 134

ASTEC baseline, which uses a tfidf-weighted sum 135

of word embeddings as inputs and comprises only 136

of a single residual layer as its encoder. ASTEC 137

further relies on the capabilites of ANNs (Malkov 138

and Yashunin, 2020) for label-shortlisting while we 139

create our scalable extension INCEPTIONXML+ 140

through dynamic hard-negative mining of labels. 141

Drawbacks of conventional CNNs in short-text 142

classification: Traditionally, in the usage of CNNs 143

over words in text classification, the intent is to 144

capture the occurrences of n-grams for represen- 145

tation learning (Kim, 2014; Liu et al., 2017). We 146

argue that this formulation is unsuitable for short- 147

text classification problems as (i) the implicit but 148

incorrect assumption of proper word-ordering in 149

short-text queries (Wang and Wang, 2016), and 150

(ii) as explained next, the much smaller sequence 151

length that restricts the effectiveness of convolution 152

in CNNs over the inputs. 153

In the datasets derived from Wikipedia titles, 154

98% documents have 8 or less words, while 82% 155

have 4 words or less (Table: 5 in Appendix). More- 156

over, 70% of the instances in AmazonTitles-670K 157

consist of 8 words or less (Figure: 6). This makes 158

the convolutional filters spanning over 4-8 words 159

in Kim (2014); Liu et al. (2017); Wang et al. (2017) 160

behave analogously to a weak fully connected layer 161

with very few hidden units, and hence leading to 162

feature maps with very few activations which are 163

sub-optimal for representation learning. In con- 164

text of the aforementioned problems, we hypothe- 165

size and empirically demonstrate the suitability of 166

convolving over the embedding dimensions of the 167

inputs instead of the words for short-text queries. 168
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Figure 2: INCEPTIONXML(+) Framework. The convolution filters on the input data span only a subset of adjacent
dimensions in the word embeddings while covering all the input tokens (‘who let the dogs out’). The Embedding-
enhancement module is shown in detail with its orthogonal self-attention layers followed by a projection layer.

3 Embedding Convolutions169

By convolving over embeddings in a stacked set-170

ting, we enable the model to detect correlations or171

“coupled semantics” between different dimensions172

in the embedding space by processing a limited173

subset of semantics at a time. As compared to tradi-174

tional convolutional operation, embedding convolu-175

tions create significantly larger and enriched activa-176

tion maps for the same inputs, while requiring sub-177

stantially lesser parameters by using smaller filters178

of size RS×16, where S is the maximum sequence179

length of the input. We show empirically that this180

modified approach works well for both short as181

well as medium queries of up to 32 words, sig-182

nificantly outperforming conventional CNN-based183

approaches (Liu et al., 2017; Kim, 2014) for short-184

text XML task.185

As some readers might rightfully argue, pre-186

trained word embeddings are typically not trained187

with any incentive for localizing semantic infor-188

mation in the embedding dimension. To this end,189

we process the stacked word embeddings with self-190

attention based embedding enhancement module191

before applying embedding convolutions. This lets192

information flow across every pair of semantics193

irrespective of the spatial distance between them.194

4 Proposed Model - InceptionXML195

Problem Setup : Given a training set {xi, yi}Ni=1,196

xi represents an input short-text query, and the cor-197

responding label set is represented by yi ∈ {0, 1}L198

where L denotes the total number of labels. It may199

be noted that even though L ∼ 106, an instance is200

only annotated with a few positive labels (Table: 5).201

The goal is to learn a classifier which, for a novel202

test instance x′, predicts the top-k labels towards 203

better precision@k and propensity-scored preci- 204

sion@k (Bhatia et al., 2016) metrics. Towards this 205

goal, the main body of our encoder consists of three 206

modules that are applied sequentially on the word 207

embeddings (Fig. 2). These are (i) an embedding 208

enhancement module, (ii) embedding convolution 209

layers and (iii) an extreme linear classifier. 210

4.1 Embedding Enhancement Module 211

This module takes stacked word embeddings lack- 212

ing structure and context as input and makes it word 213

order agnostic. Specifically, the module consists 214

of two orthogonal attention layers (Doria, 2019) 215

applied sequentially on the word and the embed- 216

ding dimensions followed by a projection layer, 217

effectively encoding global information both, on a 218

word-level and on a semantic-level (Figure 4). 219

The sequential attention formulation in our em- 220

bedding enhancement module is given by: 221

xsa = SA(q = E(x), k = E(x), v = E(x)) 222

xsa = SA(q = xTsa, k = E(x)T , v = E(x)T )T 223

where E(x) denotes the stacked word embeddings 224

for a sample text input x such that E(x) ∈ RS×d. 225

Finally, each dimension of the intermediate em- 226

beddings xsa is then projected to a p-dimensional 227

space where p = 32 to obtain the final enhanced 228

embeddings xenh ∈ Rp×d. The information flow 229

across the embeddings in this module followed by 230

per-dimension projection makes xenh independent 231

of the word order in short-text queries and makes 232

our model more robust to their lack of structure. 233
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4.2 Embedding Convolution Layers234

We employ three parallel branches of one-235

dimensional convolution layers Vi, i ∈ [1, 2, 3]236

with filter sizes of wi where wi ∈ [4, 8, 16] each237

with a stride of 4 along the embedding dimension238

and p output channels. Let hwi be the result of ap-239

plying Vi over SAout. We concatenate all resultant240

hwi row-wise before passing them to the next layer.241

hwi = Vi ∗ xenh242

hf = Vf ∗ [hw1 , hw2 , hw3 ]243

A final embedding convolutional layer Vf with ker-244

nel size of 16 and stride 4 is applied on the con-245

catenated feature map, which is further flattened to246

form the final feature representation hf . This for-247

mulation allows Vf to have an effective receptive248

field spanning 1/4th of the enhanced embeddings,249

further obviating the locality constraints of CNNs250

as highlighted in section 3.251

4.3 Extreme Linear Classifier252

The first layer R transforms the feature map from253

the encoder with a skip-connection while keeping254

the dimensions same. The next linear layer W has255

one-vs-all classifiers for each label in the dataset256

which projects the features to the label space.257

ŷ = σ(W · (relu(R · hf ) + hf ))258

The model is trained end-to-end using binary cross259

entropy loss.260

BCE(y, ŷ) = −
∑
j∈L

(1−yj) log(1−ŷj)+yj log(ŷj)261

5 InceptionXML+ Framework262

INCEPTIONXML described previously scales to263

datasets with hundreds of thousands of labels. How-264

ever, scaling up to millions of labels in its existing265

form is difficult as the loss computation in equa-266

tion above involves calculation of loss over all L267

labels, a very large majority of which are negative268

labels for a given instance. Even with sufficient269

hardware resources, scaling up over the entire la-270

bel space requires very large training times (Chang271

et al., 2020). We thus propose INCEPTIONXML+272

framework, which improves existing hard-negative273

mining to enable scaling to output spaces in the274

order of millions along with an updated training275

schedule. Not only does the framework scale our276

encoder, but also significantly reduces the training277

time and computational cost (Table 6).278

Hard Negative-Mining of Labels: While tech- 279

niques have been studied for efficient hard-negative 280

label mining under fixed representation of data 281

points (Jain et al., 2019; Dahiya et al., 2021b), 282

only recent algorithms (Jiang et al., 2021) have 283

come up with dynamic hard negative-mining tech- 284

niques. Following the approach popularized by 285

these recent methods, our model makes predictions 286

in two stages: (i) shortlisting top K label-clusters 287

or “meta-labels" using a meta-classifier, and (ii) 288

employing a computationally feasible number of 289

one-vs-all classifiers corresponding to the labels 290

included in the shortlisted clusters to get the final 291

predicted labels and perform backpropagation. 292

Label Clustering To perform label clustering, we 293

construct Hierarchical Label Tree (HLT) using 294

the labels’ Positive Instance Feature Aggregation 295

(PIFA) representation over sparse BOW features of 296

their training samples (Chang et al., 2020; Dahiya 297

et al., 2021b). Specifically, we use balanced 2- 298

means clustering to recursively partition the label 299

set until we have a mapping C from L labels to L′ 300

label clusters where L′ ≪ L (Table:5). 301
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Figure 3: Progress of training (Precision@1) for the
extreme and meta-classifier of LIGHTXML and INCEP-
TIONXML+ frameworks on AmazonTitles-670K

Drawbacks of LIGHTXML framework: When 302

scaling our model using hard-negative mining as 303

done in LIGHTXML (Jiang et al., 2021), we no- 304

ticed that the performance of our encoder is bot- 305

tlenecked by a poorly performing meta-classifier. 306

From the training metrics (Fig: 3), we see a smooth 307

increment in the P@1 values for the extreme clas- 308

sifier (dashed blue) while the meta-classifier is un- 309

able to catch-up (dashed red). This indicates that 310

these two sub-tasks are not aligned well enough for 311

the encoder to learn suitable common representa- 312

tions that work well simultaneously for both the 313
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sub-tasks. Our observations also indicate the fact314

that the extreme task is easier to learn on shortlisted315

labels than the meta-task on label clusters, and the316

model tends to learn representations that benefit317

the extreme task at the expense of the meta-task.318

Key Improvements Our changes to the hard-319

negative mining framework can be broadly grouped320

into two sets. Firstly, we propose architectural im-321

provements meant to synchronize the two tasks in322

order to enable the encoder to learn better common323

representations. Secondly, we make modifications324

to the training loop in order to force the encoder to325

learn representations that improve the performance326

of the meta-classifier while remaining in sync with327

the extreme task. Next, we discuss these in detail.328

5.1 Synchronized Architecture329

To synchronize the training of extreme and meta-330

classifier tasks, we give them similar structures331

by adding a linear layer Wm with a residual con-332

nection Rm before the meta-classifier. Using the333

intermediate representation hf from equation (1),334

this is given by :335

ŷm = σ(Wm · (relu(Rm · hf ) + hf ))336

We create a shortlist Ŝ of all the labels in the top337

K label clusters as predicted by the meta-classifier338

using a label cluster to label mapping C−1. Via the339

linear mapping We, extreme classifier then predicts340

the probability of the query belonging to only these341

shortlisted labels, instead of all L labels.342

Ŝ = C−1( topK(ŷm, k) )343

ge = relu(Re · hf ) + hf344

ŷe,l = σ(We,l · ge), ∀l ∈ Ŝ345

Architectural similarity of branches alone does not346

ensure strong common representation learning. To347

help the encoder learn suitable common represen-348

tations, we further sync the two branches by (i) in-349

creasing the “extremeness” of the meta-task by en-350

larging the fan out of label clusters, and (ii) adding351

spectral norm to the penultimate linear layers of352

both heads to prevent the final features from drift-353

ing too far from each other (Dahiya et al., 2021b).354

Not only does this heavily improve (Table: 3) upon355

the original implementation of dynamic negative-356

hard mining as proposed in (Jiang et al., 2021), but357

also inherently combines the task of the two stages358

of the DeepXML pipeline (Dahiya et al., 2021b)359

into an end-to-end trainable model. Though sub-360

stantial gains are observed from enlarging the fan361

out, this comes at a computational cost. Thus, in 362

practice we aim to strike a balance (Table: 3) be- 363

tween number of clusters and model efficiency for 364

non-trivial gains in accuracy. 365

5.2 Detached Training Schedule 366

To force the encoder to learn representations ben- 367

efiting the meta-task, we detach i.e. stop the flow 368

of gradients from the extreme classifier head to the 369

encoder (Algorithm 1), for the initial 25% of the 370

training loop. This results in shortlisting of harder 371

negative labels for the extreme classifier to learn 372

during training time and ensures higher recall dur- 373

ing inference time (Table: 3). Detaching instead 374

of simply removing the extreme classification head 375

enables the module to continuously adapt to the 376

changing encoder representations without allowing 377

it to affect the training of the meta-classifier. This 378

setting is possible because of the spectral norm 379

applied to the weights of the penultimate layers 380

in both the heads which ensures that the encoder 381

learnt for the meta-task remains relevant for the 382

extreme task when its gradients are re-attached. 383

Algorithm 1: Training algorithm for INCEPTIONXML+

1 for epoch in (1, epochs): 384
2 for x, y in data: 385
3 z = E(x) 386
4 h = encoder(z) 387
5 y_meta = meta_classifier(h) 388
6 y_cluster = label_to_cluster(y) 389
7 meta_loss = bce(y_meta, y_cluster) 390
8 391
9 # shortlisting top K clusters 392

10 top_k = get_top_K_clusters(y_meta, k) 393
11 candidates = cluster_to_label(top_k) 394
12 # add missing positive labels 395
13 candidates = add_missing(candidates,y) 396
14 397
15 # detached training 398
16 if epoch <= epochs/4: 399
17 h = h.detach() 400
18 y_ext = ext_classifier(h, candidates) 401
19 ext_loss = bce(y_ext, y, candidates) 402
20 loss = meta_loss + ext_loss 403
21 loss.backward() 404
22 405
23 # gradient descent 406
24 update(E, encoder, meta_classifier, 407

ext_classifier) 408
409

410

Loss: The losses for the meta-classifier and the 411

extreme classifier are given by: 412

Lmeta = BCE(ym , ŷm), 413

Lext = BCE(ye,l , ŷe,l) ∀l ∈ Ŝ. 414

The final loss is the sum of the above losses i.e. 415

L = Lmeta+Lext. For prediction, the final ranking 416
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is produced by only using the logits of the extreme417

classifier.418

6 Experiments419

Implementation Details: We initialize our embed-420

ding layer with 300-dimensional pre-trained GloVe421

embeddings (Pennington et al., 2014). Embeddings422

of words that do not exist in GloVe are initialized423

with a random vector sampled from the uniform424

distribution U(−0.25, 0.25). Following (Liu et al.,425

2017), we use a use white space separated pre-426

processing function for tokenization and remove427

the stop words and punctuation from the raw data428

using NLTK library. We train all our models on429

a single 32GB Nvidia V100 GPU. Further imple-430

mentation details about batch size, learning rate,431

epochs etc. can be found in table 6 in the appendix.432

Datasets: We evaluate the proposed INCEP-433

TIONXML(+) frameworks on 4 publicly available434

benchmarks from the extreme classification reposi-435

tory (Bhatia et al., 2016). The details of the datasets436

are given in Table 5 (Appendix), the number of437

labels range from 350,000 (WikiSeeAlsoTitles-438

350K) to 2.8 Million (AmazonTitles-3M).439

6.1 Main Results440

INCEPTIONXML+ finds a sweet-spot (Fig. 1) be-441

tween the two extreme ends of modern deep ex-442

treme classification pipelines - heavy transformer-443

based methods, and frugal architectures such as444

ASTEC. We show that replacing the pre-trained445

transformer encoder with our lightweight CNN-446

based encoder, combined with further improve-447

ments to the hard-negative mining pipeline leads448

to better prediction performance apart from faster449

training and the ability to scale to millions of labels.450

As shown in Table 1, for most of the dataset-451

metric combinations, the proposed models, INCEP-452

TIONXML(+), not only outperform the previous453

state-of-the-art ASTEC and but also its ensemble454

version ASTEC-3 with non-trivial gains. Notably,455

INCEPTIONXML gains an average of 3.9% and456

6.9% over ASTEC on all three datasets except457

AmazonTitles-3M on the P@1 and PSP@1 metrics.458

Also, the following observations can be made :459

• The proposed models achieves at least 10% rel-460

ative improvement as compared to XML-CNN461

(Liu et al., 2017), which captures n-grams for462

representation learning showing the effectiveness463

of our approach as compared to conventional464

CNNs-based approaches.465

Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

AmazonTitles-670K

INCEPTIONXML+ 41.28 37.04 33.92 27.02 30.05 32.72
INCEPTIONXML 41.78 37.47 34.15 28.17 30.96 33.31

ASTEC 39.97 35.73 32.59 27.59 29.79 31.71
ASTEC-3 40.63 36.22 33.00 28.07 30.17 32.07

LIGHTXML 41.57 37.19 33.90 25.23 28.79 31.92
APLC-XLNET 34.87 30.55 27.28 20.15 21.94 23.45

ATTENTIONXML 37.92 33.73 30.57 24.24 26.43 28.39
XML-CNN 35.02 31.37 28.45 21.99 24.93 26.84

DISMEC 38.12 34.03 31.15 22.26 25.45 28.67
PARABEL 38.00 33.54 30.10 23.10 25.57 27.61
BONSAI 38.46 33.91 30.53 23.62 26.19 28.41
MACH 34.92 31.18 28.56 20.56 23.14 25.79

WikiSeeAlsoTitles-350K

INCEPTIONXML+ 20.77 14.61 11.44 10.26 12.41 14.15
INCEPTIONXML 21.54 15.19 11.97 10.93 13.05 14.92

ASTEC 20.42 14.44 11.39 9.83 12.05 13.94
ASTEC-3 20.61 14.58 11.49 9.91 12.16 14.04

LIGHTXML 21.25 14.36 11.11 9.60 11.48 13.05
APLC-XLNET 20.42 14.22 11.17 7.44 9.75 11.61

ATTENTIONXML 15.86 10.43 8.01 6.39 7.20 8.15
XML-CNN 17.75 12.34 9.73 8.24 9.72 11.15

DISMEC 16.61 11.57 9.14 7.48 9.19 10.74
PARABEL 17.24 11.61 8.92 7.56 8.83 9.96
BONSAI 17.95 12.27 9.56 8.16 9.68 11.07
MACH 14.79 9.57 7.13 6.45 7.02 7.54

WikiTitles-500K

INCEPTIONXML+ 45.24 25.91 18.36 19.24 19.38 19.50
INCEPTIONXML 47.28 27.14 19.39 20.79 21.01 21.17

ASTEC 46.01 25.62 18.18 18.62 18.59 18.95
ASTEC-3 46.60 26.03 18.50 18.89 18.90 19.30

LIGHTXML 47.17 25.85 18.14 17.64 17.54 17.50
APLC-XLNET 43.56 23.01 16.58 14.73 13.19 13.47

ATTENTIONXML 42.89 22.71 15.89 15.12 14.32 14.22
XML-CNN 43.45 23.24 16.53 15.64 14.74 14.98

DISMEC 39.89 21.23 14.96 15.89 15.15 15.43
PARABEL 42.50 23.04 16.21 16.55 16.12 16.16
BONSAI 42.60 23.08 16.25 17.38 16.85 16.90
MACH 33.74 15.62 10.41 11.43 8.98 8.35

AmazonTitles-3M

INCEPTIONXML+ 46.95 45.28 43.45 16.02 18.94 21.03
ASTEC 47.64 44.66 42.36 15.88 18.59 20.60

ATTENTIONXML 46.00 42.81 40.59 12.81 15.03 16.71
DISMEC 41.13 38.89 37.07 11.98 14.55 16.42
PARABEL 46.42 43.81 41.71 12.94 15.58 17.55
BONSAI 46.89 44.38 42.30 13.78 16.66 18.75
MACH 37.10 33.57 31.33 7.51 8.61 9.46

Table 1: Comparison of InceptionXML to state-of-
the-art algorithms on benchmark datasets. The best-
performing approach is in bold and the second best is
underlined. The algorithms omitted in AmazonTitles-
3M do not scale for this dataset on 1 Nvidia V100 GPU.

• Significant gains of up to 20% in are obtained 466

compared to the transformer based APLC- 467

XLNET (Ye et al., 2020). We also outper- 468

form LIGHTXML (Jiang et al., 2021) on all 469

benchmarks despite having a comparatively light- 470

weight architecture. Notably, none of these ar- 471

chitectures scale to AmazonTitles-3M dataset, 472

demonstrating the efficacy and scalability of 473

the proposed light-weight encoder in INCEP- 474

TIONXML+ framework. 475

• Our models also significantly outperform non- 476

deep learning approaches using bag-of-words 477
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representations such as the label-tree based al-478

gorithms like BONSAI (Khandagale et al., 2020)479

and PARABEL (Prabhu et al., 2018), and DIS-480

MEC (Babbar and Schölkopf, 2017) which is an481

embarrassingly parallel implementation of LIB-482

LINEAR (Fan et al., 2008).483

• It maybe noted that INCEPTIONXML outper-484

forms its scaled counterpart on all benchmarks,485

especially for the PSP metrics. While INCEP-486

TIONXML always gets information about all487

negative labels instead of only hard-negatives488

during training, it also makes prediction over the489

entire label space. On the other hand, INCEP-490

TIONXML+ has to rely on the meta-classifier for491

label shortlisting. As a 100% recall rate cannot492

be ensured for label-shortlisting, some positive493

label-clusters are occasionally missed leading to494

slightly reduced performance.495

6.2 Discussion on Computational Cost496

Training time: As shown in Table 2, training time497

of INCEPTIONXML+ ranges from 4.3 hours on498

WikiSeeAlsoTitles-350K & AmazonTitles-670K499

datasets to 27.2 hours on AmazonTitles-3M. We ob-500

serve a ~44% decrement in training time by scaling501

our encoder in the INCEPTIONXML+ Framework502

as compared to the unscaled INCEPTIONXML. As503

expected, our models train much faster than trans-504

former based approaches (LIGHTXML, APLC-505

XLNET) while being comparable with ASTEC.506

Model Size: INCEPTIONXML is extremely507

lightweight in terms of model size containing only508

400K parameters while INCEPTIONXML+ con-509

tains only 630K parameters, which is multiple or-510

ders of magnitude lesser compared to pretrained511

transformer based models with ~110 million pa-512

rameters. Further, our models are approximately513

8-10x smaller compared to ASTEC which needs to514

store ANNS graphs for label centroids and training515

data-points for performance leading to exception-516

ally large model size (Table 2).517

Flops: To compute flops, we use the stan-518

dard FVCORE library1 from facebook. No-519

tably, INCEPTIONXML+ performs favourably with520

LIGHTXML while requiring only 1/53x flops on521

average, and INCEPTIONXML significantly outper-522

forms the same with 1/8x flops (Table: 2).523

Inference Time: Inference time has been calcu-524

lated considering a batch size of 1 on a single525

1https://github.com/facebookresearch/
fvcore/blob/main/docs/flop_count.md

Nvidia 32GB V100 GPU. We note that our pro- 526

posed INCEPTIONXML(+) architectures not only 527

have the lowest inference times on all datasets, but 528

also our framework reduces the inference time to 529

half as compared to the previous fastest ASTEC. 530

However, using transformer based models results 531

in 3-5x slower inference as compared to INCEP- 532

TIONXML+. 533

To summarize, our models improve by approxi- 534

mately an order of magnitude on both model sizes 535

and floating point operations compared to recent 536

state-of-the-art approaches, and are economical 537

in terms of training time with very low inference 538

times, all while achieving state-of-the-art perfor- 539

mance on all important metrics and benchmarks. 540

Giga Training Inference Model
FLOPS Time (hr) Time (msec) Size (GB)

Method AmazonTitles-670K

INCEPTIONXML+ 0.049 4.3 4.67 1.4
INCEPTIONXML 0.334 7.7 7.97 1.3

ASTEC * 3.0 8.17 10.93
LIGHTXML 2.775 13.5 13.11 1.6

APLC-XLNET 3.564 16.1 24.66 1.8

WikiSeeAlsoTitles-350K

INCEPTIONXML+ 0.027 4.3 4.36 0.80
INCEPTIONXML 0.176 6.3 5.60 0.73

ASTEC * 2.9 9.70 7.41
LIGHTXML 1.214 14.5 10.35 1.0

APLC-XLNET 2.248 16.0 18.39 1.5

WikiTitles-500K

INCEPTIONXML+ 0.029 10.3 4.37 1.2
INCEPTIONXML 0.247 20 6.45 1.1

ASTEC * 7.3 9.97 15.15
LIGHTXML 1.742 22.4 11.33 1.5

APLC-XLNET 2.51 25.1 20.25 1.9

Table 2: Comparison of algorithms in terms of Giga-
Flops, Training/Inference Time and Model Size. * Due
to the external ANNS module used in ASTEC for label
shortlisting, it is not possible to compute its flops.

6.3 Ablation Results 541

Self-Attention Layers: The sequentially applied 542

self-attention layers improve INCEPTIONXML’s 543

performance by only 1% at max on the perfor- 544

mance metrics as shown in Fig. 4. This further 545

demonstrates the superior representation learning 546

capability of our encoder for short-text queries as 547

even without the self-attention layers, our model 548

outperforms the ensemble model ASTEC-3 and the 549

transformer model LIGHTXML. 550

InceptionXML+: Table 3 shows a comparison of 551

the proposed INCEPTIONXML+ pipeline vis-à-vis 552

LIGHTXML for AmazonTitles-670K dataset. It is 553

clear that the INCEPTIONXML+ framework sig- 554
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Figure 4: Performance with and w/o the self-attention layers on WikiSeeAlsoTitles-350K & AmazonTitles-670K

nificantly improves upon the hard-negative mining555

technique as proposed in LIGHTXML in terms of556

performance in both P@K and PSP@K metrics.557

Note that we keep the shortlisted labels consistent558

by doubling the number of shortlisted meta-labels559

as the fan-out doubles. It may be also be noted560

that as the fan-out increases, our detached train-561

ing method improves the results more prominently.562

This can be attributed to the increased “extreme-563

ness” of the meta-task which ensures that the rep-564

resentations learnt by the encoder for the meta-task565

become increasingly more relevant to the extreme-566

task when the gradients of the extreme classifier567

are re-attached during training.568

(L′, T opK) Model P@1 P@5 PSP@1 PSP5

8K, 100
Ours 40.26 32.75 26.05 31.21

Ours w/o Detaching 40.13 32.68 25.75 31.07
in LightXML Framework 39.40 32.36 25.14 30.38

16K, 200
Ours 40.67 33.27 26.34 31.81

Ours w/o Detaching 40.51 32.95 26.03 31.36
in LightXML Framework 39.47 32.43 24.89 30.67

32K, 400
Ours 41.01 33.65 26.75 32.32

Ours w/o Detaching 40.24 33.09 26.07 31.67
in LightXML Framework 39.58 34.81 24.45 30.73

65K, 800
Ours 41.28 33.92 27.02 32.72

Ours w/o Detaching 40.47 33.23 26.40 31.97
in LightXML Framework 39.27 32.77 23.54 30.54

_, _ in DeepXML Pipeline 38.53 32.21 27.80 31.62

Table 3: Impact of increasing fan-out of label clus-
ters (L′) on InceptionXML+ Framework (Ours) and
LightXML Framework over AmazonTitles-670K.

Robustness to Lack of Word-order: For testing569

the robustness of our method to the order of words570

in input data, we train the InceptionXML+ on the571

original training data for AmazonTitles-670K, but572

randomly permute the words in test set, and eval-573

uate the performance. This is repeated 10 times574

with different test set permutations (Table 4). We575

witness only a minor dip in performance across the576

metrics still outperforming ASTEC-3 and demon-577

strating the robustness of our encoder to lack of578

structure in short-text queries. 579

Test data P@3 P@5

Original AmazonTitles-670K 37.04 33.92
Permuted Word-order 36.01 ± 0.05 32.86 ± 0.03

Original WikiSeeAlsoTitles-350K 14.61 11.44
Permuted Word-order 14.45 ± 0.03 11.32 ± 0.02

Table 4: Comparison of results with original test data
and that obtained by permuting the word order in the
test set for INCEPTIONXML+

InceptionXML in DeepXML Framework: We 580

integrate our encoder with the DeepXML (Dahiya 581

et al., 2021b) pipeline as used by ASTEC and find it 582

inflexible to improve upon due to the requirement 583

of fixed representations for their label shortlisting 584

strategy. Moreover, when using our encoder as a 585

drop-in replacement, we find our encoder’s perfor- 586

mance degrades in terms of precision in the Deep- 587

XML Framework as compared to the performance 588

in the vanilla LIGHTXML Framework (Table 3: 589

last row). This indicates the overall advantage of 590

using dynamic hard-negative mining as compared 591

to techniques requiring fixed representations. 592

7 Conclusion 593

In this work, we develop a lightweight CNN-based 594

encoder for the task of short-text extreme classi- 595

fication. Augmented with a self-attention based 596

word-order agnostic module, the proposed encoder 597

betters state-of-the-art performance on all popular 598

benchmark datasets. By synchronizing the training 599

of extreme and meta-classifiers, we make improve- 600

ments to the label hard-negative mining pipeline 601

and develop a framework INCEPTIONXML+ that 602

scales our encoder to dataset million of labels. Im- 603

portantly, these capabilities are achieved while be- 604

ing computationally inexpensive in training, infer- 605

ence, and model size. 606
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A Appendix729

A.1 Evaluation Metrics730

As stated earlier, the main application of short-731

text XML framework is in recommendation sys-732

tems and web-advertising, where the objective of733

an algorithm is to correctly recommend/advertise734

among the top-k slots. Thus, for evaluation of735

the methods, we use precision at k (denoted by736

P@k), and its propensity scored variant (denoted737

by PSP@k) (Jain et al., 2016). These are standard738

and widely used metrics by the XML community739

(Bhatia et al., 2016).740

For each test sample with observed ground truth741

label vector y ∈ {0, 1}L and predicted vector ŷ ∈742

RL, P@k is given by :743

P@k(y, ŷ) :=
1

k

∑
ℓ ∈ top@k(ŷ)

yℓ744

where top@k(ŷ) returns the k largest indices of ŷ.745

Since P@k treats all the labels equally, it doesn’t746

reveal the performance of the model on tail labels.747

However, because of the long-tailed distribution748

in extreme classification datasets, one of the main749

challenges is to predict tail labels correctly, which750

are more valuable and informative compared to751

head classes, and it is essential to measure the per-752

formance of the model specifically on tail labels.753

By alluding to the phenomenon of missing labels754

in the extreme classification setting and its rela-755

tion to tail-labels, PSP@k was introduced in Jain756

et al. (2016) as an unbiased variant of original pre-757

cision at k under no missing labels. This is widely758

used by the community to compare the relative per-759

formance of algorithms on tail-labels, and is also760

another metric used in our relative comparisons761

among various extreme classification algorithms in762

Tables 1 and 3 for main results and ablation tests763

respectively.764

A.2 Vocabulary & Word Embedding765

As opposed to taking their TF-IDF weighted linear766

combination as used in some recent works (Dahiya767

et al., 2021b,a; Mittal et al., 2021a) or the more con-768

ventional bag-of-words representations approaches769

like (Babbar and Schölkopf, 2017; Prabhu et al.,770

2018), we use the approach of stacking Glove em-771

beddings (Pennington et al., 2014) as done in (Kim,772

2014; Liu et al., 2017; Wang et al., 2017). For a fair773

comparison, we use exact same size of vocabulary774

space as (Dahiya et al., 2021b) for all benchmark775

datasets. As state before, we use wide-space tok- 776

enizer and find empirically that our model works 777

better without using sub-word tokenizers like word- 778

piece or sub-word based embeddings like fastText 779

(Joulin et al., 2016). 780

A.3 Impact of Permuting Embedding 781

Dimensions: 782

To show that INCEPTIONXML is independent of 783

the order of embedding dimensions, we randomly 784

permute the dimensions of the input word embed- 785

dings before start of the training, train with this 786

fixed permuted order and evaluate in the standard 787

manner. This is repeated 10 times with different 788

permutations before training. Only slight variation 789

in performance metrics can be observed in figure 5 790

with respect to the median of each boxplot which 791

implies that the order of embedding dimensions has 792

little or no impact over the results of our model. 793

Figure 5: Variation in scores after shuffling embed-
ding dimensions randomly before start of training for
AmazonTitles-670K dataset. The boxplot only shows a
variation in the performance metrics from the 10 runs.
Different scores and statistics can be obtained by adding
the values in the y-axis to the base scores on the x-axis.

A.4 Dataset Details 794

The key statistics of the datasets used in our evalu- 795

ation are given in Table 5. These are open bench- 796

mark datasets taken from the Extreme Classifica- 797

tion repository 2. Figure 6 details the distribution 798

of sequence lengths in AmazonTitles-670K dataset. 799

Also, through the last two columns in Table 5 we 800

confirm the short-text nature of these datasets. 801

2http://manikvarma.org/downloads/XC/
XMLRepository.html
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Datasets # Features # Labels # Training # Test APpL ALpP #W≤ 4 #W≤ 8

WikiSeeAlsoTitles-350K 91,414 352,072 629,418 162,491 5.24 2.33 82% 98%
WikiTitles-500K 185,479 501,070 1,699,722 722,678 23.62 4.89 83% 98%

AmazonTitles-670K 66,666 670,091 485,176 150,875 5.11 5.39 40% 70%
AmazonTitles-3M 165,431 2,812,281 1,712,536 739,665 31.55 36.18 15% 52%

Table 5: Dataset Statistics. APpL denotes the average data points per label, ALpP the average number of labels per
point. #W is the number of words in the training samples.

Model # epochs Batch Size lrmax L′ TopK ALpC

AmazonTitles-670K

INCEPTIONXML 42 128 0.005 - - -
INCEPTIONXML+ 35 256 0.008 65536 800 11

WikiSeeAlsoTitles-350K

INCEPTIONXML 42 128 0.005 - - -
INCEPTIONXML+ 30 256 0.008 32768 800 10

WikiTitles-500K

INCEPTIONXML 42 128 0.005 - - -
INCEPTIONXML+ 27 256 0.008 32768 800 11

AmazonTitles-3M

INCEPTIONXML - - - - - -
INCEPTIONXML+ 35 128 0.008 131072 800 22

Table 6: Hyperparameters of INCEPTIONXML(+) ar-
chitectures. For INCEPTIONXML+, L′ and TopK de-
note the number of label-clusters and the number of
clusters shortlisted per dataset while ALpC denotes the
average labels per cluster.

A.5 Hyperparameters802

We present the details of our hyperparameters like803

learning rate, batch size and number of epochs in804

table 6 along with the details of the label-clusters805

as used in INCEPTIONXML+. Note that we train806

our models using a cyclic learning rate and lrmax807

denotes the maximum learning rate in the cycle.808

B Responsible NLP Research Checklist809

B.1 Limitations810

• Given that the convolution operation spans811

over the entire document length, the proposed812

method is mostly suited for short and medium813

length text sequences.814

• Our method is agnostic to the presence of815

label texts, which despite constraining the816

problem to a much smaller subset, have been817

shown to help in achieving better prediction818

performance.819

B.2 Potential Risks820

We do not foresee any potential risks of our meth-821

ods. Rather, it should be seen to be as energy-822

efficient alternatives to large-transformer models823

for the core textual and language problems encoun- 824

tered in search and recommendation. 825

Figure 6: Sequence lengths of the input instance plot-
ted against corresponding frequency for AmazonTitles-
670K dataset. For this dataset, 70% of training instances
have ≤ 8 words, and 30% have ≤ 4 words.
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