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Abstract

Electroencephalography and magnetoen-001
cephalography recordings are non-invasive and002
temporally precise, making them an invaluable003
tool in the cognitive neuroscience of language.004
They are, however, very noisy. One fruitful005
response to this noisiness has been to use006
stimuli with a specific frequency and to look007
for the signal of interest in the response at that008
frequency. Typically this involves measuring009
the coherence of response phase. Here a010
novel Bayesian approach to measuring phase011
coherence is described and illustrated using an012
example from neurolinguistics. It gives a better013
and more data-efficient description than more014
traditional statistical approaches.015

In a frequency-tagged experiment in encephalog-016

raphy stimuli are presented at a specific frequency;017

for example, in a landmark neurolinguistic exper-018

iment Ding et al. (2016, 2017) played four word019

sentences to participants with each word lasting pre-020

cisely the same amount of time. The advantage of021

this approach is that the corresponding magnetoen-022

cephalography (MEG) or electroencephalograph023

(EEG) data can be examined at a few frequencies024

of interest, in this case, the frequencies which cor-025

responds to words, phrases and sentences. This026

can give a more robust signal than an ERP-based027

approach; indeed, there are many situations in neu-028

rolinguistics, where an ERP would be impossible to029

obtain because the number of repetitions required030

would render the stimulus meaningless to the par-031

ticipant. In Ding et al. (2016) the responses at032

frequencies corresponding to the phrase and sen-033

tence structure of the stimuli demonstrated a neural034

response which the authors attributed to cortical035

tracking of hierarchical linguistic structures.036

Consider, as an example, the frequency-tagged037

experiment described in Burroughs et al. (2021a)038

which follows the frequency-tagged paradigm.039

This paper investigates the neural response to040

phrases and compared the response to grammat- 041

ical adjective-noun (AN) phrases such as 042

...cold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold food loud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud room... 043

to ungrammatical adjective-verb (AV) pairs, as in 044

...rough give ill tell... 045

The words are all presented at 3.125 Hz, however 046

the frequency of interest is the ‘phrase rate’, 1.5625 047

Hz, corresponding to the phrase structure of the AN 048

stimuli. In Burroughs et al. (2021a) it is suggested 049

that comparing the strength of the response for AN 050

and AV stimuli at the phrase frequency measures a 051

neural response to the grammatical structure, rather 052

than to lexical category, of the words. 053

Figure 1: ITPC results. The differing response to differ-
ent conditions is plotted using ITPC; each dot represents
a different participants and the horizontal bars indicate
statistical differences greater than 0.05 using an uncor-
rected ad hoc pairwise Wilcoxon signed-rank test. This
shows all six conditions, the two of particular interest
in the paper, AN and AV and four others, ML, RV,
MP, RR. The main scientific result of Burroughs et al.
(2021a) is the difference between the AN and AV condi-
tions.

Analysing these data required a quantitative mea- 054

surement of the strength of the response. The 055

power of the EEG response at 1.5625 Hz does not 056

work, this is too noisy a quantity for the stimulus- 057

dependent signal to be easily detected. Instead the 058
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inter-trial phase coherence (ITPC) was used. The059

ITPC is defined using the mean resultant060

r(f, ϕ) =
1

K

∑
k

eiθfkϕ (1)061

where f is the frequency, k is the trial index, K is062

the number of trials, ϕ represents other indices such063

as electrode number or experimental condition and064

θfkϕ is the phase of the complex Fourier coefficient065

for the EEG or MEG trace (f, k, ϕ). The ITPC is066

the length of the mean resultant: |r(f, ϕ)|. In fact,067

this is averaged over the 32 electrodes used in the068

experiment to give |r(f, c)| where c indices the069

conditions. The principle result of Burroughs et al.070

(2021a) is that, in the language of frequentist statis-071

tics, |r(f = 1.5626 Hz, c = AN)| is significantly072

larger than |r(f = 1.5626 Hz, c = AV)|: Fig. 1.073

There are a number of disadvantages to using074

the ITPC. The most obvious problem is that the075

‘item’ in the statistical analysis of ITPC is a par-076

ticipant, not a trial. In the results described in077

Burroughs et al. (2021a) the statistical significance078

relied on a statistical hypothesis test between condi-079

tions with a pair of data points for each participant:080

there are actually 24 trials for each participant but081

these are used to calculate the ITPC values. This082

hypothesis testing is performed using 16 pairs of083

values corresponding to 16 participants, rather than084

16 × 24 = 384, corresponding to all the trials, or085

even 16× 24× 32 = 12288 items if the individual086

electrodes are included. In short, the ITPC is itself087

a summary statistic, a circular version of variance,088

and so it hides the individual items inside a two089

stage analysis:090

items → ITPC → statistical analysis. (2)091

Some of the statistical power of the data is lost092

across these stages. Furthemore, the averaging093

performed to calculate ITPC ignores much of the094

structure of the data whereas including, for exam-095

ple, all the electrodes or all the participants equally096

has the cost of including electrodes less involved097

in auditory processing and less attentive partici-098

pants, attempting to select a subset of electrodes099

or participants is difficult and fraught with statisti-100

cal risks. These problems are hard to rectify: for101

example, it is difficult to compare items across par-102

ticipants, or across electrodes, because the mean103

phase, angle[r(f, ϕ)] is very variable and not mean-104

ingful to the scientific questions of interest.105

Here we introduce a Bayesian analysis to phase 106

data. We believe this has advantages when com- 107

pared to the ITPC: it permits a per-item analysis 108

and a correspondingly more efficient and richer 109

use of the data. As a Bayesian approach it sup- 110

ports a better description of the data, it can capture 111

information at different levels, participants, trials 112

and electrodes and it replaces a hypothesis-testing 113

and significance-based narrative with a narrative 114

phrased in terms of models and their consequence. 115

The structure of the model is very natural, mim- 116

icking the structure of the data and the results are 117

extremely clear, showing a real benefit to the pool- 118

ing that occurs across items in fitting the model. 119

In a Bayesian approach a probabilistic model is 120

constructed to account for the data; this is com- 121

posed of a model of the data and a set of priors for 122

the parameters in that model. For the phase data 123

considered here the data is a set of angles and so the 124

model for the data is a probability distribution on 125

a circle. The motivation which informs the ITPC 126

is that the angles to a greater or lesser extent have 127

a unimodal distribution. To match this assump- 128

tion, the model used here should be a unimodal 129

distribution on the circle. One common class of 130

distributions on the circle is given by the so called 131

wrapped distributions with probability density func- 132

tion p(θ) =
∑∞

n=−∞ pr(θ + 2πn) where pr(x) is 133

the probability density of a distribution on the real 134

line. Here the Cauchy distribution is used, remark- 135

ably, the wrapped Cauchy distribution has a closed 136

form: 137

p(θ) =
1

2π

sinh γ

cosh γ − cos (θ − µ)
(3) 138

A large value of γ corresponds to a highly dispersed 139

distribution; a low value to a concentrated one, see 140

Fig 2A. µ is the location of the peak. 141

The next important element is the choice of pri- 142

ors both for µ and for γ. In a sense the prior 143

for µ is more straight-forward: a value of µ is 144

required for each electrode and for each partici- 145

pant. Here for simplicity an independent value µepc 146

is chosen for each triplet of electrode-participant- 147

condition values. There is also no preferred value 148

for µ: the mean phase depends on processing and 149

transmission latencies and their relationship to the 150

frequency, see Fig. 2C. As such the correct prior 151

is uniform on a circle. In principle there is sim- 152

ple; nothing in the mathematical description of 153

the common MCMC samplers, such as Metropolis- 154

Hastings, HMC or NUTS, prevent the prior from 155
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Figure 2: Circular distributions. The wrapped Cauchy distribution for µ = 0 and for four different values of γ is
plotted in A; the γ = 0.5 graph is rather peaked and corresponds to a mean resultant with |r| ≈ 0.61, in contrast
γ = 5.0 is very flat and corresponds to |r| ≈ 0.01. The bundt distribution has a shape reminiscent of a cake, like
the one in B made in a bundt tin. To demonstrate the suitability of a uniform circular prior for the mean angle, the
direction of the mean resultant for all sixteen participants is plotted in C, where all 32 electrodes are plotted for
condition AN at the phrase frequency. To see how a specific electrode varies across participant three have been
colored, T7 in red, T8 in green and Pz in blue, the violin plots corresponding to these electrodes highlight the
uniform spread of the mean resultant around the circle.

being defined on a compact region. However, there156

is a problem in practice: the current high-quality157

implementations of these methods in stan and158

turing.jl do not allow priors of this sort.159

As a practical approach to avoiding this diffi-160

culty, we introduce a two-dimensional distribution161

which, in polar coordinates, is uniform in the angle162

coordinate. That angle coordinate is used as the163

mean angle in the wrapped-Cauchy distribution,164

giving the uniform prior on a circle this variable165

requires. Because its probability density function166

resembles the bundt cake tin, used to make kugel-167

hopf, this will be referred to as a bundt distribution,168

see Fig. 2B. It has probability density function169

p(x) =
1

2π
ρ exp (−ρ) (4)170

where ρ = |x|. The idea here is to have a prior171

xepc ∼ Bundt () (5)172

and then set173

µepc = angle(xepc) (6)174

The final element of the model is the prior for γ; 175

obviously the intention is have this depend on the 176

condition. One simple model uses a log-logistic 177

link function: 178

αc, αe, αp, α ∼ Normal(0, 1)
s ∼ Exponential(1) (7) 179

where e is the electrode index, p the participant 180

index, c the condition index; different αs with dif- 181

ferent indices are intended to be understood as dif- 182

ferent variables. Next 183

r(c, e, p) = ℓ[s2(αc + αe + αp + α)] (8) 184

where ℓ(x) is the logistic function and 185

γi = − log r(c[i], e[i], p[i]) (9) 186

where i is the item index for the data. The likeli- 187

hood for the angles is then 188

θi ∼ WrappedCauchy(µe[i]p[i]c[i], γi) (10) 189
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Figure 3: Posterior distributions. The marginal density plots in A show the posterior distributions of αc. The
posterior distribution shows a clear progression with the AN condition showing the strongest response to the stimulus
and the RV, a random control, the weakest. The highest probability density intervals in B show the progression in
the strength of response from stimulus to stimulus. For the posterior distribution of difference between conditions,
αc1 − αc2 , the circle is the mean and the whiskers span the shortest interval which includes 97% of the probability
density.

where θi is the ith phase.190

The data used here was previously described in191

Burroughs et al. (2021a) where there is a detailed192

description of the experimental procedures; the193

data are freely available at Burroughs et al. (2021b).194

The posterior distributions were sampled using the195

probabilistic programming language stan and are196

illustrated in Fig. 3. This gives an extremely clear197

set of results; whereas the original frequentist anal-198

ysis used in (Burroughs et al., 2021a), Fig. 1, only199

showed that the stimulus response for the AN condi-200

tion was higher than other conditions, the Bayesian201

approach described here tells a richer and more202

more complete story. As an example, from Fig. 3B203

it is clear that there is a difference in the response204

in the model for the ML condition in comparison205

to RR: this is interesting since the ML condition is206

not a grammatical condition. Further analysis, be-207

yond what is shown here, shows the Bayesian result208

is more robust as participants are removed from the209

analysis, showing greater descriptive power.210

A Bayesian analysis is very straightforward: it211

provides samples of the posterior distributions for212

model parameters based on data, these can be used213

to test hypothesis phrased in terms of a model. Here214

we have outlined how a Bayesian model can be con-215

structed for the phase data produced by frequency216

tagging experiments and we are preparing a full217

description of the mathematical background, of dif-218

ferent Bayesian models, their robustness, the code,219

libraries and packages used to analyze them and 220

the results they produce. It is clear that the results 221

provide an efficient approach to these data, an im- 222

portant type of data for the cognitive neuroscience 223

of language. 224
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