Extended Abstract: A Bayesian approach to phases for frequency-tagged
encephalography in the cognitive neuroscience of language

Anonymous ACL submission

Abstract

Electroencephalography and magnetoen-
cephalography recordings are non-invasive and
temporally precise, making them an invaluable
tool in the cognitive neuroscience of language.
They are, however, very noisy. One fruitful
response to this noisiness has been to use
stimuli with a specific frequency and to look
for the signal of interest in the response at that
frequency. Typically this involves measuring
the coherence of response phase. Here a
novel Bayesian approach to measuring phase
coherence is described and illustrated using an
example from neurolinguistics. It gives a better
and more data-efficient description than more
traditional statistical approaches.

In a frequency-tagged experiment in encephalog-
raphy stimuli are presented at a specific frequency;
for example, in a landmark neurolinguistic exper-
iment Ding et al. (2016, 2017) played four word
sentences to participants with each word lasting pre-
cisely the same amount of time. The advantage of
this approach is that the corresponding magnetoen-
cephalography (MEG) or electroencephalograph
(EEG) data can be examined at a few frequencies
of interest, in this case, the frequencies which cor-
responds to words, phrases and sentences. This
can give a more robust signal than an ERP-based
approach; indeed, there are many situations in neu-
rolinguistics, where an ERP would be impossible to
obtain because the number of repetitions required
would render the stimulus meaningless to the par-
ticipant. In Ding et al. (2016) the responses at
frequencies corresponding to the phrase and sen-
tence structure of the stimuli demonstrated a neural
response which the authors attributed to cortical
tracking of hierarchical linguistic structures.

Consider, as an example, the frequency-tagged
experiment described in Burroughs et al. (2021a)
which follows the frequency-tagged paradigm.
This paper investigates the neural response to

phrases and compared the response to grammat-
ical adjective-noun (AN) phrases such as

..cold food loud room...

to ungrammatical adjective-verb (AV) pairs, as in
..rough give ill tell...

The words are all presented at 3.125 Hz, however
the frequency of interest is the ‘phrase rate’, 1.5625
Hz, corresponding to the phrase structure of the AN
stimuli. In Burroughs et al. (2021a) it is suggested
that comparing the strength of the response for AN
and AV stimuli at the phrase frequency measures a
neural response to the grammatical structure, rather
than to lexical category, of the words.
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Figure 1: ITPC results. The differing response to differ-
ent conditions is plotted using ITPC; each dot represents
a different participants and the horizontal bars indicate
statistical differences greater than 0.05 using an uncor-
rected ad hoc pairwise Wilcoxon signed-rank test. This
shows all six conditions, the two of particular interest
in the paper, AN and AV and four others, ML, RV,
MP, RR. The main scientific result of Burroughs et al.
(2021a) is the difference between the AN and AV condi-
tions.

Analysing these data required a quantitative mea-
surement of the strength of the response. The
power of the EEG response at 1.5625 Hz does not
work, this is too noisy a quantity for the stimulus-
dependent signal to be easily detected. Instead the



inter-trial phase coherence (ITPC) was used. The
ITPC is defined using the mean resultant
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where f is the frequency, & is the trial index, K is
the number of trials, ¢ represents other indices such
as electrode number or experimental condition and
0 t1¢ 1s the phase of the complex Fourier coefficient
for the EEG or MEG trace (f, k, ¢). The ITPC is
the length of the mean resultant: |r(f, ¢)|. In fact,
this is averaged over the 32 electrodes used in the
experiment to give |r(f,c)| where ¢ indices the
conditions. The principle result of Burroughs et al.
(2021a) is that, in the language of frequentist statis-
tics, |r(f = 1.5626 Hz, ¢ = AN)| is significantly
larger than |r(f = 1.5626 Hz, c = AV)|: Fig. 1.

There are a number of disadvantages to using
the ITPC. The most obvious problem is that the
‘item’ in the statistical analysis of ITPC is a par-
ticipant, not a trial. In the results described in
Burroughs et al. (2021a) the statistical significance
relied on a statistical hypothesis test between condi-
tions with a pair of data points for each participant:
there are actually 24 trials for each participant but
these are used to calculate the ITPC values. This
hypothesis testing is performed using 16 pairs of
values corresponding to 16 participants, rather than
16 x 24 = 384, corresponding to all the trials, or
even 16 x 24 x 32 = 12288 items if the individual
electrodes are included. In short, the ITPC is itself
a summary statistic, a circular version of variance,
and so it hides the individual items inside a two
stage analysis:

items — ITPC — statistical analysis.  (2)

Some of the statistical power of the data is lost
across these stages. Furthemore, the averaging
performed to calculate ITPC ignores much of the
structure of the data whereas including, for exam-
ple, all the electrodes or all the participants equally
has the cost of including electrodes less involved
in auditory processing and less attentive partici-
pants, attempting to select a subset of electrodes
or participants is difficult and fraught with statisti-
cal risks. These problems are hard to rectify: for
example, it is difficult to compare items across par-
ticipants, or across electrodes, because the mean
phase, angle[r(f, ¢)] is very variable and not mean-
ingful to the scientific questions of interest.

Here we introduce a Bayesian analysis to phase
data. We believe this has advantages when com-
pared to the ITPC: it permits a per-item analysis
and a correspondingly more efficient and richer
use of the data. As a Bayesian approach it sup-
ports a better description of the data, it can capture
information at different levels, participants, trials
and electrodes and it replaces a hypothesis-testing
and significance-based narrative with a narrative
phrased in terms of models and their consequence.
The structure of the model is very natural, mim-
icking the structure of the data and the results are
extremely clear, showing a real benefit to the pool-
ing that occurs across items in fitting the model.

In a Bayesian approach a probabilistic model is
constructed to account for the data; this is com-
posed of a model of the data and a set of priors for
the parameters in that model. For the phase data
considered here the data is a set of angles and so the
model for the data is a probability distribution on
a circle. The motivation which informs the ITPC
is that the angles to a greater or lesser extent have
a unimodal distribution. To match this assump-
tion, the model used here should be a unimodal
distribution on the circle. One common class of
distributions on the circle is given by the so called
wrapped distributions with probability density func-
tion p(0) = > " pr(0 + 27n) where p,(z) is
the probability density of a distribution on the real
line. Here the Cauchy distribution is used, remark-
ably, the wrapped Cauchy distribution has a closed
form:

1 sinh
p(0) !
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A large value of ~y corresponds to a highly dispersed
distribution; a low value to a concentrated one, see
Fig 2A. 1 is the location of the peak.

The next important element is the choice of pri-
ors both for p and for 7. In a sense the prior
for p is more straight-forward: a value of p is
required for each electrode and for each partici-
pant. Here for simplicity an independent value fi¢p.
is chosen for each triplet of electrode-participant-
condition values. There is also no preferred value
for p: the mean phase depends on processing and
transmission latencies and their relationship to the
frequency, see Fig. 2C. As such the correct prior
is uniform on a circle. In principle there is sim-
ple; nothing in the mathematical description of
the common MCMC samplers, such as Metropolis-
Hastings, HMC or NUTS, prevent the prior from
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Figure 2: Circular distributions. The wrapped Cauchy distribution for 1 = 0 and for four different values of -y is
plotted in A; the v = 0.5 graph is rather peaked and corresponds to a mean resultant with |r| ~ 0.61, in contrast
~ = 5.0 is very flat and corresponds to |r| &~ 0.01. The bundt distribution has a shape reminiscent of a cake, like
the one in B made in a bundt tin. To demonstrate the suitability of a uniform circular prior for the mean angle, the
direction of the mean resultant for all sixteen participants is plotted in C, where all 32 electrodes are plotted for
condition AN at the phrase frequency. To see how a specific electrode varies across participant three have been
colored, T7 in red, T8 in green and Pz in blue, the violin plots corresponding to these electrodes highlight the

uniform spread of the mean resultant around the circle.

being defined on a compact region. However, there
is a problem in practice: the current high-quality
implementations of these methods in stan and
turing. j1 do not allow priors of this sort.

As a practical approach to avoiding this diffi-
culty, we introduce a two-dimensional distribution
which, in polar coordinates, is uniform in the angle
coordinate. That angle coordinate is used as the
mean angle in the wrapped-Cauchy distribution,
giving the uniform prior on a circle this variable
requires. Because its probability density function
resembles the bundt cake tin, used to make kugel-
hopf, this will be referred to as a bundt distribution,
see Fig. 2B. It has probability density function

1
== - 4
p(x) = o _pexp(=p) )
where p = |x|. The idea here is to have a prior
Xepe ~ Bundt () 5)

and then set

Hepe = angle(Xepe) 6)

The final element of the model is the prior for +;
obviously the intention is have this depend on the
condition. One simple model uses a log-logistic
link function:

Qe, Qe, 0p, o~ Normal(0, 1)
s ~ Exponential(1) (7

where e is the electrode index, p the participant
index, c the condition index; different aes with dif-
ferent indices are intended to be understood as dif-
ferent variables. Next

r(e,e,p) = ls*(ac + ae + op +a)] (8
where /() is the logistic function and
i = —logr(c[il, e[d], p[i]) ©

where 7 is the item index for the data. The likeli-
hood for the angles is then

0; ~ WrappedCauchy (pefijpiiei): i) (10)
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Figure 3: Posterior distributions. The marginal density plots in A show the posterior distributions of a.. The
posterior distribution shows a clear progression with the AN condition showing the strongest response to the stimulus
and the RV, a random control, the weakest. The highest probability density intervals in B show the progression in
the strength of response from stimulus to stimulus. For the posterior distribution of difference between conditions,
¢, — Q,, the circle is the mean and the whiskers span the shortest interval which includes 97% of the probability

density.

where 6; is the ith phase.

The data used here was previously described in
Burroughs et al. (2021a) where there is a detailed
description of the experimental procedures; the
data are freely available at Burroughs et al. (2021b).
The posterior distributions were sampled using the
probabilistic programming language stan and are
illustrated in Fig. 3. This gives an extremely clear
set of results; whereas the original frequentist anal-
ysis used in (Burroughs et al., 2021a), Fig. 1, only
showed that the stimulus response for the AN condi-
tion was higher than other conditions, the Bayesian
approach described here tells a richer and more
more complete story. As an example, from Fig. 3B
it is clear that there is a difference in the response
in the model for the ML condition in comparison
to RR: this is interesting since the ML condition is
not a grammatical condition. Further analysis, be-
yond what is shown here, shows the Bayesian result
is more robust as participants are removed from the
analysis, showing greater descriptive power.

A Bayesian analysis is very straightforward: it
provides samples of the posterior distributions for
model parameters based on data, these can be used
to test hypothesis phrased in terms of a model. Here
we have outlined how a Bayesian model can be con-
structed for the phase data produced by frequency
tagging experiments and we are preparing a full
description of the mathematical background, of dif-
ferent Bayesian models, their robustness, the code,

libraries and packages used to analyze them and
the results they produce. It is clear that the results
provide an efficient approach to these data, an im-
portant type of data for the cognitive neuroscience
of language.
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