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Abstract—Recent advances in Large Language Models (LLMs)
have shown promising capabilities in generating code for general-
purpose programming languages. In contrast, their applicability
for hardware description languages, particularly for generating
synthesizable and functionally correct designs, remains signif-
icantly underexplored. HDLs such as SystemVerilog are logic-
oriented and demand strict adherence to timing semantics, con-
currency, and synthesizability constraints. Moreover, HDL-based
design flows encompass a broad set of tasks beyond structural
code generation, including testbench development, assertion-
based verification, timing closure, and protocol-level integration
for on-chip communication. The objective of our paper is to
analyze the capabilities of state-of-the-art LLMs in generat-
ing SystemVerilog implementations of standard communication
protocols, a core component of embedded and System-on-Chip
(SoC) architectures. This paper introduces the first benchmark
suite targeting four widely used protocols: SPI, I²C, UART,
and AXI. We define code generation tasks that capture varying
levels of design abstraction and prompt specificity. The generated
designs are assessed for syntactic correctness, synthesizability,
and functional fidelity via waveform simulation and test benches1.

I. INTRODUCTION

Communication protocols are essential to hardware-
embedded systems, enabling structured data exchange between
processing elements, peripherals, and memory subsystems.
In embedded and system-on-chip (SoC) designs, standard
protocols such as Serial Peripheral Interface (SPI) [18],
Inter-Integrated Circuit (I²C) [26], Universal Asynchronous
Receiver-Transmitter (UART) [12], and Advanced extensible
Interface (AXI) [1] are widely used to interface with sen-
sors, actuators, storage devices, and external. The correct and
efficient implementation of these protocols in hardware de-
scription languages (HDLs) is essential for ensuring functional
correctness, timing closure, and system-level integration.

LLMs have shown remarkable performance in code gen-
eration, particularly in software domains [10], [11]. As the
complexity of hardware designs continues to grow, there is
increasing interest in leveraging language models to assist
or automate various stages of the design process [3], [4],
[7], [16], [17], [20], [23]–[25]. Their ability to synthesize,
complete, and refactor code raises the question: Can such
models generate synthesizable HDL code that adheres to
the semantic, structural, and timing constraints of hardware
communication protocols?

Despite the emergence of LLM-based tools for software
engineering, their application to hardware domains, especially
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in generating protocol-level modules, remains limited. During
hardware development, communication protocols such as SPI,
I²C, UART, and AXI serve as fundamental interfaces for inter-
module data exchange. These protocols are widely used across
various systems, from low-power microcontrollers to high-
performance SoCs. Designing synthesizable RTL for these
protocols is a non-trivial task that demands strict adherence
to timing specifications, finite-state machines (FSMs), signal
coordination, and electrical constraints such as clock polarity
and phase.

The communication protocol modules are one of the most
basic and common examples in VLSI design that also re-
quire more holistic evaluation, including waveform-level func-
tional verification, synthesis timing analysis, and deploya-
bility on hardware targets such as FPGAs. In particular,
protocol designs involve multi-signal interactions, such as
Ready/Busy/ACK Signals, MOSI/MISO, and Multibyte data
transmission, which must adhere to strict temporal relation-
ships, making surface-level correctness insufficient for mean-
ingful evaluation.

Current HDL code generation works have largely focused
on isolated or synthetic examples in Verilog and VHDL [6],
[14], [15], [25], [27], [28]. Many of them focus on syntax
correctness alone [3], [4], [16] for evaluation. In contrast,
protocol-level designs such as SPI, I²C, or AXI demand adher-
ence to precise timing relationships, signal-level interactions,
and behavioral specifications derived directly from detailed
datasheets. These implementations require waveform-accurate
behavior and rigorous validation against temporal constraints,
which are not captured by syntax-based benchmarks.

Given the adoption of SystemVerilog across the semicon-
ductor industry for both hardware design and verification, our
task requires code generation specifically in SystemVerilog.
Unlike traditional Verilog benchmarks, SystemVerilog’s ad-
vanced constructs directly facilitate the modeling of complex
protocols and interactions.

We introduce the first benchmark in System Verilog for
evaluating LLMs on HDL-based communication protocol gen-
eration to address this gap. Our benchmark covers multi-
ple protocols: SPI, I²C, UART, and AXI. The benchmark
focuses on open-ended code generation, where models are
required to synthesize complete, synthesizable modules that
meet protocol-level functional and temporal constraints.

In our open-source benchmark, we perform extensive ex-
periments across different LLMs, including code models and
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general-purpose models. The code is comprehensively evalu-
ated in three stages: (1) Lint Pass to ensure language-level
correctness and synthesizability, (2) Logic Synthesis using
commercial-grade EDA tools, and (3) Waveform Analysis to
validate temporal behavior against golden references. Finally,
our contributions can be summarised below:

1) We propose the first structured benchmark focused on
communication protocol generation using LLMs, span-
ning widely used industry protocols: SPI, I²C, UART,
and AXI.

2) We introduce a three-stage evaluation framework tai-
lored to hardware development workflows. This includes
(i) lint checks, (ii) logic synthesis, and (iii) waveform
validation for assessing hardware resource usage, max-
imum achievable frequency, and area overhead.

3) We evaluate a diverse set of LLMs, including both
code-focused models and general-purpose models under
both vanilla and retrieval-augmented generation (RAG)
setups.

II. BACKGROUND

A. HDL Code Generation with LLM

Recent works have revealed weaknesses of LLMs for HDL
generation, particularly in synthesis compatibility, functional
correctness, and verification logic quality. Benchmarks like
RTLLM [16] and VerilogEval [15] show that LLMs frequently
generate non-synthesizable HDL due to incorrect timing con-
structs, vendor-incompatible syntax, and structural flaws [3],
[4], [7], [16], [23], [24]. Formal tools such as Cadence Jasper
have further identified that up to 60% of LLM-generated de-
signs contain critical weaknesses like incorrect state transitions
and bit-width mismatches [5], [9], while iterative techniques
such as counterexample-guided refinement offer only partial
mitigation [7], [9]. Despite syntax improvements, logical
correctness remains a persistent issue, with misconfigured
ports, flawed carry logic, and incomplete FSM implementa-
tions reported by previous works. Verification logic, including
testbenches and SystemVerilog Assertions (SVAs), often lacks
coverage and adherence to industry practices like UVM [21],
highlighting insufficient feedback integration.

Unlike prior benchmarks that focus on isolated RTL mod-
ules or general-purpose logic generation, our work targets
protocol-specific HDL generation, incorporating temporal and
functional constraints derived from real-world datasheets. Fur-
thermore, we introduce a multi-stage evaluation pipeline, in-
cluding waveform-level validation, which more closely aligns
with practical hardware verification flows.

B. Communication Protocol

A common and critical application of FPGAs and microcon-
trollers is the implementation and management of communi-
cation protocols. These protocols are essential for interfacing
components such as sensors [13], actuators [2], and master
controllers in embedded [22]. In this benchmark, we focus
on four widely used inter- and intra-system communication
protocols: SPI, I²C, UART, and AXI:

• SPI [18] is a synchronous serial communication interface
that employs a master-slave architecture, where a single
master device orchestrates communication with one or
more slave devices. The master device generates the
clock signal on the SCLK line, which synchronizes
data transmission between the master and the selected
slave. Unlike I2C’s addressing scheme, SPI often uses
a dedicated Slave Select (SS) line for each slave device.
The master activates a specific slave by pulling its SS line
low before initiating data transfer. Data is simultaneously
transmitted and received between the master and the slave
on the MOSI and MISO lines, respectively, during each
clock cycle.

• I2C [26] is a synchronous, multi-master/multi-slave serial
communication bus that utilizes only two bidirectional
open-drain lines: the Serial Data Line (SDA) and the
Serial Clock Line (SCL). I2C employs a master-slave
architecture where one or more master devices initiate
and control communication with multiple slave devices.
The master device is responsible for generating the
clock signal on the SCL line that synchronizes all data
transfers. Each slave device connected to the I2C bus is
assigned a unique address, which the master uses to select
and communicate with a specific slave. This addressing
scheme allows multiple slave devices to share the same
two communication wires, a significant advantage over
SPI, which typically requires a dedicated select line for
each slave.

• UART [12] is an asynchronous, full-duplex serial com-
munication protocol commonly employed for point-
to-point data exchange. Unlike synchronous protocols,
UART does not require a shared clock signal instead,
its baud rate must be configured identically on both
communicating devices. Data is transmitted serially, one
bit at a time, over two dedicated lines: the Transmit (Tx)
line and the Receive (Rx) line. Communication is packet-
based, with each data frame consisting of a start bit, a
configurable number of data bits (typically 8), an optional
parity bit for error detection, and one or more stop bits.

• AXI4 (Lite) [1] is an interface protocol defined by
ARM as part of the AMBA (Advanced Microcontroller
Bus Architecture) standard. While AXI is inherently a
point-to-point interface, its architecture can be extended
to support multiple masters and slaves through the use
of interconnect components, which act as intelligent
switches and routers on the chip. The protocol mandates a
handshake-like procedure involving VALID and READY
signals for each transmission, ensuring reliable data trans-
fer by synchronizing the data flow between the source
and destination. AXI-Lite bus is an AXI bus that only
supports a single ID thread per initiator.

These protocols were selected based on their practical rel-
evance and increasing complexity, enabling a gradient of
difficulty for evaluating the ability of LLM to synthesize code.
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III. PROTOCOLLLM
In this section, we present a comprehensive benchmark

designed to evaluate LLMs for the task of generating syn-
thesizable HDL implementations of communication protocols.
These protocols serve as foundational components in modern
hardware systems, facilitating the communication between
processing units, peripherals, and memory subsystems. The
complexity of accurately implementing these protocols in
HDL, particularly as SystemVerilog, requires strict adherence
to timing constraints, signal coordination, and FSM behavior,
making it an ideal domain for testing LLM-based code gen-
eration.

Our benchmark is designed to evaluate both the functional
and timing correctness of LLM-generated designs across these
protocols.

A. Design Principles

The design of our benchmark is guided by the following
core principles:

• Protocol-Centric Evaluation: The benchmark focuses
on a set of widely-used communication protocols: SPI,
I²C, UART, and AXI that are essential for interfacing
between processing elements and peripherals. These pro-
tocols represent different levels of complexity in terms of
signaling, timing, and interaction, providing a diverse set
of challenges for model evaluation.

• Synthesizability and Timing Fidelity: Beyond syntax,
the generated HDL must conform to hardware imple-
mentation constraints, including FSM integrity, signal
synchronization, and timing closure. This ensures that
models produce RTL code that is not only valid but also
deployable on real-world FPGA hardware.

• Specification-Guided Generation: Instead of synthetic
or abstract prompts, our tasks are grounded in protocol
specification documents and datasheets. This setting re-
flects practical design conditions where engineers synthe-
size HDL directly from interface specifications, enabling
a more realistic assessment of model utility.

• Holistic Evaluation Pipeline: Our benchmark includes a
three-stage evaluation framework encompassing (i) lint-
ing for syntax and synthesis readiness, (ii) logic synthesis
for area, frequency, and utilization metrics, and (iii) wave-
form analysis for functional validation against protocol
timing diagrams and expected behaviors.

B. Benchmark Tasks and Evaluation Criteria

Our primary task is Open-Ended full module generation,
where the model receives a natural language or formal protocol
description and is tasked with generating a complete, syn-
thesizable SystemVerilog module. This evaluates the model’s
ability to interpret high-level requirements and produce corre-
sponding RTL code.

We prompt the model in two ways:
• Standard Prompting: The model generates HDL code

based on a full problem description, often in natural
language or mixed formats.

LLM

Model's
GPT 4.1
Qwen2.5 8B
Qwen2.5 32B

Output_code.sv

Syntax Error?

Synthesis Evaluator

Yes

Synth Error Failed

Simulator tool Fails Simulation

    Protocol defination and
module description

Specification
Doc

Passed Outputs

LLM

Fig. 1. Our HDL code generation and evaluation methodology. The pipeline
starts with protocol definitions and optional specification documents as input
to an LLM (GPT-4.1, Qwen2.5 14B, or Qwen2.5 32B). The generated
SystemVerilog code is evaluated through three sequential stages: (1) syntax
checking, (2) logic synthesis, and (3) functional simulation. Any failure at
these stages leads to rejection, while only code that passes all three is accepted
as valid output.

• Spec-Assisted Generation: The model accesses an ex-
ternal corpus of reference designs to simulate real-world
reuse, testing its ability to retrieve and apply relevant
knowledge for optimized designs.

Prompts
Generate a SPI driver in system verilog with the following
structure, and given that we want its parameters as CPOL=1
and CPHA=1. This SPI driver should be able to act as the
master.

Module Defination
 module SPI_driver(

input logic clk, rst, 
input logic [7:0] data_in, 
input logic SPI_MISO, 
Input logic SPI_start, 
output logic SPI_MOSI,
output logic SPI_CLK,
output logic SPI_EN, 
output logic [7:0] data_out );

Fig. 2. Sample prompts for SPI

Evaluation of a code generated by LLM is challenging, as
LLMs are usually trained to write code for object-oriented
programming languages like C/C++ and Python, which are
usually not time-dependent and do not generate combinational
and sequential logic. Our criteria to evaluate SystemVerilog
code are on 3 three-prong basis to completely evaluate and
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TABLE I
EVALUATION RESULTS FOR HDL COMMUNICATION PROTOCOL GENERATION. SYMBOLS: ✓= PASS, ✗= FAIL WHEN PROMPTED WITH AND WITHOUT

SPECIFICATION FILES.

Model Protocol Lint Pass Synthesis Waveform

w/o Spec w Spec w/o Spec w Spec w/o Spec w Spec

QwenCoder 2.5-14B

SPI ✗ ✓ (Warn) ✗ ✓ ✗ ✗
I²C ✗ ✗ ✗ ✗ ✗ ✗
UART ✗ ✗ ✗ ✗ ✗ ✗
AXI ✗ ✗ ✗ ✗ ✗ ✗

QwenCoder 2.5- 32B

SPI ✗ ✗ ✗ ✗ ✗ ✗
I²C ✗ ✓ (Warn) ✗ ✗ ✗ ✗
UART ✗ ✓ (Warn) ✗ ✗ ✗ ✗
AXI ✗ ✓ (Warn) ✗ ✓ ✗ ✗

GPT-4.1

SPI ✓ ✓ ✓ ✓ ✓ ✓
I²C ✓ (Warn) ✗ ✓ ✗ ✓ ✗
UART ✗ ✓ ✗ ✓ (Warn) ✗ ✗
AXI ✓ (Warn) ✗ ✓ ✗ ✗ ✗

accept the generated code as working. The criteria in the order
are as follows:

• Lint Check: We use the industry standard Synopsys
Spyglass Fault Analyzer. This is the first step, which
looks for any syntactical or logical errors generated by
the code.

• Synthesis: Synthesis analysis is done on the Synopsys
Design Compiler to know about the resource consump-
tion and if the code can be converted into a bitstream and
offloaded onto an FPGA.

• Waveform Analysis: The waveform analysis will deter-
mine whether the generated code correctly implements
the communication protocol. We will simulate the gen-
erated modules on testbenches the randomly generate
vectors and signals and check if the module has correctly
sent or received the data in accordance to the specification

C. Experimental Setup

We evaluate the benchmark on open-source coder models:
Qwen Coder 2.5-14B and Qwen Coder 2.5-32B [8]. We also
evaluate on a general-purpose proprietary GPT-4.1 model [19].
All models are queried with a temperature of 0 to ensure
deterministic outputs for reproducibility.

IV. RESULTS

Our benchmark evaluation reveals several important patterns
about the capabilities and limitations of current LLMs in HDL
protocol generation, particularly when targeting synthesizable
and functionally correct communication modules. At a system-
wide level, GPT-4.1 outperforms both Qwen-Coder models
across all evaluation axes: syntax, synthesis, and waveform
fidelity. It is the only model capable of generating end-to-end
functional designs. Qwen-Coder 32B, while structurally better,
still falls short of generating timing-correct or resource-safe
HDL.

Interestingly, we observe a clear protocol-specific perfor-
mance bias: simpler serial protocols like SPI and I²C were
more reliably generated, while UART and AXI, which involve

greater temporal complexity and signal interplay, exposed
deeper model weaknesses. Semantic conditioning via spec
files had nuanced effects. For simpler protocols like SPI,
spec guidance significantly improved synthesis success, e.g.,
QwenCoder2.5-14B went from full fail to passing synthesis.

As a side note, what we consider warnings are basically
what a good and ideal code should not contain, but are both
syntactically correct and do not affect its ability. For example,
a signed to unsigned conversion, ports being declared but not
read, asynchronous reset, and write-write race for signals can
create a functional but not well-developed code. Warnings are
just a preference of what good System Verilog code should
be, however, they do not affect the code’s ability to run a
simulation.

The “near-miss phenomenon” observed with Qwen-Coder
models: several designs failed due to minor syntactic or
initialization errors (e.g., undeclared wires, inferred latches),
indicating partial but incomplete protocol understanding. This
suggests potential for “LLM + post-processing” strategies
(e.g., automated lint-fix or human-in-the-loop design repair),
especially when used with spec conditioning.

Interestingly, varying Clock Polarity and Clock Phase con-
figurations in SPI (while semantically similar) led to struc-
turally different implementations across generations. This re-
flects a lack of canonical understanding of protocol design
patterns and could affect downstream reproducibility.

Finally, the core observation is that while LLMs might be
able to generate functional code, they largely struggle with
generating synthesizable code. This highlights the value of our
staged evaluation approach, where waveform-level simulation
acts as the definitive check, beyond syntax and synthesis,
to catch timing violations, protocol misbehaviors, and other
functional errors that don’t surface during earlier stages.

V. CONCLUSION

We presented the first benchmark designed to evaluate
large language models on HDL-based communication pro-
tocol generation. Our results show that while larger models
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like QwenCoder2.5-32B and GPT-4.1 produce syntactically
correct SystemVerilog, they often fail to meet functional and
synthesis-level correctness. The introduction of specification-
aware prompting improved both the structure and utility of
generated designs, particularly for well-documented proto-
cols like SPI and I²C. However, complex protocols such as
AXI remained challenging across all models. Our evaluation
pipeline spanning linting, synthesis, and waveform simulation
seemed to be critical for identifying errors that surface only in
post-synthesis or functional testing. These findings highlight
the current limitations of LLMs in hardware design and
point to the need for more domain-specific tuning and model
refinement.

VI. LIMITATIONS AND FUTURE WORK

Our benchmark focuses on a fixed set of four communi-
cation protocols: SPI, I²C, UART, and AXI, which, while
representative, do not fully capture the broader spectrum of
industrial HDL design, including bus arbiters, memory con-
trollers, and custom pipelines. The current evaluation is limited
to module-level designs and does not include integration-level
or system-level behavior, such as protocol interoperability or
backpressure handling.

Our future work aims to include full power, performance,
and area (PPA) analysis or resource usage across different
FPGA architectures. Finally, we aim to extend this benchmark
with deployment pipelines that test generated designs directly
on FPGA hardware and sensor interfaces to evaluate physical
correctness in real-world scenarios.
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