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Abstract

This demo presents advanced techniques in speech enhancement using deep gener-
ative models. It highlights the generalization capabilities of score-based generative
models for speech enhancement and compares directly with Schrodinger bridge ap-
proaches. The presented methods focus on generating high-quality super-wideband
speech at a sampling rate of 48 kHz. Participants will record speech using a single
microphone in a noisy environment, such as a conference venue. These recordings
will then be enhanced and played back through headphones, demonstrating the
model’s effectiveness in improving speech quality and intelligibility.

1 Introduction

Generative speech enhancement has recently shown promising advancements in improving speech
quality in noisy environments [1]]. Several diffusion-based frameworks exist, such as score-based
generative models for speech enhancement (SGMSE) [2] and the Schrodinger bridge [13) 4]].

This demo showcases the generalization capabilities of diffusion-based models for speech enhance-
ment. A comparative evaluation is presented for SGMSE and the Schrodinger bridge approach.
All presented methods generate high-quality super-wideband speech enhancement at a sampling
rate of 48 kHz. Participants are asked to record their speech using a single microphone in a noisy
environment, such as a conference venue. Once the speech is recorded, it undergoes enhancement
and is subsequently played back through headphones.

2 Methods

We represent audio signals in the time-frequency domain using the short-time Fourier transform
(STFT). Thus, we have complex spectrograms X € CT*¥ where T is the number of time frames,
and F' is the number of frequency bins. We apply an amplitude transformation ¢ = 3 |c|aei4(c) to all
STFT coefficients ¢, where /(-) represents the angle of a complex number, o € (0, 1], and 5 € R [2]].
Finally, we flatten X into a vector of dimension d = T'F, resulting in the input representation x € C¢.

2.1 Score-based generative models for speech enhancement (SGMSE)

In SGMSE [2], we use a task-adapted diffusion process for the conditional generation of clean speech
xo € C? given a noisy input y € C¢. Using the continuous-time formulation for diffusion models [5]],
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(a) SDE solver for SGMSE. (b) ODE solver for the Schrodinger bridge.

Figure 1: Comparison between SGMSE and Schrédinger bridge.

| POLQA  SI-SDR|[dB] PESQ ESTOI | SIGMOS  DNSMOS
Noisy | L714£0.56  598+6.10 1244022 0494015 | 1.95+0.39  2.74+0.29
SGMSE+ [2] | 3.40+0.73 16.78+4.47 250+0.62 0.73+0.13 | 3.41+£041 3.88+0.26
SB [3] 3.46+0.84 17.85+4.37 233+0.67 0.73+0.13 | 3.44+0.42 3.83+0.27

SB-PESQ [4] | 3.71+0.80 16.29+4.16 3.09+0.63 0.73+0.13 | 3.18+£0.44 3.72£0.28
Table 1: Speech enhancement performance on EARS-WHAM. Mean and standard deviation.

the forward process is modeled as the solution to the stochastic differential equation (SDE)
dx; = v(y — x¢)dt + g(t)dw, )

where x; € C? denotes the process state at time ¢ € [0, 1], v € R controls the transition from x to
v, and g(t) € R is the diffusion coefficient that controls the amount of Gaussian noise induced by a
standard Wiener process w.

The forward process can be time-inverted [5], resulting in a corresponding reverse process

dxy = [=7(y —x¢) + 9(t)* Vx, log pe (xe|y)]dt + g(t)dw 2
where Vy, log p:(x¢]y) is the conditional score, and w is the Wiener process backward in time.

The score function is typically intractable and approximated by a score model sy with parameters 6.
Once the score model is trained, the reverse process in Eq. (Z) can be solved by replacing the score
function with its approximation s¢ and using a numerical SDE solver. Fig.[Ta)illustrates an example
of reverse sampling utilizing an SDE solver. We use the same hyperparameters as in [6].

2.2 Schrodinger bridge for speech enhancement

The Schrodinger bridge (SB) for speech enhancement involves a pair of symmetric forward and
reverse SDEs [3]]. The general SB formulation is typically intractable, but closed-form solutions exist
for certain cases, such as Gaussian boundary conditions [7].

Training the SB involves directly predicting the clean data xg, which differs from SGMSE, where
Gaussian noise is predicted instead. This allows the incorporation of perceptual loss terms [4]. The
reverse SDE is solved during inference using an ODE sampler [7]]. The SB approach benefits from its
optimal transport characteristics, interpolating efficiently between clean and noisy signals, as shown
in Fig. We use the same hyperparameters as in [4], the same STFT as in [6], and ap = 10~

3 Experimental Setup and Results

We train all models using the EARS-WHAM dataset [6]], which comprises 86.8 hours of audio. We
report results on the EARS-WHAM test set in Table[I] In the demo, speech is recorded using a
microphone connected to a sound card, which is in turn connected to a laptop. The laptop is equipped
with a GPU to facilitate efficient processing. After the audio enhancement process is complete, we play
back the enhanced audio through headphones. An example of enhanced audio from a noisy YouTube
video is available at the following link: https://www.youtube.com/watch?v=H5Fi00JxPK4,

4 Conclusion

This demo illustrates the advanced capabilities of generative speech enhancement, showcasing its
ability to improve speech quality and intelligibility in real-world, noisy environments. We highlight
the generation of high-quality super-wideband speech, thereby emphasizing the potential of these
techniques for practical applications.


https://www.youtube.com/watch?v=H5FiO0JxPK4
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