Diffusion-based Speech Enhancement: Demonstration of Performance and Generalization

Julius Richter* Signal Processing Group University of Hamburg Germany julius.richter@uni-hamburg.de Timo Gerkmann Signal Processing Group University of Hamburg Germany timo.gerkmann@uni-hamburg.de

Abstract

This demo presents advanced techniques in speech enhancement using deep generative models. It highlights the generalization capabilities of score-based generative models for speech enhancement and compares directly with Schrödinger bridge approaches. The presented methods focus on generating high-quality super-wideband speech at a sampling rate of 48 kHz. Participants will record speech using a single microphone in a noisy environment, such as a conference venue. These recordings will then be enhanced and played back through headphones, demonstrating the model's effectiveness in improving speech quality and intelligibility.

1 Introduction

Generative speech enhancement has recently shown promising advancements in improving speech quality in noisy environments [1]. Several diffusion-based frameworks exist, such as score-based generative models for speech enhancement (SGMSE) [2] and the Schrödinger bridge [3, 4].

This demo showcases the generalization capabilities of diffusion-based models for speech enhancement. A comparative evaluation is presented for SGMSE and the Schrödinger bridge approach. All presented methods generate high-quality super-wideband speech enhancement at a sampling rate of 48 kHz. Participants are asked to record their speech using a single microphone in a noisy environment, such as a conference venue. Once the speech is recorded, it undergoes enhancement and is subsequently played back through headphones.

2 Methods

We represent audio signals in the time-frequency domain using the short-time Fourier transform (STFT). Thus, we have complex spectrograms $\bar{\mathbf{x}} \in \mathbb{C}^{T \times F}$ where T is the number of time frames, and F is the number of frequency bins. We apply an amplitude transformation $\tilde{c} = \beta |c|^{\alpha} e^{i \angle (c)}$ to all STFT coefficients c, where $\angle (\cdot)$ represents the angle of a complex number, $\alpha \in (0, 1]$, and $\beta \in \mathbb{R}$ [2]. Finally, we flatten $\bar{\mathbf{x}}$ into a vector of dimension d = TF, resulting in the input representation $\mathbf{x} \in \mathbb{C}^d$.

2.1 Score-based generative models for speech enhancement (SGMSE)

In SGMSE [2], we use a task-adapted diffusion process for the conditional generation of clean speech $\mathbf{x}_0 \in \mathbb{C}^d$ given a noisy input $\mathbf{y} \in \mathbb{C}^d$. Using the continuous-time formulation for diffusion models [5],

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

^{*}We acknowledge the support by the German Research Foundation (DFG) in the transregio project Crossmodal Learning (TRR 169).

(a) SDE solver for SGMSE.

(b) ODE solver for the Schrödinger bridge.

Figure 1: Comparison	between	SGMSE	and Schröd	linger bridge.	

	POLQA	SI-SDR [dB]	PESQ	ESTOI	SIGMOS	DNSMOS
Noisy	$ 1.71 \pm 0.56$	5.98 ± 6.10	1.24 ± 0.22	0.49 ± 0.15	1.95 ± 0.39	2.74 ± 0.29
SGMSE+ [2]	3.40 ± 0.73	16.78 ± 4.47	2.50 ± 0.62	0.73 ± 0.13	3.41 ± 0.41	3.88 ± 0.26
SB [3]	3.46 ± 0.84	17.85 ± 4.37	2.33 ± 0.67	0.73 ± 0.13	3.44 ± 0.42	3.83 ± 0.27
SB-PESQ [4]	3.71 ± 0.80	16.29 ± 4.16	3.09 ± 0.63	0.73 ± 0.13	3.18 ± 0.44	3.72 ± 0.28

Table 1: Speech enhancement performance on EARS-WHAM. Mean and standard deviation.

the forward process is modeled as the solution to the stochastic differential equation (SDE)

$$d\mathbf{x}_t = \gamma(\mathbf{y} - \mathbf{x}_t)dt + g(t)d\mathbf{w}, \qquad (1)$$

where $\mathbf{x}_t \in \mathbb{C}^d$ denotes the process state at time $t \in [0, 1]$, $\gamma \in \mathbb{R}$ controls the transition from \mathbf{x}_0 to \mathbf{y} , and $g(t) \in \mathbb{R}$ is the diffusion coefficient that controls the amount of Gaussian noise induced by a standard Wiener process \mathbf{w} .

The forward process can be time-inverted [5], resulting in a corresponding reverse process

$$d\mathbf{x}_t = \left[-\gamma(\mathbf{y} - \mathbf{x}_t) + g(t)^2 \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t | \mathbf{y})\right] dt + g(t) d\bar{\mathbf{w}},$$
(2)

where $\nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t | \mathbf{y})$ is the conditional score, and $\bar{\mathbf{w}}$ is the Wiener process backward in time.

The score function is typically intractable and approximated by a score model s_{θ} with parameters θ . Once the score model is trained, the reverse process in Eq. (2) can be solved by replacing the score function with its approximation s_{θ} and using a numerical SDE solver. Fig. 1a illustrates an example of reverse sampling utilizing an SDE solver. We use the same hyperparameters as in [6].

2.2 Schrödinger bridge for speech enhancement

The Schrödinger bridge (SB) for speech enhancement involves a pair of symmetric forward and reverse SDEs [3]. The general SB formulation is typically intractable, but closed-form solutions exist for certain cases, such as Gaussian boundary conditions [7].

Training the SB involves directly predicting the clean data x_0 , which differs from SGMSE, where Gaussian noise is predicted instead. This allows the incorporation of perceptual loss terms [4]. The reverse SDE is solved during inference using an ODE sampler [7]. The SB approach benefits from its optimal transport characteristics, interpolating efficiently between clean and noisy signals, as shown in Fig. 1b. We use the same hyperparameters as in [4], the same STFT as in [6], and $\alpha_P = 10^{-4}$.

3 Experimental Setup and Results

We train all models using the EARS-WHAM dataset [6], which comprises 86.8 hours of audio. We report results on the EARS-WHAM test set in Table 1. In the demo, speech is recorded using a microphone connected to a sound card, which is in turn connected to a laptop. The laptop is equipped with a GPU to facilitate efficient processing. After the audio enhancement process is complete, we play back the enhanced audio through headphones. An example of enhanced audio from a noisy YouTube video is available at the following link: https://www.youtube.com/watch?v=H5Fi00JxPK4.

4 Conclusion

This demo illustrates the advanced capabilities of generative speech enhancement, showcasing its ability to improve speech quality and intelligibility in real-world, noisy environments. We highlight the generation of high-quality super-wideband speech, thereby emphasizing the potential of these techniques for practical applications.

References

- Jean-Marie Lemercier, Julius Richter, Simon Welker, Eloi Moliner, Vesa Välimäki, and Timo Gerkmann. Diffusion models for audio restoration. *Signal Processing Magazin, accepted paper*, 2025.
- [2] Julius Richter, Simon Welker, Jean-Marie Lemercier, Bunlong Lay, and Timo Gerkmann. Speech enhancement and dereverberation with diffusion-based generative models. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 31:2351–2364, 2023.
- [3] Ante Jukić, Roman Korostik, Jagadeesh Balam, and Boris Ginsburg. Schrödinger bridge for generative speech enhancement. In *ISCA Interspeech*, pages 1175–1179, 2024.
- [4] Julius Richter, Danilo de Oliveira, and Timo Gerkmann. Investigating training objectives for generative speech enhancement. arXiv preprint arXiv:2409.10753, 2024.
- [5] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. *International Conference on Learning Representations*, 2021.
- [6] Julius Richter, Yi-Chiao Wu, Steven Krenn, Simon Welker, Bunlong Lay, Shinjii Watanabe, Alexander Richard, and Timo Gerkmann. EARS: An anechoic fullband speech dataset benchmarked for speech enhancement and dereverberation. In *ISCA Interspeech*, pages 4873–4877, 2024.
- [7] Zehua Chen, Guande He, Kaiwen Zheng, Xu Tan, and Jun Zhu. Schrödinger bridges beat diffusion models on text-to-speech synthesis. *arXiv preprint arXiv:2312.03491*, 2023.