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Abstract

This demo presents advanced techniques in speech enhancement using deep gener-
ative models. It highlights the generalization capabilities of score-based generative
models for speech enhancement and compares directly with Schrödinger bridge ap-
proaches. The presented methods focus on generating high-quality super-wideband
speech at a sampling rate of 48 kHz. Participants will record speech using a single
microphone in a noisy environment, such as a conference venue. These recordings
will then be enhanced and played back through headphones, demonstrating the
model’s effectiveness in improving speech quality and intelligibility.

1 Introduction

Generative speech enhancement has recently shown promising advancements in improving speech
quality in noisy environments [1]. Several diffusion-based frameworks exist, such as score-based
generative models for speech enhancement (SGMSE) [2] and the Schrödinger bridge [3, 4].

This demo showcases the generalization capabilities of diffusion-based models for speech enhance-
ment. A comparative evaluation is presented for SGMSE and the Schrödinger bridge approach.
All presented methods generate high-quality super-wideband speech enhancement at a sampling
rate of 48 kHz. Participants are asked to record their speech using a single microphone in a noisy
environment, such as a conference venue. Once the speech is recorded, it undergoes enhancement
and is subsequently played back through headphones.

2 Methods

We represent audio signals in the time-frequency domain using the short-time Fourier transform
(STFT). Thus, we have complex spectrograms x̄ ∈ CT×F where T is the number of time frames,
and F is the number of frequency bins. We apply an amplitude transformation c̃ = β|c|αei∠(c) to all
STFT coefficients c, where ∠(·) represents the angle of a complex number, α ∈ (0, 1], and β ∈ R [2].
Finally, we flatten x̄ into a vector of dimension d = TF , resulting in the input representation x ∈ Cd.

2.1 Score-based generative models for speech enhancement (SGMSE)

In SGMSE [2], we use a task-adapted diffusion process for the conditional generation of clean speech
x0 ∈ Cd given a noisy input y ∈ Cd. Using the continuous-time formulation for diffusion models [5],
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(a) SDE solver for SGMSE. (b) ODE solver for the Schrödinger bridge.

Figure 1: Comparison between SGMSE and Schrödinger bridge.

POLQA SI-SDR [dB] PESQ ESTOI SIGMOS DNSMOS
Noisy 1.71± 0.56 5.98± 6.10 1.24± 0.22 0.49± 0.15 1.95± 0.39 2.74± 0.29

SGMSE+ [2] 3.40± 0.73 16.78± 4.47 2.50± 0.62 0.73± 0.13 3.41± 0.41 3.88± 0.26
SB [3] 3.46± 0.84 17.85± 4.37 2.33± 0.67 0.73± 0.13 3.44± 0.42 3.83± 0.27
SB-PESQ [4] 3.71± 0.80 16.29± 4.16 3.09± 0.63 0.73± 0.13 3.18± 0.44 3.72± 0.28

Table 1: Speech enhancement performance on EARS-WHAM. Mean and standard deviation.

the forward process is modeled as the solution to the stochastic differential equation (SDE)
dxt = γ(y − xt)dt+ g(t)dw , (1)

where xt ∈ Cd denotes the process state at time t ∈ [0, 1], γ ∈ R controls the transition from x0 to
y, and g(t) ∈ R is the diffusion coefficient that controls the amount of Gaussian noise induced by a
standard Wiener process w.

The forward process can be time-inverted [5], resulting in a corresponding reverse process
dxt = [−γ(y − xt) + g(t)2∇xt

log pt(xt|y)]dt+ g(t)dw̄ , (2)
where ∇xt log pt(xt|y) is the conditional score, and w̄ is the Wiener process backward in time.

The score function is typically intractable and approximated by a score model sθ with parameters θ.
Once the score model is trained, the reverse process in Eq. (2) can be solved by replacing the score
function with its approximation sθ and using a numerical SDE solver. Fig. 1a illustrates an example
of reverse sampling utilizing an SDE solver. We use the same hyperparameters as in [6].

2.2 Schrödinger bridge for speech enhancement

The Schrödinger bridge (SB) for speech enhancement involves a pair of symmetric forward and
reverse SDEs [3]. The general SB formulation is typically intractable, but closed-form solutions exist
for certain cases, such as Gaussian boundary conditions [7].

Training the SB involves directly predicting the clean data x0, which differs from SGMSE, where
Gaussian noise is predicted instead. This allows the incorporation of perceptual loss terms [4]. The
reverse SDE is solved during inference using an ODE sampler [7]. The SB approach benefits from its
optimal transport characteristics, interpolating efficiently between clean and noisy signals, as shown
in Fig. 1b. We use the same hyperparameters as in [4], the same STFT as in [6], and αP = 10−4.

3 Experimental Setup and Results

We train all models using the EARS-WHAM dataset [6], which comprises 86.8 hours of audio. We
report results on the EARS-WHAM test set in Table 1. In the demo, speech is recorded using a
microphone connected to a sound card, which is in turn connected to a laptop. The laptop is equipped
with a GPU to facilitate efficient processing. After the audio enhancement process is complete, we play
back the enhanced audio through headphones. An example of enhanced audio from a noisy YouTube
video is available at the following link: https://www.youtube.com/watch?v=H5FiO0JxPK4.

4 Conclusion

This demo illustrates the advanced capabilities of generative speech enhancement, showcasing its
ability to improve speech quality and intelligibility in real-world, noisy environments. We highlight
the generation of high-quality super-wideband speech, thereby emphasizing the potential of these
techniques for practical applications.
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