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ABSTRACT

Epilepsy affects over 50 million people worldwide, and one-third of patients suffer
drug-resistant seizures where surgery offers the best chance of seizure freedom.
Accurate localization of the epileptogenic zone (EZ) relies on intracranial EEG
(iEEG). Clinical workflows, however, remain constrained by labor-intensive manual
review. At the same time, existing data-driven approaches are typically developed
on single-center datasets that are inconsistent in format and metadata, lack stan-
dardized benchmarks, and rarely release pathological event annotations, creating
barriers to reproducibility, cross-center validation, and clinical relevance. With ex-
tensive efforts to reconcile heterogeneous iEEG formats, metadata, and recordings
across publicly available sources, we present Omni-iEEG, a large-scale, pre-
surgical iEEG resource comprising 302 patients and 178 hours of high-resolution
recordings. The dataset includes harmonized clinical metadata such as seizure
onset zones, resections, and surgical outcomes, all validated by board-certified
epileptologists. In addition, Omni-iEEG provides over 36K expert-validated an-
notations of pathological events, enabling robust biomarker studies. Omni-iEEG
serves as a bridge between machine learning and epilepsy research. It defines
clinically meaningful tasks with unified evaluation metrics grounded in clinical
priors, enabling systematic evaluation of models in clinically relevant settings.
Beyond benchmarking, we demonstrate the potential of end-to-end modeling on
long iEEG segments and highlight the transferability of representations pretrained
on non-neurophysiological domains. Together, these contributions establish Omni-
iEEG as a foundation for reproducible, generalizable, and clinically translatable
epilepsy research.

1 INTRODUCTION

Epilepsy affects approximately 3.4 million people in the U.S. and nearly 50 million globally, mak-
ing it one of the most common neurological disorders (for Disease Control & Prevention, 2017;
Organization, 2023). About 30% of patients have drug-resistant epilepsy, where seizures cannot
be controlled by medication (Kwan et al., 2010). Most of these patients experience focal seizures
originating in specific brain regions (Jobst & Cascino, 2018), and successful treatment relies on
accurately identifying the epileptogenic zone (EZ), the brain area crucial for seizure generation. There
are two primary interventions aimed at disrupting or removing the EZ: (i) implantation of electrodes
for targeted electrical stimulation and (ii) surgical resection of the affected brain tissue (Clinic, 2024).
However, both strategies carry significant risks, including cognitive deficits resulting from damage to
functionally critical regions (e.g., eloquent cortex) (Helmstaedter & Elger, 2013). Localization of the
EZ is typically guided by a combination of inpatient observation, neuroimaging, and intracranial EEG
(iEEG), including identification of seizure onset zones (SOZ) and interictal spikes. Yet, SOZ-based
resections do not guarantee seizure freedom (Rosenow & Lüders, 2001), and non-invasive tests, such
as scalp EEG, MRI, PET, and MEG, often fail to localize the EZ with sufficient precision (Jayakar
et al., 2016). The current clinical standard involves iEEG studies to identify both the pathological
brain regions (i.e., the EZ) and the functional anatomical areas that must be preserved to minimize
cognitive side effects. However, this process relies heavily on manual review of extended iEEG
recordings, which is time-consuming and subject to low inter-rater reliability (Spring et al., 2017).
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Labeled by board-certified epileptologists

302 Patients, 178 Hours Recording, 36177 Event Annotations - all Clinically Validated
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Figure 1: Overview of the Omni-iEEG Dataset and Benchmark.

Several recent studies explore the use of machine learning on iEEG data or machine learning re-
fined neurophysiological biomarkers to facilitate epilepsy research; for example, network analysis
(Partamian et al., 2025) and Convolutional Neural Network (Li et al., 2021b; Zhang et al., 2022b).
However, many of these efforts have been validated only on single-institution datasets with lim-
ited cohort sizes, restricting their clinical generalizability and robustness. Although datasets from
institutions such as (Fedele et al., 2017; Zhang et al., 2025; Bernabei et al., 2023a; Gunnarsdottir
et al., 2022) have been released, they differ in data formats and inconsistent channel naming and
demographic metadata. Moreover, benchmark and evaluation metrics are not standardized across
studies, limiting reproducibility and comparability. These inconsistencies hinder the ability to derive
translatable insights and to establish reliable benchmarks for model performance across studies.

To address these challenges, we construct Omni-iEEG, a large-scale, standardized dataset for epilepsy
research. Omni-iEEG comprises recordings from 302 patients across 178 hours from eight leading
epilepsy centers, including the University of California, Los Angeles; Wayne State University; the
University Hospital Zurich; the University of Pennsylvania; the University of Miami; the National
Institutes of Health; and Johns Hopkins Hospital. All recordings were obtained prior to surgical
resection from patients with focal epilepsy, enabling models to predict postsurgical outcomes from
pre-operative data to simulate the surgical planning. Furthermore, since the iEEG recording comes
with different formats and metadata, board-certified epileptologists (experts) verified and harmonized
all recordings with consistent iEEG formats, channel annotations, and clinical metadata. All data
were fully de-identified with institutional IRB approval or public-domain release agreements.

Beyond the recordings and metadata, Omni-iEEG also releases clinically meaningful pathological
biomarkers, extensively annotated by board-certified experts to support robust biomarker research.
We focus on one of the most promising clinically utilized iEEG biomarkers for localizing the
epileptogenic zone: high-frequency oscillations (HFOs). HFOs have garnered growing interest in
both clinical (Gotman, 2010; Zweiphenning et al., 2022; Frauscher et al., 2018b) and computa-
tional (Kuroda et al., 2021; Sciaraffa et al., 2020; Chaibi et al., 2014) domain. Despite their potential,
the clinical utility of HFOs remains contested due to persistent challenges in distinguishing pathologi-
cal from physiological HFOs (Zijlmans et al., 2012; Zweiphenning et al., 2022), as well as issues such
as artifact contamination and inter-rater variability (Nariai et al., 2018; Spring et al., 2017). Specifi-
cally, Omni-iEEG releases annotations of candidate HFOs, focusing on the most widely accepted
pathological definition: HFOs co-occurring with spikes (spkHFO). These annotations are conducted
on machine-generated detections from multiple widely used HFO detection algorithms (Navarrete
et al., 2016; Ding et al., 2025).

To promote reproducible research and systematic model evaluation, we define clinically meaningful
benchmark tasks with corresponding evaluation metrics. The two primary tasks are: (1) Clinical
Prior-Driven Pathological Event Classification, which focuses on identifying iEEG HFO events
consistent with expert-defined pathological patterns; (2) Pathological Brain Region Identification,
which aims to localize regions likely involved in seizure generation. In addition, we propose a set
of exploratory tasks, including Anatomical Location Classification, Ictal Period Identification, and
Sleep–Awake Classification that hold comparable clinical significance yet present greater analytical
challenges for iEEG.
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We rigorously build baseline models from both machine learning and computational neuroscience
domains, leveraging learning from clinically validated biomarkers as well as direct end-to-end data-
driven approaches. Omni-iEEG serves as the first comprehensive dataset bridging epilepsy research
and machine learning, with the potential to accelerate clinically relevant discoveries and improve
patient outcomes. Our contributions can be summarized as follows:

• We introduce the Omni-iEEG dataset, a large-scale, standardized collection of interictal pre-
surgical iEEG recordings from 302 patients and 178 hours of data, accompanied by rigorous
clinical metadata verification, and includes over 36K expert annotations of pathological events.

• We define comprehensive evaluation metrics grounded in clinical priors and compare baseline
models from diverse disciplines, providing a unified benchmark that improves reproducibility,
enables comparability across studies, and bridges clinical research with machine learning.

• We demonstrate new insights enabled by Omni-iEEG, showing that end-to-end data-driven mod-
eling of long iEEG segments can match or surpass clinically grounded biomarkers in epilepsy
surgical planning, and reveal cross-domain transfer from pretrained audio representations to iEEG.

2 RELATED WORK

Public iEEG Datasets. Several public iEEG datasets, such as Open iEEG (Zhang et al., 2025), Zurich
iEEG HFO (Fedele et al., 2017), HUP (Bernabei et al., 2023a) and Epilepsy Interictal (Gunnarsdottir
et al., 2022), provide valuable resources for epilepsy research. However, these datasets suffer from
inconsistencies in metadata annotation and formats, making them challenging for machine learning
applications without clinical expertise. There are more open-sourced iEEG data available (Li et al.,
2021a; Huang et al., 2024; Berezutskaya et al., 2022; Wang et al., 2024; Madan et al., 2024), but
out of the scope of epilepsy research, or containing only ictal recordings. The Omni-iEEG dataset
addresses these issues by offering harmonized data across multiple centers, improving accessibility
and usability for both clinicians and researchers.

Clinically Discovered iEEG Biomarkers. HFOs are well-established biomarkers for localizing
epileptogenic zones, though distinguishing pathological from physiological HFOs remains chal-
lenging due to artifact contamination and inter-rater variability (Gotman, 2010; Frauscher et al.,
2018b; Zijlmans et al., 2012; Nariai et al., 2018). Despite these challenges, HFOs remain central to
iEEG-based epilepsy localization (Navarrete et al., 2016). Other interictal biomarkers also contribute
to localizing epileptogenic zones, including interictal spikes and sharp waves (Doose et al., 1996),
infraslow activity (Rodin et al., 2014), interictal epileptiform discharges (de Curtis et al., 2012),
and phase-amplitude coupling (Samiee et al., 2018); however, these have seen limited adoption in
recent clinical research. In the Omni-iEEG dataset, we focus on HFOs, as they are prevalent in
existing literature and studies, enabling better integration of clinical findings with machine learning
approaches for future research.

Machine Learning-Based Data-Driven iEEG Biomarkers. Machine learning techniques, including
deep learning models, have shown promise in classifying iEEG signals and identifying epileptogenic
regions (Li et al., 2021b; Monsoor et al., 2023; Partamian et al., 2025; Sheikh et al., 2024; Wang et al.,
2022). However, these models often rely on small, single-institution datasets, limiting generalizability.
The Omni-iEEG dataset, with its multi-center data, addresses these limitations and supports the
development of more robust, clinically applicable models.

3 OMNI-IEEG DATASET

The Omni-iEEG dataset aggregates recordings from multiple independently curated datasets, spanning
a diverse set of institutions and recording devices. The datasets vary in sampling rates, recording
durations, modalities, and the availability of clinical metadata, such as seizure onset zones, resection
zones, and surgical outcomes. A summary of the dataset statistics is provided in Table 1.

Patient Cohort. Since current open-source iEEG datasets are independently collected and released
by different institutions, we conduct a comprehensive review of recently published epilepsy studies
and assembled a unified collection of iEEG recordings to compose our Omni-iEEG dataset. Each
dataset source is carefully cross-referenced with its corresponding publication to ensure consistency

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Overview of the Omni-iEEG dataset. “#Subjects” indicates the total number of subjects in
the dataset; “#Selected” denotes those included in the current split; “#Surgery” refers to subjects who
underwent resective surgery; “#Seizure-Free” indicates subjects achieves post-operative seizue-free;
“Duration” specifies the range of recording lengths in minutes.

Split Dataset #Subjects #Selected #Surgery #Seizure-Free Duration (Min)

Training

OpeniEEG 111 111 97 66 5-111
Zurich 12 12 9 9 1-8
HUP 42 9 9 6 5
SourceSink 21 20 12 10 1-16

Testing

OpeniEEG 74 74 67 48 5-120
Zurich 8 8 6 6 3-12
HUP 16 6 6 4 5
SourceSink 18 15 9 6 1-17

Total 302 255 215 155 —

between the reported data specification and the shared data. We select high-quality recordings from
each source by prioritizing those with reliable metadata alignment, particularly clinical channel
annotations. The patient cohort included in the Omni-iEEG dataset is primarily drawn from the
following data sources: Open iEEG Dataset (Zhang et al., 2025), Zurich iEEG HFO Dataset (Fedele
et al., 2017), Epilepsy Interictal Dataset (Gunnarsdottir et al., 2022), HUP dataset (Bernabei et al.,
2023a). After our rigorous cleaning and validation, we aggregate a total of 302 patients and 178 hours
of iEEG recordings. The detailed specification of the patient cohort is presented in the Appendix.

Data Processing and Harmonization. We adopt the standardized preprocessing protocols defined by
each source dataset when constructing the Omni-iEEG collection (Fedele et al., 2017; Gunnarsdottir
et al., 2022; Zhang et al., 2025; Bernabei et al., 2023a). All recordings are reviewed by board-certified
clinicians to ensure data quality. To address heterogeneity across datasets, clinicians harmonize
metadata into a unified schema, enabling consistent use. These data harmonization decisions are
grounded in established clinical conventions and expert judgment: steps that are straightforward
for clinicians but non-trivial for researchers without specialized training. All iEEG recordings are
resampled to 1000Hz for downstream analysis. Further details of validation, discrepancy resolution,
and metadata harmonization are provided in the Appendix.

Data Splitting. To facilitate standardized evaluation and ensure clinical relevance, we split the
Omni-iEEG dataset into training and testing subsets using a 60%/40% ratio at the subject level. We
carefully consider key metadata attributes to guide the split. Specifically, we ensure that patients from
each contributing dataset are evenly distributed across the training and testing sets. In addition, we
stratify the split to balance clinically meaningful variables, including resection outcomes, number
of recording channels, and recording modalities to ensure that both subsets are representative of the
overall cohort. For task-specific evaluations, the training and testing sets may be further restricted to
subsets of the full splits to retain the original split logic wherever feasible.

Table 2: Summary of HFO event annotations. “#Subjects” denotes the number of patients; “#Total
Events” refers to all annotated HFO events; “#Artifact” indicates events labeled as artifacts; “#Real
HFO” represents real HFO; and “#spkHFO” refers to real HFOs that co-occur with spikes.

Split Dataset #Subjects #Total Events #Artifact #Real HFO #spkHFO

Training

OpeniEEG 20 19909 5517 14392 10070
Zurich 3 829 242 587 449
HUP 3 178 42 136 120
SourceSink 3 1120 949 171 121

Testing

OpeniEEG 14 13092 2052 11040 7964
Zurich 2 443 248 195 102
HUP 2 91 82 9 4
SourceSink 2 515 156 359 348

Total 49 36177 9288 26889 19180
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4 BENCHMARK TASKS FOR INTERICTAL IEEG ANALYSIS

4.1 TASK 1: CLINICAL PRIOR-DRIVEN PATHOLOGICAL EVENTS CLASSIFICATION

HFOs have been widely recognized as a key biomarker for localizing the epileptogenic zone in iEEG
recordings. They are spontaneous iEEG events in the 80–500 Hz frequency range, characterized by
at least four consecutive oscillations that clearly stand out from the background activity. HFO events
vary in duration, typically ranging from 30 to 100 milliseconds (Zelmann et al., 2012). However,
refining the clinical utility of HFOs requires further filtering of detected events, as legacy detection
algorithms often produce noisy outputs (Zweiphenning et al., 2022). Due to the lack of consensus
on the precise definition of HFOs, we adopt a consensus-driven approach by incorporating multiple
mainstream detection algorithms (Navarrete et al., 2016) to create a comprehensive pool of candidate
HFO events from multi-center iEEG recordings. Specifically, we utilize the Short-Time Energy
detector (Staba et al., 2002), the Montreal Neurological Institute and Hospital detector (Zelmann
et al., 2010), and the Hilbert HFO detector (Crépon et al., 2009) to maximize detection coverage.

Four board-certified clinicians manually annotate each candidate HFO event as either an artifact
(including ringing, muscle, and background fluctuations), a pathological HFO, or a non-pathological
HFO. We adopt the clinically promising definition of spkHFOs (Bénar et al., 2010), which are HFO
events occurring in close temporal proximity to interictal epileptiform spikes. Although there is
no consensus on the computational definition of spkHFOs (Zhang et al., 2022b), we use expert
annotations from multiple clinicians across more than 36K candidate HFOs to develop a data-driven
definition. Based on these annotations, the objective of this task is to perform multi-class classification
to predict whether a given HFO event is a spkHFO, non-spkHFO, or artifact. To mitigate the effect
of class imbalance across the three categories, we adopt macro-averaged precision, recall, F1 score,
and area under the ROC curve (macro-AUC). The macro-AUC is computed in a one-vs-rest fashion
and averaged equally across all classes. The classification dataset comprises 36,177 annotated HFO
events, including 9,288 artifacts, 7,709 non-spkHFOs, and 19,180 spkHFOs. A summary of the
annotation distribution is provided in Table 2, with additional details on the annotation protocol and
detector-specific statistics available in the Appendix.

4.2 TASK 2: PATHOLOGICAL BRAIN REGION IDENTIFICATION

Table 3: Summary of channel labels and clinical outcomes across dataset splits. “#Subjects” indicates
the number of valid subjects; “#Normal/Pathological Channels” represent iEEG channels labeled
as normal or pathological; “#Seizure-Free/Non-Free” correspond to subjects with or without post-
surgical seizure freedom; “#Anatomical Labeled” lists subjects with anatomical channel annotations.

Split Dataset # Valid
Subjects

# Normal
Channels

# Pathological
Channels

# Seizure
Free

# Seizure
Non-Free

#
Anatomical

Training

OpeniEEG 110 4638 1072 66 32 111
Zurich 12 5619 — 9 3 —
HUP 9 1034 106 6 3 —
SourceSink 19 500 177 10 9 —

Testing

OpeniEEG 74 3533 575 48 19 74
Zurich 8 2611 — 6 2 —
HUP 6 874 78 4 2 —
SourceSink 14 279 154 5 9 —

Total 252 19088 2162 154 79 185

4.2.1 MOTIVATION AND CLINICAL BACKGROUND

Accurate localization of pathological brain regions is critical for guiding effective epilepsy treat-
ments, including surgical resection (Baumgartner et al., 2019) and neurostimulation (Johnson et al.,
2022). Current clinical workflows, relying on prolonged iEEG monitoring, cortical stimulation, ictal
recordings, and interictal biomarkers, are time-consuming, resource-intensive, and require extended
inpatient monitoring and close coordination among clinical teams (Jayakar et al., 2016; Nariai et al.,
2018).While HFOs are promising interictal markers of epileptogenicity, relying solely on them may
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overlook other informative iEEG features (Gunnarsdottir et al., 2022). A comprehensive data-driven
approach that integrates spectral, temporal, and spatial characteristics has the potential to uncover
novel biomarkers and improve robustness, interpretability, and generalizability. Recent work (Gun-
narsdottir et al., 2022; Wang et al., 2022; Chen et al., 2022) suggests that epileptogenic regions can
be inferred from short interictal recordings. Although clinical decisions on resection or stimulation
must still integrate multiple factors (Tamilia et al., 2018), automated analysis of interictal data offers
a path toward streamlining pre-surgical evaluation and enhancing treatment planning.

4.2.2 TASK SPECIFICATION AND EVALUATION METRICS

Clinical Evidence. Since the precise localization of pathological brain regions cannot be determined
prospectively (prior to surgery), the community often relies on established clinical evidence made
retrospectively (after surgery) to guide the construction of this task (Zhang et al., 2022b): (1) SOZ
channels, identified during monitoring, are expected to show interictal pathological activity; (2)
Resected but non-SOZ channels are ambiguous, since margins depend on anatomical and surgical
factors; (3) In seizure-free patients, preserved channels are presumed normal, as resection likely
covered all pathological regions; (4) In non–seizure-free patients, residual pathological regions are
inferred, though their exact locations remain unknown.

Task Definition. The objective of this task is to develop a biomarker or model that classifies
iEEG channels as either pathological or normal. We introduce two evaluation criteria for this
task: (1) the model should distinguish between channels with high-confidence labels: such as SOZ
versus preserved channels in seizure-free patients; (2) it should provide patient-level predictions
that are predictive of post-operative outcomes. Together, these evaluations aim to assess both the
discriminative power of the model at the channel level and its clinical relevance.

Evaluation at the Channel Level. The channel classification label is defined as follows: Channels
marked as SOZ during clinical monitoring are treated as positive examples, while preserved (non-
resected) channels from seizure-free patients serve as negative examples. We report standard metrics
including macro-averaged precision, recall (sensitivity), specificity (true negative rate), and the
area under the ROC curve (AUC). Besides the AUC, given the clinical implications, we also place
particular emphasis on both recall and specificity to minimize the risks associated with false negatives
(missed pathological tissue) and false positives (unnecessary resection of healthy tissue).

Surgical Outcome Prediction. To evaluate whether the model’s predictions correlate with surgical
outcomes, following prior literature (Zhang et al., 2022a;b; 2025; Gunnarsdottir et al., 2022; Monsoor
et al., 2023), we compute a resection ratio (RR) for each patient. For every channel c, the model
produces a pathological score sc, and RR is defined as: RR =

∑
c∈resected sc/

∑
c∈all sc. This metric

represents the proportion of predicted pathological signal that is surgically removed. We assign a
binary outcome label to each patient: 1 for seizure-free (Engel Class I) and 0 for not seizure-free
(Engel Class II–IV). We assess the predictive ability of the resection ratio using ROC-AUC, under
the hypothesis that a higher RR corresponds to a higher likelihood of post-operative seizure freedom.

Cohort Summary. The pathological brain region identification task encompasses a total of 252
patients and 21250 candidate channels, comprising 2162 pathological (SOZ) and 19088 normal
channels. Within these patients, 233 patients underwent resection treatment, and 154 of them became
seizure-free after resection. A comprehensive summary of this task is presented in Table 3.

4.3 EXPLORATORY TASKS

Beyond the core benchmarks, we introduce three exploratory tasks that highlight clinically meaningful
yet technically challenging problems in iEEG analysis. These tasks, though limited to data from
one or two institutions, encourage new directions for data-driven epilepsy research. Full details and
baseline results are in the Appendix.

Anatomical Location Classification. This task aims to predict the anatomical location of iEEG
signals using short segments. Accurate anatomical decoding can aid in functional mapping and
surgical planning. Traditional methods rely on manual electrode labeling through stimulation, which is
time-consuming and prone to variability. Automated classification improves precision and efficiency,
overcoming these limitations (Bernabei et al., 2023b).

6
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Ictal Period Identification. This task distinguishes between interictal and ictal periods in iEEG
segments, which is crucial for localizing seizure onset zones and evaluating interventions. Manual
identification is labor-intensive and prone to missing brief seizures, whereas automated detection
improves diagnostic accuracy and timeliness (Fisher et al., 2014; Alhilani et al., 2020).

Sleep-Awake Classification. This task classifies iEEG segments into sleep or awake states, as seizure
occurrence and interictal discharges are influenced by the sleep-wake cycle. Automated classification
enhances diagnostic accuracy and treatment planning by overcoming the subjectivity and oversight
inherent in manual classification (Derry & Duncan, 2013).

5 BENCHMARK RESULTS

5.1 PATHOLOGICAL EVENTS CLASSIFICATION

Baseline Methods. HFO events are high-frequency 1D signals with complex temporal and spectral dy-
namics. Previous interdisciplinary studies in HFO analysis (Zhang et al., 2024) have primarily focused
on the morphology of iEEG traces, often using time-frequency representations (Morlet Wavelet).
Building on this work (Zhang et al., 2024), we retrain their model on Omni-iEEG annotations,
PyHFO-Omni. Additionally, we evaluate raw iEEG traces as a time-domain representation of HFO
events, implementing baselines inspired by recent time-series models, including an LSTM+Attention
(inspired by (Huang et al., 2023)), a Transformer based on the PatchTST architecture (Nie et al.,
2023a). We also train the competitive time-series framework, TimesNet (Wu et al., 2023) on HFO
event classification. Implementation details of each baseline model are provided in the Appendix.

Performance Comparison. As shown in Table 4, the clinically validated framework, PyHFO-Omni,
achieves the highest F1 score and recall, making it a strong baseline. However, time-domain baselines
exhibit suboptimal performance. We hypothesize that since the spike (sharp waveform) and HFO
characteristics lie within the high-frequency band, the subtle dynamics of the iEEG trace may not
be fully captured by directly consuming the raw iEEG data. Additionally, time-domain baselines
may pose difficulty in accounting for the correlations between different frequency bands, further
complicating the learning task.

Table 4: Benchmark for Pathological Event Classification. Evaluation metrics include macro-averaged
precision, recall, F1 and AUC.

Model Precision Recall F1 AUC

LSTM+Attention 0.7352 0.7359 0.7338 0.9109
PatchTST Transformer 0.7757 0.7686 0.7726 0.9311
TimesNet 0.7589 0.7726 0.7652 0.9221
PyHFO-Omni 0.8025 0.8110 0.8061 0.9390

5.2 PATHOLOGICAL BRAIN REGION IDENTIFICATION

To identify pathological brain regions, we evaluate two classes of baseline models: (1) approaches
based on clinically validated biomarkers, HFO events (event-based models), and (2) purely data-driven
approaches that directly learn from the iEEG segments (segment-based models).

Event-Based Models. Motivated by the clinical hypothesis that pathological regions exhibit higher
rates of pathological HFOs, we first detect candidate HFO events (see Sec 4.1) on each channel. To
identify pathological HFOs, we use three models: (1) an eHFO classifier (Monsoor et al., 2023),
which defines pathological HFOs using weakly supervised learning with clinical evidence, and (2)
PyHFO-based classifiers, including the built-in model (Zhang et al., 2024) and our extended PyHFO-
Omni (Sec. 5.1), both used to predict spkHFOs as pathological HFOs. After generating predictions,
we compute the per-channel pathological HFO rate by counting pathological events. To derive binary
channel-level predictions, we compute the ROC curve and use Youden’s J statistic to select the
optimal threshold. With this threshold, we obtain binary predictions and report macro-averaged
precision, recall, specificity, and F1 score. For outcome prediction, we compute the resection ratio
(RR) using the raw pathological rates and evaluate AUC, as defined in Sec 4.2.2.

7
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Segment-Based Models. These models operate directly on raw iEEG segments without relying
on intermediate event detection. During the training, we adopted a stratified sample to uniformly
select the iEEG segments from each class. The segment duration is set to one minute, providing a
broader spectrum than that of HFOs (normally 30-100ms). For evaluation, we use the models to
conduct inference on non-overlapping 1-minute segments from each channel in a sliding window
manner to assign a probability for each segment. Then we compute a per-channel pathological score
as the average of the pathological probability. Metrics reported in channel-level evaluations follow
the same scheme as event-based models. Meanwhile, RR is also calculated in the same manner as the
event-based model to standardize the outcome prediction.

To establish an insightful and comprehensive benchmark for the segment-based model, we examine
applications across diverse machine learning domains. We implement SEEG-NET (Wang et al.,
2022), a model motivated by clinical knowledge for classifying pathological activity. Moreover,
given the long duration of the 1-minute iEEG signals, which are one-dimensional in nature, we
explore the fine-tuning of state-of-the-art audio processing frameworks Contrastive Language-Audio
Pretraining (CLAP) (Wu* et al., 2023), on iEEG data. Furthermore, inspired by event-based models,
we implement a vision-style architecture, denoted as TimeConv-CNN, which processes 1-minute
time–frequency plots of 1000 Hz iEEG signals. The model first applies 1D convolution along the time
axis to capture long-range temporal dynamics, followed by CNN layers for joint temporal–spectral
feature extraction. Implementation details are provided in the Appendix.

Performance Comparison. Table 5 summarizes results for pathological channel classification and
postoperative outcome prediction. The event-based model grounded in clinical priors (PyHFO-Omni)
and the segment-based model (TimeConv-CNN) trained end-to-end achieve similar outcome AUCs
(0.74 vs. 0.73). Crucially, TimeConv-CNN not only matches outcome prediction but also outperforms
PyHFO-Omni in pathological channel identification, achieving the highest channel-level AUC (0.81).
By contrast, SEEG-NET attains strong classification AUC but low specificity, limiting its clinical
utility. These findings highlight the need for multi-metric evaluation beyond outcome AUC, while
also underscoring the potential of end-to-end approaches to transform iEEG-based epilepsy research.

Table 5: Benchmark results for identifying pathological brain regions. Evaluation has two dimensions:
(1) Pathological Channel Identification, based on clinical priors of pathological(SOZ channels) vs.
normal (preserved channels in seizure-free patients); (2) Outcome AUC, which assesses whether
higher scores in resected channels correlate with postoperative seizure freedom via the resection ratio.

Pathological Channel Classification Outcome

Model Precision Recall F1 Specificity AUC AUC

Event-Based Models

eHFO 0.6053 0.6466 0.6195 0.4101 0.6611 0.4521
PyHFOspkHFO 0.6000 0.6431 0.6140 0.4089 0.6557 0.4972
PyHFO-OmnispkHFO 0.5799 0.6991 0.5635 0.6951 0.7351 0.7438

Segment-Based Models

SEEG-NET 0.5790 0.7169 0.5259 0.6049 0.7850 0.5952
CLAP 0.5936 0.6997 0.6009 0.7823 0.7684 0.6770
TimeConv-CNN 0.6259 0.7454 0.6469 0.8230 0.8061 0.7380

5.3 BEYOND BENCHMARKING: TRANSLATIONAL INSIGHTS FROM OMNI-IEEG

Clinical Generalizability. Publicly available event-based models trained on single-center datasets
perform poorly in our benchmark, underscoring the importance of multi-institutional datasets like
Omni-iEEG for building clinically reliable and generalizable models.

Direct Modeling of Minute-Long iEEG Segments. Direct end-to-end modeling of 1-minute
intracranial EEG recordings at kilohertz resolution has not been fully explored in prior work. Existing
approaches have largely focused on short, event-centered windows (e.g., HFOs or spikes) or relied
on heavily downsampled features, both of which discard long-range temporal dependencies. We
address this challenge through two complementary strategies: (i) leveraging powerful representations

8
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from a different domain by treating iEEG as an audio signal, and (ii) designing a custom architecture,
TimeConv-CNN, tailored to the unique scale and resolution of iEEG.

Cross-Domain Transfer with Audio-Pretrained Models. Remarkably, CLAP, an audio-pretrained
model optimized for generic acoustic signals rather than neurophysiology, achieves competitive
performance on pathological channel classification after fine-tuning. This highlights the cross-domain
generalization ability of audio representations to iEEG, where long-sequence dynamics can be
repurposed as clinically meaningful features.

TimeConv-CNN for Multi-Resolution Dynamics. To capture both long-range temporal dependen-
cies and fine-grained high-frequency characteristics, we introduce TimeConv-CNN. This architecture
applies temporal convolutions directly to the large time–frequency representation (60,000 time points
× 224 frequency components), enabling efficient compression while preserving salient dynamics
across scales. With an efficient yet expressive design, TimeConv-CNN opens a new pathway for
identifying pathological brain regions, where both coarse and detailed patterns are critical.

A Potentially “Hear-able” Biomarker. The competitive performance of fine-tuning an audio-
pretrained model like CLAP prompted a more direct question: If iEEG signals can be processed
like audio, could their pathological features also be directly “heard”? To illustrate the potential for
novel, cross-domain biomarker discovery, we conduct an exploratory case study on a representative
patient (sub-openieegUCLA01). We convert one-minute iEEG segments into audio waveforms
and use an audio classifier (YAMNet) (Gemmeke et al., 2017) to label them. Specifically, each
segment is normalized with z-scoring, time-compressed by a factor of 10, resampled to 16 kHz, and
peak-normalized to produce standardized audio waveforms. The results are striking: among 3,128
one-minute segments, including 276 from SOZ channels and 2,852 from preserved channels; in the
top-1 prediction, YAMNet labels 87 SOZ segments as “helicopter” while never assigning this label
to preserved channels; expanding to the top-5 predictions, “helicopter” appears in 159 segments
overall, compared to only 5 labeled as “physiological.” While this N=1 observation may not be
generalizable, it serves as a compelling proof-of-concept that clinically relevant neural dynamics may
possess intuitive, “hearable” signatures. This opens a novel and highly interpretable direction for
future biomarker discovery.

6 CONCLUSION AND LIMITATIONS

We present Omni-iEEG, a large-scale, pre-surgical iEEG dataset comprising 302 patients and 178
hours of high-resolution recordings. This dataset is thoroughly verified with clinical metadata with
released annotations of the pathological HFO biomarker. We define two primary and three exploratory
clinically meaningful benchmarks, grounded in clinical insights established in the literature. We
further benchmark multiple baselines across various disciplines, leveraging both clinically defined
biomarkers and end-to-end data-driven approaches for a comprehensive evaluation. Beyond quantita-
tive performance, our benchmarking also yields translational insights, highlighting opportunities for
novel biomarkers and cross-domain modeling strategies with direct clinical relevance.

Despite the significance and utility of the Omni-iEEG dataset and its associated benchmarks, several
limitations remain. These include potential gaps in the clinical insights captured and the inherent
subjectivity of spkHFO annotations, even when annotators reached consensus with high inter-rater
agreement in this study. Additionally, while the benchmarks cover key tasks in epilepsy research,
certain alternative HFO detection methods and artifact removal strategies were not explored.

These limitations largely reflect the breadth of epilepsy research, where decades of diverse method-
ologies cannot be encompassed in a single study. Nonetheless, they underscore the importance of
Omni-iEEG in providing a standardized foundation for comprehensive evaluation and a platform
for future exploration. We anticipate that our effort will not only support more reproducible bench-
marking but also catalyze new methods, biomarkers, and clinical insights that advance both machine
learning and epilepsy treatment.

Further details, including event annotation procedures, dataset harmonization and specifications,
exploratory tasks, implementation details, interpretation analyses, ablation studies such as cross-
dataset generalization, and an extended discussion of limitations, are provided in the Appendix.
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ETHICS STATEMENT

The Omni-iEEG dataset is principally constructed from four publicly available resources hosted
on OpenNeuro: the Open iEEG Dataset, the Zurich iEEG HFO Dataset, the Epilepsy Interictal
Dataset, and the HUP dataset. All data were fully de-identified with institutional IRB approval
or public-domain release agreements. Each of these datasets is released under a CC0 license,
thereby permitting processing, integration, and redistribution, provided that the original sources are
appropriately acknowledged.

REPRODUCIBILITY STATEMENT

The Omni-iEEG dataset has been reorganized in accordance with the Brain Imaging Data Structure
(BIDS) standard and will be made publicly available via Hugging Face. To support reproducibility
and adoption, we will also release an accompanying software library that provides utilities for
streamlined data loading, flexible filtering using clinical metadata, and ready-to-use training and
evaluation pipelines for benchmarking and model development. Furthermore, model checkpoints
corresponding to all baseline methods will be made available to facilitate comparison and future
research.

REFERENCES

Michel Alhilani, Eleonora Tamilia, Lorenzo Ricci, Laura Ricci, P Ellen Grant, Joseph R Madsen,
Phillip L Pearl, and Christos Papadelis. Ictal and interictal source imaging on intracranial eeg pre-
dicts epilepsy surgery outcome in children with focal cortical dysplasia. Clinical Neurophysiology,
131(3):734–743, 2020.

Thomas Andrillon, Yuval Nir, Richard J Staba, Fabio Ferrarelli, Chiara Cirelli, Giulio Tononi, and
Itzhak Fried. Sleep spindles in humans: insights from intracranial EEG and unit recordings. J
Neurosci, 31(49):17821–17834, December 2011.

Christoph Baumgartner, Johannes P Koren, Martha Britto-Arias, Lea Zoche, and Susanne Pirker.
Presurgical epilepsy evaluation and epilepsy surgery. F1000Research, 8:F1000–Faculty, 2019.

Carl W Bazil and Thaddeus S Walczak. Effects of sleep and sleep stage on epileptic and nonepileptic
seizures. Epilepsia, 38(1):56–62, 1997.

Christian G Bénar, Laeticia Chauvière, Fabrice Bartolomei, and Fabrice Wendling. Pitfalls of high-
pass filtering for detecting epileptic oscillations: a technical note on “false” ripples. Clinical
Neurophysiology, 121(3):301–310, 2010.

Julia Berezutskaya, Mariska J Vansteensel, Erik J Aarnoutse, Zachary V Freudenburg, Giovanni
Piantoni, Mariana P Branco, and Nick F Ramsey. Open multimodal ieeg-fmri dataset from
naturalistic stimulation with a short audiovisual film. Scientific Data, 9(1):91, 2022.

John Bernabei, Adam Li, Andrew Revell, Rachel Smith, Kristin Gunnarsdottir, Ian Ong, Kathryn
Davis, Nishant Sinha, and Sridevi Sarma. Quantitative approaches to guide epilepsy surgery from
intracranial eeg. Brain : a journal of neurology, 146, 01 2023a. doi: 10.1093/brain/awad007.

John M Bernabei, Adam Li, Andrew Y Revell, Rachel J Smith, Kristin M Gunnarsdottir, Ian Z Ong,
Kathryn A Davis, Nishant Sinha, Sridevi Sarma, and Brian Litt. Quantitative approaches to guide
epilepsy surgery from intracranial eeg. Brain, 146(6):2248–2258, 2023b.

Alejandro O Blenkmann, Holly N Phillips, Juan P Princich, James B Rowe, Tristan A Bekinschtein,
Carlos H Muravchik, and Silvia Kochen. ielectrodes: a comprehensive open-source toolbox for
depth and subdural grid electrode localization. Frontiers in neuroinformatics, 11:14, 2017.

Ujwal Boddeti, Darrian McAfee, Anas Khan, Muzna Bachani, and Alexander Ksendzovsky. Respon-
sive neurostimulation for seizure control: current status and future directions. Biomedicines, 10
(11):2677, 2022.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sahbi Chaibi, Tarek Lajnef, Mounir Samet, Karim Jerbi, and Abdennaceur Kachouri. Detection of
high frequency oscillations (hfos) in the 80–500 hz range in epilepsy recordings using decision
tree analysis. In International image processing, applications and systems conference, pp. 1–6.
IEEE, 2014.

Junru Chen, Yang Yang, Tao Yu, Yingying Fan, Xiaolong Mo, and Carl Yang. Brainnet: Epileptic
wave detection from seeg with hierarchical graph diffusion learning. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2741–2751, 2022.

Mayo Clinic. Epilepsy surgery. https://www.mayoclinic.org/tests-procedures/
epilepsy-surgery/about/pac-20393981, 2024.

Benoı̂t Crépon, Vincent Navarro, Dominique Hasboun, Stéphane Clemenceau, Jacques Martinerie,
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A THE USE OF LARGE LANGUAGE MODELS

We used Large Language Models, such as ChatGPT, as general-purpose assist tools to polish the
writing (grammar, phrasing, and readability) and to aid in literature discovery by surfacing potentially
relevant related work. All scientific ideas, experimental designs, analyses, and conclusions were
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developed by the authors, and LLMs did not contribute at the level of a scientific contributor or author.
The authors take full responsibility for the entirety of the paper’s content.

B PATHOLOGICAL EVENTS ANNOTATION

The annotation protocol used in the current study adopt a consistent and standardized protocol from
the prior studies (Nariai et al., 2018) for event annotation. Regarding patient selection and detector
choice, we introduce diversity to ensure broad coverage across varying conditions and recording
setups.

Subject Selection. Patients are selected from diverse clinical scenarios in the Omni-iEEG dataset,
including those undergoing different recording modalities and from multiple institutions. The overall
annotations include iEEG recording from eight centers in Omni-iEEG dataset, with both ECoG and
SEEG recordings represented. A summary of the patient and event distributions can be found in
Table 2 of the main paper. Events detected by the Short-Term Energy (STE), Montreal Neurological
Institute (MNI), and Hilbert transform–based algorithms were independently annotated to verify the
consistency of the proposed methods across detection approaches. We adopted previously validated
HFO detection parameters from published work (Zhang et al., 2025). The complete parameter settings
are summarized in Table 6.

Table 6: Detector parameters used in our annotation pipeline. All frequency units are in Hz, time in
seconds unless noted.

STE Detector
Parameter Value

filter freq [80, 300]
rms window 3× 10−3

min window 6× 10−3

min gap 10× 10−3

min osc 6
rms thres 5
peak thres 3
epoch len (ms) 600

MNI Detector
Parameter Value

filter freq [80, 300]
epo CHF 60
per CHF (%) 95
min win 10× 10−3

min gap 10× 10−3

thrd perc 99.9999%
base seg 125× 10−3

base shift 0.5
base thrd 0.67
base min 5
epoch time (ms) 10

Hilbert Detector
Parameter Value

filter freq [80, 300]
sd thres 5
min window 10× 10−3

epoch len 3600

Annotation Procedure. Annotations were conducted by four board-certified clinical epileptologists,
each with extensive experience in epilepsy surgery and iEEG interpretation. All experts are actively
involved in clinical epilepsy research, including patient diagnosis and surgical planning, ensuring
that the annotations reflect high clinical standards and real-world applicability.

To standardize and streamline the workflow, all iEEG recordings were resampled to 1 kHz, ensuring
a consistent temporal resolution that facilitates filtering, feature extraction, and cross-patient compar-
isons. Bipolar montage is applied to the Zurich, HUP, and Sourcesink recordings. Candidate HFO
events are first detected using PyHFO, and each event is subsequently reviewed and labeled by the
experts as either artifact, non-spkHFO, or spkHFO.

To ensure inter-rater reliability, the experts first collaboratively reviewed a shared subset of sam-
ple events to establish clear labeling criteria and achieve preliminary consensus. Following this
calibration, each annotator independently labeled their assigned data subsets.

To further evaluate consistency, three primary annotators (R1–R3) independently labeled a shared
validation set of 200 events. Inter-rater agreement was high, with a Fleiss’ κ = 0.92 across the three
annotators. Pairwise Cohen’s κ ranged from 0.88 to 0.93 (Table 7). A complementary assessment
between R4 and R3 on 583 events showed similar reliability (Cohen’s κ = 0.90 for artifact vs.
non-artifact; κ = 0.82 for spk vs. non-spk).
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Table 7: Inter-rater agreement among the three primary annotators. Pairwise agreement is measured
using Cohen’s κ, and overall agreement is measured using Fleiss’ κ.

Annotator(s) Metric Value

R1 vs. R2 Cohen’s κ 0.9427
R3 vs. R1 Cohen’s κ 0.9243
R3 vs. R2 Cohen’s κ 0.9091
R1, R2, R3 Fleiss’ κ 0.9254

C EXPLORATORY TASKS

C.1 ANATOMICAL LOCATION IDENTIFICATION

C.1.1 MOTIVATION AND CLINICAL BACKGROUND

Accurate anatomical localization of iEEG electrodes is critical for both clinical decision-making
and neuroscientific research. Traditionally, this process involves co-registering post-implantation
CT scans with pre-implantation MRI images, followed by manual or semi-automated labeling using
neuroimaging software tools (Blenkmann et al., 2017; Lucas et al., 2024). While effective, these
methods are time-consuming, resource-intensive, and may not be feasible in all clinical environments
due to the need for imaging infrastructure and expert interpretation. As a result, some publicly
released iEEG datasets do not include electrode-level anatomical annotations, limiting their utility for
downstream physiological and clinical analyses.

Anatomical localization plays a vital role in interpreting physiological patterns in iEEG data. Previous
work (Guragain et al., 2018) has shown that certain electrophysiological events exhibit region-specific
distributions: for example, physiological HFOs are predominantly observed in occipital regions, while
sleep spindles typically originate from fronto-parietal areas (Andrillon et al., 2011). More critically,
in the clinical context of epilepsy surgery, localizing electrodes relative to eloquent cortices, such
as those supporting motor, language, or memory functions, is essential for preserving key functions
during resection. Besides the aforementioned biomarkers located in different anatomical locations,
multiple studies have demonstrated that rich interictal electrophysiological signatures are specific to
anatomical brain regions. Cortical areas such as the hippocampus, frontal lobe, and occipital lobe
exhibit characteristic spectral and complexity features that are reproducible across patients (Frauscher
et al., 2018a; Groppe et al., 2013). These region-specific patterns are often clinically observable,
and prior work has shown that even short segments, as little as five minutes, of interictal data can be
sufficient to distinguish between regions (Frauscher et al., 2018a). Building on these insights, recent
machine learning methods have demonstrated promising classification of anatomical regions using
only signal-based features, showcasing the feasibility of non-imaging-based brain mapping (Taylor
et al., 2022). Thus, the ability to infer anatomical locations from electrophysiological recordings
holds significant potential not only for enhancing physiological interpretations but also for informing
clinical decisions, particularly in datasets that lack explicit anatomical metadata. Motivated by these
findings, we propose an anatomical location identification task to benchmark and encourage further
development of non-imaging-based localization approaches.

C.1.2 TASK DEFINITION AND EVALUATION METRICS

Task Definition. Inspired by above findings, this task aims to predict the anatomical location
of iEEG electrodes based on one minute of interictal signal per channel. We formulate this as
a supervised classification problem at two levels of spatial granularity. The first level involves
coarse-grained classification into five major anatomical regions: frontal, temporal, parietal, limbic,
and occipital lobes. The second level refines this prediction to twelve fine-grained subregions,
including Cingulate, Motor/premotor, Occipital, Mesial temporal, Inferior temporal, Inferior parietal,
Prefrontal, Somatosensory, Superior parietal, Superior temporal, Insula, and Other/Subcortical.

Evaluation Metrics. Since anatomical localization is performed at the channel level, similar to the
pathological localization task described in the main manuscript, we adopt a channel-wise aggregation
strategy to evaluate model performance. Specifically, we average the model-predicted probabilities
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across all 1-minute windows for each channel, yielding an overall probability distribution over
anatomical locations (major: 5 classes; fine: 12 classes) per channel. Performance is then assessed
using standard classification metrics over both label granularities. We report balanced accuracy (Acc)
and macro-averaged F1 score (F1), which are robust to class imbalance and reflect performance
across all anatomical regions.

Cohort Summary. Among the datasets considered, only the Open-iEEG dataset includes anatomical
labels for individual channels. Therefore, this downstream task is restricted to two research centers
within the Open-iEEG dataset, following the patient-wise cross-validation split outlined in Section 3
of the main manuscript. Specifically, the anatomical localization task involves 185 patients and 18517
candidate channels, each with known anatomical labels obtained through imaging co-registration and
expert annotation.

C.2 ICTAL PERIOD CLASSIFICATION

C.2.1 MOTIVATION AND CLINICAL BACKGROUND

Accurate identification of ictal periods, moments when seizures are actively occurring, is fundamental
to epilepsy diagnosis and treatment planning. Clinically, the transition from interictal to ictal
states provides crucial insight into seizure dynamics, including onset, propagation, and termination
(Wendling et al., 2005). However, ictal events can be brief, subtle, and easily overlooked in lengthy
recordings (Pyrzowski et al., 2021). Manual review by experts is time-consuming and may miss
atypical or subclinical seizures, which are increasingly recognized as clinically relevant (Fisher et al.,
2014; Alhilani et al., 2020; Sumsky & Greenfield Jr, 2022; Kharbouch et al., 2011). An automated
system that reliably distinguishes ictal from interictal activity offers not only diagnostic support and
improved consistency across reviewers and institutions but also has the potential to reduce overall
monitoring duration and alleviate the burden on clinical staff.

Moreover, recent advances in neuromodulation therapy, such as responsive neurostimulation (RNS),
highlight the need for real-time, fine-grained seizure detection (Sun et al., 2008). Clinicians have
noted that identifying precise ictal boundaries could help define personalized stimulation targets,
enabling therapeutic interventions to occur at the earliest possible seizure onset (Boddeti et al., 2022).
In this context, accurate ictal detection is not merely retrospective; it becomes a cornerstone for
proactive, closed-loop treatment systems. Therefore, we view ictal period identification as a clinically
actionable task, bridging seizure monitoring with intervention and offering a foundation for both
diagnostic and therapeutic innovation.

C.2.2 TASK DEFINITION AND EVALUATION METRICS

Task Definition. The goal of this task is to distinguish between interictal and ictal periods iEEG
recordings. The ictal recordings are contained in the HUP dataset, but the interictal recordings could
be retrieved from all patients from the Omni-iEEG dataset. For each patient, we segment the data into
one-minute clips and formulate the problem as a binary classification task: given a one-minute iEEG
segment from all channels, predict whether it originates from an ictal or interictal recording. This
formulation ensures a standardized input length while reflecting realistic clinical scenarios where
seizure identification must occur from streaming or windowed recordings.

Evaluation Metrics. Since our baseline models operate on 1D signals while the task is defined
at the recording level (classifying whether a multi-channel iEEG recording corresponds to an ictal
or interictal state), we adopt a straightforward aggregation strategy. Due to the varying number
of channels across patients, which complicates direct cross-channel neural network training, we
compute the average predicted probability across all channels for each 1-minute window in the test
set. This aggregated probability is treated as the model’s prediction for the ictal/interictal state of that
window. We then determine the optimal classification threshold using the area under the ROC curve
(AUC) and the Youden’s J method. Using the binarized predictions from this threshold, we evaluate
model performance using balanced accuracy (Acc) and macro-averaged F1 score (F1), which account
for class imbalance and provide a comprehensive assessment of performance across both ictal and
interictal classes.

Cohort Summary. This task includes 16 patients in the training set and 9 patients in the test set.
Notably, the interictal patients are uniformly sampled from each data source. The training set includes
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6205 unique channels, while the test set comprises 3561 unique channels. To prevent overrepresen-
tation from long recordings, we apply stratified sampling during training to draw windows evenly
across channels.

C.3 SLEEP AWAKE CLASSIFICATION

C.3.1 MOTIVATION AND CLINICAL BACKGROUND

Accurately identifying sleep and awake states in iEEG is essential for both clinical care and research.
The vigilance state of a patient strongly influences the manifestation of seizures and interictal dis-
charges; for example, frontal lobe seizures are more likely to occur during sleep, particularly in
non-REM stages, whereas temporal lobe seizures are more frequent during wakefulness (Herman
et al., 2001). In long-term recordings like SEEG, knowledge of the sleep–awake cycle can aid in
distinguishing epileptic from non-epileptic events (Bazil & Walczak, 1997). From a clinical perspec-
tive, this information improves diagnostic precision and guides personalized treatment strategies,
especially when manual annotations are inconsistent or missing (Moore et al., 2021). Moreover,
sleep–awake identification is often more challenging in iEEG than in scalp EEG, where awake
states are typically accompanied by distinct artifacts that assist visual classification (Lambert &
Peter-Derex, 2023). In contrast, iEEG recordings lack such clear surface-level markers, making
automated approaches particularly valuable (Lambert & Peter-Derex, 2023). Automated sleep staging
enables efficient parsing of long iEEG recordings, reduces annotation burden, and helps identify
longer usable segments for downstream analysis (Derry & Duncan, 2013).

Sleep–awake classification extends beyond clinical utility, enabling consistent, automated labeling of
vigilance states across large iEEG datasets. This supports standardized analysis of sleep-dependent
modulation of interictal biomarkers like high-frequency oscillations, facilitating cross-patient com-
parisons and advancing scalable, reproducible brain state analysis in epilepsy research (Zhao et al.,
2024).

C.3.2 TASK DEFINITION AND EVALUATION METRICS

Task Definition. The goal of this task is to distinguish between sleep and awake periods in iEEG
recordings. The awake recordings are contained in the Sourcesink dataset, but the sleep recordings
could be retrieved from all patients from the Omni-iEEG dataset. For each patient, we segment
the data into one-minute clips and formulate the problem as a binary classification task: given a
one-minute iEEG segment, predict whether it originates from a sleep or awake recording. This
formulation ensures a standardized input length and aligns with real-world clinical needs, where
vigilance state identification must often be performed from streaming or windowed data.

Evaluation Metrics. Similar to the ictal/interictal classification task, the sleep/awake classification is
also performed on multi-channel iEEG recordings. We adopt the same evaluation strategy, aggregating
predictions across channels for each 1-minute window. Model performance is assessed using standard
binary classification metrics, including balanced accuracy (Acc) and macro-averaged F1 score (F1),
which provide a fair evaluation across both sleep and awake states.

Cohort Summary. This task includes 13 patients in the training set and 8 patients in the test set.
The interictal patients are uniformly sampled from each data source. The training set includes 1751
unique channels, while the test set comprises 802 unique channels. We also apply stratified sampling
during training to draw windows evenly across channels.

D EXPLORATORY TASKS BASELINE RESULTS

The detailed benchmark results for all three tasks across baseline models, SEEG-NET, CLAP, and
CNN, are presented in Table 8. Interestingly, the foundation audio embedding model CLAP often
achieves strong performance across tasks, and the end-to-end CNN also demonstrates competitive
results, consistent with the trends observed in the main manuscript. We hypothesize that the generally
better performance of these models reflects their stronger capacity to capture relevant signal represen-
tations. This suggests that the neurophysiological biomarkers underlying these tasks are embedded
in the morphological characteristics of the iEEG signal, supporting the relevance of our proposed
dataset and task formulation.
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Figure 2: Event-based iEEG input: raw waveform (left) and time-frequency representation (right).
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Figure 3: Channel Segment-based iEEG input: raw waveform (left) and time-frequency representation
(right).

For SEEG-NET, since the authors did not release their implementation or dataset, we reproduced
the architecture based on the details provided in the paper. However, the resulting performance was
suboptimal, which may be attributed to potential discrepancies between our implementation and the
original, given the absence of released code and data. This further highlights the importance of our
benchmark, which offers a publicly available, reproducible platform for developing and evaluating
models in this domain.

Table 8: Macro-averaged F1 and balanced accuracy scores for the Anatomical with 5 Classes and 12
Classes, Ictal/Interictal, and Sleep/Awake classification tasks.

Model Anatomical(5) Anatomical(12)) Ictal Sleep–Awake

F1 Acc F1 Acc F1 Acc F1 Acc

SEEG-NET Wang et al. (2022) 0.2520 0.2550 0.1081 0.1853 0.7526 0.7624 0.6773 0.6421
CLAP Wu* et al. (2023) 0.4750 0.4894 0.3540 0.3897 0.9245 0.9323 0.7225 0.9331
TimeConv-CNN 0.4788 0.4708 0.3087 0.3215 0.8533 0.8720 0.7118 0.9291

E IMPLEMENTATION DETAILS

E.1 TIME-FREQUENCY REPRESENTATION

Inspired by prior interdisciplinary studies (Zhang et al., 2022a; Ding et al., 2025), we adopt the
time-frequency representation (spectrograms) of iEEG signals using Morlet wavelet transforms to
capture the temporal dynamics of each frequency band. This representation has been shown to provide
a comprehensive view of signal morphology and demonstrated superior performance in both previous
literature and our own experiments. As illustrated in the example time-frequency representation of
HFO events (Figure 2) and different iEEG channels (Figure 3), distinct morphological features in the
iEEG tracing become more distinguishable in the time-frequency domain. Moreover, the inherent
parallelism of time-frequency computation enables efficient processing on GPUs, significantly
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accelerating feature extraction. Our implementation of this process is available in the accompanying
code repository. For downstream tasks, we follow established practices from prior work (Zhang et al.,
2024), which indicate that the most informative content in iEEG signals lies within the 10–300 Hz
range when the downstream models take the time-frequency representation as inputs.

E.2 EVENT-BASED MODELS.

Data Construction. For each labeled HFO event, we extract a 570 ms iEEG segment centered at
the event midpoint. To ensure consistency across recordings, we include only data with a minimum
sampling rate of 1000 Hz and resample all inputs to 1000 Hz. These standardized segments serve as
the input to all baseline models.

PyHFO-Omni Architecture. Following the architecture of the HFO classification model introduced
in PyHFO Zhang et al. (2024), we retrain the model using Omni-iEEG annotation. Specifically,
we use a convolutional neural network based on a modified ResNet18 backbone for event-level
classification. The input spectrograms are passed to a ResNet18 encoder, where the first convolutional
layer is adjusted to accept single-channel input, and the classification layer produces the logit of each
class.

Attention+LSTM Architecture. Inspired by Huang et al. (2023), we implement a bidirectional
LSTM model for event-level classification on raw iEEG signals. The input sequence is first processed
by a two-layer bidirectional LSTM to generate hidden states at each timestep. To summarize the
temporal dynamics, we compute a weighted sum of the hidden states using learned additive weights.
This aggregated context vector is then passed through classification layers to produce the final output
logits.

PatchTST Transformer Architecture. We implement a PatchTST-style (Nie et al., 2023b) Trans-
former model for raw iEEG signal classification. Each 1D input sequence is split into non-overlapping
patches, which are linearly projected into a fixed embedding space. A learnable class token is
prepended to the patch sequence, and positional encodings are added to retain temporal order. The
resulting sequence is processed by a multi-layer Transformer encoder. The output embedding
corresponding to the class token is then passed through a classification head to produce the final
logits.

TimesNet Architecture. We include TimesNet (Wu et al., 2023), a recent competitive time-series
model that captures multi-periodic patterns using a frequency-aware design. The model first embeds
the input sequence and passes it through multiple stacked modules, each identifying dominant periods
via FFT and applying 2D convolutions on reshaped periodic representations. These outputs are
adaptively aggregated based on learned frequency weights. We adopt the official implementation
without modification and apply it directly to our event-level iEEG classification task.

For comprehensive details on model architecture and parameter configurations, please refer to our
released codebase.

E.3 SEGMENT-BASED MODELS.

SEEG-Net Reproduction. We implement SEEG-Net, a multiscale and attention-based deep learning
architecture originally proposed for pathological activity detection in SEEG signals (Wang et al.,
2022). The model begins with a multiscale convolutional block composed of three parallel 1D
convolutional branches with varying kernel sizes, each capturing frequency-specific features at
different temporal resolutions. Outputs from all branches are concatenated and passed through
a residual squeeze-and-excitation (SE) block to enhance the most informative feature channels.
This representation is then fed into a bidirectional LSTM with an attention mechanism to model
long-range temporal dependencies. Finally, a feedforward classifier outputs a binary decision. Our
implementation follows the core architectural design of the original SEEG-Net and adapts it for our
segment-level iEEG classification task.

CLAP-Based Model. To explore pretrained audio-language representations for iEEG classification,
we adapt the CLAP model (Wu* et al., 2023), originally trained on natural audio-text pairs, for our
long-form iEEG recordings. Specifically, we employ the pretrained clap-htsat-fused checkpoint
and attach a lightweight classification head. Raw iEEG waveform segments are processed using
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the CLAP feature extractor with adjusted hyperparameters. We conduct full-parameter fine-tune of
CLAP with a classification head. This setup leverages CLAP’s pretrained acoustic representations for
downstream iEEG classification tasks.

TimeConv-CNN Architecture. Long iEEG recordings yield extremely large time–frequency repre-
sentations, which are rarely modeled directly due to their prohibitive scale. To address this challenge
in a clinically meaningful setting, we design a TimeConv-CNN architecture that adapts established
vision backbones to the unique demands of iEEG. The model begins with two time-wise convolutional
layers, which apply vertical (temporal-only) convolutions across the spectrogram. This design specif-
ically targets the elongated temporal axis, compressing long sequences while preserving detailed
spectral structure that is critical for identifying pathological dynamics. The reduced representation is
then consumed by a modified ResNet18 backbone, where the first convolutional layer is adapted to
match the reshaped feature dimensions. This allows us to leverage the hierarchical feature extraction
of ResNets without overwhelming computational resources. Finally, a classification layer produces
the output logits. We adapt axis-specific convolutions as a practical strategy to model minute-long,
kilohertz-sampled iEEG segments end-to-end. Temporal convolutions efficiently compress the elon-
gated time axis, and the ResNet backbone captures higher-order spatiotemporal patterns, enabling
scalable modeling of long iEEG recordings.

For comprehensive details on model architecture and parameter configurations, please refer to our
released codebase.

E.4 TRAINING HYPERPARAMETER

Our training setup varied slightly depending on the model type: event-based models were trained for
20 epochs, while segment-based models were trained for 10 epochs due to computational constraints.
We used the Adam optimizer with a learning rate of 0.0003 and a batch size of 32. To address class
imbalance, we employed weighted random sampling during training. Binary classification tasks used
Binary Cross-Entropy loss, while multi-class tasks were trained with Cross-Entropy loss. Training
data are processed if necessary, such as converting to time-frequency representations, before being
fed into the model. Validation was performed after each epoch, and the best model checkpoint was
selected based on validation macro-F1 score. Note that we do not perform extensive hyperparameter
tuning; instead, we adopt a unified and simple configuration across experiments to ensure consistency
and reproducibility.

E.5 COMPUTE RESOURCES AND REPRODUCIBILITY.

All experiments were conducted on a server equipped with 4 NVIDIA RTX A6000 GPUs, each
with 48 GB of memory. Training time varies by model type: event-based models typically converge
within 10–30 minutes, while segment-based models require approximately 1–2 hours depending on
signal duration and batch size. All training was performed using a single GPU. Preprocessing and
evaluation steps were executed on the same hardware. Please refer to our released codebase for full
implementation specifics, including model architectures, layer dimensions, training hyperparameters,
and preprocessing pipelines.

F ADDITIONAL EXPERIMENTS AND ANALYSES

F.1 ABLATION STUDY ON CROSS-DATASET GENERALIZATION

To ensure that the observed performance is not driven by dataset-specific patterns, we performed
two complementary analyses: (i) leave-one-dataset-out experiments at the HFO event classification
level, and (ii) a permutation test on channel-level embeddings to evaluate potential dataset-specific
clustering.

Leave-one-dataset-out HFO event classification. We evaluate model performance in a cross-
dataset generalization setting using the HFO event classification task with a leave-one-dataset-out
strategy. The model is trained on all datasets except one and evaluated on the held-out dataset, with
F1 score as the primary metric. The diversity and comprehensiveness of the cohort contribute to the
model’s generalization ability. As shown in table 9, holding out the Open-iEEG dataset results in
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a performance drop relative to holding out other datasets, likely due to its larger size and greater
diversity, which better support model generalization in HFO classification.

Table 9: Cross-dataset generalization via leave-one-dataset-out HFO event classification.

Held-Out Precision Recall F1
Open-iEEG 0.6955 0.6893 0.6227
Zurich 0.7342 0.7520 0.7416
HUP 0.6967 0.7647 0.7219
SourceSink 0.7110 0.7412 0.7221

Permutation test on channel-level representations. In addition to event-level classification per-
formance, we also examine whether channel-level data distributions exhibit strong dataset-specific
separation, which could confound pattern discovery. To examine this, we sample 500 one-minute
segments per dataset (2000 total), generate time–frequency plots, and extract embeddings with a ViT
backbone (google/vit-base-patch16-224). We then cluster embeddings into k=4 groups
using K-means clustering and quantify alignment with dataset labels via homogeneity score. To
assess whether any observed alignment could arise by chance, we repeat the test with 1000 random
permutations of dataset labels. The observed alignment is indistinguishable from chance (p=0.88),
indicating that there is no significant evidence of distributional differences for channel-level represen-
tations across datasets. This complements the event-classification results: while the leave-one-out
analysis demonstrates generalization in predictive performance, the permutation test verifies that
channel-level embeddings are not confounded by dataset distributional differences.

F.2 ABLATION STUDY ON CHANNEL-LEVEL SEGMENT LENGTH

To justify the usage of 1-minute segments in our channel-level tasks, we evaluate the impact of
segment length through an ablation study using the TimeConv-CNN-based segment classification
model with 30-second, 1-minute, and 2-minutes inputs. Evaluation is restricted to test samples
with at least 2 minutes of data to ensure all configurations have sufficient input length, which is a
different cohort of our original cohort. Longer segments (2 min) also yield very few test windows,
making resection ratio estimates unstable, so we report per-channel classification using only the
channel-level labels. Segment length influences both context and stability. As shown in table 10,
very short segments (30 seconds) lack sufficient context for reliable classification, while very long
segments (2 minutes) dilute fine-grained temporal features. A 1-minute segment provides a practical
trade-off, capturing meaningful neurophysiological features while maintaining stable evaluation.

Table 10: Segment length ablation study (pathological channel classification).

Model Precision Recall F1 Specificity AUC
TimeConv-CNN (30 s) 0.5768 0.7072 0.5442 0.6592 0.7729
TimeConv-CNN (1 min) 0.6081 0.7607 0.6096 0.7478 0.8229
TimeConv-CNN (2 mins) 0.5919 0.7473 0.5642 0.6684 0.8052

F.3 MODEL INTERPRETABILITY ANALYSIS

Beyond raw predictive performance, model interpretability is essential in clinical applications where
trust and adoption depend on understanding whether predictions are based on physiologically meaning-
ful features. In particular, identifying which frequency bands drive model decisions helps determine
whether the network captures established neurophysiological correlates of HFOs or instead relies on
spurious artifacts. To this end, we conduct a SHAP analysis to examine which frequency bands most
influence the TimeConv-CNN model’s predictions. As shown in figure 4, we find that activity in the
10–30 Hz range contributes most significantly to the model’s spkHFO predictions. This observation
aligns with clinical knowledge, as spike components are typically concentrated within this frequency
band. The agreement between the model’s behavior and known neurophysiological features suggests
that the model is learning meaningful patterns rather than spurious correlations.
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Figure 4: Model interpretation analysis using SHAP.

G LIMITATIONS

Subjectivity and Variability in Annotations. While all HFO event annotations are labeled and
reviewed by board-certified clinicians, inter-rater variability remains a well-recognized challenge.
For example, there is still no universally accepted definition of spkHFOs, which may introduce biases
or inconsistencies in model training. Moreover, variations in labeling protocols across institutions
further increase annotation variability. These sources of uncertainty underscore the need for robust,
interpretable models that can operate reliably under noisy supervision.

More Diverse Patient Cohort. While the Omni-iEEG dataset represents one of the most comprehen-
sive collections of invasive EEG recordings to date, curated from multiple leading epilepsy centers,
it does not fully capture the global heterogeneity of epilepsy presentations and surgical practices.
Important dimensions of diversity, such as broader demographic representation and varied pathology,
remain underrepresented. Expanding future datasets to include a wider array of clinical contexts and
patient populations will be critical for developing truly generalizable machine learning models.

Dataset Imbalance and Biases. Due to the inherently clinical nature of the dataset, achieving
balanced representation across categories and conditions is challenging. For instance, SOZ channels
are substantially outnumbered by non-SOZ channels, and certain anatomical regions or biomarker
types are disproportionately represented based on clinical implantation practices. Although we
introduced evaluation metrics and training strategies to mitigate these imbalances, such disparities
can still bias the model toward overfitting to data-rich conditions or favoring dominant classes. These
biases may limit model generalizability, particularly when deployed in settings with different clinical
practices or patient populations.

Potential Algorithmic Over-reliance. A critical limitation lies not in the model performance itself,
but in the potential misuse of machine learning systems trained on Omni-iEEG, particularly when
deployed without proper human verification. Abuse of trained models in clinical workflows, such as
surgical planning, could lead to inappropriate and potentially harmful decisions. Over-reliance on
model outputs, especially without clinician oversight, may lead to severe consequences. Responsible
use demands rigorous validation, model transparency, and active involvement of clinical experts in
the decision-making process.

H FUTURE WORK

To address the limitations discussed above, our future work will pursue several key directions. First,
we plan to expand the benchmark by incorporating additional datasets as they become publicly
available or once new data collections receive IRB approval. This will enhance the diversity and
generalizability of our findings. Second, we aim to evaluate a broader range of baseline methods,
including unsupervised approaches that leverage graph structures and inter-channel correlations to
capture latent spatial and temporal patterns in iEEG recordings.
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Third, we intend to involve a wider pool of annotators from diverse academic and clinical backgrounds
to label additional pathological events, using multiple biomarkers such as interictal spikes. This will
enrich the dataset and improve the robustness of supervised and semi-supervised learning tasks.

Finally, while current benchmarks focus primarily on predictive performance, clinical deployment
demands models that are not only accurate but also interpretable. Epilepsy surgery planning typically
involves multi-disciplinary review, where transparency and trust in algorithmic outputs are critical.
Even through we introduced interpretation analysis in this study, we plan to develop a more com-
prehensive explainable AI frameworks specifically designed for iEEG data, enabling clinicians to
interpret model decisions and integrate them meaningfully into the diagnostic workflow.

I DETAILED DATASET SPECIFICATION AND HARMONIZATION

Data Processing and Harmonization. We follow the preprocessing steps recommended in prior
publications (Fedele et al., 2017; Gunnarsdottir et al., 2022; Zhang et al., 2025; Bernabei et al.,
2023a) (e.g., applying bipolar montages where appropriate). All recordings are reviewed by board-
certified clinicians to ensure they meet the quality standards necessary for epilepsy research. A
systematic validation process checks the consistency between channel annotations and raw data,
resolving misalignments or inconsistencies in channel naming conventions across datasets. Clinicians
also review the complete channel lists, filtering out non-standard EEG recordings (e.g., reference,
ground, EKG, or stimulation channels) and excluding those that consistently exhibit non-physiological
patterns such as flat signals or excessive noise. These filtering decisions are grounded in established
clinical conventions and expert judgment—steps that are straightforward for clinicians but non-trivial
for researchers without specialized training.

Beyond channel-level review, we unify and clean the metadata across sources, which vary considerably
in channel annotations, surgical status, and outcome reporting. At the subject level, we include
standardized attributes such as age, gender, surgical status, and postoperative outcomes, while at the
channel level we provide detailed metadata including sampling frequency, modality (ECoG or SEEG),
recording quality (with corrupted channels marked as bad), total duration, seizure onset zone (SOZ)
status, resection status, and anatomical location. Together, these harmonization and quality-control
steps yield a ready-to-use iEEG resource that bridges the clinical and machine learning communities.

Contributing Datasets Overview. For each dataset, we describe its origin, patient cohort char-
acteristics, recording modalities, sampling frequencies, durations, and the availability of clinical
annotations such as SOZ, resection zones, and surgical outcomes. We also detail the preprocessing
steps undertaken to ensure consistency and data quality, as well as the strategy used for train-
ing/testing partitioning. This breakdown aims to enhance transparency and facilitate reproducibility
for researchers using the Omni-iEEG dataset.

Open iEEG Dataset. The Open iEEG Dataset (Zhang et al., 2025) includes iEEG recordings from
two institutions: UCLA Mattel Children’s Hospital (50 patients) and Children’s Hospital of Michigan,
Detroit (135 patients). Recordings from Detroit are exclusively ECoG, sampled at 1000 Hz, with
durations ranging from around 5 to 10 minutes. Recordings from UCLA include both ECoG and
SEEG, sampled at 2000 Hz, with recording durations ranging from 10 minutes up to 2 hours. Most
patients have annotated seizure onset zones (SOZ), resection zones, and surgical outcomes. All
recordings were acquired during the interictal sleep period. In addition, each channel is annotated
with its corresponding anatomical location, enabling the dataset’s use in the Anatomical Location
Prediction tasks, and supporting future region-specific analyses.

Zurich iEEG HFO Dataset. The Zurich iEEG HFO Dataset dataset (Fedele et al., 2017) (Zurich)
consists of recordings from 20 patients collected at the University Hospital Zurich. All recordings
are ECoG sampled at 2000 Hz. Each patient has approximately 10–20 recordings of 5–10 minutes
each. 15 patients have valid resection annotations, while none have SOZ annotations. All recordings
were captured during interictal sleep stages. Resection annotations and channel status information
were carefully extracted from the original publication. Following the methodology described in the
original study, we also applied a bipolar montage during preprocessing.

Epilepsy Interictal Dataset (SourceSink). The Epilepsy Interictal Dataset dataset (Gunnarsdottir
et al., 2022) comprises 39 patients collected across three institutions: National Institutes of Health
(NIH), Johns Hopkins Hospital (JHH), and University of Miami Florida (UMF). This dataset includes
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both ECoG and SEEG recordings, with sampling rates ranging from 500 Hz to 2000 Hz. All
patients have SOZ, resection zone, and surgical outcome annotations. A board-certified clinical
expert reviewed the recordings and applied a bipolar montage to reduce common-mode noise. The
dataset contains both sleep and awake recordings, making it suitable for tasks such as Sleep/Awake
Classification. For our main benchmark, we select only recordings acquired during sleep and sampled
above 1000 Hz.

HUP Dataset. The HUP dataset (Bernabei et al., 2023a) contains recordings from 58 patients
treated at the Hospital of the University of Pennsylvania. The dataset includes both ECoG and
SEEG recordings. All patients have SOZ, resection zone, and surgical outcome annotations. A
board-certified clinical expert reviewed the recordings and applied a bipolar montage to reduce
common-mode noise. The dataset contains both ictal and interictal recordings, making it suitable for
Ictal Period Classification tasks. For our main benchmark, we include only the interictal segments
with at least 1000 Hz.

Note that all datasets are collected with necessary IRB approval to ensure ethical standards. We
include a comprehensive table below summarizing metadata for all the patients. For each subject,
we report demographic information (age, gender), clinical annotations (SOZ, resection, surgical
outcomes), inclusion in the training or testing split, and data availability indicators (presence of
anatomical annotations, awake recordings, and ictal recordings). This summary offers a detailed view
of the cohort composition and facilitates targeted benchmarking or subgroup analyses. Please check
Table 11 for details.
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Table 11: Summary of patient metadata and recording availability. Column abbreviations: SO =
Surgical Outcome; SOZ = Seizure Onset Zone Annotation; Res = Resection Annotation; Anat =
Anatomical Annotation; Ev = Event Annotation; Int = Interictal Recording; Ict = Ictal Recording;
Awk = Awake Recording. Value abbreviations: M = Male; F = Female; Y = Yes (present); N = No
(absent); - = Not applicable or not available.

Patient Name Dataset Age Gender SO SOZ Res Anat Ev Int Ict Awk Split

sub-hupHUP060 hup 42 F N Y Y N N Y Y N train
sub-hupHUP064 hup 21 M Y Y Y N N Y Y N test
sub-hupHUP065 hup 36 M Y Y Y N N Y Y N train
sub-hupHUP070 hup 33 M Y Y Y N N Y Y N train
sub-hupHUP074 hup 25 F Y Y Y N N Y Y N train
sub-hupHUP075 hup 57 F N Y Y N N Y Y N train
sub-hupHUP080 hup 41 F N Y Y N N Y Y N train
sub-hupHUP082 hup 56 F Y Y Y N N Y Y N train
sub-hupHUP086 hup 25 F N Y Y N N Y Y N test
sub-hupHUP087 hup 24 M Y Y Y N N Y Y N test
sub-hupHUP088 hup 35 F Y Y Y N N Y Y N train
sub-hupHUP089 hup 29 M Y Y Y N N Y Y N train
sub-hupHUP094 hup 48 F Y Y Y N N Y Y N train
sub-hupHUP097 hup 39 F Y Y Y N N Y Y N train
sub-hupHUP105 hup 39 M Y Y Y N N Y Y N test
sub-hupHUP106 hup 45 F Y Y Y N N Y Y N train
sub-hupHUP107 hup 36 M Y Y Y N N Y Y N train
sub-hupHUP111 hup 40 F Y Y Y N N Y Y N train
sub-hupHUP112 hup 21 F N Y Y N N Y Y N train
sub-hupHUP114 hup 43 F N Y Y N N Y Y N train
sub-hupHUP116 hup 59 F Y Y Y N N Y Y N train
sub-hupHUP117 hup 39 M Y Y Y N N Y Y N test
sub-hupHUP123 hup 36 M Y Y Y N N Y Y N train
sub-hupHUP126 hup 26 F Y Y Y N N Y Y N train
sub-hupHUP130 hup 46 F Y Y Y N Y Y Y N train
sub-hupHUP132 hup 47 F N N N N N Y Y N test
sub-hupHUP133 hup 52 F N Y Y N N Y Y N train
sub-hupHUP134 hup 32 M Y Y Y N Y Y Y N train
sub-hupHUP135 hup 37 M N Y Y N N Y Y N test
sub-hupHUP138 hup 38 M N Y Y N N Y Y N train
sub-hupHUP139 hup 20 M Y Y Y N Y Y Y N train
sub-hupHUP140 hup 47 F Y Y Y N Y Y Y N test
sub-hupHUP141 hup 30 M Y Y Y N N Y Y N train
sub-hupHUP142 hup 30 M Y Y Y N N Y Y N train
sub-hupHUP144 hup 31 M Y Y Y N N Y Y N train
sub-hupHUP146 hup 16 M Y Y Y N Y Y Y N test
sub-hupHUP148 hup 23 M Y Y Y N N Y Y N train
sub-hupHUP150 hup 17 M Y Y Y N N Y Y N train
sub-hupHUP151 hup 33 M N Y Y N N Y Y N train
sub-hupHUP157 hup 25 M Y Y Y N N Y Y N train
sub-hupHUP158 hup 32 M N Y Y N N N Y N test
sub-hupHUP160 hup 45 F Y Y Y N N Y Y N train
sub-hupHUP162 hup 35 F N Y Y N N Y Y N train
sub-hupHUP163 hup 42 F Y Y Y N N Y Y N test
sub-hupHUP164 hup 34 F Y Y Y N N Y Y N test
sub-hupHUP165 hup 21 F N Y Y N N Y N N test
sub-hupHUP166 hup 26 M N Y Y N N Y Y N train
sub-hupHUP171 hup 50 M N Y Y N N Y Y N train
sub-hupHUP172 hup 28 F N Y Y N N Y Y N train
sub-hupHUP173 hup 24 F Y Y Y N N Y Y N train
sub-hupHUP177 hup 42 F Y Y Y N N Y Y N test
sub-hupHUP179 hup 20 F N Y Y N N Y Y N test
sub-hupHUP180 hup 28 F Y Y Y N N Y Y N train
sub-hupHUP181 hup 31 F N Y Y N N Y Y N train
sub-hupHUP185 hup 38 M Y Y Y N N Y Y N train
sub-hupHUP187 hup 25 M N Y Y N N Y Y N train
sub-hupHUP188 hup 24 F N Y Y N N Y Y N train
sub-hupHUP190 hup 25 M N Y Y N N Y Y N test

sub-openieegDetroit001 openieeg 12 M Y Y Y Y Y Y N N train
sub-openieegDetroit002 openieeg 8 F Y Y Y Y Y Y N N test
sub-openieegDetroit003 openieeg 10 M N Y Y Y N Y N N train
sub-openieegDetroit004 openieeg 15 F Y N Y Y Y Y N N test
sub-openieegDetroit005 openieeg 5 M Y Y Y Y Y Y N N train
sub-openieegDetroit006 openieeg 20 M Y Y Y Y Y Y N N train
sub-openieegDetroit007 openieeg 17 F Y Y Y Y N Y N N train
sub-openieegDetroit008 openieeg 6 M Y Y Y Y N Y N N test
sub-openieegDetroit009 openieeg 10 F N N Y Y N Y N N test
sub-openieegDetroit010 openieeg 11 M N Y Y Y N Y N N train
sub-openieegDetroit011 openieeg 17 M Y Y Y Y N Y N N train
sub-openieegDetroit012 openieeg 13 F N Y Y Y N Y N N train
sub-openieegDetroit013 openieeg 11 F Y Y Y Y N Y N N train

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Patient Name Dataset Age Gender SO SOZ Res Anat Ev Int Ict Awk Split

sub-openieegDetroit014 openieeg 14 M Y Y Y Y N Y N N train
sub-openieegDetroit015 openieeg 5 M N Y Y Y N Y N N train
sub-openieegDetroit016 openieeg 8 M Y Y Y Y N Y N N train
sub-openieegDetroit017 openieeg 19 F Y Y Y Y N Y N N train
sub-openieegDetroit018 openieeg 5 M Y Y Y Y N Y N N train
sub-openieegDetroit019 openieeg 13 F N N Y Y N Y N N train
sub-openieegDetroit020 openieeg 9 F Y Y Y Y N Y N N train
sub-openieegDetroit021 openieeg 12 F Y Y Y Y N Y N N test
sub-openieegDetroit022 openieeg 10 M Y Y Y Y N Y N N train
sub-openieegDetroit023 openieeg 11 F Y Y Y Y N Y N N train
sub-openieegDetroit024 openieeg 4 F Y Y Y Y N Y N N test
sub-openieegDetroit025 openieeg 10 F Y Y Y Y N Y N N train
sub-openieegDetroit026 openieeg 16 M N Y Y Y N Y N N train
sub-openieegDetroit027 openieeg 15 M Y Y Y Y N Y N N train
sub-openieegDetroit028 openieeg 16 M Y Y Y Y N Y N N train
sub-openieegDetroit029 openieeg 10 M Y Y Y Y N Y N N test
sub-openieegDetroit030 openieeg 14 M Y Y Y Y N Y N N train
sub-openieegDetroit031 openieeg 7 M N Y Y Y N Y N N train
sub-openieegDetroit032 openieeg 28 F Y Y Y Y N Y N N test
sub-openieegDetroit033 openieeg 17 M Y Y Y Y N Y N N train
sub-openieegDetroit034 openieeg 17 M Y Y Y Y N Y N N test
sub-openieegDetroit035 openieeg 30 M Y Y Y Y N Y N N train
sub-openieegDetroit036 openieeg 10 M Y Y Y Y N Y N N test
sub-openieegDetroit037 openieeg 4 M Y N Y Y N Y N N test
sub-openieegDetroit038 openieeg 9 F Y Y Y Y N Y N N test
sub-openieegDetroit039 openieeg 21 F Y Y Y Y N Y N N test
sub-openieegDetroit040 openieeg 12 M Y Y Y Y N Y N N test
sub-openieegDetroit041 openieeg 28 M Y N Y Y N Y N N train
sub-openieegDetroit042 openieeg 11 F Y Y Y Y N Y N N train
sub-openieegDetroit043 openieeg 10 M Y Y Y Y N Y N N train
sub-openieegDetroit044 openieeg 16 M Y Y Y Y N Y N N test
sub-openieegDetroit045 openieeg 6 F Y Y Y Y N Y N N test
sub-openieegDetroit046 openieeg 19 M N Y Y Y N Y N N test
sub-openieegDetroit047 openieeg 12 F Y Y Y Y N Y N N test
sub-openieegDetroit048 openieeg 44 M Y Y Y Y N Y N N test
sub-openieegDetroit049 openieeg 10 F Y Y Y Y N Y N N train
sub-openieegDetroit050 openieeg 15 M Y N Y Y N Y N N train
sub-openieegDetroit051 openieeg 4 F Y Y Y Y N Y N N train
sub-openieegDetroit052 openieeg 10 F N Y Y Y N Y N N train
sub-openieegDetroit053 openieeg 12 F N Y Y Y N Y N N train
sub-openieegDetroit054 openieeg 8 M Y Y Y Y N Y N N test
sub-openieegDetroit055 openieeg 14 M Y Y Y Y N Y N N train
sub-openieegDetroit056 openieeg 14 F N Y Y Y N Y N N train
sub-openieegDetroit057 openieeg 6 F Y N Y Y N Y N N test
sub-openieegDetroit058 openieeg 4 M Y Y Y Y N Y N N train
sub-openieegDetroit059 openieeg 8 M Y Y Y Y N Y N N test
sub-openieegDetroit060 openieeg 14 F N Y Y Y N Y N N train
sub-openieegDetroit061 openieeg 37 F Y N Y Y N Y N N train
sub-openieegDetroit062 openieeg 19 M N Y Y Y N Y N N train
sub-openieegDetroit063 openieeg 11 F N Y Y Y N Y N N test
sub-openieegDetroit064 openieeg 14 F N Y Y Y N Y N N train
sub-openieegDetroit065 openieeg 17 M Y Y Y Y N Y N N test
sub-openieegDetroit066 openieeg 14 M Y Y Y Y N Y N N train
sub-openieegDetroit067 openieeg 12 M Y Y Y Y N Y N N train
sub-openieegDetroit068 openieeg 11 F Y Y Y Y N Y N N test
sub-openieegDetroit069 openieeg 27 F Y Y Y Y N Y N N test
sub-openieegDetroit070 openieeg 10 M Y Y Y Y N Y N N test
sub-openieegDetroit071 openieeg 19 F Y Y Y Y N Y N N train
sub-openieegDetroit072 openieeg 16 M N Y Y Y N Y N N train
sub-openieegDetroit073 openieeg 37 F Y N Y Y N Y N N train
sub-openieegDetroit074 openieeg 13 M Y Y Y Y N Y N N test
sub-openieegDetroit075 openieeg 14 M Y N Y Y N Y N N test
sub-openieegDetroit076 openieeg 8 M N Y Y Y N Y N N train
sub-openieegDetroit077 openieeg 15 M Y Y Y Y N Y N N test
sub-openieegDetroit078 openieeg 15 F Y Y Y Y N Y N N train
sub-openieegDetroit079 openieeg 5 F N Y Y Y N Y N N test
sub-openieegDetroit080 openieeg 15 M Y Y Y Y N Y N N test
sub-openieegDetroit081 openieeg 4 M Y Y Y Y N Y N N train
sub-openieegDetroit082 openieeg 11 F Y Y Y Y N Y N N train
sub-openieegDetroit083 openieeg 18 F Y Y Y Y N Y N N train
sub-openieegDetroit084 openieeg 9 F Y Y Y Y N Y N N test
sub-openieegDetroit085 openieeg 17 M Y Y Y Y N Y N N train
sub-openieegDetroit086 openieeg 7 F N Y Y Y N Y N N train
sub-openieegDetroit087 openieeg 14 M N Y Y Y N Y N N test
sub-openieegDetroit088 openieeg 13 M Y Y Y Y N Y N N train
sub-openieegDetroit089 openieeg 19 F N Y Y Y N Y N N train
sub-openieegDetroit090 openieeg 13 F N Y Y Y N Y N N test
sub-openieegDetroit091 openieeg 17 M Y Y Y Y N Y N N test
sub-openieegDetroit092 openieeg 9 M N Y Y Y N Y N N train
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sub-openieegDetroit093 openieeg 41 F Y Y Y Y N Y N N train
sub-openieegDetroit094 openieeg 6 F N Y Y Y N Y N N train
sub-openieegDetroit095 openieeg 12 F Y Y Y Y N Y N N test
sub-openieegDetroit096 openieeg 16 F Y Y Y Y N Y N N test
sub-openieegDetroit097 openieeg 8 M N Y Y Y N Y N N train
sub-openieegDetroit098 openieeg 14 F Y Y Y Y N Y N N train
sub-openieegDetroit099 openieeg 13 F N Y Y Y N Y N N train
sub-openieegDetroit100 openieeg 17 F Y Y Y Y N Y N N train
sub-openieegDetroit101 openieeg 5 F Y Y Y Y N Y N N test
sub-openieegDetroit102 openieeg 10 M Y Y Y Y N Y N N test
sub-openieegDetroit103 openieeg 16 M Y Y Y Y N Y N N test
sub-openieegDetroit104 openieeg 15 F Y Y Y Y N Y N N test
sub-openieegDetroit105 openieeg 7 M Y Y Y Y N Y N N train
sub-openieegDetroit106 openieeg 14 F Y Y Y Y N Y N N test
sub-openieegDetroit107 openieeg 5 F Y Y Y Y N Y N N train
sub-openieegDetroit108 openieeg 16 F N Y Y Y N Y N N train
sub-openieegDetroit109 openieeg 13 M N Y Y Y N Y N N test
sub-openieegDetroit110 openieeg 11 F Y Y Y Y N Y N N train
sub-openieegDetroit111 openieeg 10 F Y Y Y Y N Y N N train
sub-openieegDetroit112 openieeg 17 M N Y Y Y N Y N N test
sub-openieegDetroit113 openieeg 14 F N N Y Y N Y N N train
sub-openieegDetroit114 openieeg 8 F Y Y Y Y N Y N N test
sub-openieegDetroit115 openieeg 9 F Y Y Y Y N Y N N train
sub-openieegDetroit116 openieeg 17 F Y Y Y Y N Y N N train
sub-openieegDetroit117 openieeg 12 M N N Y Y N Y N N train
sub-openieegDetroit118 openieeg 11 M Y Y Y Y N Y N N test
sub-openieegDetroit119 openieeg 12 M N Y Y Y N Y N N train
sub-openieegDetroit120 openieeg 11 F Y Y Y Y N Y N N train
sub-openieegDetroit121 openieeg 23 M N Y Y Y N Y N N test
sub-openieegDetroit122 openieeg 5 M Y Y Y Y N Y N N train
sub-openieegDetroit123 openieeg 13 M N Y Y Y N Y N N test
sub-openieegDetroit124 openieeg 4 F Y Y Y Y N Y N N train
sub-openieegDetroit125 openieeg 16 F Y Y Y Y N Y N N train
sub-openieegDetroit126 openieeg 8 M N N Y Y N Y N N test
sub-openieegDetroit127 openieeg 5 F Y Y Y Y N Y N N test
sub-openieegDetroit128 openieeg 5 F N Y Y Y N Y N N train
sub-openieegDetroit129 openieeg 7 M N Y Y Y N Y N N test
sub-openieegDetroit130 openieeg 16 M N Y Y Y N Y N N test
sub-openieegDetroit131 openieeg 15 F Y Y Y Y N Y N N train
sub-openieegDetroit132 openieeg 8 M Y Y Y Y N Y N N test
sub-openieegDetroit133 openieeg 14 F Y Y Y Y N Y N N train
sub-openieegDetroit134 openieeg 5 F Y Y Y Y N Y N N train
sub-openieegDetroit135 openieeg 13 M N Y Y Y N Y N N train
sub-openieegUCLA01 openieeg 20 M Y Y Y Y Y Y N N train
sub-openieegUCLA02 openieeg 12 M Y Y Y Y Y Y N N train
sub-openieegUCLA03 openieeg 19 F Y Y Y Y Y Y N N train
sub-openieegUCLA04 openieeg 14 F Y Y Y Y Y Y N N test
sub-openieegUCLA05 openieeg 9 M Y Y Y Y Y Y N N train
sub-openieegUCLA06 openieeg 3 F N Y Y Y Y Y N N test
sub-openieegUCLA07 openieeg 5 M Y Y Y Y Y Y N N train
sub-openieegUCLA08 openieeg 19 F N Y N Y Y Y N N train
sub-openieegUCLA09 openieeg 13 M N Y Y Y Y Y N N test
sub-openieegUCLA10 openieeg 8 F Y Y Y Y Y Y N N test
sub-openieegUCLA11 openieeg 4 F Y Y Y Y Y Y N N train
sub-openieegUCLA12 openieeg 8 F Y Y Y Y Y Y N N test
sub-openieegUCLA13 openieeg 18 F N Y Y Y Y Y N N test
sub-openieegUCLA14 openieeg 15 F Y Y Y Y Y Y N N train
sub-openieegUCLA15 openieeg 19 F - Y N Y Y Y N N test
sub-openieegUCLA16 openieeg 15 F Y Y Y Y Y Y N N train
sub-openieegUCLA17 openieeg 6 M N Y Y Y Y Y N N train
sub-openieegUCLA18 openieeg 20 M - Y N Y Y Y N N train
sub-openieegUCLA19 openieeg 20 M N Y Y Y Y Y N N test
sub-openieegUCLA20 openieeg 12 M N Y Y Y Y Y N N test
sub-openieegUCLA21 openieeg 14 M - Y N Y Y Y N N train
sub-openieegUCLA22 openieeg 22 F N Y Y Y N Y N N train
sub-openieegUCLA23 openieeg 20 F - Y N Y N Y N N test
sub-openieegUCLA24 openieeg 14 F - Y N Y N Y N N train
sub-openieegUCLA25 openieeg 23 F Y Y Y Y Y Y N N test
sub-openieegUCLA26 openieeg 20 M Y Y Y Y N Y N N train
sub-openieegUCLA27 openieeg 6 F N Y Y Y N Y N N train
sub-openieegUCLA28 openieeg 17 M - Y N Y N Y N N train
sub-openieegUCLA29 openieeg 13 M - Y N Y Y Y N N train
sub-openieegUCLA30 openieeg 9 F Y Y Y Y N Y N N test
sub-openieegUCLA31 openieeg 13 M Y Y Y Y N Y N N test
sub-openieegUCLA32 openieeg 3 F - Y N Y Y Y N N train
sub-openieegUCLA33 openieeg 19 M Y Y Y Y N Y N N train
sub-openieegUCLA34 openieeg 9 M N Y Y Y N Y N N test
sub-openieegUCLA35 openieeg 18 M - Y N Y N Y N N test
sub-openieegUCLA36 openieeg 17 F - Y N Y N Y N N test
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sub-openieegUCLA37 openieeg 12 F - Y N Y Y Y N N train
sub-openieegUCLA38 openieeg 7 M Y Y Y Y N Y N N test
sub-openieegUCLA39 openieeg 10 M - Y N Y N Y N N train
sub-openieegUCLA40 openieeg 18 F - Y N Y N Y N N train
sub-openieegUCLA41 openieeg 16 F N Y Y Y N Y N N train
sub-openieegUCLA42 openieeg 25 F - Y N Y N Y N N train
sub-openieegUCLA43 openieeg 17 M Y Y Y Y N Y N N train
sub-openieegUCLA44 openieeg 21 M - Y N Y Y Y N N test
sub-openieegUCLA45 openieeg 25 F - Y N Y N Y N N train
sub-openieegUCLA46 openieeg 2 M - Y N Y Y Y N N train
sub-openieegUCLA47 openieeg 16 M - Y N Y N Y N N test
sub-openieegUCLA48 openieeg 12 M - N N Y N Y N N train
sub-openieegUCLA49 openieeg 28 M - Y N Y Y Y N N test
sub-openieegUCLA50 openieeg 2 M Y Y Y Y Y Y N N train
sub-sourcesinkjh103 sourcesink - - N Y Y N N Y N Y train
sub-sourcesinkjh105 sourcesink - - Y Y Y N Y Y N Y train
sub-sourcesinkNIH1 sourcesink 57 F Y Y Y N Y Y N N train

sub-sourcesinkNIH10 sourcesink 25 M N Y Y N N Y N N train
sub-sourcesinkNIH11 sourcesink 27 M N Y Y N N Y N N train
sub-sourcesinkNIH2 sourcesink 31 M Y Y Y N N Y N N test
sub-sourcesinkNIH3 sourcesink 36 F Y Y Y N N Y N N train
sub-sourcesinkNIH4 sourcesink 39 M Y Y Y N N Y N N test
sub-sourcesinkNIH5 sourcesink 41 M Y Y Y N N Y N N train
sub-sourcesinkNIH6 sourcesink 20 F N Y Y N N Y N N train
sub-sourcesinkNIH7 sourcesink 46 M N Y Y N N Y N N train
sub-sourcesinkNIH8 sourcesink 37 M N Y Y N N Y N N test
sub-sourcesinkNIH9 sourcesink 16 F N Y Y N N Y N N test
sub-sourcesinkpt1 sourcesink 30 F Y Y Y N Y Y N Y test
sub-sourcesinkpt2 sourcesink 28 F Y Y Y N N Y N Y test
sub-sourcesinkpt3 sourcesink 45 M Y Y Y N N Y N Y train

sub-sourcesinkPY18N002 sourcesink 62 M N Y Y N N Y N N train
sub-sourcesinkPY18N007 sourcesink 32 F N Y N N N Y N N test
sub-sourcesinkPY18N013 sourcesink 24 F Y Y Y N Y Y N N train
sub-sourcesinkPY18N015 sourcesink - F Y Y N N N Y N N train
sub-sourcesinkPY19N012 sourcesink 48 M N Y N N N Y N N test
sub-sourcesinkPY19N015 sourcesink 23 F N Y N N N Y N N train
sub-sourcesinkPY19N023 sourcesink 32 M Y Y N N N Y N N train
sub-sourcesinkPY19N026 sourcesink 35 F Y Y N N N Y N N train

sub-sourcesinkrns002 sourcesink 36 F N Y N N N Y N N test
sub-sourcesinkrns003 sourcesink 21 M N Y N N N Y N N train
sub-sourcesinkrns004 sourcesink 52 M N Y N N N Y N N test
sub-sourcesinkrns005 sourcesink 23 M N Y N N N Y N N test
sub-sourcesinkrns006 sourcesink 49 M Y Y N N N Y N N test
sub-sourcesinkrns009 sourcesink 48 M N Y N N N Y N N test
sub-sourcesinkrns011 sourcesink 24 F N Y N N N Y N N train
sub-sourcesinkrns013 sourcesink 25 M N Y N N N Y N N train
sub-sourcesinkrns014 sourcesink 36 M N Y N N N Y N N test
sub-sourcesinkrns015 sourcesink 27 M N Y N N N Y N N train
sub-sourcesinkumf001 sourcesink 37 F Y Y Y N Y Y N Y test
sub-sourcesinkumf002 sourcesink 39 F N Y Y N N Y N Y test
sub-sourcesinkumf003 sourcesink 43 M N Y Y N N Y N Y test
sub-sourcesinkumf004 sourcesink 23 F Y Y Y N N Y N Y test
sub-sourcesinkumf005 sourcesink 32 F Y Y Y N N Y N Y train

sub-zurich01 zurich - - Y N Y N N Y N N train
sub-zurich02 zurich 33 M Y N N N N Y N N train
sub-zurich03 zurich 20 F Y N Y N N Y N N test
sub-zurich04 zurich 20 F Y N Y N N Y N N train
sub-zurich05 zurich 40 M Y N N N N Y N N train
sub-zurich06 zurich 48 M Y N N N N Y N N test
sub-zurich07 zurich 25 M Y N N N N Y N N test
sub-zurich08 zurich 21 F Y N N N N Y N N train
sub-zurich09 zurich 52 M N N Y N N Y N N test
sub-zurich10 zurich 37 M Y N Y N Y Y N N test
sub-zurich11 zurich 36 M Y N Y N Y Y N N train
sub-zurich12 zurich 49 M Y N Y N Y Y N N train
sub-zurich13 zurich 17 M Y N Y N N Y N N test
sub-zurich14 zurich 46 F Y N Y N Y Y N N test
sub-zurich15 zurich 31 F Y N Y N Y Y N N train
sub-zurich16 zurich 17 F Y N Y N N Y N N train
sub-zurich17 zurich 30 M N N Y N N Y N N train
sub-zurich18 zurich 40 M N N Y N N Y N N train
sub-zurich19 zurich 38 M N N Y N N Y N N test
sub-zurich20 zurich 17 M N N Y N N Y N N train
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