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ABSTRACT

Diffusion-based approaches for image-to-image (I2I) translation have garnered
significant attention due to their ability to generate high-fidelity images and scala-
bility to large-scale datasets. However, state-of-the-art Diffusion Bridge Models
(DBMs), which utilize diffusion bridges to interpolate between two images x0

and xT , are severely hampered by their slow sampling process, often requiring
dozens to hundreds of function evaluations. To address this computational burden,
we introduce DBMSolver, a novel, training-free sampler specifically designed for
DBMs. DBMSolver leverages the inherent semi-linear structure of the underlying
diffusion equations in DBMs and employs advanced exponential integrators to
accelerate the sampling process. This approach not only reduces the number of eval-
uations but also enhances image quality for I2I Translation tasks. Our experiments
demonstrate that DBMSolver outperforms prior methods across multiple datasets
and resolutions, significantly improving visual quality and reducing computational
overhead. DBMSolver improves the scalability of diffusion-based I2I Translation
by bridging the gap between theoretical elegance and real-world applicability.

1 INTRODUCTION

Image-to-Image (I2I) Translation is a generative modeling paradigm that learns to map an input
image to a target output. It encompasses tasks like image restoration, grayscale colorization, and
inpainting of occluded or corrupted regions, as well as style transfer and semantic reinterpretation via
cross-domain synthesis (Sxela, 2021; Isola et al., 2017; Goodfellow et al., 2014).

Recent diffusion-based works, as alternatives to traditional generative approaches such as GANs (Zhu
et al., 2017; Karras et al., 2020), have brought significant advances in the synthesis of high-fidelity
images (Saharia et al., 2022a; Liu et al., 2023; Kawar et al., 2022). Among them, Zhou et al. (2023)
proposed Diffusion Bridge Models (DBMs), which are capable of performing I2I Translation by
establishing a diffusion bridge that facilitates the translation from one arbitrary image distribution

DBMSolver (Ours)

NFE 6 | FID 3.40

DBIM (Zheng et al.)

NFE 6 | FID 12.13

Hybrid Heun (Zhou et al.)
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Figure 1: Few-step image synthesis (6 NFEs ↓) with high-quality generated details (3.40 FID ↓).
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to another. While DBMs offer a theoretically elegant diffusion framework for I2I Translation,
generating high-quality images using such diffusion-based models remains computationally intensive
as it requires numerous costly model evaluations (NFEs)– which forms the core of our contribution.

1.1 DBMSOLVER: OUR SOLUTION AND KEY CONTRIBUTIONS

We introduce DBMSolver: a training-free, highly efficient solver specifically designed to accelerate
the DBM-based sampling process. Previous research on improving the sampling speeds explored
either model distillation (He et al., 2024; Xie et al., 2024; Gushchin et al., 2025), fine-tuning (Geng
et al., 2024; He et al., 2024), or re-training of an entire neural network (Zhou et al., 2025). In contrast,
DBMSolver is a drop-in replacement for existing DBM sampling methods, avoiding the need for any
architectural changes or extra training, thus enabling broad compatibility and immediate benefits.

We devise DBMSolver by rigorously analyzing the underlying Stochastic and Ordinary Differential
Equations (SDE and ODE) governing DBMs’ reverse-time diffusion process (Equations 2 and 5).
Specifically, in Section 3.1, we identify the inherent semi-linear structure of the SDE, and leverage
the Exponential Integrators (EI) (Hochbruck & Ostermann, 2010) method to derive its exact solution.
Next, in Section 3.2, we analyze the ODE to show that it has a semi-linear structure as well, allowing
us to derive a 2nd-order exact solution. Finally, by combining these two solutions, we devise a
sampling procedure that drastically reduces the required NFEs while enhancing the image quality, as
showcased in Figure 1 and Section 3.3. The key contributions of this work are as follows:

• Novel, Training-Free Sampler: DBMSolver significantly accelerates the sampling speed of
Diffusion Bridge Models without requiring any additional training or fine-tuning. It works
for both, conditional and unconditional I2I Translation.

• Principled Theoretical Foundation: We implement DBMSolver with exact solutions of
the SDE and ODE governing DBMs, grounding it on the principled diffusion bridge theory.

• State-of-the-art Performances on Various I2I Tasks: Through extensive experimentation
on various I2I tasks and image resolutions, we show that DBMSolver consistently achieves
state-of-the-art results. It surpasses the current state-of-the-art works (Zheng et al., 2024; Li
et al., 2023) in terms of image quality and computational efficiency.

The source code will be made publicly available for transparency and to further support new research.

2 PRELIMINARIES AND RELATED WORK

2.1 DIFFUSION-BASED GENERATIVE MODELS

Diffusion Probabilistic Models (DPMs). Owing to their ability to generate high-quality outputs,
DPMs have become ubiquitous for various noise-to-image generation tasks (Rombach et al., 2022;
Karras et al., 2022). DPMs learn to traverse from a Gaussian distribution pprior(x) to an unknown
data distribution p0(x) := pdata(x) through a gradual denoising process (Ho et al., 2020; Song et al.,
2020b; Dhariwal & Nichol, 2021). In other words, starting from a prior distribution pT (x) :=
pprior(x) ≈ N (0, σ2

T I) with σT > 0, DPMs iteratively denoise xT ∼ pT (x) (i.e., white noise) to
recover the desired output x0 ∼ p0(x). This reverse diffusion process is shown to follow the Ordinary
Differential Equation (ODE) (Anderson, 1982; Song et al., 2020b):

dxt =

[
f (xt, t)−

1

2
g(t)2∇xt

log pt(x)

]
dt, (1)

where pt(x) is the marginal distribution of xt at t, and∇xt log pt(x) is its score function learned by
a neural network (Hyvärinen, 2005), and f (xt, t) and g(t) are the drift and diffusion coefficients,
respectively (see Section A). Song et al. (2020b) term this the Probability Flow (PF) ODE.

Diffusion Bridge Models (DBMs). Although DPMs have gained popularity for N2I Generation
tasks, their underlying theory only holds when the prior distribution is purely Gaussian, i.e., pT (x) ≈
N (0, σ2

T I). However, this assumption does not hold for I2I translation tasks, where pT (x) is not
necessarily Gaussian noise, thereby limiting its applicability in such settings. To solve this, Zhou
et al. (2023) were able to extend the diffusion framework from N2I Generation to I2I Translation
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by making use of Doob’s h-transform (Doob, 1984; Rogers & Williams, 2000). By steering the
forward diffusion process almost surely to a target via Doob’s h-transform, they form a diffusion
bridge between x0 ∼ p0(x) and xT ∼ pT (x), yielding a conditioned forward diffusion process.

The corresponding reverse-time process is governed by the Bridge SDE:

dxt =
(

f (xt, t)− g(t)2[∇xt log pt(xt | x0,xT )−∇xt log pt(xT | xt)]
)

dt+ g(t) dwt, (2)

where ∇xt log pt(xt | x0,xT ) is the score of the tractable conditional probability, pt(xt | x0,xT ):

∇xt
log pt(xt | x0,xT ) =

SNRT

SNRt

αt

αT
xT + αt

(
1− SNRT

SNRt

)
x0 − xt

σ2
t

(
1− SNRT

SNRt

) . (3)

This score is learned by a DBM via Bridge Score Matching (Zhou et al., 2023) (i.e., sθ(xt, t,xT ) ≈
∇xt log pt(xt | x0,xT )). The score of the transition probability, pt(xT | xt), is given by:

∇xt log pt(xT | xt) =
αt

αT
xT − xt

σ2
t

(
SNRt

SNRT
− 1
) , SNRt := α2

t/σ2
t , (4)

where SNRt is the signal-to-noise ratio at time t. Lastly, the SDE in Equation (2) has an equivalent
ODE interpretation, which we name “Bridge Probability Flow (PF) ODE”:

dxt =

[
f (xt, t)− g(t)2

(
1

2
∇xt

log pt(xt | x0,xT )−∇xt
log pt(xT | xt)

)]
dt. (5)

2.2 FAST SAMPLERS FOR DIFFUSION-BASED MODELS

For DPM-based N2I Generation, works such as Lu et al. (2022a;b); Zhao et al. (2024) proposed fast
samplers that generate high-quality images in ≤ 20 NFEs. These methods follow the assumption that
the prior is a pure Gaussian distribution. However, since this assumption becomes invalid for I2I
Translation (as prior pT (x) can be arbitrary), their theoretical foundation is unsuitable for I2I tasks,
calling for samplers that support arbitrary priors. We summarize this in Table 1.

Meanwhile, to generate high-fidelity images with DBMs, Zhou et al. proposed the Hybrid Heun (HH)
Sampler– which alternatively solves the Bridge SDE (Equation (2)) via the 1st-order Euler-Maruyama
method, and the Bridge PF ODE (Equation (5)) via the 2nd-order Heun method. Next, inspired
by Song et al. (2020a), Zheng et al. (2024) recently proposed a non-Markovian 1st-order solver
called DBIM. Although DBIM improves the sampling speed, it still requires dozens of NFEs for
high-quality images. In contrast, we analyze and rigorously derive exact solutions to the Bridge SDE
and PF ODE to propose a higher-order sampler that surpasses DBIM in image quality and efficiency.

Table 1: DPMs assume pT (x)≈N (0, σ2
T I), preventing arbitrary pT (x) thus unsuitable for DBMs.

Sampling Method Prior Sample xT
Theoretically valid on

Image-to-Image Translation Sampling Procedure Is Markovian

Samplers designed for N2I-based DPMs:

DDIM [33] xT ∼ N (0, σ2
T I) ✗ pt(xti−1

| xti) ✗
DPMSolver++2M [26] xT ∼ N (0, σ2

T I) ✗ Exact Soln. of ODE via [11] ✓

Samplers designed for I2I-based DBMs:

Hybrid Heun [45] xT ∼ pprior(x) ✓ SDE (Euler-Maruyama) & ODE (Heun) ✓
DBIM [44] xT ∼ pprior(x) ✓ pt(xti−1

| xti ,xT ) ✗
DBMSolver (Ours) xT ∼ pprior(x) ✓ Exact Soln. of Bridge SDE & ODE via [11] ✓

3 DBMSOLVER: DEVISING A FAST SAMPLER FOR DBMS

The fundamental difference between DPMs and DBMs is the fact that xT is pure noise for DPMs,
but it can be an arbitrary image for DBMs. Consequently, DBMs involve a reverse diffusion
process conditioned on xT , which is crucial for I2I Translation. As discussed in Section 2.2,
this crucial distinction invalidates the direct application of state-of-the-art fast N2I solvers (such as
DPMSolver++ (Lu et al., 2022b)) for sampling DBMs. We explore a different approach to develop fast
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samplers specifically for DBMs by thoroughly analyzing their underlying reverse diffusion SDE and
ODE (Equations 2 & 5) and deriving their exact solutions using Exponential Integrators (Hochbruck &
Ostermann, 2010). With these solutions, we develop a higher-order sampling procedure that generates
high-quality images significantly faster, tailor-made for DBMs. Given prior and target images xT and
x0, let Dθ(xs, s,xT , T ) denote an x-predicting DBM such that Dθ(xs, s,xT , T ) ≈ x0 for s ∈ [0, T ].
For brevity, we write Dθ(xs) := Dθ(xs, s,xT , T ).

3.1 DERIVING THE SOLUTION TO THE BRIDGE SDE

We analyze and derive an exact solution to the Bridge SDE (Equation (2)) by leveraging the Expo-
nential Integrators (EI) method (Hochbruck & Ostermann, 2010), which is particularly powerful for
semi-linear differential equations of the form dxt

dt = L(t)xt+N(xt, t), where L(t) and N(xt, t) are
linear and non-linear coefficients, respectively. Simplifying and re-structuring the SDE, we observe
that it indeed has a semi-linear structure, allowing us to utilize the EI method to obtain an exact
1st-order solution. The Bridge SDE fits this form (proof in Section B.1), allowing for an accurate
sampling procedure, as described in Proposition 1.

Proposition 1 Given an initial value xs and time steps 0 ≤ t < s ≤ T , the exact solution to xt is:

xt =
SNRs

SNRt

αt

αs
xs + αt

(
1− SNRs

SNRt

)
Dθ(xs) + σt

√
1− SNRs

SNRt
zt, (6)

where zt ∼ N (0, I), and SNRt := α2
t/σ2

t is the signal-to-noise ratio at time t.

3.2 DERIVING THE SOLUTION TO THE BRIDGE PF ODE

Having set grounds with Proposition 1, we next focus on the Bridge PF ODE (Equation (5)). Similar
to the Bridge SDE analysis above, we show that the Bridge ODE also exhibits semi-linearity in its
structure, which has been largely overlooked in prior works. We take advantage of this semi-linearity
by deriving a closed-form exact solution through the EI method. Then, we utilize the change-of-
variables method to reformulate the solution as an exponentially-weighted integral. Finally, we
analytically minimize the discretization errors by Taylor expanding this integral, yielding a fast and
efficient sampling procedure, as presented in Proposition 2 with its proof in Section B.2.

Proposition 2 Given an initial value xs and time steps 0 ≤ t < s < T , the exact solution to xt is:

xt =
αt

αs
e2(λs−λt)

√
ρ(λt, λT )

ρ(λs, λT )
xs +

αt

αT
e2(λT−λt)

[
1−

√
ρ(λt, λT )

ρ(λs, λT )

]
xT

+ αt e
−2λt

√
ρ(λt, λT )

∫ λt

λs

e2λ Dθ(xλ)√
ρ(λ, λT )

dλ︸ ︷︷ ︸
The Exponential Integral

, (7)

where λt := log(αt/σt) with the inverse function tλ(·), and xλ := xtλ(λ) is the change-of-variable
form for λ, and ρ(a, b) := e2(a−b)− 1. Intuitively, λt can be thought of as half the log SNR at time t.

We simplify the Exponential Integral in Equation (7) by taking its (k − 1)th Taylor expansion:∫ λb

λa

e2λ Dθ(xλ)√
ρ(λ, λT )

dλ ≈
k−1∑
n=0

D(n)
θ (xλs

)︸ ︷︷ ︸
Estimated

∫ λt

λs

e2λ√
ρ(λ, λT )

(λ− λs)
n

n!
dλ︸ ︷︷ ︸

Analytically Computed (Section B.3)

+O((λt − λs)
k+1)︸ ︷︷ ︸

Omitted

, (8)

where k ≥ 1, and D(n)
θ (xλs) :=

dnDθ(xλs )
dλn is the nth-order derivative of Dθ(·) w.r.t.λ. Note that we

omit the error term O((λt − λs)
k+1). In Section B.4, we demonstrate that our solver generalizes

DBIM (Zheng et al., 2024), and both methods converge when k = 1.
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3.3 DEVISING DBMSOLVER USING EQUATIONS 6 AND 7

Initial Step. In the sampling procedure, the initial step is taken from time s = T to time t = T − ϵ,
where ϵ is a small value. However, the exact solution of the Bridge PF ODE in Equation (7) is only
valid for s < T , which implies that it cannot be employed for this initial step (i.e., from s = T
to t = T − ϵ). This is because if we were to implement Equation (7) for the initial step, then
ρ(λs, λT ) = ρ(λT , λT ) = 0, which would cause the coefficient of xs to diverge to infinity, thereby
exhibiting a singularity. Thus, we instead employ the exact solution of the Bridge SDE (Equation (6))
exclusively for the initial step, while applying the exact solution of the Bridge PF ODE (Equation (7))
for the subsequent steps (where s ≤ T − ϵ and t < s), as described next.

Subsequent Steps. Higher-order formulations of Equation (8) can lead to a sampling procedure
capable of generating high-quality images more efficiently, as demonstrated in previous works (Lu
et al., 2022a;b; Zhao et al., 2024). This improvement stems from the fact that higher-order Taylor
expansions have reduced error bounds, yielding more accurate approximations. Following this idea,
we set k = 2, resulting in an exact 2nd-order Bridge PF ODE solution for Equation (7). We adopt this
2nd-order formulation for DBMSolver and describe the complete derivation in Section B.5.

Summarizing the Algorithm. Given time steps T = tN > tN−1 > · · · > t1 > t0 = 0, we first
compute x̃tN−1

from prior image xtN ∼ pT (x) using Equation (6). For the next N − 2 steps, we
iteratively apply Equation (7) with k = 2, yielding better approximations for each intermediate noisy
sample until x̃t1 . To obtain the final x̃0 prediction, we solve the Bridge PF ODE from t1 to t0 using
the widely used Euler method, resulting in a high-fidelity output. We summarize it in Algorithm 1
and validate it empirically in the next section.

Algorithm 1 DBMSolver: A Fast Sampler for Diffusion-based I2I Translation

Inputs: Pretrained DBM Dθ(·), Number of sampling steps N , Time steps T = tN > · · · > t1 >
t0 = 0, and Prior distribution pT (x).

Initialization: Sample x̃T ∼ pT (x), z ∼ N (0, I), and x̃0 ← Dθ(x̃tN )

Initial Stochastic Update: Calculate x̃tN−1
from x̃T using Equation (6).

Subsequent Deterministic Refinement:
for i = N − 1 to 1 do

if i > 1 then
a← ti, and b← ti−1.
Calculate x̃b from x̃a using Equation (7) (with k = 2). {▷ Refer Section B.5.}

else
dxt1 ← f (x̃t1 , t1)− g(t1)

2
(
1
2 Dθ(x̃t1)−∇xt

log pt1(xT | x̃t1)
)

x̃0 ← x̃t1 + (t0 − t1) dxt1 {▷ Final Euler Update}
end if

end for
Output: x̃0 {▷ Final translated image}

4 EXPERIMENTS AND RESULTS

We conducted extensive experiments to evaluate DBMSolver against established baselines on various
I2I Translation tasks, including conditional image inpainting and semantics-to-image generation, to
demonstrate its versatility across diverse tasks. Specifically, we evaluated on the following challenging
datasets: Sketch-to-Image on Edges2Handbags (E2H) (Isola et al., 2017), Surface normals-to-Image
on DIODE-Outdoor (Vasiljevic et al., 2019), Face-to-Comic stylization on Face2Comics (F2C),
Conditional Image Inpainting with central masks on ImageNet (Deng et al., 2009), and Semantic
Label-to-Face generation on CelebAMask-HQ (Lee et al., 2020).

We mainly assess sampling quality using FID (Heusel et al., 2017), and computational efficiency via
the number of forward evaluations NFEs (Song et al., 2020a; Lu et al., 2022a). For CelebAMask-HQ,
we additionally report classification accuracy (CA), following Li et al. (2023). We use the publicly
available DBM checkpoints from Zhou et al. (2023) for E2H and DIODE, highlighting DBMSolver’s

5
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Table 2: Quantitative results on DIODE and Edges2Handbags. FID (↓) is reported against NFE (↓).
Time denotes total sampling duration in minutes; Rate indicates images generated/second.

Family Method NFE (↓) DIODE (256×256) [40] Edges2Handbags (64×64) [14]

Time (↓) Rate (↑) FID (↓) Time (↓) Rate (↑) FID (↓)
GAN Pix2Pix [14] 1 – – 82.40 – – 74.80

Diffusion &
Flow

DDIB [36] ≥ 40 – – 242.30 – – 186.84
SDEdit [27] ≥ 40 – – 31.14 – – 26.50
Rectified Flow [23] ≥ 40 – – 25.30 – – 77.18
I2SB [22] ≥ 40 – – 9.34 – – 7.43

Sampling via
Diffusion

Bridge Models

DPMSolver++2M† [26] 100 237.68 1.15 98.68 199.16 11.59 33.33
Hybrid Heun [45] 119 283.54 0.97 4.43 327.58 7.05 1.83

DBIM [44] 6 19.21 14.31 12.13 12.05 191.53 3.27
20 47.63 5.77 4.99 39.98 57.76 1.74

100 238.32 1.15 2.57 199.63 11.57 0.89

DBMSolver (Ours) 6 14.18 19.38 3.38 8.33 276.99 0.97
10 23.48 11.71 2.15 13.85 166.67 0.58
20 46.85 5.87 2.06 27.64 83.53 0.54
30 70.14 3.92 2.06 41.43 55.73 0.52

† denotes sampler specifically designed for N2I Generation

training-free integration. For ImageNet inpainting, we adopt the DBM checkpoint from Zheng et al.
(2024), which was finetuned via I2SB (Liu et al., 2023) from a pre-trained N2I Diffusion Model. For
datasets lacking checkpoints (e.g., Face2Comics, CelebAMask-HQ), we train DBMs from scratch
using the ADM U-Net (Dhariwal & Nichol, 2021), following standard diffusion architectures.

Our implementation builds on the official DBIM codebase (Zheng et al., 2024); training details are
in Section C.1. We benchmark DBMSolver against current state-of-the-art I2I translation methods.
Our main baseline is DDBM (Hybrid Heun) (Zhou et al., 2023), using reported metrics for fair
comparison with prior GANs and diffusion models. We also include DBIM (Zheng et al., 2024),
a non-Markovian DBM accelerator, and N2I-Generation-based DPM-Solver++ (Lu et al., 2022b).
Additional baselines of DDIB (Su et al., 2022), SDEdit (Meng et al., 2021), Rectified Flow (Liu et al.,
2022), and I2SB (Liu et al., 2023) are evaluated following the DDBM and DBIM protocols.

4.1 RESULTS

Image Translation on E2H (64×64) and DIODE (256×256). Table 2 reports FID scores
and NFEs across methods. DBMSolver achieves state-of-the-art results with significantly fewer
evaluations. At just 10 NFEs, it achieves FID scores of 0.58 (E2H) and 2.15 (DIODE), outperforming
both Hybrid Heun and DBIM. Its high efficiency at low NFEs enables rapid sampling, making it
well-suited for real-time DBM applications by supporting faster generation and higher throughput. It
exhibits strong scalability with increasing NFEs, yielding further improvements in FID.

The trends in Figure 2-a,b show that as NFE increases, DBMSolver quickly achieves high fidelity
and remains stable. Figure 3 supports this, indicating that even at low NFEs (e.g., 6), DBMSolver
and DBIM generate visually rich, coherent outputs, outperforming others in detail and realism.
DPMSolver++2M preserves structure but lacks vibrant color and texture, especially at lower NFEs.
While DBIM yields appealing outputs, it lacks fine detail compared to our method– a gap reflected in
FID and trend metrics. Please refer to the intricate structural details observable in the tree branches
and twigs within the DIODE images, as well as the fine-grained textures and contours present in the
handbag depictions. DBMSolver consistently balances efficiency and quality across datasets.

(a) DIODE 256×256 (b) Edges2Handbags 64×64 (c) Face2Comics 256×256

Figure 2: FID vs. NFE on different datasets. We consistently get better FID scores with fewer NFEs.
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DBMSolver (Ours)

NFE 6 | FID 3.40

DBIM (Zheng et al.)

NFE 6 | FID 12.13

DPMSolver++ 

(Lu et al.)


NFE 11 | FID 118.76
Hybrid Heun (Zhou et al.)


NFE 10 | FID 151.93

DBMSolver (Ours)

NFE 6


FID 0.98

DBIM

NFE 6 

FID 3.27

DPMSolver++

NFE 10 


FID 34.03

Hybrid Heun

NFE 11


FID 137.05

DBMSolver (Ours)

NFE 6


FID 0.98

DBIM

NFE 6 

FID 3.27

DPMSolver++

NFE 10 


FID 34.03

Hybrid Heun

NFE 11


FID 137.05

Figure 3: Visuals for Table 2; DPMSolver++ and HH shown at 11 NFEs due to poor 6-NFE quality.

Label-to-Face Generation on CelebAMask-HQ (256×256). Figures 4 and 5 and Table 4 show
that our method generates images with precise facial segmentation and coherent boundaries. At
as low as 6 NFEs, DBMSolver achieves a FID of 34.76 outperforming DBIM’s 44.92 as well as
GAN-based models and other diffusion approaches, while using significantly fewer NFEs. Visually,
DBMSolver preserves fine structural details such as eye contours, hairlines, and mask edges, which
are often blurred or distorted in DBIM outputs. DBMSolver consistently produces sharper, more
anatomically faithful generations, enhancing both realism and image accuracy.

Hybrid Heun

(Zhou et al.)

DPMSolver++

(Lu et al.)

DBIM

(Zheng et al.)

DBMSolver

(Ours)

NFE 29 | FID 270.85 NFE 30 | FID 232.78 NFE 30 | FID 18.99 NFE 30 | FID 14.69

NFE 5 | FID 442.38 NFE 6 | FID 169.45 NFE 6 | FID 44.92 NFE 6 | FID 34.76

Figure 4: Label-to-Face Generation on CelebAMask-HQ 256×256.
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Figure 5: Generated samples on CelebAMask-HQ 256× 256 using our DBMSolver in 6 NFEs.

NFE 5 | FID 399.77

NFE 20 | FID 35.65

NFE 6 | FID 13.29

NFE 20 | FID 7.87

NFE 6 | FID 3.15

NFE 20 | FID 0.93

DPMSolver++ DBMSolver (Ours)DBIMHybrid Heun

NFE 6 | FID 103.35 

NFE 20 | FID 21.89 

Figure 6: Image Stylization on Face2Comics 256× 256.

Table 3: Quantitative com-
parison on Face2Comics.

Method NFE (↓) FID (↓)
GANs & Other Diffusion-based Models:

Pix2Pix [14] 1 49.96
CycleGAN [47] 1 35.13
DRIT++ [20] – 28.87
CDE [32] – 33.98
LDM [30] – 24.28
BBDM [21] 200 23.20

Sampling via Diffusion Bridge Models:

DPMSolver++2M† [26] 20 27.34
30 21.88

Hybrid Heun [45] 119 2.36

DBIM [44] 6 13.29
10 11.75
20 9.28
30 7.87

DBMSolver (Ours) 6 3.04
10 1.40
20 0.97
30 0.92

Table 4: Quantitative results for Label-to-Face
Generation on CelebAMask-HQ at NFEs of 6 and
30, complementing the visual examples in Fig. 4.

Methods CelebAMask-HQ (256×256) [19]

Time Rate NFE (↓) FID (↓)
GANs & Other Diffusion-based Models:

Pix2Pix [14] – – 1 56.99
CycleGAN [47] – – 1 78.23
DRIT++ [20] – – 77.79
SPADE [28] – – 44.17
OASIS [38] – – 27.75
CDE [32] – – 24.40
LDM [30] – – 22.81
BBDM [21] – – 200 21.35

Sampling via Diffusion Bridge Models:

DPMSolver++2M† [26] 68.65 5.87 20 223.75
103.14 3.90 30 232.78

Hybrid Heun [45] 409.84 0.98 119 97.75

DBIM [44] 20.64 19.52 6 44.92
34.51 11.67 10 34.18
68.84 5.85 20 23.30
104.24 3.86 30 18.99

DBMSolver (Ours) 20.44 19.71 6 34.76
33.90 11.88 10 24.93
67.67 5.95 20 17.68
102.65 3.93 30 14.69

Table 5: Quantitative results for Class-
Conditional Inpainting (center 128×128
mask) on ImageNet. DBMSolver achieves
superior FID and Classification Accuracy (CA)
across all NFEs, delivering high image fidelity
with only 6 NFEs, outperforming prior methods
that require more NFEs for comparable quality.

Methods ImageNet (256×256) [2]

Time Rate NFE (↓) FID (↓) CA (↑)
Other Diffusion-based Models:

DDRM [18] – – 20 24.40 62.1
ΠGDM [34] – – 100 7.30 72.6
DDNM [41] – – 100 15.10 55.9
Palette [31] – – 1000 6.10 63.0
I2SB [22] – – 1000 4.90 66.1

Sampling via Diffusion Bridge Models:

DPMSolver++2M† [26] 29.38 5.67 20 37.99 51.9
43.91 3.79 30 36.68 52.3

Hybrid Heun [45] 172.78 0.96 119 6.02 69.5

DBIM [44] 8.84 18.83 6 5.36 70.2
14.69 11.33 10 4.50 71.8
29.39 5.66 20 4.13 71.9
44.11 3.77 30 4.04 71.9

DBMSolver (Ours) 8.75 18.88 6 5.02 70.7
14.60 11.33 10 4.38 71.2
29.18 5.66 20 4.07 72.0
43.76 3.80 30 4.03 72.4

Image Stylization on Face2Comics (256×256). As shown in Table 3 and Figure 6, DBMSolver
achieves top performance with just 10 NFEs. At 30 NFEs, it attains an FID of 0.92, outperforming
Hybrid Heun (2.36 at 119 NFEs), DBIM (7.87 at 30 NFEs), and various GAN and diffusion methods.
These results highlight DBMSolver’s efficiency and sample quality across diverse datasets, as further
illustrated in Figure 1. Even at 6 NFEs, its outputs rival higher-NFE baselines, demonstrating strong
perceptual fidelity at minimal cost.

Class-Conditional Inpainting on ImageNet (256×256). Table 5 and Fig. 7 demonstrate DBM-
Solver’s superior performance. At just 6 NFEs, it achieves strong semantic coherence and texture
synthesis, surpassing methods requiring hundreds of steps. At 30 NFEs, it attains the best FID
(4.03) and top classification accuracy (72.4%), highlighting its efficiency and quality. DBMSolver
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DPMSolver++ DBMSolver (Ours)DBIMHybrid Heun

NFE 29 | FID 18.51 NFE 30 | FID 36.68 NFE 30 | FID 4.04 NFE 30 | FID 4.04

NFE 5 | FID 275.13 NFE 6 | FID 46.83 NFE 6 | FID 5.36 NFE 6 | FID 5.02

Figure 7: Class-Conditional Inpainting on ImageNet 256× 256.

also avoids the blurry textures seen in DBIM—evident in the sparrow’s feathers and branches—and
maintains structural fidelity in cases like the milk barrel, where DBIM hallucinates unrealistic content.

Efficiency Analysis via Time and Sampling Rate. Beyond superior FID and classification ac-
curacy, DBMSolver demonstrates exceptional efficiency in runtime and throughput. As shown in
Table 4 and Table 5, DBMSolver achieves high-quality results with minimal computational cost.
At 30 NFEs, it completes sampling in just 102.65s on CelebAMask-HQ and 43.76s on ImageNet,
significantly faster than Hybrid Heun (409.84s and 172.78s, respectively). Moreover, DBMSolver
maintains a high sampling rate across all NFE budgets, peaking at 19.71 samples/min for 6 NFEs on
CelebAMask-HQ and 11.33 samples/min for 10 NFEs on ImageNet, nearly double that of DBIM
and vastly exceeding other bridge-based samplers. These metrics highlight DBMSolver’s ability to
balance speed and quality, i.e., real-time generation without compromising visual fidelity.

Limitations and Future Work. Our discrete-time DBMs may still face discretization errors.
Continuous-time diffusion models (Karras et al., 2022; 2024; Sun et al., 2022) may help address this.
Further research could investigate exponential Rosenbrock-type methods (Hochbruck et al., 2009) for
DBMs to improve generation quality and efficiency. Exploring DBMs for more complex tasks, like
text-conditioned I2I translation, is also a promising avenue for research.

5 CONCLUSION

In conclusion, we introduce DBMSolver, a principled, training-free method that significantly en-
hances the efficiency and quality of diffusion-based I2I translation. By leveraging the semi-linear
structure of the Bridge SDE and PF ODE, DBMSolver accelerates sampling without compromising
fidelity. Experiments on diverse datasets, such as Edges2Handbags, DIODE-Outdoor, Face2Comics,
CelebAMask-HQ, and Conditional ImageNet Inpainting, show that DBMSolver achieves high-quality
results with far fewer NFEs, setting a new benchmark for efficient diffusion bridge models. This
work marks a step toward the practical deployment of powerful I2I and restoration tools.
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Use of Large Language Models. LLMs were employed exclusively for editorial refinement,
without influencing research design or substantive content.

Ethics Statement. We have read and agree to the ICLR Code of Ethics (https://iclr.cc/
public/CodeOfEthics). Our work introduces DBMSolver, a training-free sampler for acceler-
ating diffusion bridge models in image-to-image translation. All experiments were conducted using
publicly available datasets, and no human subjects or private data were involved. We took care to
avoid generating or amplifying harmful, biased, or misleading content. While generative models
can pose risks in misuse or misrepresentation, our method is designed to improve computational
efficiency and fidelity without introducing new ethical concerns. We encourage responsible use and
transparent reporting when deploying such models in real-world applications.

Reproducibility Statement. We have made every effort to ensure the reproducibility of our results.
Details of the DBMSolver algorithm, including its mathematical formulation and implementation,
are provided in the main paper and Appendix. All datasets used are publicly available and referenced
appropriately. We include a complete description of evaluation protocols and metrics. DBMSolver’s
pseudo-algorithm is thoroughly described in the main text and the Appendix, and we intend to publish
the source code with reproduction instructions.
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A DIFFERENT FORMULATIONS FOR DIFFUSION MODELS

The reverse diffusion process is given by the PF ODE (Anderson, 1982; Song et al., 2020b):

dxt =

[
f (xt, t)−

1

2
g(t)2∇xt

log pt(x)

]
dt, (9)

where the marginal distribution of xt at t is pt(x), and∇xt
log pt(x) is its score function, which is

learned by a neural network (Hyvärinen, 2005). Furthermore, the drift and diffusion coefficients are:

f (xt, t) = xt
d
dt

logαt, and g(t)2 = −2σ2
t

d
dt

log

(
αt

σt

)
,

where αt := α(t) and σt := σ(t), for time t ∈ [0, T ] (where T > 0).

Different formulations of αt and σt give rise to different formulations for the diffusion process. Prior
works hand-design these to get the variance-preserving (VP) (Song et al., 2020b; Zhou et al., 2023),
variance-exploding (VE) (Karras et al., 2022), and TrigFlow (Lu & Song, 2024) formulations. We
contrast the design choices of such diffusion formulations in Table 6.

Table 6: Design choices for widely-used diffusion formulations.

Formulation αt σt f (xt, t) g(t)2 SNRt = α2
t/σ2

t Domain of t

VP [35; 45] e−(0.5t2+0.05t)
√
1− e−(t2+0.1t) −(t+ 0.05)xt 2t+ 0.1 1/(e(t

2+0.1t)−1) [0.0001, 1]
VE [16] 1 t 0 2t 1/t2 [0.002, 80]
TrigFlow [24] cos(t) sin(t) − tan(t)xt 2 tan(t) cot2(t) [0, π/2]

B PROOFS & DERIVATIONS

B.1 PROOF OF PROPOSITION 1

Given a well-trained DBM Dθ(·) that approximates data sample x0, we can simplify Equation (2) as:

dxt =
(

f (xt, t)− g(t)2[∇xt log pt(xt | xT )−∇xt log pt(xT | xt)]
)

dt+ g(t) dwt

=

xt
d logαt

dt
+ 2σ2

t

d log
(

αt

σt

)
dt

[∇xt
log pt(xt | xT )−∇xt

log pt(xT | xt)]

 dt

+ σt

√√√√
−2

d log
(

αt

σt

)
dt

dwt

=

xt
d logαt

dt
+ 2σ2

t

d log
(

αt

σt

)
dt

 α2
Tσ2

t

σ2
Tα2

t

αt

αT
xT + αtDθ(xt)

(
1− α2

Tσ2
t

σ2
Tα2

t

αt

αT

)
− xt

σ2
t

(
1− α2

Tσ2
t

σ2
Tα2

t

αt

αT

) −
αt

αT
xT − xt

σ2
t

(
α2

tσ
2
T

σ2
tα

2
T
− 1
)
 dt

+ σt

√√√√
−2

d log
(

αt

σt

)
dt

dwt

=

xt
d logαt

dt
+ 2σ2

t

d log
(

αt

σt

)
dt

[
αtDθ(xt)− xt

σ2
t

] dt+ σt

√√√√
−2

d log
(

αt

σt

)
dt

dwt

=xt

d logαt

dt
− 2

d log
(

αt

σt

)
dt


︸ ︷︷ ︸

L(t) (Linear Term)

dt+

2αt

d log
(

αt

σt

)
dt

Dθ(xt) + σt

√√√√
−2

d log
(

αt

σt

)
dt

dwt

dt


︸ ︷︷ ︸

N(xt,t) (Non-linear Term)

dt,

(10)
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where L(t) is the linear term, and N(xt, t) is the non-linear term. This shows the semi-linearity
of Equation (2). Thanks to the semi-linearity, we can make use of the Exponential Integrators
method (Hochbruck & Ostermann, 2010) to solve Equation (10), as explained next.

Given initial value xa, where b = a+∆τ and 0 < b < a < T , we obtain the solution to xb as:

xb = e
∫ b
a
L(r) dr xa +

∫ b

a

e
∫ b
a+τ

L(h) dh ·N(xτ , τ) dτ. (11)

Integrating L(r) with respect to r from a to b, we get:∫ b

a

L(r) dr =

[
log

σ2
r

αr

]b
a

= log

(
αa

αb
· σ

2
b

σ2
a

)
. (12)

Next, let’s define λt := log αt

σt
, with the inverse function tλ(·), that satisfies tλ(λt) = t. Through

the change-of-variables method for λ, we can denote αλ := αtλ(λ), xλ := xtλ(λ), Dθ(xλ) :=

Dθ(xtλ(λ)), wλ := wtλ(λ), dwλ :=
√
− dλ

dt dwtλ(λ), and N(xλ, λ) := N(xtλ(λ), tλ(λ)).

Thus, we re-write Equation (11) as:

xb =
αa

αb

σ2
b

σ2
a

xa +

∫ λb

λa

αλ

αb

σ2
b

σ2
λ

·N(xλ, λ) dλ

=
αa

αb

σ2
b

σ2
a

xa +

∫ λb

λa

αλ

αb

σ2
b

σ2
λ

(
2αλDθ(xλ) +

√
2σλ

dwλ

dλ

)
dλ

=
αa

αb

σ2
b

σ2
a

xa + 2
σ2
b

αb

∫ λb

λa

α2
λ

σ2
λ

Dθ(xλ) dλ+
√
2
σ2
b

αb

∫ λb

λa

αλ

σλ
dwλ

=
αa

αb

σ2
b

σ2
a

xa + 2αb e
−2λb

∫ λb

λa

e2λDθ(xλ) dλ︸ ︷︷ ︸
Use Taylor Expansion

+
√
2αb e

−2λb

∫ λb

λa

eλ dwλ︸ ︷︷ ︸
Itô Integral

. (13)

The integral
∫ λb

λa
e2λDθ(xλ) dλ can be computed by performing Taylor Expansion:∫ λb

λa

e2λDθ(xλ) dλ ≈
k−1∑
n=0

D(n)
θ (xλa)

∫ λb

λa

e2λ
(λ− λa)

n

n!
dλ+O((λb − λa)

k+1), (14)

where k ≥ 1, and D(n)
θ (xλa) :=

dnDθ(xλa )
dλn is the nth-order derivative of Dθ(·) w.r.t.λ.

Furthermore, we can compute the Itô integral (Rogers & Williams, 2000) as:∫ λb

λa

eλ dwλ =

√∫ λb

λa

e2λ dλ

 zb =
eλb

√
2

√
1− e2(λa−λb) zb,

where zb ∼ N (0, I).

Substituting k = 1 for Equation (14), we can ultimately simplify Equation (13) as:

xb =
SNRa

SNRb

αb

αa
e2(λa−λb)xa + αb

(
1− e2(λa−λb)

)
Dθ(xλa

) + σb

√
1− e2(λa−λb) zb

=
αb

αa
xa + αb

(
1− SNRa

SNRb

)
Dθ(xλa

) + σb

√
1− SNRa

SNRb
zb, (15)

where SNRt := α2
t/σ2

t = e2λt .

Thus, given the initial value xa, where b = a+∆t and 0 ≤ b < a ≤ T , the solution to xb is:

xb =
SNRa

SNRb

αb

αa
xa + αb

(
1− SNRa

SNRb

)
Dθ(xa) + σb

√
1− SNRa

SNRb
zb. (16)

■
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B.2 PROOF OF PROPOSITION 2

Given a well-trained DBM Dθ(·) that approximates data sample x0, we can re-write the Bridge PF
ODE (Equation (5)) as:

dxt

dt
= f (xt, t)− g(t)2

(
1

2
∇xt log pt(xt | xT )−∇xt log pt(xT | xt)

)

= xt
d logαt

dt
+ 2σ2

t

d log
(

αt

σt

)
dt

(
1

2
∇xt log pt(xt | xT )−∇xt log pt(xT | xt)

)

= xt
d logαt

dt
+ σ2

t

d log
(

αt

σt

)
dt

 α2
Tσ2

t

σ2
Tα2

t

αt

αT
xT + αt

(
1− α2

Tσ2
t

σ2
Tα2

t

)
Dθ(xt)− xt

σ2
t

(
1− α2

Tσ2
t

σ2
Tα2

t

) − 2
αt

αT
xT − xt

σ2
t

(
α2

tσ
2
T

σ2
tα

2
T
− 1
)


= xt
d logαt

dt
+

d log
(

αt

σt

)
dt

αt Dθ(xt)− xt −
αt

αT
xT − xt

α2
tσ

2
T

σ2
tα

2
T
− 1


= xt

d logαt

dt
−

d log
(

αt

σt

)
dt

+
1

α2
tσ

2
T

σ2
tα

2
T
− 1

d log
(

αt

σt

)
dt

+ αt

d log
(

αt

σt

)
dt

Dθ(xt)−
xT/αT

α2
tσ

2
T

σ2
tα

2
T
− 1

 .

We further simplify the equation above as:

dxt

dt
= xt

d log σt

dt
+

1
α2

tσ
2
T

σ2
tα

2
T
− 1

d log
(

αt

σt

)
dt


︸ ︷︷ ︸

L(t) (Linear Term)

+αt

Dθ(xt)−
xT/αT

α2
tσ

2
T

σ2
tα

2
T
− 1

 d log
(

αt

σt

)
dt︸ ︷︷ ︸

N(xt,t) (Non-linear Term)

. (17)

where L(t) is the linear term, and N(xt, t) is the non-linear term. Thus, we can clearly observe the
semi-linearity of Equation (5). Similar to the derivation above, we can once again make use of the EI
method to solve Equation (17):

Given an initial value xa where b = a+∆τ and 0 < b < a < T , we obtain the solution to xb as:

xb = e
∫ b
a
L(r) dr xa +

∫ b

a

e
∫ b
a+τ

L(h) dh ·N(xτ , τ) dτ. (18)

To simplify the equation, we first integrate the linear term L(r) with respect to r from a to b:∫ b

a

L(r) dr =

[
log

(
αr

√
e2(λr−λT ) − 1

e2λr

)]b
a

= log

αb

αa
e2(λa−λb)

√
e2(λb−λT ) − 1

e2(λa−λT ) − 1

 , (19)

where λt := log αt

σt
has the inverse function tλ(·) which satisfies tλ(λt) = t.

Next, we can use the change-of-variables method for λ. We denote αλ := αtλ(λ), xλ := xtλ(λ), and
N(xλ, λ) := N(xtλ(λ), tλ(λ)).

Substituting Equation (19) along with the value of N(xλ, λ) back into Equation (18), we get:

xb =
αb

αa
e2(λa−λb)

√
e2(λb−λT ) − 1

e2(λa−λT ) − 1
xa

+ αb e
−2λb

∫ λb

λa

e2λ

αλ

√
e2(λb−λT ) − 1

e2(λ−λT ) − 1
· αλ

[
Dθ(xλ)−

xT/αT

e2(λ−λT ) − 1

]
dλ︸ ︷︷ ︸

Separate and simplify integral further

(20)
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When we simplify the integral in Equation (20), we get:√
e2(λb−λT ) − 1

∫ λb

λa

[
e2λ Dθ(xλ)√
e2(λ−λT ) − 1

− xT e2λ

αT

(
e2(λ−λT ) − 1

)3/2
]

dλ. (21)

Next, we separately integrate the individual terms of Equation (21).

For the integral associated with xT , we use integration-by-parts to simplify it:∫ λb

λa

xT e2λ

αT

(
e2(λ−λT ) − 1

)3/2 dλ = −xT

αT

e2λT

√
e2(λb−λT ) − 1

1−

√
e2(λb−λT ) − 1

e2(λa−λT ) − 1

 (22)

Using the result in Equation (22), we can simplify Equation (20) as:

xb =
αb

αa
e2(λa−λb)

√
ρ(λb, λT )

ρ(λa, λT )
xa +

αb

αT
e2(λT−λb)

(
1−

√
ρ(λb, λT )

ρ(λa, λT )

)
xT

+ αb e
−2λb

√
ρ(λb, λT )

∫ λb

λa

e2λ Dθ(xλ)√
ρ(λ, λT )

dλ︸ ︷︷ ︸
Use Taylor Expansion

, (23)

where ρ(m,n) := e2(m−n) − 1.

Finally, we perform Taylor Expansion to obtain the solution to the integral in Equation (23):∫ λb

λa

e2λ Dθ(xλ)√
ρ(λ, λT )

dλ ≈
k−1∑
n=0

D(n)
θ (xλa

)︸ ︷︷ ︸
Estimated

∫ λb

λa

e2λ√
ρ(λ, λT )

(λ− λa)
n

n!
dλ︸ ︷︷ ︸

Analytically Computed (Section B.3)

+O((λb − λa)
k+1)︸ ︷︷ ︸

Omitted

,

where k ≥ 1, and D(n)
θ (xλa

) :=
dnDθ(xλa )

dλn is the nth-order derivative of Dθ(·) w.r.t.λ. This is the
same as Equation (8).

Thus, we can derive an exact solution for xb. For completeness, we derive the 1st- and 2nd-order
solutions below.

■

B.3 DERIVING SOLUTIONS FOR PROPOSITION 2

B.4 1ST-ORDER SOLUTION

We use Taylor Expansion to find the solution. By using k = 1, the 1st-order solution is as follows:∫ λb

λa

e2λ Dθ(xλ)√
ρ(λ, λT )

dλ ≈ D(0)
θ (xλa

)

∫ λb

λa

e2λ√
ρ(λ, λT )

(λ− λa)
0

0!
dλ

= Dθ(xλa
)

∫ λb

λa

e2λ√
ρ(λ, λT )

dλ

= Dθ(xλa
) e2λT

√
ρ(λb, λT )

(
1−

√
ρ(λa, λT )

ρ(λb, λT )

)
. (24)

Substituting Equation (24) back into Equation (23), we get the following 1st-order formulation of xb:

xb =
αb

αa
e2(λa−λb)

√
ρ(λb, λT )

ρ(λa, λT )
xa +

αb

αT
e2(λT−λb)

(
1−

√
ρ(λb, λT )

ρ(λa, λT )

)
xT

+ αb e
2(λT−λb)ρ(λb, λT )

(
1−

√
ρ(λa, λT )

ρ(λb, λT )

)
Dθ(xλa). (25)

■
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Relation to DBIM Sampler (Zheng et al., 2024). Our solution is a generalized form of the DBIM
Sampler. Simplifying the DBIM’s formulation for xb (with ρ = 0), we get:

xb =
αb

αT

SNRT

SNRb
xT + αb

(
1− SNRT

SNRb

)
Dθ(xa)

+ σb

√
1− SNRT

SNRb

xa − αa

αT

SNRT

SNRa
xT − αa

(
1− SNRT

SNRa

)
Dθ(xa)

σa

√
1− SNRT

SNRa


=

αb

αa

SNRa

SNRb

√√√√ SNRb

SNRT
− 1

SNRa

SNRT
− 1

xa +
αb

αT

SNRT

SNRb

1−
σb

√
1− SNRT

SNRb

σa

√
1− SNRT

SNRa

αa

αT

SNRT

SNRa

αT

αb

SNRb

SNRT

xT

+ αb
SNRT

SNRb

(
SNRb

SNRT
− 1

)1−

√√√√ SNRa

SNRT
− 1

SNRb

SNRT
− 1

Dθ(xa). (26)

By substituting the equation above with e2λt := SNRt, we in fact see that Equation (26) simplifies
to our 1st-order formulation of xb in Equation (25). Thus, we see that DBIM is actually a 1st-order
formulation of our solution to the Bridge PF ODE (i.e., k = 1). DBMSolver’s advantage is that it
instead utilizes a more precise, 2nd-order solution that has lower error bounds compared to DBIM.

B.5 2ND-ORDER SOLUTION

Similar to the derivation in Section B.4, we use Taylor Expansion to find the solution when k = 2:∫ λb

λa

e2λ Dθ(xλ)√
ρ(λ, λT )

≈ D(0)
θ (xλa

)

∫ λb

λa

e2λ√
ρ(λ, λT )

dλ︸ ︷︷ ︸
Solution derived in Equation (24)

+D(1)
θ (xλa

)

∫ λb

λa

e2λ(λ− λa)√
ρ(λ, λT )

dλ︸ ︷︷ ︸
Solution derived below

. (27)

The second term’s integral can be solved as:∫ λb

λa

e2λ(λ− λa)√
ρ(λ, λT )

dλ = e2λT

[
tan−1

(√
ρ(λb, λT )

)
− tan−1

(√
ρ(λa, λT )

)]
+ e2λT

[
(λb − λa − 1)

√
ρ(λb, λT ) +

√
ρ(λa, λT )

]
. (28)

By substituting Equations 24 and 28 into Equation (27), we reach the 2nd-order Taylor Expansion:

e2λT
√

ρ(λb, λT )

(
1−

√
ρ(λa, λT )

ρ(λb, λT )

)[
Dθ(xλa)− D(1)

θ (xλa)
]

+ e2λT
√
ρ(λb, λT )

λb − λa +
tan−1

(√
ρ(λb, λT )

)
− tan−1

(√
ρ(λa, λT )

)
√
ρ(λb, λT )

D(1)
θ (xλa

).

(29)

Finally, substituting Equation (29) back into Equation (23), we get the following formulation of xb:

xb =
αb

αa
e2(λa−λb)

√
ρ(λb, λT )

ρ(λa, λT )
xa +

αb

αT
e2(λT−λb)

(
1−

√
ρ(λb, λT )

ρ(λa, λT )

)
xT

− αb ρ(λT , λb)

[
1−

√
ρ(λa, λT )

ρ(λb, λT )

](
Dθ(xλa)− D(1)

θ (xλa)
)

− αb ρ(λT , λb)

λb − λa +
tan−1

(√
ρ(λb, λT )

)
− tan−1

(√
ρ(λa, λT )

)
√
ρ(λb, λT )

D(1)
θ (xλa

),

(30)
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where D(1)
θ (xλa

) ≈ Dθ(x̃λm )−Dθ(xλa )
λm−λa

, with λm := (1 − r)λa + rλb and a ratio hyperparameter
r ∈ [0, 1]. Note that x̃λm

, the perturbed image at λm, is obtained via Equation (25).

■

C EXPERIMENT DETAILS

C.1 TRAINING DETAILS

We provide thorough details for the diffusion bridge models and their training procedures in Table 7.

Table 7: Training details for the various Image-to-Image Translation tasks.

Dataset Edges2Handbags [14] DIODE [40] Inpainting on Conditional ImageNet [2] CelebAMask-HQ [19] Face2Comics [39]

Hyperparameters and Training Details

Bridge Formulation VP VP I2SB [22] VP VP
Noise Conditioning, cnoise 250 ln t 250 ln t 1000 t 250 ln t 250 ln t
Learning Rate 1e-4 1e-4 1e-4 2e-4 2e-4
EMA Rate 0.9999 0.9999 0.9999 0.9993 0.9993
Noise Discretization Schedule Karras Karras Karras Karras Karras
Noise Discretization Steps 40 40 40 40 40
Batch Size 256 64 256 64 64
Training Iterations 400k 400k 400k 120k 120k
Number and Type of GPUs 4 A100 4 A100 8 A800 8 A6000 8 A6000

Model Details
Model Channels 192 256 256 256 256
Dropout 10% 10% 10% 10% 10%
Time Embedding Cosine Cosine Cosine Cosine Cosine
Channel Multiplier (1, 2, 3, 4) (1, 1, 2, 2, 4, 4) (1, 1, 2, 2, 4, 4) (1, 1, 2, 2, 4, 4) (1, 1, 2, 2, 4, 4)
Number of Residual Layers 3 2 2 2 2
Attention Resolutions (8, 16, 32) (8, 16, 32) (8, 16, 32) (8, 16, 32) (8, 16, 32)
Model Capacity (Mparams) 284 534 534 534 534

C.2 SAMPLING DETAILS

Table 8: Sampling details for the various Image-to-Image Translation tasks.

Dataset Edges2Handbags [14] DIODE [40] Inpainting on Conditional ImageNet [2] CelebAMask-HQ [19] Face2Comics [39]

Hyperparameters for Sampling
Discretization Schedule Karras Karras Uniform Uniform Karras
Discretization Steps 40 40 40 40 40

D MORE QUALITATIVE RESULTS

Beyond the quantitative metrics presented earlier, we include additional qualitative results in Figures 8–
12 to further highlight the perceptual advantages of DBMSolver. While most baseline methods fail to
produce visually coherent or structurally faithful outputs at low NFEs, only DBIM offers a somewhat
competitive baseline. However, even in direct comparison, DBMSolver consistently exhibits superior
fidelity, texture richness, and semantic alignment. We encourage readers to closely examine the
nuanced differences in Figures 11 and 9, particularly between DBIM and our method. For instance,
in the DIODE samples, DBMSolver preserves delicate edge structures and fine-grained details in tree
branches and twigs that are noticeably degraded in DBIM outputs. Similarly, in the Edges2Handbags
domain, our method captures subtle material textures and contour sharpness that DBIM tends to blur
or oversimplify. These visual distinctions reinforce the efficacy of our approach and underscore its
robustness across diverse generative tasks. Further inpainting results are also presented in Fig. 12.
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DBMSolver (Ours)

DBMSolver (Ours)

Figure 8: Additional CelebAMask-HQ samples for DBMSolver with 6 NFEs, with different initial SDE steps.
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Figure 9: Additional qualitative comparison on Face2Comics.

DPMSolver++ OursDBIMHybrid Heun

NFE 29 | FID 270.85 NFE 30 | FID 232.78 NFE 30 | FID 18.99 NFE 30 | FID 14.69

NFE 5 | FID 442.38 NFE 6 | FID 169.45 NFE 6 | FID 44.92 NFE 6 | FID 34.76

Figure 10: Additional qualitative comparison for Label-to-Face Generation on CelebAMask-HQ.
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DPMSolver++ OursDBIMHybrid Heun

DPMSolver++ OursDBIMHybrid Heun DPMSolver++ OursDBIMHybrid Heun
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Figure 11: Additional qualitative comparison on DIODE (top) and Edges2Handbags (bottom).
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Figure 12: Additional qualitative comparison for Class-Conditional Inpainting on ImageNet.
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