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ABSTRACT

Diffusion-based approaches for image-to-image (I2I) translation have garnered
significant attention due to their ability to generate high-fidelity images and scala-
bility to large-scale datasets. However, state-of-the-art Diffusion Bridge Models
(DBMs), which utilize diffusion bridges to interpolate between two images X
and x7, are severely hampered by their slow sampling process, often requiring
dozens to hundreds of function evaluations. To address this computational burden,
we introduce DBMSolver, a novel, training-free sampler specifically designed for
DBMs. DBMSolver leverages the inherent semi-linear structure of the underlying
diffusion equations in DBMs and employs advanced exponential integrators to
accelerate the sampling process. This approach not only reduces the number of eval-
uations but also enhances image quality for I2] Translation tasks. Our experiments
demonstrate that DBMSolver outperforms prior methods across multiple datasets
and resolutions, significantly improving visual quality and reducing computational
overhead. DBMSolver improves the scalability of diffusion-based 121 Translation
by bridging the gap between theoretical elegance and real-world applicability.

1 INTRODUCTION

Image-to-Image (I2I) Translation is a generative modeling paradigm that learns to map an input
image to a target output. It encompasses tasks like image restoration, grayscale colorization, and
inpainting of occluded or corrupted regions, as well as style transfer and semantic reinterpretation via
cross-domain synthesis (Sxela, 2021} [Isola et al.,[2017; [Goodfellow et al.} 2014).

Recent diffusion-based works, as alternatives to traditional generative approaches such as GANs
et all 2017; [Karras et al.| 2020), have brought significant advances in the synthesis of high-fidelity
images (Saharia et al.,[2022a; Liu et al/, 2023; [Kawar et al}[2022). Among them,
proposed Diffusion Bridge Models (DBMs), which are capable of performing 121 Translation by
establishing a diffusion bridge that facilitates the translation from one arbitrary image distribution
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Figure 1: Few-step image synthesis (6 NFEs |) with high-quality generated details (3.40 FID |).
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to another. While DBMs offer a theoretically elegant diffusion framework for 121 Translation,
generating high-quality images using such diffusion-based models remains computationally intensive
as it requires numerous costly model evaluations (NFEs)— which forms the core of our contribution.

1.1 DBMSOLVER: OUR SOLUTION AND KEY CONTRIBUTIONS

We introduce DBMSolver: a training-free, highly efficient solver specifically designed to accelerate
the DBM-based sampling process. Previous research on improving the sampling speeds explored
either model distillation (He et al., [2024} [Xie et al., [2024} |Gushchin et al.} 2025)), fine-tuning (Geng
et al.,2024; He et al.| [2024)), or re-training of an entire neural network (Zhou et al.l|2025). In contrast,
DBMSolver is a drop-in replacement for existing DBM sampling methods, avoiding the need for any
architectural changes or extra training, thus enabling broad compatibility and immediate benefits.

We devise DBMSolver by rigorously analyzing the underlying Stochastic and Ordinary Differential
Equations (SDE and ODE) governing DBMs’ reverse-time diffusion process (Equations [2] and [3)).
Specifically, in Section [3.1] we identify the inherent semi-linear structure of the SDE, and leverage
the Exponential Integrators (EI) (Hochbruck & Ostermann, [2010) method to derive its exact solution.
Next, in Section@ we analyze the ODE to show that it has a semi-linear structure as well, allowing
us to derive a 2"¢-order exact solution. Finally, by combining these two solutions, we devise a
sampling procedure that drastically reduces the required NFEs while enhancing the image quality, as
showcased in Figure[T]and Section[3.3] The key contributions of this work are as follows:

* Novel, Training-Free Sampler: DBMSolver significantly accelerates the sampling speed of
Diffusion Bridge Models without requiring any additional training or fine-tuning. It works
for both, conditional and unconditional I2I Translation.

* Principled Theoretical Foundation: We implement DBMSolver with exact solutions of
the SDE and ODE governing DBMs, grounding it on the principled diffusion bridge theory.

* State-of-the-art Performances on Various I2I Tasks: Through extensive experimentation
on various I2I tasks and image resolutions, we show that DBMSolver consistently achieves
state-of-the-art results. It surpasses the current state-of-the-art works (Zheng et al.| 2024 |L1
et al.| 2023)) in terms of image quality and computational efficiency.

The source code will be made publicly available for transparency and to further support new research.

2 PRELIMINARIES AND RELATED WORK

2.1 DIFFUSION-BASED GENERATIVE MODELS

Diffusion Probabilistic Models (DPMs). Owing to their ability to generate high-quality outputs,
DPMs have become ubiquitous for various noise-to-image generation tasks (Rombach et al.| 2022}
Karras et al., 2022). DPMs learn to traverse from a Gaussian distribution ppyior(X) to an unknown
data distribution po(X) := pgaa(x) through a gradual denoising process (Ho et al.,|2020; |Song et al.,
2020b; |Dhariwal & Nichol, [2021). In other words, starting from a prior distribution pp(x) :=
Pprior(X) = N (0,04 1I) with o7 > 0, DPMs iteratively denoise x7 ~ pr(x) (i.e., white noise) to
recover the desired output xo ~ po(x). This reverse diffusion process is shown to follow the Ordinary
Differential Equation (ODE) (Anderson, |1982;|Song et al.,[2020b):

1
dx; = f(xt,t)—ig(tfvm log py(x) | dt, (1

where p;(x) is the marginal distribution of x; at ¢, and Vy, log p;(x) is its score function learned by
a neural network (Hyvérinen, 2005)), and f(x,t) and g(t) are the drift and diffusion coefficients,
respectively (see Section[A). [Song et al| (2020b) term this the Probability Flow (PF) ODE.

Diffusion Bridge Models (DBMs). Although DPMs have gained popularity for N2I Generation
tasks, their underlying theory only holds when the prior distribution is purely Gaussian, i.e., pr(x) &
N (0,02 1). However, this assumption does not hold for 121 translation tasks, where pr(x) is not
necessarily Gaussian noise, thereby limiting its applicability in such settings. To solve this,|Zhou
et al.| (2023)) were able to extend the diffusion framework from N2I Generation to 121 Translation
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by making use of Doob’s h-transform (Doob| |1984} Rogers & Williams|, 2000). By steering the
forward diffusion process almost surely to a target via Doob’s h-transform, they form a diffusion
bridge between xg ~ po(x) and x7 ~ pr(x), yielding a conditioned forward diffusion process.

The corresponding reverse-time process is governed by the Bridge SDE:
dx; = (f(xe,0) = g(£)*[Vix, log pe(xs | X0, x7) = Vi, log py(x7 | x1)]) dt + g(t) dwe,  (2)

where Vy, log pi(x: | Xo,x7) is the score of the tractable conditional probability, p;(x; | Xo,X7):

SNRp ap _ SNRyp _
SNR, ap XT T (1 SNR; ) X0 — Xt

o2 (1 _ SNRT) ' 3)

SNR;

Vi, logpe(x: | X0, %7) =

This score is learned by a DBM via Bridge Score Matching (Zhou et al., 2023) (i.e., sg(x¢,t, X7) &
Vi, log p:(x¢ | X0, %x7)). The score of the transition probability, p:(XT | X;), is given by:

ap XT — Xt 2
Vi, logpi(xp | xp) = —5F———, SNR; := @i/s2, @
o2 (SNRt _ 1)
t \ SNRr
where SNR; is the signal-to-noise ratio at time ¢. Lastly, the SDE in Equation (2) has an equivalent
ODE interpretation, which we name “Bridge Probability Flow (PF) ODE’:

1
dx; = [f(Xtyt) —g(t)? <2th log p¢(x¢ | X0, %7) — Vx, log ps(x7 | Xt)) } de. )

2.2 FAST SAMPLERS FOR DIFFUSION-BASED MODELS

For DPM-based N2I Generation, works such as|Lu et al.| (2022afb); [Zhao et al.|(2024) proposed fast
samplers that generate high-quality images in < 20 NFEs. These methods follow the assumption that
the prior is a pure Gaussian distribution. However, since this assumption becomes invalid for 121
Translation (as prior pr(x) can be arbitrary), their theoretical foundation is unsuitable for 12I tasks,
calling for samplers that support arbitrary priors. We summarize this in Table[I]

Meanwhile, to generate high-fidelity images with DBMs, |Zhou et al.| proposed the Hybrid Heun (HH)
Sampler— which alternatively solves the Bridge SDE (Equation ) via the 1%-order Euler-Maruyama
method, and the Bridge PF ODE (Equation ) via the 2"-order Heun method. Next, inspired
by |Song et al|(20204), [Zheng et al. (2024) recently proposed a non-Markovian 1%'-order solver
called DBIM. Although DBIM improves the sampling speed, it still requires dozens of NFEs for
high-quality images. In contrast, we analyze and rigorously derive exact solutions to the Bridge SDE
and PF ODE to propose a higher-order sampler that surpasses DBIM in image quality and efficiency.

Table 1: DPMs assume pr(x)~/\ (0, 021), preventing arbitrary pr(x) thus unsuitable for DBMs.

Theoretically valid on

Sampling Method Prior Sample xp Image-to-Image Translation Sampling Procedure Is Markovian
Samplers designed for N2I-based DPMs:

DDIM [33] x7 ~ N(0,02I) X pe(xe,_y | Xe,) X

DPMSolver++2M [26] x7 ~ N(0, o%l) X Exact Soln. of ODE via [11] v
Samplers designed for I121-based DBMs:

Hybrid Heun [45] X7 ~ Pprior(X) v SDE (Euler-Maruyama) & ODE (Heun) v

DBIM [44] XT ~ Pprior(X) v pe(Xe,_y | X, X1) X

DBMSolver (Ours) X7 ~ Pprior(X) v Exact Soln. of Bridge SDE & ODE via [11] v

3 DBMSOLVER: DEVISING A FAST SAMPLER FOR DBMS

The fundamental difference between DPMs and DBMs is the fact that x7 is pure noise for DPMs,
but it can be an arbitrary image for DBMs. Consequently, DBMs involve a reverse diffusion
process conditioned on x7, which is crucial for I2I Translation. As discussed in Section @l,
this crucial distinction invalidates the direct application of state-of-the-art fast N2I solvers (such as
DPMSolver++ (Lu et al.,[2022b)) for sampling DBMs. We explore a different approach to develop fast
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samplers specifically for DBMs by thoroughly analyzing their underlying reverse diffusion SDE and
ODE (Equations[2] &[3) and deriving their exact solutions using Exponential Integrators (Hochbruck &
Ostermann, 2010). With these solutions, we develop a higher-order sampling procedure that generates
high-quality images significantly faster, tailor-made for DBMs. Given prior and target images xr and
Xo, let Dg(xs, s, x7,T') denote an x-predicting DBM such that Dg (X, s, x7,T') = X for s € [0, 7.
For brevity, we write Dg(x;) := Dg(xs, $,x71,T).

3.1 DERIVING THE SOLUTION TO THE BRIDGE SDE

We analyze and derive an exact solution to the Bridge SDE (Equation (2)) by leveraging the Expo-
nential Integrators (EI) method (Hochbruck & Ostermannl 2010), which is particularly powerful for
semi-linear differential equations of the form ¢ = L(t) x, + N (x, t), where L(t) and N (x, t) are
linear and non-linear coefficients, respectively. Simplifying and re-structuring the SDE, we observe
that it indeed has a semi-linear structure, allowing us to utilize the EI method to obtain an exact
I%t-order solution. The Bridge SDE fits this form (proof in Section , allowing for an accurate

sampling procedure, as described in Proposition

Proposition 1 Given an initial value x, and time steps 0 < t < s < T, the exact solution to X; is:

SNR
SNR,

Zy, (6)

SNR; o ( SNR,
Xy = s | 1—

D
SNR; as SNRt> 0(%s) + 0t
where z; ~ N'(0,1), and SNR; := o%/o? is the signal-to-noise ratio at time t.

3.2 DERIVING THE SOLUTION TO THE BRIDGE PF ODE

Having set grounds with Proposition[I] we next focus on the Bridge PF ODE (Equation (3)). Similar
to the Bridge SDE analysis above, we show that the Bridge ODE also exhibits semi-linearity in its
structure, which has been largely overlooked in prior works. We take advantage of this semi-linearity
by deriving a closed-form exact solution through the EI method. Then, we utilize the change-of-
variables method to reformulate the solution as an exponentially-weighted integral. Finally, we
analytically minimize the discretization errors by Taylor expanding this integral, yielding a fast and
efficient sampling procedure, as presented in Proposition [2| with its proof in Section

Proposition 2 Given an initial value X, and time steps 0 < t < s < T, the exact solution to X; is:

_ A on,-a,) [P AT) Ot 2(Ar—Ar) p(At, Ar)
=—e —— Xs+ —¢€ 1—y )/ —/———m=|x
as p(hs, Ar) ar psAr) |1

At 2)\D X)\)
+ ap e~ 2 /p( )\t,)\T/ AN Y)Y (7
N YD

The Exponential Integral

where \; := log(ay /o) with the inverse function t5(-), and X = X4, (x) is the change-of-variable
form for \, and p(a,b) := e*(@=Y) — 1. Intuitively, \; can be thought of as half the log SNR at time t.

We simplify the Exponential Integral in Equation (7) by taking its (k — 1)™ Taylor expansion:

A 2)\ 2)\ n
v 22 Dg(xy) (m)( / (A=) k1
d\ ~ D, dA+O((As — A , (8
. pOuaD) Z (X2, o) + O((At )7, ®)
Estimated Omitted

Analytically Computed (Section|B.3)

where k > 1, and DV (x5,) = % is the n'"-order derivative of Dg(-) w.r.t. \. Note that we

omit the error term O((\; — A;)**1). In Section we demonstrate that our solver generalizes
DBIM (Zheng et al., 2024)), and both methods converge when k = 1.



Under review as a conference paper at ICLR 2026

3.3 DEVISING DBMSOLVER USING EQUATIONS[6] AND[7]

Initial Step. In the sampling procedure, the initial step is taken from time s = T totime t = T — e,
where € is a small value. However, the exact solution of the Bridge PF ODE in Equation (7)) is only
valid for s < 7', which implies that it cannot be employed for this initial step (i.e., from s = T
tot = T — €). This is because if we were to implement Equation for the initial step, then
p(As, A1) = p(Ap, Ar) = 0, which would cause the coefficient of x, to diverge to infinity, thereby
exhibiting a singularity. Thus, we instead employ the exact solution of the Bridge SDE (Equation (6))
exclusively for the initial step, while applying the exact solution of the Bridge PF ODE (Equation (7))
for the subsequent steps (where s < T — e and t < s), as described next.

Subsequent Steps. Higher-order formulations of Equation (&) can lead to a sampling procedure
capable of generating high-quality images more efficiently, as demonstrated in previous works (Lu
et al., [2022ajb; [Zhao et al.,[2024])). This improvement stems from the fact that higher-order Taylor
expansions have reduced error bounds, yielding more accurate approximations. Following this idea,
we set k = 2, resulting in an exact 2"-order Bridge PF ODE solution for Equation . We adopt this
2"_order formulation for DBMSolver and describe the complete derivation in Section

Summarizing the Algorithm. GiventimestepsT =ty > ty_1 > --- >t > to = 0, we first
compute X;,,_, from prior image x;,, ~ pr(x) using Equation @ For the next N — 2 steps, we
iteratively apply Equation (7) with k = 2, yielding better approximations for each intermediate noisy
sample until X, . To obtain the final X, prediction, we solve the Bridge PF ODE from ¢; to ¢( using
the widely used Euler method, resulting in a high-fidelity output. We summarize it in Algorithm I
and validate it empirically in the next section.

Algorithm 1 DBMSolver: A Fast Sampler for Diffusion-based 12I Translation

Inputs: Pretrained DBM Dg(-), Number of sampling steps N, Time steps T' =ty > -+ > t1 >
to = 0, and Prior distribution pp(x).

Initialization: Sample X1 ~ pr(x),z ~ N (0,I), and Xg < Dg(X¢, )
Initial Stochastic Update: Calculate x;, , from x7 using Equation @

Subsequent Deterministic Refinement:
fori =N —1to1do
if i > 1 then
a<+t;,and b < t;_1.
Calculate %;, from X, using Equation (7) (with k = 2). {> Refer Section[B.3] }
else
dxi, = f(Xe,, 1) — g(t1)? (3 Do(Xe,) — Vi, logpr, (x1 | X1,))
Xo ¢ Xyy + (to — t1) dxy, {> Final Euler Update}
end if
end for
Output: X {> Final translated image }

4 EXPERIMENTS AND RESULTS

We conducted extensive experiments to evaluate DBMSolver against established baselines on various
121 Translation tasks, including conditional image inpainting and semantics-to-image generation, to
demonstrate its versatility across diverse tasks. Specifically, we evaluated on the following challenging
datasets: Sketch-to-Image on Edges2Handbags (E2H) (Isola et al.|[2017), Surface normals-to-Image
on DIODE-Outdoor (Vasiljevic et al.|, 2019), Face-to-Comic stylization on Face2Comics (F2C),
Conditional Image Inpainting with central masks on ImageNet (Deng et al.| 2009), and Semantic
Label-to-Face generation on CelebAMask-HQ (Lee et al.| 2020).

We mainly assess sampling quality using FID (Heusel et al., 2017), and computational efficiency via
the number of forward evaluations NFEs (Song et al.} 2020a} |Lu et al.} 2022a). For CelebAMask-HQ,
we additionally report classification accuracy (CA), following|Li et al.| (2023)). We use the publicly
available DBM checkpoints from Zhou et al.|(2023) for E2H and DIODE, highlighting DBMSolver’s
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Table 2: Quantitative results on DIODE and Edges2Handbags. FID () is reported against NFE (]).
Time denotes total sampling duration in minutes; Rate indicates images generated/second.

Family Method NFE (1) DIODE (256x256) [40] Edges2Handbags (64 x64) [14]
Time (}) Rate (1) FID (}) Time (}) Rate (1) FID (})
GAN Pix2Pix [14] 1 - - 82.40 - - 74.80
DDIB [36] > 40 - - 242.30 - - 186.84
Diffusion &  SDEdit [27] > 40 - - 31.14 - - 26.50
Flow Rectified Flow [23 > 40 - - 25.30 - - 77.18
I’SB [22] > 40 - - 9.34 - - 7.43
DPMSolver++2M! [26 100 237.68 1.15 98.68 199.16  11.59 33.33
Hybrid Heun [45] 119 283.54 0.97 443 327.58 7.05 1.83
Samoling via  DBIM B4 6 19.21 1431 12.13 1205 19153 327
"}‘)‘?fpf‘“g via 20 47.63 5.77 4.99 39.98 57.76 1.74
rilusion 100 23832 1.15 2.57 199.63 11.57 0.89
Bridge Models
DBMSolver (Ours) 6 14.18 19.38 3.38 8.33 276.99 0.97
10 23.48 11.71 2.15 13.85  166.67 0.58
20 46.85 5.87 2.06 27.64 83.53 0.54
30 70.14 3.92 2.06 4143 55.73 0.52

T denotes sampler specifically designed for N2I Generation

training-free integration. For ImageNet inpainting, we adopt the DBM checkpoint from Zheng et al.
(2024), which was finetuned via I*SB (Liu et al.| [2023) from a pre-trained N2I Diffusion Model. For
datasets lacking checkpoints (e.g., Face2Comics, CelebAMask-HQ), we train DBMs from scratch
using the ADM U-Net (Dhariwal & Nicholl 2021)), following standard diffusion architectures.

Our implementation builds on the official DBIM codebase (Zheng et al.,|2024); training details are
in Section We benchmark DBMSolver against current state-of-the-art I2I translation methods.
Our main baseline is DDBM (Hybrid Heun) (Zhou et al., 2023)), using reported metrics for fair
comparison with prior GANs and diffusion models. We also include DBIM (Zheng et al., [2024]),
a non-Markovian DBM accelerator, and N2I-Generation-based DPM-Solver++ (Lu et al., [2022b)).
Additional baselines of DDIB (Su et al.|2022), SDEdit (Meng et al.,[2021), Rectified Flow (Liu et al.|
2022), and I2SB (Liu et al., 2023) are evaluated following the DDBM and DBIM protocols.

4.1 RESULTS

Image Translation on E2H (64x64) and DIODE (256x256). Table 2| reports FID scores
and NFEs across methods. DBMSolver achieves state-of-the-art results with significantly fewer
evaluations. At just 10 NFEs, it achieves FID scores of 0.58 (E2H) and 2.15 (DIODE), outperforming
both Hybrid Heun and DBIM. Its high efficiency at low NFEs enables rapid sampling, making it
well-suited for real-time DBM applications by supporting faster generation and higher throughput. It
exhibits strong scalability with increasing NFEs, yielding further improvements in FID.

The trends in Figure 2}a,b show that as NFE increases, DBMSolver quickly achieves high fidelity
and remains stable. Figure[3|supports this, indicating that even at low NFEs (e.g., 6), DBMSolver
and DBIM generate visually rich, coherent outputs, outperforming others in detail and realism.
DPMSolver++2M preserves structure but lacks vibrant color and texture, especially at lower NFEs.
While DBIM yields appealing outputs, it lacks fine detail compared to our method— a gap reflected in
FID and trend metrics. Please refer to the intricate structural details observable in the tree branches
and twigs within the DIODE images, as well as the fine-grained textures and contours present in the
handbag depictions. DBMSolver consistently balances efficiency and quality across datasets.

FID FID FID
2501 A\ 25071 250] —— DPMSolver++2M (Lu et al.)
—+— Hybrid Heun (Zhou et al.)
\ 100
100{ TFv—— \ 100 \ DBIM (Zheng et al.)
\ 5

. —e— DBMSolver (Ours)

R | )N

NFE= 20 40 60 80 100 NFE= 20 40 60 80 100 NFE= 20 40 60 80 100

(a) DIODE 256 x 256 (b) Edges2Handbags 64 x 64 (c) Face2Comics 256 x 256

Figure 2: FID vs. NFE on different datasets. We consistently get better FID scores with fewer NFEs.
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DPMSolver++
XT Hybrid Heun (Zhou et al.) (Lu et al.) DBIM (Zheng et al.) DBMSolver (Ours) X9

NFE 10 | FID 151.93 NFE 11 | FID 118.76 NFE 6 | FID 1213 NFE 6 | FID 3.40

.

Hybrid Heun DPMSolver++ DBIM DBMSolver (Ours) Hybrid Heun DPMSolver++ DBIM DBMSolver (Ours)
XT NFE 11 NFE NFE 6 NFE 6 XT NFE 11 NFE 10 NFE 6 NFE 6
FID 137.05 FID 34.03 FID 3.27 FID 0.98 FID 137.05 FID 34.03 FID3.27 FID 0.98

Figure 3: Visuals for Tablelzt DPMSolver++ and HH shown at 11 NFEs due to poor 6-NFE quality.

Label-to-Face Generation on CelebAMask-HQ (256 x256). Figures[4and[5]and Table i show
that our method generates images with precise facial segmentation and coherent boundaries. At
as low as 6 NFEs, DBMSolver achieves a FID of 34.76 outperforming DBIM’s 44.92 as well as
GAN-based models and other diffusion approaches, while using significantly fewer NFEs. Visually,
DBMSolver preserves fine structural details such as eye contours, hairlines, and mask edges, which
are often blurred or distorted in DBIM outputs. DBMSolver consistently produces sharper, more
anatomically faithful generations, enhancing both realism and image accuracy.

Hybrid Heun DPMSolver++ DBIM DBMSolver
XT (Zhou et al.) (Luetal.) (Zheng et al.) (Ours) X0

NFE 29 |FID 270.85  NFE30 | FID 23278  NFE 30 | FID 18.99 NFE 30 | FID 14.69

Figure 4: Label-to-Face Generation on CelebAMask-HQ 256 x256.
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a299

Figure 5: Generated samples on CelebAMask-HQ 256 x 256 using our DBMSolver in 6 NFEs.

DPMSolver++ Hybrid Heun DBIM DBMSolver (Ours)

Table 3: Quantitative com-
parison on Face2Comics.

Method NEE (1) FID ()
GANs & Other Diffusion-based Models:
Pix2Pix [14] 1 49.96
CycleGAN [47] 1 35.13
DRIT++ [20] - 28.87
CDE [32] - 33.98
LDM (30] - 24.28
BBDM 211 200 23.20
Sampling via Diffusion Bridge Models:
DPMSolver++2M! [26] 20 27.34
30 21.88
Hybrid Heun [43] 119 2.36
DBIM {44] 6 13.29
10 1175
NFE 20 | FID 21.89 NFE 20 | FID 35.65 NFE 20 | FID 7.87 NFE 20 | FID 0.93 gg g'g
. . . . DBMSolver (Ours) 6 3.04
Figure 6: Image Stylization on Face2Comics 256 x 256. oo 1
30 0.92

Table 4: Quantitative results for Label-to-Face o
Generation on CelebAMask-HQ at NFEs of 6and 1able 5:  Quantitative results for Class-

30, complementing the visual examples in Fig. 4] Ii‘;gg;tigﬁallm:gg;i;ﬁng D]?fl(\:/?g:)fiiler 1a2c8h T;{iﬁ

CelebAMask-HQ (256 x256) superior FID and Classification Accuracy (CA)
Time Rae NFE(]) FID()) Across all NFEs, delivering high image fidelity
GANs & Other Diffusion-based Models. with only 6 NFEs, outperforming prior methods
that require more NFEs for comparable quality.

Methods

Pix2Pix [14] - - 1 56.99
CycleGAN - - 1 78.23
DRIT++ [20] - - 717.79 Methods ImageNet (256 x256) 2]
SIZ\I?E 28] - - ‘2*4-17 Time Rate NFE(]) FID(]) CA(})
(O:DISE ?@@ : : 2118 Other Diffusion-based Models:
LDM [50) - - ns PoRMEE e Sy
BBDM - - 200 2135 ppnu - - 100 1510 559
Sampling via Diffusion Bridge Models: Pzaletl - - 1000 6.10 63.0
’SB - - 1000 490  66.1
DPMSolver++2MT [26]  68.65  5.87 20 223.75 P —— -
103.14  3.90 30 23278 Sampling via Diffusion Bridge Models:
DPMSolver++2Mt 2938  5.67 20 3799 519
Hybrid Heun [43) 40984 098 119 9775 orverer ol 390 30 366 23
DBIM [44] 20.64  19.52 6 44.92 Hybrid Heun 172.78  0.96 119 6.02 69.5
3451 11.67 10 3418 DV @4 884 1883 6 536 702
68.84  5.85 20 23.30 1469 1133 10 4.50 718
10424  3.86 30 18.99 2939 5.66 20 413 719
DBMSolver (Ours) 2044 1971 6 34.76 R L N S
33.90 11.88 10 24.93 DBMSolver (Ours) 8.75 18.88 6 5.02 70.7
1460 1133 10 438 712
16072'6675 g'gg §8 %gg 29.18  5.66 20 407 720
: : . 4376  3.80 30 403 724

Image Stylization on Face2Comics (256 x256). As shown in Table and Figure@ DBMSolver
achieves top performance with just 10 NFEs. At 30 NFEs, it attains an FID of 0.92, outperforming
Hybrid Heun (2.36 at 119 NFEs), DBIM (7.87 at 30 NFEs), and various GAN and diffusion methods.
These results highlight DBMSolver’s efficiency and sample quality across diverse datasets, as further
illustrated in Figure[I] Even at 6 NFEs, its outputs rival higher-NFE baselines, demonstrating strong
perceptual fidelity at minimal cost.

Class-Conditional Inpainting on ImageNet (256 x256). Table[5|and Fig. [7]demonstrate DBM-
Solver’s superior performance. At just 6 NFEs, it achieves strong semantic coherence and texture
synthesis, surpassing methods requiring hundreds of steps. At 30 NFEs, it attains the best FID
(4.03) and top classification accuracy (72.4%), highlighting its efficiency and quality. DBMSolver
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Hybrid Heun DPMSolver++

X7 NFE 29 | FID 18.51 NFE 30 | FID 36.68 NFE 30 | FID 4.04 NFE 30 | FID 4.04 X0

Figure 7: Class-Conditional Inpainting on ImageNet 256 x 256.

also avoids the blurry textures seen in DBIM—evident in the sparrow’s feathers and branches—and
maintains structural fidelity in cases like the milk barrel, where DBIM hallucinates unrealistic content.

Efficiency Analysis via Time and Sampling Rate. Beyond superior FID and classification ac-
curacy, DBMSolver demonstrates exceptional efficiency in runtime and throughput. As shown in
Table @] and Table [5] DBMSolver achieves high-quality results with minimal computational cost.
At 30 NFEs, it completes sampling in just 102.65s on CelebAMask-HQ and 43.76s on ImageNet,
significantly faster than Hybrid Heun (409.84s and 172.78s, respectively). Moreover, DBMSolver
maintains a high sampling rate across all NFE budgets, peaking at 19.71 samples/min for 6 NFEs on
CelebAMask-HQ and 11.33 samples/min for 10 NFEs on ImageNet, nearly double that of DBIM
and vastly exceeding other bridge-based samplers. These metrics highlight DBMSolver’s ability to
balance speed and quality, i.e., real-time generation without compromising visual fidelity.

Limitations and Future Work. Our discrete-time DBMs may still face discretization errors.
Continuous-time diffusion models (Karras et al} 2022} 2024}, [Sun et al.| [2022) may help address this.
Further research could investigate exponential Rosenbrock-type methods (Hochbruck et al.,[2009) for
DBMs to improve generation quality and efficiency. Exploring DBMs for more complex tasks, like
text-conditioned I2I translation, is also a promising avenue for research.

5 CONCLUSION

In conclusion, we introduce DBMSolver, a principled, training-free method that significantly en-
hances the efficiency and quality of diffusion-based 121 translation. By leveraging the semi-linear
structure of the Bridge SDE and PF ODE, DBMSolver accelerates sampling without compromising
fidelity. Experiments on diverse datasets, such as Edges2Handbags, DIODE-Outdoor, Face2Comics,
CelebAMask-HQ, and Conditional ImageNet Inpainting, show that DBMSolver achieves high-quality
results with far fewer NFEs, setting a new benchmark for efficient diffusion bridge models. This
work marks a step toward the practical deployment of powerful I12I and restoration tools.
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Use of Large Language Models. LLMs were employed exclusively for editorial refinement,
without influencing research design or substantive content.

Ethics Statement. We have read and agree to the ICLR Code of Ethics (https://iclr.cc/
public/CodeOfEthics). Our work introduces DBMSolver, a training-free sampler for acceler-
ating diffusion bridge models in image-to-image translation. All experiments were conducted using
publicly available datasets, and no human subjects or private data were involved. We took care to
avoid generating or amplifying harmful, biased, or misleading content. While generative models
can pose risks in misuse or misrepresentation, our method is designed to improve computational
efficiency and fidelity without introducing new ethical concerns. We encourage responsible use and
transparent reporting when deploying such models in real-world applications.

Reproducibility Statement. We have made every effort to ensure the reproducibility of our results.
Details of the DBMSolver algorithm, including its mathematical formulation and implementation,
are provided in the main paper and Appendix. All datasets used are publicly available and referenced
appropriately. We include a complete description of evaluation protocols and metrics. DBMSolver’s
pseudo-algorithm is thoroughly described in the main text and the Appendix, and we intend to publish
the source code with reproduction instructions.
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A DIFFERENT FORMULATIONS FOR DIFFUSION MODELS
The reverse diffusion process is given by the PF ODE (Anderson |1982; Song et al., |2020b):
1
dx; = | f(x¢,t) — 59(75)2th logpt(x)} dt, 9

where the marginal distribution of x; at ¢ is p;(x), and Vi, log p;(x) is its score function, which is
learned by a neural network (Hyvirinen, 2005). Furthermore, the drift and diffusion coefficients are:

d d
fxi,t) = 3 logay, and 9(t)* = —207 3108 (Z) ,
where a; := «(t) and o} := o (t), for time ¢ € [0, T] (where T' > 0).

Different formulations of a;; and o, give rise to different formulations for the diffusion process. Prior
works hand-design these to get the variance-preserving (VP) (Song et al.,2020b; |Zhou et al., [2023),
variance-exploding (VE) (Karras et al.| 2022), and TrigFlow (Lu & Song, 2024} formulations. We
contrast the design choices of such diffusion formulations in Table 0]

Table 6: Design choices for widely-used diffusion formulations.

Formulation oy oy f(xqg, 1) g(t)? SNR; = @¥/o2  Domain of ¢
VP [35][43] ¢~ (0:5¢7+0.05¢) 1—e=E+01)  _(+40.05)x; 2t4+0.1 /ety [0.0001,1]
VE [16] 1 t 0 2t 12 0.002, 80]
TrigFlow [24] cos(t) sin(t) —tan(t)x,  2tan(t) cot?(t) [0,7/2]

B PROOFS & DERIVATIONS

B.1 PROOF OF PROPOSITION[]]

Given a well-trained DBM Dy (-) that approximates data sample x(, we can simplify Equation (2)) as:
dxe = (f(xe, t) = 9(8)*[Vix, log pe(x¢ | x7) = Vi, logpe(xr | x¢)]) dt + g(t) dw

1 dlog (i—:)
Xy M 49202 7'/ v

m ; p” x; log pi(x¢ | x7) — Vi, log p(x7 | x4)] | dt

2 2 2 2
Ar0y oy _ 70y oy _ ay
shat ar X7 + Do (x1) (1 oFa aT) o apXr X |
2 2 - 2 2
2 1— aT0} o 2 (&9 1
(g P (e P
v G'Tat o d O'tOCT

= Xt

dt T

dl leg (%)
8% _ dt+ | 20,

dt
dt dt ’

:Xt

L(t) (Linear Term)
® N (x¢,t) (Non-linear Term)
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where L(t) is the linear term, and N (x¢,t) is the non-linear term. This shows the semi-linearity
of Equation (2). Thanks to the semi-linearity, we can make use of the Exponential Integrators
method (Hochbruck & Ostermann, [2010) to solve Equation @]), as explained next.

Given initial value x,, where b = a + A7 and 0 < b < a < T, we obtain the solution to x; as:

b
xp = ela LT ¢, —|—/ eJasr L) ah N(x,,7)dr. (11)

Integrating L(r) with respect to r from a to b, we get:

b 270b 2
/ L(r)dr = [log] = log (%-Ug> . (12)

a Qr |, ap Og
Next, let’s define \; := log i—: with the inverse function ¢, (-), that satisfies ¢ (\;) = ¢. Through
the change-of-variables method for \, we can denote a\ := a4, (1), Xx := X4, (x), Do(Xy) =

DG(XU(A))’ WX = Wi (A)s dW,\ = 1/—% thA(/\), and N(X,\7)\) = N(Xt)\()\),t)\()\)).

Thus, we re-write Equation (1) as:

2 Ap 2
xb:aaa—bxa—i-/ %&~N(XA,)\)d)\
A

2 2
Qap Oy “ Qap O
Qg 02 Ao ax o2 dw
a
=2 by 4 b 200Dg(xy) + V20r—= | dX
2
oy 02 . 0')\ d\
2 Ay 2 2 Ab
Qg 02 o o o o
=@ I; a+27b %DQ(X)\)d)\ﬂ-ﬁfb 7dW)\
Qap Og (6 7)) Ao 25N (67 Ao O\
a. o2 Ab Ab
=2 gxa+2abe 2/\1’/ 62)\D9(X,\)d>\+\/§ab 672/\”/ eNdwy, . (13)
Qp Tg Ao Ao
Use Taylor Expansion 1t6 Integral

The integral | ; * €2 Dg(x) d\ can be computed by performing Taylor Expansion:

Ap k—1 Ap ()\ )\ )
/ e Dg(x)) d)\NZD") )/ e? Td)\‘f'o((/\b_ ODFY, (14
Ao n—0 Aa :

where k > 1, and DYV (xy, ) = dnl)d"/\# is the n'-order derivative of Dg(+) wW.r.t. \.

Furthermore, we can compute the 1t6 integral (Rogers & Williams)|, 2000) as:
[ ean= (| [Cpan)m =S Vimam i,
Aa Ao V2 ’
where z;, ~ N(0,1).
Substituting k£ = 1 for Equation (I4)), we can ultimately simplify Equation as:

SNR,
Xp = m%g(xa—xb)xa t oy (1 _ 62(/\a—/\b)> Do(xy,) + opV/ 1 — e2a=20) 7,

ayp SNR,, SNR,
=My 1— D 1— , 15
@~ + oy ( SNRb> o(xx,) + b SNR, % (15)

where SNR; := oi/52 = 2,
Thus, given the initial value x,, where b = a + At and 0 < b < a < T, the solution to x; is:

SNR, ay, 1 SNR,, SNR,
—Xg — - =
SNRb Qg SNR(] SNRb

Xp = >D9(Xa)+0'b 1— Zp. (16)
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B.2 PROOF OF PROPOSITION[Z]

Given a well-trained DBM Dy () that approximates data sample x(, we can re-write the Bridge PF
ODE (Equation () as:

dx 1
(Ttt = f(x¢,t) — g(t)? <2vxt log pi(x¢ | x1) — Vi, log ps(x7 | Xt))
dl dlog (£) /1
=X that + 207 p” <2th log pt(x: | x1) — Vx, log pe(XT | xt))
dlogar 4108 (%) [SF% 2oxr + o, (1- 5% ) Do(x:) — x, . Sxr =%,
= Xt t _
dt dt of (1- 25%) of (S2k 1)
Tt t=T
dlog oy dlog (%) SEXT — Xy
— D oy, ar T T
e T i e e
0'2Ot2
tT
dlog av; dlog (3—:) 1 dlog (g—;) dlog (;"—:) X7 far
= — D N> S—
R T TR T T Ty olx:) ~ Gz )
ooz ooz,
We further simplify the equation above as:
dx; dlog oy 1 dlog (%) X7 [ar dlog (%)
— = D — .7
a N\ Ta T T @ Fau | Dolxi) = Gro— dt (9
oZa? P
t=T t =T
L(t) (Linear Term) N (x¢,t) (Non-linear Term)

where L(t) is the linear term, and N (x4, t) is the non-linear term. Thus, we can clearly observe the
semi-linearity of Equation (5). Similar to the derivation above, we can once again make use of the EI
method to solve Equation (17):

Given an initial value x, where b = a + A7 and 0 < b < a < T, we obtain the solution to x; as:

b
Xp = efab L(r)dr X, + / ef:+T L(h)dh N(x,,7)dr. (18)

To simplify the equation, we first integrate the linear term L(r) with respect to r from a to b:

b
b 20 —A1) — 1 2(Mp—=AT) — 1
a-Ve ap _ [e
/a L(r)dr = llog < o )] = log o e2(Aa=2p) S 1 | (19)

where \; := log Ot has the inverse function ¢, (-) which satisfies ¢ (A) = ¢.

Next, we can use the change-of-variables method for A. We denote acy 1= o, (2), X 1= X¢, (x), and
N(X)\a A) = N(th()\)at)\(A))'

Substituting Equation along with the value of N (xy, \) back into Equation , we get:

— %62()\11—/\0 2 Ar) —1

= A 1 %
Ab 2 2(Ap—A1) _ 1 XT
—2) € € [ar
+ape b/}\ o\l e =1 s Q) {DB(XA) T 20w — 1 d\ (20)

Separate and simplify integral further
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When we simplify the integral in Equation (20), we get:
22

Ab 2
NIy */ l Do(xy) xr e )3/2]&. @1

20-Ar) — 1 (62(,\—,\T) -1

Next, we separately integrate the individual terms of Equation (Z1].

For the integral associated with x7, we use integration-by-parts to simplify it:

b 2 27 2(N—=A1) — 1
/ Xr e ” d=_X___°“"  |q_ ﬁ (22)
Ao ar (2(-21) — 1) ar e2(w=Ar) — | | e2Qa—Ar) — 1

Using the result in Equation (22)), we can simplify Equation (20) as:
M 200a-) P, AT) x, + 20 200-x) (1 _ p()\b,/\T)> <

Xb

Qg pAasAr) ¢ ar p(Aa, A1)

Ay 2)\D X)\
+ ape M /p( /\b,AT/ -8 g, (23)
NZewY)

Use Taylor Expansion

where p(m, n) := e2(m=") — 1,

Finally, we perform Taylor Expansion to obtain the solution to the integral in Equation (23):

Ab 22D k-1 Ap 2 _ n
Do) gy ZD (x QA L0 = AEY,
N—_—— —

(n
Aa !
NI Do o) | e W A
Estimated Omitted
Analytically Computed (Section|B.3)

where k£ > 1, and Dén) (x,) = % is the n™-order derivative of Dg(-) w.r.t. \. This is the
same as Equation (g).

Thus, we can derive an exact solution for x;. For completeness, we derive the 1%- and 2M_order
solutions below.

|
B.3 DERIVING SOLUTIONS FOR PROPOSITION [Z]
B.4 1°"-ORDER SOLUTION
We use Taylor Expansion to find the solution. By using k = 1, the 1%'-order solution is as follows:
Ap 22 p Ap 2 A= )\)O
Do) 4\ ~ DO (xs.) A=)y,
VP(A Ar) VoA Ar) O
Ab €2
=Dg(x
o(Xx, T o
Aay AT)
— Do(xs )P /p0un) (1= PR AT) ) 24)
ooV T)< pOh, M)

Substituting Equation back into Equation (23), we get the following 1%-order formulation of xy:
— M 20a-) P, AT) %, 4 2 200—x) (1 _ p()\b,>\T)> <

Xb

Qg p(Aa, Ar) ¢ ar p(Aas A1)
Aoy A7)
20030y, Ar) (1= /LR g . 25
+ope P(Xs, T)( 2O ) o(xx,) (25)
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Relation to DBIM Sampler (Zheng et al.,|2024). Our solution is a generalized form of the DBIM
Sampler. Simplifying the DBIM’s formulation for x; (with p = 0), we get:
ap SNRT

Xb = SNR, T T (1‘

_ agSNRp _ SNRp
SNRy | ¥a = ar SNR, X7 — Ya (1 SNR, ) Dy(xa)

— SNRp
oa\/1 = \R.

/1 _ SNRp
-1 Qyp SNRT SNRp aa SNRT OAT SNRb

- 1 o SR, 5z o SNR, ay SNRy xr
SNR
SNRT SNRb SNRQ -1
2T 1) 1= [ 2R D). 26
TSN, (SNRT ) SNRe — 1 o(3a) (20

By substituting the equation above with ?*¢ := SNRt, we in fact see that Equation (26) simplifies
to our 1%'-order formulation of x; in Equation (25). Thus, we see that DBIM is actually a 1%-order
formulation of our solution to the Bridge PF ODE (i.e., k = 1). DBMSolver’s advantage is that it
instead utilizes a more precise, 2"-order solution that has lower error bounds compared to DBIM.

B.5 2“P-ORDER SOLUTION

Similar to the derivation in Sectionﬂ, we use Taylor Expansion to find the solution when k = 2:
A e (N = A)

A
> €A Dg(xy) - / A +DP (x,) . @7
V(A Ar) \/W p(\, Ar)
Solution derived in Equation Solution derived below

The second term’s integral can be solved as:

. (m d\ =e?7r {tanfl ( P(AbJ\T)) —tan™! ( p(/\“’)\T)ﬂ

42 |:()\b — A — 1)\//0()‘ba )\T) + \/p(/\m /\T):| : (28)
By substituting Equations [24{ and [28|into Equation , we reach the 2"-order Taylor Expansion:
2T _ p()‘m)\T) _p®
€ p()\ba)‘T) (1 p(>\b7)\T) [DQ(XAQ) DO (X)\a):|

tan=! (/o0 Ar) ) — tan~" (/oA A1)

+ 27 \/p(Npy A7) | Ay — Ao +
(29)

Finally, substituting Equation (29) back into Equation (23), we get the following formulation of x:

0 a0 [PO0AT) 0 o, (1_ p(Ab,m)XT

Xp = —

o p(Aa, Ar) ar p(Xa, AT)
)‘av )‘T) (1)
ay p(Ar, \p) [ o0 ) (DO(XAa) D, (XAa)>
tan™ ( (s, )\T)) —tan~! ( p(Aa, /\T)) )
—Qp P /\T,/\(7 )\b*)\ + Dg (X)\Q)v
p(Ap, A7)
(30
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Do (imij\’:(’“a), with A, := (1 — r)A, + r\y and a ratio hyperparameter

the perturbed image at \,,, is obtained via Equation (25).

where Dél)(an) ~
r € [0, 1]. Note that X

m?

C EXPERIMENT DETAILS

C.1 TRAINING DETAILS
We provide thorough details for the diffusion bridge models and their training procedures in Table

Table 7: Training details for the various Image-to-Image Translation tasks.

Dataset Edges2Handbags [14 DIODE [40 Inpainting on Conditional ImageNet [2] CelebAMask-HQ [19] Face2Comics [39
Hyperparameters and Training Details

Bridge Formulation VP VP I2SB [22 VP VP
Noise Conditioning, coise 2501nt 2501nt 1000 ¢ 250Int 2501nt
Learning Rate le-4 le-4 le-4 2e-4 2e-4
EMA Rate 0.9999 0.9999 0.9999 0.9993 0.9993
Noise Discretization Schedule Karras Karras Karras Karras Karras
Noise Discretization Steps 40 40 40 40 40
Batch Size 256 64 256 64 64
Training Iterations 400k 400k 400k 120k 120k
Number and Type of GPUs 4 A100 4 A100 8 A800 8 A6000 8 A6000
Model Details

Model Channels 192 256 256 256 256
Dropout 10% 10% 10% 10% 10%
Time Embedding Cosine Cosine Cosine Cosine Cosine
Channel Multiplier (1,2,3,4) (1,1,2,2,4,4) (1,1,2,2,4,4) (1,1,2,2,4,4) (1,1,2,2,4,4)
Number of Residual Layers 3 2 2 2 2
Attention Resolutions (8, 16, 32) (8, 16, 32) (8, 16, 32) (8, 16, 32) (8, 16, 32)
Model Capacity (Mparams) 284 534 534 534 534

C.2 SAMPLING DETAILS

Table 8: Sampling details for the various Image-to-Image Translation tasks.

Dataset Edges2Handbags [14] DIODE [40] Inpainting on Conditional ImageNet [2] ~CelebAMask-HQ [19] Face2Comics [39]
Hyperparameters for Sampling

Discretization Schedule Karras Karras Uniform Uniform Karras
Discretization Steps 40 40 40 40 40

D MORE QUALITATIVE RESULTS

Beyond the quantitative metrics presented earlier, we include additional qualitative results in Figures|[8}-
[12)to further highlight the perceptual advantages of DBMSolver. While most baseline methods fail to
produce visually coherent or structurally faithful outputs at low NFEs, only DBIM offers a somewhat
competitive baseline. However, even in direct comparison, DBMSolver consistently exhibits superior
fidelity, texture richness, and semantic alignment. We encourage readers to closely examine the
nuanced differences in Figures [[T]and [9} particularly between DBIM and our method. For instance,
in the DIODE samples, DBMSolver preserves delicate edge structures and fine-grained details in tree
branches and twigs that are noticeably degraded in DBIM outputs. Similarly, in the Edges2Handbags
domain, our method captures subtle material textures and contour sharpness that DBIM tends to blur
or oversimplify. These visual distinctions reinforce the efficacy of our approach and underscore its
robustness across diverse generative tasks. Further inpainting results are also presented in Fig.[12]
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XT DBMSolver (Ours) X0

X7 DBMSolver (Ours) X0

Figure 8: Additional CelebAMask-HQ samples for DBMSolver with 6 NFEs, with different initial SDE steps.
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NFE 6 | FID 103.35 | » NFE 6 | FID 13.29 NFE 6 | FID 315

9\\‘1

NFE 20 | FID 0.98

NFE 20 | FID 27.34 NFE 20 | FID 52.395

NFE 20 | FID 27.34 NFE 20 | FID 9.29 NFE 20 | FID 0.98 NFE 20 | FID 9.29

DPMSolver++ Hybrid Heun DBIM DBMSolver (Ours) DPMSolver++ Hybrid Heun DBIM DBMSolver (Ours)

NFE 20 | FID 52.395

Figure 9: Additional qualitative comparison on Face2Comics.

Hybrid Heun DPMSolver++

NFE 29 | FID 270.85  NFE30|FID 23278  NFE 30 | FID 18.99 NFE 30 | FID 14.69

Figure 10: Additional qualitative comparison for Label-to-Face Generation on CelebAMask-HQ.
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XT Hybrid Heun

DPMSolver++ DBIM X0

o

NFE 11| FID118.76

NFE 10 | FID 151.93 NFE 6 | FID 1213 NFE 6 | FID 3.40

XT Hybrid Heun DPMSolver++ DBIM Ours

x- ;:3._'1':'.
i T

NFE 11 NFE 10 NFE 6 NFE 6 NFE 11 NFE 10 NFE 6 NFE 6
FID 137.05 FID 34.03 FID 3.27 FID 0.98 FID 137.05 FID 34.03 FID 3.27 FID 0.98

DPMSolver++ DBIM

Figure 11: Additional qualitative comparison on DIODE (top) and Edges2Handbags (bottom).

DPMSolver++ DBIM Ours

X7 NFE 29 | FID 18.51 NFE 30 | FID 36.68 NFE 30 | FID 4.04 NFE 30 | FID 4.04 X

Figure 12: Additional qualitative comparison for Class-Conditional Inpainting on ImageNet.
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