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Abstract

This paper establishes a continuous time approximation, a piece-wise continuous
differential equation, for the discrete Heavy-Ball (HB) momentum method with
explicit discretization error. Investigating continuous differential equations has
been a promising approach for studying the discrete optimization methods. Despite
the crucial role of momentum in gradient-based optimization methods, the gap
between the original discrete dynamics and the continuous time approximations
due to the discretization error has not been comprehensively bridged yet. In this
work, we study the HB momentum method in continuous time while putting more
focus on the discretization error to provide additional theoretical tools to this area.
In particular, we design a first-order piece-wise continuous differential equation,
where we add a number of counter terms to account for the discretization error
explicitly. As a result, we provide a continuous time model for the HB momentum
method that allows the control of discretization error to arbitrary order of the step
size. As an application, we leverage it to find a new implicit regularization of the
directional smoothness and investigate the implicit bias of HB for diagonal linear
networks, indicating how our results can be used in deep learning. Our theoretical
findings are further supported by numerical experiments.

1 Introduction

Gradient descent (GD) and its variants momentum methods, such as Polyak’s Heavy-Ball momentum
(HB) (Polyak, 1964), Nesterov’s method of accelerated gradients (NAG) (Nesterov, 1983), and
Adam (Kingma and Ba, 2017), are at the core of the success of training deep neural networks. This
leads to the importance of understanding the gradient-based optimization methods, whereas the direct
analysis for their discrete learning dynamics is challenging. Hence an optional approach is generally
applied in this area: leveraging tools from dynamical systems to study the learning dynamics in
continuous time to shed light on the dynamical behaviors of the discrete updates, e.g., Barrett and
Dherin (2022); Lyu and Li (2020); Ji and Telgarsky (2019); Li et al. (2022); Lyu and Zhu (2023);
Miyagawa (2023); Rosca et al. (2023). However, one fundamental gap—the discrepancy between the
discrete optimizations and their continuous time models named as the discretization error—becomes
manifest when employing this approach.

While recent works have made significant efforts to fill the aforementioned gap for GD (Barrett and
Dherin, 2022; Miyagawa, 2023; Rosca et al., 2023), the analysis for the discretization error of the
important variants of GD—momentum methods—in continuous time is still far from comprehensive.
Along this line of research, Kovachki and Stuart (2020) demonstrated that the continuous time
approximation of HB and NAG, which solves minβ L(β), can be expressed as a rescaled gradient
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flow (RGF):

β̇ = −∇L(β)
1− µ

, (1)

where L is the objective function and µ is the momentum factor. Despite its convenience for studying
discrete HB and NAG, this approximation has one drawback: the insufficient consideration for
discretization error when approaching the continuous time limit. As a result, it is insufficient to
differentiate between HB and GD in continuous time. For example, the solutions of Eq. (1) and that
of the gradient flow (GF) β̇ = −∇L(β), the simplest continuous time model of GD, are not very
different: if β∗(t) solves RGF and β†(t) solves GF, then β†(t) = β∗((1− µ)t), which suggests that
GD and HB will converge to similar points. However, this is inconsistent with the actual behavior,
e.g., in Fig. 2(a) GD and HB converge to different points, which reveals that the RGF cannot fully
capture the difference between HB and GD and motivates us to study continuous approximations for
HB with smaller discretization error.

Recently, backward error analysis (Hairer et al., 2006) has been successfully applied to construct
continuous time approximations for GD (Barrett and Dherin, 2022; Miyagawa, 2023; Rosca et al.,
2023) with lower discretization error than GF. Inspired by these works, Ghosh et al. (2023) provided
a continuous differential equation for HB, which achieves smaller discretization error compared to
RGF (Eq. (1)). While promising, it still does not fully capture the actual discrete learning dynamics
since the discretization error is only to the second order of the step size.

To this end, we also study the HB momentum method in continuous time while putting more focus
on closing the gap due to the discretization error. In particular, we propose HB Flow (HBF), a
pice-wise continuous differential equation as a novel continuous time approximation for the HB
momentum method. We add a number of counter terms to the improved version of Eq. (1) to cancel
the discretization error, obtaining a continuous time differential equation that can be arbitrarily
close to HB, i.e., the discretization error can be controlled to arbitrary order of the step size. Our
HBF provides a more reliable foundation for studying momentum methods in continuous time when
the direct study of discrete learning dynamics is cumbersome. As a case study, we examine the
implicit bias of HB, the preference for certain kind of solution without explicit regularization, by
employing the HBF for the popular diagonal linear networks where there are already abundant
results for GD (Azulay et al., 2021; Even et al., 2023; Pesme et al., 2021; Pillaud-Vivien et al., 2020;
Woodworth et al., 2020; Yun et al., 2021).

Contributions. We study HB—one of the most important gradient-based optimization algorithms
with momentum—in continuous time. In particular,

1. We propose a piece-wise continuous differential equation (HBF) by adding a counter
term (Theorem 2.1) that can be expanded in a series formulation to different orders of the
step size to the RGF (Eq. (1)), such that the HBF can precisely capture the learning dynamics
of the discrete HB.

2. We explicitly show the leading order of the discretization error for the HBF and indicate
the way how one can obtain HBF with a discretization error to any order of the step
size (Section 2.2), revealing the explicit precision of HBF for approximating the discrete
HB. These results are firstly revealed in this work to the best of our knowledge, bridging the
gap between the discrete HB and the its precise characterization in continuous time.

3. We leverage our HBF to examine learning dynamics of HB. For example, we reveal that,
as HBF implicitly has a regularization term for the directional smoothness, the learning
dynamics of HB exhibits smaller directional smoothness compared to GD (Fig.1). In
addition, for the application of HBF in deep learning, we investigate the implicit bias of
HB for the diagonal linear network (Theorem 3.1) through the lens of HBF as a case study,
revealing its difference compared to that of GF which cannot be obtained by the RGF.

1.1 Related Works

Continuous approximation Prior works (Shi et al., 2022; Su et al., 2016; Wilson et al., 2016)
have constructed second-order ODEs to study the convergence properties of HB/NAG in continuous
time, where the momentum factor typically depends on the step size and the iteration count. In this
paper, we study HB with a constant momentum factor that is independent of step size and iteration
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count, a setting that is more consistent with the practical case, e.g., PyTorch Paszke et al. (2019), and
we focus more on the order of the discretization error of the continuous time model. Towards this
direction, besides Kovachki and Stuart (2020); Ghosh et al. (2023), Cattaneo et al. (2023) focused
on the continuous limit of a more general adaptive gradient-based methods with momentum, Adam,
achieving a discretization error to the second order of the step size. As a comparison, we provide a
continuous differential equation that can be arbitrarily close to the discrete HB.

Implicit bias of optimizers The implicit bias of GD for various deep neural networks has been
widely studied in, e.g., Ji and Telgarsky (2019); Soudry et al. (2018); Yun et al. (2021) for linear
networks and Chizat and Bach (2020); Lyu and Li (2020) for homogeneous networks. For diagonal
linear networks studied in this paper, Azulay et al. (2021); Pesme et al. (2021); Pillaud-Vivien et al.
(2020); Woodworth et al. (2020) revealed the interesting transition from kernel to rich regime by
altering the scale of initialization. Papazov et al. (2024) studied HB using a second-order ordinary
differential equation (ODE) with discretization error to the second order of step size. For linearly
separable data and linear model, Wang et al. (2022) showed that momentum method converges to the
ℓ2-max-margin solution, which is the same as GD. As a comparison, Zhang et al. (2024) revealed
that Adam with negligible stability constant exhibits the preference of ℓ∞-max-margin solution.
Furthermore, Wang et al. (2021) studied the implicit bias of adaptive optimization algorithms on
homogeneous deep neural networks.

1.2 Preliminaries

Notations For a vector β ∈ Rd that depends on time t, we use β̇ and β̈ to denote its first and second
derivative with respect to time t, respectively. We use βj to denote its j-th component and ∥β∥p for
its ℓp-norm. We use α · β to denote the inner product and ⊙ to denote elementwise product, e.g.,
α ·A · β denotes αTAβ for α ∈ Rd1 , A ∈ Rd1×d2 , β ∈ Rd2 . We use [N ] for integers between [0, N ].

Heavy-Ball momentum method HB (Polyak, 1964) employs a two-step updating
scheme (Sutskever et al., 2013), rather than the single-step manner of GD. Particularly, HB
first accumulates the history of past iterations before updating the model parameter β ∈ Rd, i.e.,
mk+1 = µmk − η∇L(βk), βk+1 = βk +mk+1 where µ ∈ (0, 1) is the momentum factor, η is the
step size, k is the iteration number, and m ∈ Rd is the momentum, which can be further written in a
single equation

Discrete HB: βk+1 − βk = −η∇L(βk) + µ (βk − βk−1) . (2)

2 HB Momentum Methods in Continuous Time and Discretization Error

In this section, we will propose an ODE

β̇(t) = −G(β) (3)

that can be arbitrarily close to the discrete learning dynamics of HB Eq. (33). To characterize the
gap between the discrete learning dynamics and the ODE Eq. (3), given N > 0, we define the
discretization error of Eq. (3) as

∀k ∈ [N ] : εk = β(kη)− βk, (4)

where β(kη) solves Eq. (3) and we will denote tk = kη for convenience in the rest of this paper. An
investigation of Euler forward method will identify η as the step size. When εk = O (ηα), we say
that the discretization error of the continuous time model Eq. (3) is to the α-th order of the step size.
We aim to find the formulation of G(β) such that Eq. (3) can be arbitrarily close to the discrete HB,
i.e., εk = O (ηα) for any given α.

Intuition of our approach Given the discrete HB Eq. (33), Kovachki and Stuart (2020) showed
that εk = O (η) if G(β) = ∇L/(1− µ) as in Eq. (1). To coincide with such observation, our overall
goal is to find the formulation of a modified ODE β̇ = −G− ηγ such that the discretization error
can be controlled arbitrarily low, where its design should follow two basic principles: (i). it should
coincide with RGF, the simplest continuous approximation of HB RGF, when η is very small, thus,
G should degenerate to∇L/(1− µ); (ii). by adding the counter term γ, it should allow us to further
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decrease the discretization error of RGF to get better continuous approximations for HB. To achieve
this, we need to derive the exact forms of G and γ under the condition εk = O(ηα). And there will
be two key steps:

1. find the equations thatG and γ must satisfy if we require the discretization error εk = O(ηα)
for any α > 0;

2. solve these equations to give the formulations of G and γ.

Overview of our approach We now apply the above intuition to establish such a continuous time
approximation of HB. Adding the counter term γ directly to the RGF is, however, problematic due to
the fact that each iteration of momentum methods exploits the history of previous iterations. This
renders the local error analysis unreliable since it ignores previous updates. To perform a global
analysis, instead of directly utilizing the backward error analysis in Barrett and Dherin (2022), we
propose a piece-wise continuous differential equation by decomposing G(β) into two parts, named as
HB Flow (HBF),

t ∈ [tk, tk+1) : β̇ = −G(β) := −Gk(β)− ηγk(β). (5)

This was previously discussed in Ghosh et al. (2023). In Eq. (5), k denotes the iteration count for the
discrete updates, tk = kη, and Gk depends on k and should degenerate to∇L/(1− µ) as in Eq. (1)
for small step size. Additionally, the counter term γk is designed to cancel the further discretization
error brought by Gk(β) such that εk can be controlled to be arbitrarily small, hence the name counter
term. As discussed in the above intuition, deriving the formulation of γk needs a set of equations for
it to satisfy. We establish such equations as follows. When approximating tk from t > tk and t < tk,
respectively, Taylor expansion for β in Eq. (5) provides us

β(tk+1)− β(tk) = ηβ̇(t+k ) + η2I+k = −ηGk − η2γk + η2I+k

β(tk)− β(tk−1) = ηβ̇(t−k )− η
2I−k = −ηGk−1 − η2γk−1 − η2I−k

(6)

where t+k and t−k mean that we approximate tk from t > tk and t < tk, respectively, η2I±k =∫ tk±1

tk
β̈(τ)(tk±1 − τ)dτ , and we apply Eq. (5) for β̇(t±k ). A subtraction of the discrete HB update

Eq. (2) to the first equality of Eq. (6) now allows us to construct the relation between εk and γk:

εk+1 − εk = µ(εk − εk−1)− η [Gk − µGk−1 −∇L(βk)] + η2
[
I+k + µI−k − γk + µγk−1

]
. (7)

As I±k can be expressed by γk, requiring εk+1 − εk = O(ηα+1) in Eq. (7) 1 immediately builds an
equation for γk, which can be solved to give the form of γk. Hence, the discretization error of the
continuous time model Eq. (5) for the discrete update Eq. (2) can be controlled to the α-th order of
the step size η. The formulation of Eq. (5) is presented in Theorem 2.1, and the detailed technical
proofs are deferred to Appendix A.

2.1 HBF with Discretization Error to Arbitrary Order of the Step Size

Following the intuition and overview of our approach, we now solve Eq. (7) to derive γk and Gk, and
reveal that the obtained HBF by doing so is indeed an O(ηα) (piece-wise) continuous time model of
HB. As discussed earlier in Eq. (7), we need to find γk to ensure that εk+1 − εk = O

(
ηα+1

)
, hence

the following integral functional equation

η2(I+k + µI−k − γk + µγk−1) = O
(
ηα+1

)
(8)

must be satisfied. We solve this equation following three steps as shown below: (1). write the solution
of Eq. (8), γk, as a series form

γk =

∞∑
σ=0

ησγ
(σ)
k ; (9)

(2). derive I±k explicitly by employing Eq. (9) in the learning dynamics Eq. (5) in the series form

I+k =

∞∑
σ=0

ησ(I +
k )(σ); (10)

1We will show in Appendix that this condition is sufficient for proving εk = O (ηα) by induction.
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(3). match the terms of Eq. (9) with that of Eq. (10) to each order of the step size η, i.e., ∀σ ∈ N :

γ
(σ)
k = (I +

k )(σ). As a result, a simple truncation of γk will automatically lead Eq. (7) to give us
εk+1 − εk = O

(
ηα+1

)
as desired. Below we formalize the aforementioned discussion.

Theorem 2.1 (HBF with the discretization error εk = O (ηα)). Let k ∈ [N ] be the iteration count, η
be the step size, and tk = kη, the piece-wise continuous time differential equation HB Flow (HBF)
for the discrete update Eq. (33)

HBF: β̇ = −Gk(β)− ηγk(β), t ∈ [tk, tk+1) (11)
has a discretization error that satisfies

εk+1 − εk = O
(
ηα+1

)
(12)

and, as a result, εk = O (ηα) for α ≥ 1, if Gk and γk has the following formulations:
Gk = µGk−1 +∇L (13)

γk =

α−2∑
σ=0

ησγ
(σ)
k . (14)

In particular, for ease of notation, let L(k,σ)
β = γ

(σ−1)
k · ∇ be a differential operator and

γ
(−1)
k = Gk, Sm,σ = {(σ1, . . . , σm)|

m∑
i=1

σi = σ −m+ 2, σi ∈ N}

χ
(σ)
j =

σ+2∑
m=2

∑
Sm,σ

1

m!

[
(−1)mL

(j,σ1)
β · · ·L(j,σm−1)

β γ
(σm−1)
j + µL

(j−1,σ1)
β · · ·L(j−1,σm−1)

β γ
(σm−1)
j−1

]
,

then each term of γk in Eq. (14) can be simply written as

∀σ ∈ N : γ
(σ)
k =

k∑
j=0

µk−jχ
(σ)
j . (15)

Remark 1 Eq. (12) is an equality obtained from solving the integral functional equation Eq. (8),
rather than an inequality bound. In addition, Eq. (12) is established to arbitrary order of the step size
η for any given α ≥ 1. Our approach is different from the previous continuous time model for HB
method (Ghosh et al., 2023) where the discretization error is specifically constructed to the second
order of the step size.

Remark 2 In Eq. (13), the formulation of Gk intuitively resembles the update of momentum in the
discrete learning dynamics of HB mk = µmk−1−∇L. Interestingly, Gk can be further simplified as

Gk =
1− µk+1

1− µ
∇L large k−→ ∇L

1− µ
, (16)

which is exactly the R.H.S of the RGF (Eq. (1)). Moreover, Eq. (15) indicates that each iteration of
HB depends on the history of previous iterations as γ(σ)k incorporates information of all previous
χ
(σ)
j with j ≤ k, and such dependence decays very fast due to the coefficient µk−j ≪ 1 for small
j. By letting µ = 0, all the dependence on k will disappear and our results can recover those
of GD. Interestingly, it is worth mentioning that the difference between HBF and the continuous
approximations of GD is closely related to the powers of η(1 + µ)/(1 − µ)2 as we will show in
Section 2.2.

Remark 3 The formulations of γ(σ)k are obtained in a recursive manner, (χ(σ) is obtained from
γ
(σ′)
k ’s with σ′ < σ), hence Theorem 2.1 allows us to always build continuous time models for HB

method with smaller discretization errors given those with larger discretization errors, instead of
performing the whole set of analysis. For example, to build the HBF with εk = O

(
η3
)

given HBF
with εk = O

(
η2
)
, we only need to derive γ(1)k (since γk is truncated to the order α− 2 = 1), which

can be obtained by applying γ(0)k provided by the HBF with εk = O
(
η2
)
. In addition, the recursive

manner in Theorem 2.1 provides a possibility to calculate the involved terms automatically by using
software for symbolic mathematics such as SymPy, which could be an interesting future work.
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εk = O (ηα) GD HB

α = 1 β̇ = −∇L β̇ = − ∇L
(1−µ) (Kovachki and Stuart, 2020)

α = 2 β̇ = −∇L− η∇L·∇2L
2 (Barrett and Dherin, 2022) β̇ = − ∇L

1−µ − η
1+µ

(1−µ)3
∇L·∇2L

2 Eq. (19) and (Ghosh et al., 2023)

α = 3 β̇ = −∇L− η∇L·∇2L
2 β̇ = − ∇L

1−µ − η
1+µ

(1−µ)3
∇L·∇2L

2

−η2
[
ω1

4 + ω2

12

]
Miyagawa (2023); Rosca et al. (2023) −η2(1+µ)2

(1−µ)5

[
ω1

4 + (1+10µ+µ2)ω2

12(1+µ)2

]
Eq. (22) of this work

Arbitrary α Miyagawa (2023); Rosca et al. (2023) Theorem 2.1 of this work

Discrete βk+1 = βk −∇L(βk) βk+1 = βk − η∇L(βk) + µ (βk − βk−1)

Table 1: Continuous approximations for GD and HB up to different orders of discretization error.

2.2 HBF with Discretization Error εk = O
(
η2
)

and εk = O
(
η3
)

In this section, we derive HBF with discretization error to the second and third order of the step
size to indicate how our approach works. There are basically three steps for finding a HBF with
εk = O (ηα) for α ≥ 1:

1. truncate γk to the order α− 2 in Eq. (14), i.e, γk =
∑α−2

σ=0 γ
(σ)
k ;

2. from the smallest σ = 0 to σ = α − 2, find all χ(σ)
j with j ≤ k by identifying the

corresponding Sm,σ with m = {2, . . . , σ + 2} for each σ;

3. derive the expression of γ(σ)k for all σ ≤ α − 2 in a recursive manner using the relation
γ
(σ)
k =

∑k
j=0 µ

k−jχ
(σ)
j .

Below we discuss the cases for α = 2, 3. We also summarize these results in Table 1. Note that the
case for α = 1 states that HBF is a RGF, i.e., β̇ = −∇L/(1− µ), which might not fully characterize
the difference between momentum methods and vanilla GD.

2.2.1 HBF with εk = O
(
η2
)

According to Theorem 2.1, there is only one term in the series of γk, i.e., γ(0)k . Recall that L(k,0)
β =

Gk · ∇ and there is only one element in the set Sm=2,σ=0, i.e., Sm=2,σ=0 = {(σ1 = 0, σ2 = 0)},
we obtain for j ≥ 1 :

χ
(0)
j =

1

2

[
L
(j,0)
β γ

(−1)
j + µL

(j−1,0)
β γ

(−1)
j−1

]
. (17)

Thus, using the definition of L(j,0)
β and γ(1)j according to Eq. (15) in Theorem 2.1, we can immediately

derive that

γk = γ
(0)
k =

∇L · ∇2L

2(1− µ)2
k∑

j=0

µk−j [(1− µj+1)2 + µ(1− µj)2
]
. (18)

Interestingly, all the dependence on the iteration count k exists in the form of µk, then for large
iteration count k, the form of γk can be largely simplified as γk ≈ 1+µ

(1−µ)3
∇L·∇2L

2 . This gives us
HBF with εk = O

(
η2
)
:

β̇ = − ∇L
1− µ

− η 1 + µ

(1− µ)3
∇L · ∇2L

2
, (19)

which is consistent with the O
(
η2
)
continuous approximation of HB in Ghosh et al. (2023) while our

derivation of HBF is in a different approach that does not depend inequality bounds. It is worth to
mention that when µ = 0, HBF recovers the O

(
η2
)

continuous approximation of GD as expected.

2.2.2 HBF with εk = O
(
η3
)

As shown in Theorem 2.1, in this case, the series of γk should be truncated to the order α− 2 = 1,
hence γk = γ

(0)
k + ηγ

(1)
k . Since we have already derived χ(0)

j for HBF with εk = O
(
η2
)

in
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Section 2.2.1, we only need to find χ(1)
k , which will give us γ(1)k . We first find the collection of sets

Sm,σ , where m = {2, 3} given σ = 1 as m can be taken as integers between [2, σ + 2] according to
Theorem 2.1. Specifically, we have

S2,1 = {(σ1 = 1, σ2 = 0), (σ1 = 0, σ2 = 1)},
S3,1 = {(σ1 = 0, σ2 = 0, σ3 = 0)}. (20)

We defer the rest of the detailed calculation to Appendix A and directly present the results for large k
below:

γ
(1)
k =

(1 + µ)2

4(1− µ)5

[
ω1 +

1 + 10µ+ µ2

3(1 + µ)2
ω2

]
. (21)

where we let

ω1 =
(
∇L · ∇2L

)
· ∇2L, ω2 = ∇L · ∇

(
∇L · ∇2L

)
.

As a result, the HBF with εk = O
(
η3
)

is

β̇ = − ∇L
1− µ

− η

2

1 + µ

(1− µ)3
∇L · ∇2L− η2

4

(1 + µ)2

(1− µ)5

[
ω1 +

1 + 10µ+ µ2

3(1 + µ)2
ω2

]
. (22)

Implicit regularization of HBF According to Eq. (19), HBF with εk = O
(
η2
)

in Section 2.2.1
indicates that momentum induces a stronger implicit gradient regularization (IGR, Barrett and Dherin
(2022)), i.e., γHB = (1 + µ)/(1 − µ)3γGD where γHB is the implicit regularization of HB while
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Figure 1: Comparison of directional smoothness
for HB and GD for MLP on CIFAR-10 with full-
batch GD and HB (µ = 0.9) with η = 0.1.

γGD is that of GD. For HBF with εk = O
(
η3
)
,

we can conclude that the difference between HB
and GD is more complicated since HBF now re-
lies more on ω2 that primarily depends on∇3L.
Interestingly, the formulation of HBF with α = 3
suggests that HB will implicitly impose a regular-
ization effect of directional smoothness, which
is not the case for GD. In particular, for µ ≈ 1,
the third term of Eq. (22) is close to

ω1 + ω2 = ∇
(
∇L · (∇2L∇L)

)
, (23)

which is an approximation for the directional
smoothness (Ahn et al., 2022)

D =
∇L(β) · (∇L(β)−∇L(β − η∇L(β)))

η∥∇L(β)∥2

by expanding ∇L(β − η∇L(β)) around β. The
directional smoothness measures the extent of
oscillating behavior of optimization algorithms, i.e., the discrepancy between two adjacent iterates.
For GD, Ahn et al. (2022) revealed that it exhibits oscillatory behavior such that its directional
smoothness, DGD, would saturate around 2/η. As a comparison, due to the implicit regularization
for the directional smoothness of our HBF, HB prefers learning dynamics with smaller directional
smoothness DHB < DGD, implying an oscillatory behavior to less extent compared to GD. This is
verified in Fig. 1, where DGD ≈ 2/η = 20 while DHB < DGD and keeps decreasing. The numerical
experimental details can be found in Appendix C.

3 Implicit Bias of Momentum Methods through HBF

The HBF proposed in Theorem 2.1 provides a reliable mathematical tool for analyzing a wide variety
of properties of HB. One crucial aspect is its implicit bias in deep learning. To demonstrate the
significance of HBF, we characterize the implicit bias of HBF specifically for the two layer diagonal
linear network (Woodworth et al., 2020) as a case study.
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The formulation of 2-layer diagonal linear networks A 2-layer diagonal linear network (DLN)
with parameter w = (w+,w−) where w± ∈ Rd is equivalent to a linear predictor

f(x;w) = xTw := xT (w+ ⊙w+ −w− ⊙w−), (24)

where we use the parameterization w = w+ ⊙w+ −w− ⊙w− (Woodworth et al., 2020). This
model is a popular proxy model for deep neural networks as it shares many interesting phenomena
with more complex architectures, e.g., the transition from kernel to rich regime. In this section, we
focus on this model with w+;j(0) = w−;j(0).

Leaning task For our task, given a dataset {(xi, yi)}ni=1 with n samples where xi ∈ Rd and
yi ∈ R, we assume that n < d and consider the regression problem with quadratic lossL(w+,w−) =∑n

i=1(x
T
i w− yi)2/(2n). We use X ∈ Rn×d to denote the data matrix and y = (y1, . . . , yn)

T ∈ Rn.

Implicit bias of GF for diagonal linear networks For GF, Azulay et al. (2021); Woodworth et al.
(2020) showed that the limit point of w is equivalent to the solution of the constrained optimization
problem w(∞) = argminw ΛGF(w;κ(0)), s.t. Xw = y where κj(0) = w+;j(0)w−;j(0), the
potential function ΛGF(w;κ(0)) =

∑d
j=1 Λ

GF
j (w;κ(0)), and

ΛGF
j (w;κ(0)) =

1

4

[
wj arcsinh

(
wj

2κj(0)

)
−
√

4(κj(0))2 +w2
j + 2κj(0)

]
. (25)

Note that κ(0) controls the transition from rich regime to kernel regime, i.e., ΛGF(w;κ(0))→ ∥w∥1
for small κ(0) while ΛGF(w;κ(0))→ ∥w∥2 large κ(0) (Woodworth et al., 2020).

3.1 Implicit Bias of HBF for Diagonal Linear Networks

According to Theorem 2.1, the learning dynamics of the diagonal linear networks f(x;w) can be
written as

ẇ+ = −
∇w+

L

1− µ
− ηγw+ , ẇ− = −

∇w−L

1− µ
− ηγw− (26)

where we use γw+ ∈ Rd and γw− ∈ Rd for HBF of w+ and HBF of w−, respectively, and we use
γ
w±
;j to denote its j-th component. Compared to RGF (Eq. (1)), Eq. (26) has one extra term that

accounts for the high-order discretization error. The implicit bias of w under the RGF is similar to
that of GF, which, however, is not the case for Eq. (26).
Theorem 3.1 (Implicit bias of HBF for diagonal linear networks). If the dynamics of diagonal linear
network f(x;w) = xTw where w = w+ ⊙w+ −w− ⊙w− follows HBF defined in Theorem 2.1
and if w(∞) converges to an interpolation solution, let κj(t) = w+;j(0)w−;j(0) exp(−ηϵj(t))
where ϵj(t) =

∫ t

0
ds
(
γ
w+

;j (s)/w+;j(s) + γ
w−
;j (s)/w−;j(s)

)
, then w(∞) satisfies that

w(∞) = argmin
w

Λ(w;κ) s.t. Xw = y, (27)

where Λ(w;κ) =
∑d

j=1 Λj(w, t =∞;κ(∞)) with

Λj(w, t;κ(t)) = ΛGF
j (w;κ(t)) +wjφj(t), φj(t) =

η

4

∫ t

0

ds

(
γ
w+

;j (s)

w+;j(s)
−
γ
w−
;j (s)

w−;j(s)

)
. (28)

Comparison with the implicit bias of GF Compared to the implicit bias of GF in Eq. (25), there
are two differences brought by the high-order correction terms of HBF: (1). the potential function
ΛGF
j (w;κ(0)) for GF becomes ΛGF

j (w;κ(∞)) for HBF where κ(∞) is different from κ(0), meaning
that HBF induces an effect equivalent to a rescaling of the initialization; (2). Λj(w,∞;κ) additionally
depends on the product wjφj(∞). A similar term will appear in the potential function of GF ΛGF if
the initialization no longer satisfies w+(0) = w−(0). In this sense, HBF also brings an effect that is
equivalent to breaking the symmetry of the initialization. Theorem 3.1 also applies to the case for
higher-order continuous approximation of GD by setting µ = 0, suggesting an effect equivalent to
the rescaling of the initialization that has been verified in GD (Even et al., 2023). This further reveals
the reliability and usefulness of high-order continuous approximations.
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The comprehensive characterization for the HBF requires a detailed investigation for the formulations
of γ± specifically for the diagonal linear networks, which will be an open problem, while below we
focus on εk = O

(
η2
)

as an example.

Corollary 3.2 (Implicit bias of HBF for diagonal linear networks with εk = O
(
η2
)
). Under

conditions of Theorem 3.1, if we use HBF with εk = O
(
η2
)
, then

κj(t) = κj(0) exp

[
η(1 + µ)

(1− µ)2

(
−Φj(t)

1− µ
+

(
XTXq

)
j

n

)]
(29)

where Φj(t) = 4
∫ t

0
ds(∂wjL)

2 > 0, q ∈ Rd with qi =
√

w2
i (∞) + 4κ2i (0)− 2κi(0).

For the exponent of κj(∞), when Φj(∞) > 0 dominates, e.g., κi(0)≫ wi(∞), we will conclude
that κj(∞) < κj(0), hence the rescaling effect brought by HBF equivalently reduces the initialization.
Therefore, compared to ΛGF, Λ(w;κ) will closer to the ℓ1-norm and the solution w(∞) will enjoy
better sparsity. This finding is consistent with parts of results in Papazov et al. (2024), which analyzed
the implicit bias of HB also with a continuous time differential equation that is a second-order ODE,
while our HBF is a first-order ODE and can also cover the case for GD simply by letting µ = 0.

4 Numerical Experiments

0.0 0.5 1.0 1.5 2.0 2.5
a1

1.0

1.5

2.0

2.5

3.0

3.5

a 2

RGF
HBF, = 2
HBF, = 3
HB
GD

(a)

100 101 102 103

Iteration k

10 4

10 3

10 2

10 1

100

||
k||

Discretization error of HBF
RGF
HBF, = 2
HBF, = 3

(b)

Figure 2: (a). Trajectories for learning dynamics of GD, HB, RGF, and HBF with discretization error
O
(
η2
)

and O
(
η3
)

in a 2-d model. All dynamics start from the same point (a1 = 2.8, a2 = 3.5).
The convergence point of HB is denoted as a black star. The black dotted line denotes the set of
all global minima. (b). Discretization errors for different continuous approximations of HB during
training in (a).

In this section, we show numerical experiments on a simple 2-d model to verify our theoretical claims,
and we present numerical experiments details and more experiments for diagonal linear networks in
Appendix C.

Our simple 2-d model has the formulation f(x; a1, a2) = a1a2x, where a1, a2 ∈ R are the model
parameters and x, y ∈ R is the training data. The loss function is L = (f(x; a1, a2) − y)2/2. All
parameters a1, a2 satisfying a1a2x = y are global minima. To show that higher-order HBFs with
discretization error O (ηα) are better approximations for HB, we visualize trajectories for different
learning dynamics, i.e., GD, HB, RGF, HBF with α = 2, and HBF with α = 3, in Fig. 2(a).
The trajectory of HBF with α = 3 is closer to that of HB than both RGF and HBF with α = 2.
Furthermore, Fig. 2(a) also reveals that RGF is more similar to GD and it cannot capture the discrete
learning dynamics of HB well. We also plot the norm of discretization errors ∥εk∥2 for these
continuous approximations during training in Fig. 2(b), where HBF with α = 3 has the lowest
discretization error after several steps. These results validate the reliability of HBF as a proxy of HB.
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5 Conclusion

In this paper, we have established a new continuous time model for the discrete HB method (Eq. (2)),
namely HBF, with an explicit discretization error that can be controlled to arbitrary order of the
step size η. In particular, our approach constructs a relation, which is a functional integral equation,
between discretization errors of adjacent iterates for any step and can be solved to arbitrary order
of the step size. This is a different approach compared to prior works (Kovachki and Stuart, 2020;
Ghosh et al., 2023). Our results provide a reliable foundation for analyzing the momentum methods
in the continuous time limit. We leverage our HBF to shed lights on a newly observed implicit
regularization effect of the HB method: the preference for small directional smoothness compared to
GD. In addition, as another interesting application of our HBF in deep learning, we study the implicit
bias of HBF for the popular proxy model diagonal linear networks, and we reveal the difference
between the implicit bias of HB and that of GD which cannot be captured by RGF.

Limitation and future directions The framework in this paper does not consider optimization
methods with adaptive learning rate, e.g., Adam (Kingma and Ba, 2017). A generalization of our
framework to such case would be an interesting future direction. In addition, our analysis can be
generalized to the stochastic case by replacing ∇L with ∇̃L, the approximate stochastic gradient, by
following Li et al. (2018); Latz (2021). Finally, we only consider the simple diagonal linear networks
in this paper, and future works can explore more complex deep learning models with our HBF to
study the implicit bias of HB.
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Appendix

• In Appendix A, we provide proofs for Section 2.

• In Appendix B, we present proofs of Section 3.

• In Appendix C, we show details of numerical experiments in Section 2.2.2 and 4, and present
more related numerical experiments to support our theoretical claims.

A Proofs for Section 2

We prove Theorem 2.1 in Appendix A.2 and give the details for the first several orders HBF in A.3.
We first discuss the conditions that guarantee HBF as an effective approximation of HB.

A.1 Conditions of the Effectiveness of HBF

To make the HBF a valid continuous approximation of HB, there are two necessary conditions:

1. It is crucial to control the ratio between η and 1− µ to avoid η ≫ 1− µ, which might lead
the Taylor series to diverge. More interestingly, we conjecture that it is the magnitude of a
special composite quantity

ψ :=
η

(1− µ)2
(30)

that matters for the effectiveness of the HBF. This quantity spontaneously appears in both
HBF with α = 2 and α = 3 but not in the RGF, i.e., for HBF with α = 2 the counter term
is proportional to ψ while for HBF with α = 3 a new counter term proportional to ψ2 will
appear. If ψ is too large, then our results would no longer hold.
Hence, we need to fix the value of µ and treat only η as the variable to denote the higher-
order terms as O(ηα) while hide µ in the expansion. And it would be interesting for future
works to study the case when both µ and η are treated as variables such that higher-order
terms are denoted as O(ψα) for α ≥ 1. In addition, in the regime of large µ and large η, the
model might not be trained properly either: the update direction coming from the gradient
and that from the momentum will jointly affect the training direction significantly, while
these two directions can be very different due to the large value of µ and η hence cannot
give a consistent updating direction.
In addition, the dependence of HBF on the special composite quantity ψ is consistent with
the empirical observation in Leclerc and Madry (2020), where the optimization curves for
different momentum values can be recovered by a corresponding change in the learning
rate. The dependence of HB on η and µ at the same time further indicates the advantage
of HBF with α > 1 and that RGF, which only depends on µ, is not sufficient to reflect the
optimization properties of HB.

2. Given α, the continuous approximations include derivatives of L up to the α-th order,
hence L should at least be α-times continuously differentiable and ||∇αL|| should be upper
bounded.

A.2 Proof of Theorem 2.1

Given the HBF for k ∈ [N ]

t ∈ [tk, tk+1) : β̇ = −Gk(β)− ηγk(β) (31)

with unknown Gk and γk, we expect that the counter term γk could cancel higher-order discretization
errors and Gk should degenerate to rescaled gradient, i.e.,∇L/(1− µ). Hence, γk and Gk should be
designed in such a way that β(tk) is close to βk in the sense that the discretization error

εk = β(tk)− βk (32)
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is small. Inspired by Miyagawa (2023), we first present the outline of our three main steps for deriving
their formulations below:

Step I Unknown Gk, γk
determine−→ Taylor expansion residual I±k
↘ ↙

Step II



Taylor Expansion of β(tk±1) (35), (36)
↓ constructs

Expression of εk+1 − εk (41)
↓ required to beO(ηα+1) for εk = O(ηα) (Lemma A.2)

Equalities for Gk, γk (44)

↓ solved by matching to each order of η

Step III Solution of Gk and γk

We now discuss the detailed proof following this outline.

Proof. We start with Step I, which deals with how I±k is determined by Gk and γk.

Step I Recall that the discrete learning dynamics of HB is

βk+1 − βk = −η∇L(βk) + µ(βk − βk−1), (33)

where µ is the momentum factor and k is the iteration number. Based on our discussion in Section 2,
the continuous differential equation for HB is

β̇ = −Gk(β)− ηγk(β) (34)

for t ∈ [tk, tk+1) where tk = kη and the solution is β(t). For arbitrary unknown γk in Eq. (34), I±k is
determined, which is also unknown but depends on γk. Specifically, the first-order Taylor expansion
with the remainder term in the integral form gives us

β(tk+1)− β(tk) = ηβ̇(t+k ) + η2I+k = −ηGk − η2γk + η2I+k (35)

where t+k means we approximate tk from t > tk,

I+k =

∫ 1

0

β̈ (η(k + s)) (1− s)ds,

and we use Eq. (34) in the second equality. Similarly, when approximating tk from t < tk, we obtain
that

β(tk)− β(tk−1) = −ηGk−1 − η2γk−1 − η2I−k . (36)

Now we construct the dependence of I±k on γk in the series form, as shown in Lemma. A.1 (proof
can be found in Appendix A.2.1.).

Lemma A.1. Given the series form

γk =

∞∑
σ=0

ησγ
(σ)
k (37)

and the continuous time differential equation Eq. (34), I±k in Eq. (35) and Eq. (36) have the following
series forms:

I+k =

∞∑
p=0

ηp(I +
k )(p) :=

∞∑
p=0

p+2∑
q=2

∑
∑q

j=1 σj=p−q+2

(−1)q

q!
ηpL

(k,σ1)
β · · ·L(k,σq−1)

β γ
(σq−1)
k , (38)

I−k =

∞∑
p=0

ηp(I −k )(p) :=

∞∑
p=0

p+2∑
q=2

∑
∑q

j=1 σj=p−q+2

1

q!
ηpL

(k−1,σ1)
β · · ·L(k−1,σq−1)

β γ
(σq−1)
k−1 . (39)
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Step II Given the dependence of I±k on γk, we are now able to write the Taylor expansion of
β(tk±1) explicitly. This allows us to construct a relation between εk+1 and εk by subtracting Eq. (33)
from both sides of Eq. (35):

εk+1 − εk = −η [Gk(β(tk))−∇L(βk)]− η2γk + η2I+k − µ(βk − βk−1). (40)

Note that

βk − βk−1 = β(tk)− β(tk−1)− (εk − εk−1)
= −ηGk−1 − η2γk−1 − η2I−k − (εk − εk−1),

we obtain the expression of εk+1 − εk as in the Step II of our outline:

εk+1 − εk = µ(εk − εk−1)− η [Gk − µGk−1 −∇L(β(tk)− εk)]
+ η2

[
I+k + µI−k − γk + µγk−1

]
. (41)

Eq. (41) builds the connection between the discretization error εk and the counter term γk in the
continuous time differential equation Eq. (5). We can now construct the equalities for Gk and γk
under the constraint of low discretization error by following the lemma below (proof can be found in
Appendix A.2.2).

Lemma A.2. For the continuous differential equation Eq. (34) and the discrete sequence given by
Eq. (33), if

Gk(β(tk)) = µGk−1(β(tk)) +∇L(β(tk)) (42)

with G−1 = 0 and
I+k + µI−k − γk + µγk−1 = O

(
ηα−1

)
, (43)

as in Eq. (49), then we have
εk − εk−1 = O

(
ηα+1

)
and, as a result,

εk = O (ηα) .

As shown in Lemma. A.2, to ensure that the leading order of the L.H.S of Eq. (41) is to the order of
α > 1, we only need to require εk+1 − εk = O (ηα) which can be guaranteed by Eq. (42) and the
functional integral equation Eq. (43). As Eq. (42) can be easily solved by induction, we only need to
solve Eq. (43). To achieve this, we build a stronger functional equation below:

I+k + µI−k = γk − µγk−1, (44)

which is the final equation that we aim to solve to derive γk.

Step III The Step III of our outline is solving the functional integral equation Eq. (44). Our core
idea is simple: as the series form of I±k has already derived in Lemma. A.1, we make Eq. (44)
satisfied by matching both sides of it for each order of η. In particular, given the series forms of I±k
in Lemma A.1 and that of γk (Eq. (37)), we require

∀p ∈ N : ηp(γ
(p)
k − µγ(p)k−1) = ηp

(
(I +

k )(p) + µ(I −k )(p)
)
, (45)

which, let
χ
(σ)
k = (I +

k )(σ) + µ(I −k )(σ), (46)

gives us the recursive relation of γ(σ)k for σ ∈ N

γ
(σ)
k = µγ

(σ)
k−1 + χ

(σ)
k

(47)

because χ(σ)
k only depends on γ(σ

′)
k with σ′ < σ according to Lemma A.1. Now given α ∈ Z+, we

can truncate γk to the order α− 2 such that

γk =

α−2∑
σ=0

ησγ
(σ)
k , (48)
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then the functional integral equation is solved to the (α− 2)-th order of the step size η:

I+k + µI−k − γk + µγk−1 =

∞∑
σ=0

ησχ
(σ)
k −

α−2∑
σ=0

ησ
(
γ
(p)
k − µγ(p)k−1

)
=

∞∑
σ=α−1

ησχ
(σ)
k = O

(
ηα−1

)
,

(49)

which is exactly the condition in Lemma. A.2. Therefore, by constructing γk following Eq. (47)
and truncating γk to preserver its first α− 2 terms, we can prove that the discretization error of the
continuous time differential equation Eq. (34) is to the order O (ηα).

A.2.1 Proof for Lemma A.1

Proof. We first rewrite I±k as follows :

I±k =
1

η2

∫ kη±η

kη

β̈(τ)(kη ± η − τ)dτ

τ ′←τ−kη
=

1

η2

∫ ±η
0

[ ∞∑
n=0

1

n!

dn

dtn
β̈(kη)τ ′n

]±
(±η − τ ′)dτ ′

=

∞∑
n=0

(±η)n

(n+ 2)!

dn

dtn
β̈(t±k ) (50)

where we use
∫ η

0
τ ′n(η − τ ′)dτ ′ = ηn+2

n+1 −
ηn+2

n+2 = ηn+2

(n+1)(n+2) in the last equality. To continue, we
need the expression of dnβ/dtn and we start with t→ t+k :

dn

dtn
β(t+k ) =

d

dt

(
dn−1

dtn
β(t+k )

)
= β̇(t+k ) · ∇

(
dn−1

dtn
β(t+k )

)
= −(Gk + ηγk) · ∇

(
dn−1

dtn
β(t+k )

)
= (−1)n(L(k)

β )n−1 (Gk + ηγk) (51)

where we denote the differential operator L(k)
β = (Gk+ηγk) ·∇ and use Eq. (34) in the third equality.

Now suppose that γk can be written as a series

γk =

∞∑
σ=0

ησγ
(σ)
k , γ

(−1)
k = Gk,

then Eq. (51) becomes

dn

dtn
β(t) = (−1)n

( ∞∑
σ1=0

ησ1γ
(σ1−1)
k · ∇

)
· · ·

· · ·

 ∞∑
σn−1=0

ησn−1γ
(σn−1−1)
k · ∇

 ∞∑
σn−1=0

ησnγ
(σn−1)
k


= (−1)n

∞∑
σ1,...,σn=0

η
∑n

j=1 σjL
(k,σ1)
β · · ·L(k,σn−1)

β γ
(σn−1)
k (52)
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Combined with Eq. (50), we obtain the form of I+k for t ∈ (tk, tk+1) as

I+k =

∞∑
n=0

ηn

(n+ 2)!

dn+2

dtn+2
β(t)

=

∞∑
n=0

∞∑
σ1,...,σn+2=0

(−1)n+2

(n+ 2)!
ηn+

∑n+2
j=1 σjL

(k,σ1)
β · · ·L(k,σn+1)

β γ
(σn+2−1)
k

=

∞∑
n=0

∞∑
m=0

∑
∑n+2

j=1 σj=m

(−1)n+2

(n+ 2)!
ηn+mL

(k,σ1)
β · · ·L(k,σn+1)

β γ
(σn+2−1)
k

=

∞∑
p=0

p+2∑
q=2

∑
∑q

j=1 σj=p−q+2

(−1)q

q!
ηpL

(k,σ1)
β · · ·L(k,σq−1)

β γ
(σq−1)
k (53)

where we let p← n+
∑n+2

j=1 σj , q ← n+ 2, in the last equality. Similarly, when t→ t−k , we have

dn

dtn
β(t−k ) = (−1)n(L(k−1)

β )n−1 (Gk−1 + ηγk−1)

which implies that

I−k =

∞∑
p=0

p+2∑
q=2

∑
∑q

j=1 σj=p−q+2

1

q!
ηpL

(k−1,σ1)
β · · ·L(k−1,σq−1)

β γ
(σq−1)
k−1 . (54)

A.2.2 Proof for Lemma A.2

Proof. We first present several useful relations. As Eq. (49) is established by solving the functional
equation for any iteration count k, we can write the relation between εk+1 and εk Eq. (41) as

εk+1 − εk = µ(εk − εk−1)− η [∇L (β(tk))−∇L (β(tk)− εk)] +O
(
ηα+1

)
. (55)

If εk = O(ηα), then Eq. (55) implies

∥εk+1 − εk∥ ≤ µ∥εk − εk−1∥+ η∥∇L (β(tk))−∇L (β(tk)− εk) ∥+ c1η
α+1

≤ µ∥εk − εk−1∥+ ηλ∥εk∥+ c1η
α+1

(56)

for some constant c1 where we use Gk − µGk−1 = ∇L and let λ = maxβ ∥∇2L(β)∥.
Denoting

∀k : c2(k) =
c1
λ
e

2λη
1−µk, c3(k) =

2c1
1− µ

e
2λη
1−µk,

we now prove by induction.

1. For the first step (k = 0), by definition we have

ε0 = 0 ≤ c2(0)ηα.

Note that G−1 = 0 and γ−1 = 0 by definition, then we have

∥ε1 − ε0∥ ≤ c1ηα+1 ≤ 2c1
1− µ

= c3(0)η
α+1

since µ < 1.

2. Suppose that for the k-th step the following relations hold:

∥εk∥ ≤ c2(k)ηα,
∥εk+1 − εk∥ ≤ c3(k)ηα+1.

(57)
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Then for the (k + 1)-th step, we have

∥εk+1∥ = ∥εk+1 − εk + εk∥
≤ ∥εk+1 − εk∥+ ∥εk∥

≤ c2(k)
(
1 + η

c3(k)

c2(k)

)
ηα

≤ c2(k)e
2λη
1−µ ηα

= c2(k + 1)ηα

where the last inequality is because ex > 1 + x for x > 0. Similarly,

∥εk+2 − εk+1∥ ≤ µ∥εk+1 − εk∥+ ηλ∥εk+1∥+ c1η
α+1

≤ [µc3(k) + λc2(k + 1) + c1] η
α+1

=

[
µe−

2λη
1−µ +

1− µ
2

+
1− µ
2

e−
2λη
1−µ (k+1)

]
c3(k + 1)ηα+1

≤
[
µ+

1− µ
2

+
1− µ
2

]
c3(k + 1)ηα+1

= c3(k + 1)ηα+1.

A.3 O (ηα)-close HBF for a specific α

In this section, we derive the form of O (α)-close HBF for given a specific α. There are basically
three steps to find a HBF that is O (ηα)-close to HB:

1. truncate γk to the desired order α, i.e, γk =
∑α−2

σ=0 γ
(σ)
k ;

2. from the smallest σ, find all χ(σ)
j with j ≤ k by finding the corresponding Sm,σ with

m = {2, . . . , σ + 2} for each σ;

3. derive the expression of γ(σ)k for all σ ≤ α − 2 in a recursive manner using the relation
γ
(σ)
k =

∑k
j=0 µ

k−jχ
(σ)
j .

In the following, we give the cases for α = 2 and 3 as examples. With this approach, one can in fact
find HBF with arbitrary order of closeness to HB.

A.3.1 α = 2.

According to Theorem 2.1, the series of γk is truncated to the first term, i.e., γk = η0γ
(0)
k , where

γk =
∑k

j=0 µ
k−jχ

(0)
j . Thus the first step is to find χ(0)

j , which can be given by first identifying the
set S:

Sm=2,σ=0 = {(σ1 = 0, σ2 = 0)}, (58)

therefore there is only one term in χ(0)
j :

χ
(0)
j =

1

2

[
Lj,0
β γ

(−1)
j + µLj−1,0

β γ
(−1)
j−1

]
.

Recall that

γ
(−1)
j = Gj =

1− µj+1

1− µ
∇L, (59)

which, according to our definition in Theorem 2.1, leads to

Lj,0
β = γ

(−1)
j · ∇ = Gj · ∇,
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we obtain that

χ
(0)
j =

1

2
[Gj · ∇Gj + µGj−1 · ∇Gj−1]

=
1

2(1− µ)2
[
(1− µj+1)2 + µ(1− µj)2

]
∇L · ∇2L. (60)

Thus

γ
(0)
k =

1

2

k∑
j=0

µk−j [Gj · ∇Gj + µGj−1 · ∇Gj−1]

=
∇L · ∇2L

2(1− µ)2
k∑

j=0

µk−j [(1− µj+1)2 + µ(1− µj)2
]

=
∇L · ∇2L

2(1− µ)2
k∑

j=0

[
(1 + µ)µk−j + µk+1(µj(1 + µ)− 4)

]
. (61)

When k is larege, the above expression can be simplified as

γ
(0)
k ≈

(1 + µ)
∑k

j=0 µ
j

2(1− µ)2
∇L · ∇2L ≈ 1 + µ

2(1− µ)3
∇L · ∇2L.

A.3.2 α = 3.

Similarly, in this case we first truncate the series of γk to the desired order, i.e., γk = γ
(0)
k + ηγ

(1)
k

where we have already obtained γ(0)k in the last section, thus we only need to find γ(1)k and χ(1)
k ,

which can be done by first finding the set Sm=2,σ=1 and Sm=3,σ=1:

S2,1 = {(σ1 = 1, σ2 = 0), (σ1 = 0, σ2 = 1)},
S3,1 = {(σ1 = 0, σ2 = 0, σ3 = 0)}.

Therefore there are three terms of χ(1)
j :

χ
(1)
j =

1

2

[
Lj,1
β γ

(−1)
j + µLj−1,1

β γ
(−1)
j−1

]
+

1

2

[
Lj,0
β γ

(0)
j + µLj−1,0

β γ
(0)
j−1

]
− 1

6

[
Lj,0
β Lj,0

β γ
(−1)
j − µLj−1,0

β Lj−1,0
β γ

(−1)
j−1

]
. (62)

Recall that γ(−1)j = Gj , Lj,0
β = Gj · ∇, and Lj,1

β = γ
(0)
j · ∇, the first line of Eq. (62) is

1

2

[
γ
(0)
j · ∇Gj + µγ

(0)
j−1 · ∇Gj−1 +Gj · ∇γ(0)j + µGj−1 · ∇γ(0)j−1

]
(63)

while the second line is

−1

6
[Gj · ∇ (Gj · ∇Gj)− µGj−1 · ∇ (Gj−1 · ∇Gj−1)] . (64)

To simplify these terms, we can either replace all γ(0)j with the expression in Eq. (61) and write
Gj explicitly, or notice the recursive relation between Gj and Gj−1 in Theorem 2.1, i.e. ,Gj =
µGj−1 +∇L, then Eq. (63) becomes

1

2

[
γ
(0)
j · ∇2L+∇L · ∇γ(0)j

]
+
µ

2

[(
γ
(0)
j + γ

(0)
j−1

)
· ∇Gj−1 +Gj−1 · ∇

(
γ
(0)
j + γ

(0)
j−1

)]
and Eq. (64) is now

−1

6
∇L · ∇ (Gj · ∇Gj)−

µ

6
Gj−1 · ∇ (Gj · ∇Gj −Gj−1 · ∇Gj−1) . (65)

Summing over these terms gives us χ(1)
j :

χ
(1)
j = Ψ

(1)
j + µΘ

(1)
j (66)
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where

Ψ
(1)
j =

1

2

(
γ
(0)
j · ∇2L+∇L · ∇γ(0)j

)
− 1

6
∇L · ∇ (Gj · ∇Gj)

Θ
(1)
j =

1

2

[(
γ
(0)
j + γ

(0)
j−1

)
· ∇Gj−1 +Gj−1 · ∇

(
γ
(0)
j + γ

(0)
j−1

)]
− 1

6
Gj−1 · ∇ (Gj · ∇Gj −Gj−1 · ∇Gj−1) .

We can now find γ(1)k through its definition:

γ
(1)
k =

k∑
j=0

µk−jχ
(1)
j =

k∑
j=0

µk−jΨ
(1)
j + µ

k∑
j=0

µk−jΘ
(1)
j . (67)

In the following, we derive the form of γ(1)k When k is large. According to Eq. (61), we have

µk−jγ
(0)
j = µk−j∇L · ∇2L

2(1− µ)2
j∑

i=0

[
(1 + µ)µj−i + µj+1(µi(1 + µ)− 4)

]
= µk−j∇L · ∇2L

2(1− µ)2

[
(1 + µ)(1− µj+1)

1− µ
+
µj+1(1 + µ)(1− µj+1)

1− µ
− 4(j + 1)µj+1

]
=
∇L · ∇2L

2(1− µ)2

[
(1 + µ)(µk−j − µk+1)

1− µ
+
µk+1(1 + µ)(1− µj+1)

1− µ
− 4(j + 1)µk+1

]
=
∇L · ∇2L

2(1− µ)2

[
(1 + µ)µk−j

1− µ
− µk+j+1(1 + µ)

1− µ
− 4(j + 1)µk+1

]
≈ µk−j (1 + µ)

2(1− µ)3
∇L · ∇2L (68)

and, according to Eq. (59),

µk−jGj · ∇Gj =
µk−j(1− 2µj+1 + µ2(j+1))

(1− µ)2
∇L · ∇2L ≈ µk−j

(1− µ)2
∇L · ∇2L. (69)

Combining Eq. (68) and (69) gives the form of µk−jΨ
(1)
j when k is large:

µk−jΨ
(1)
j ≈ µk−j(1 + µ)

4(1− µ)3
[
(∇L · ∇2L) · ∇2L+∇L · ∇

(
∇L · ∇2L

)]
− µk−j

6(1− µ)2
∇L · ∇

(
∇L · ∇2L

)
which immediately leads to

k∑
j=0

µk−jΨ
(1)
j

≈ (1 + µ)

4(1− µ)4
[
(∇L · ∇2L) · ∇2L+∇L · ∇

(
∇L · ∇2L

)]
−
∇L · ∇

(
∇L · ∇2L

)
6(1− µ)3

=
1

4(1− µ)4

[
(1 + µ)(∇L · ∇2L) · ∇2L+

(1 + 5µ)

3
∇L · ∇

(
∇L · ∇2L

)]
. (70)

The left part is now deriving the form of µk−jΘ
(1)
j , which can be done by first finding

µk−jγ
(0)
j · ∇Gj−1 ≈ µk−j (1 + µ)

2(1− µ)3
(∇L · ∇2L) · ∇Gj−1

≈ µk−j (1 + µ)

2(1− µ)4
(∇L · ∇2L) · ∇2L ≈ µk−jγ

(0)
j−1 · ∇Gj−1 (71)
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and

µk−jGj−1 · ∇ (Gj · ∇Gj −Gj−1 · ∇Gj−1) ≈
2µk−j

(1− µ)3
∇L · ∇

(
∇L · ∇2L

)
, (72)

thus
k∑

j=0

µk−jΘ
(1)
j ≈ (1 + µ)

2(1− µ)5
[
(∇L · ∇2L) · ∇2L+∇L · ∇

(
∇L · ∇2L

)]
. (73)

Combing this equation with Eq. (70), we can now conclude the form of γ(1)k when k is large:

γ
(1)
k =

k∑
j=0

µk−j
(
Ψ

(1)
j + µΘ

(1)
j

)
1

4(1− µ)4

[
(1 + µ)(∇L · ∇2L) · ∇2L+

(1 + 5µ)

3
∇L · ∇

(
∇L · ∇2L

)]
+
µ(1 + µ)

2(1− µ)5
[
(∇L · ∇2L) · ∇2L+∇L · ∇

(
∇L · ∇2L

)]
=

(1 + µ)2

4(1− µ)5

[
(∇L · ∇2L) · ∇2L+

1 + 10µ+ µ2

3(1 + µ)2
∇L · ∇

(
∇L · ∇2L

)]
(74)

Note that when µ = 0 we recover the result of GD, i.e., γ(1)k = (∇L·∇2L)·∇2L
4 +

∇L·∇(∇L·∇2L)
12 .

B Proofs for Section 3

Given data (xi, yi), the architecture of 2-layer diagonal linear network is

f(xi;w) = xTi (w+ ⊙w+ −w− ⊙w−) =

d∑
j=1

xi;j
(
w2

+;j −w2
−;j
)

(75)

and the empirical loss function is

L(w) =
1

2n

n∑
i=1

(f(xi;w)− yi)2.

We let r = (r1, . . . , rn)
T ∈ Rn be the residual where ∀i : ri = f(xi;w) − yi. According to

Theorem 2.1, the HBF learning dynamics of model parameters w+ and w− will be

ẇ+ = −
∇w+

L

1− µ
− ηγw+

k , ẇ− = −
∇w−L

1− µ
− ηγw−

k (76)

where we use γw+

k ∈ Rd and γw−
k ∈ Rd to represent the error terms for HBF of w+ and w−,

respectively, and the gradients are

∇wL =
1

n
XT r, (77)

∇w+L = 2w+ ⊙∇wL, ∇w−L = −2w− ⊙∇wL. (78)

Using the expressions above, it can be easily verified that

w− ⊙∇w+L+w+ ⊙∇w−L = 0, (79)

and we will frequently use this relation later. Recall the definition of κj = w+;jw−;j , we now
present useful lemmas before proving Theorem 3.1.
Lemma B.1. Let κj(t) = w+;j(t)w−;j(t), γ

w±
k;j denote the j-th component of γw±

k , and

ϵj(t) =

∫ t

0

ds

(
γ
w+

k;j (s)

w+;j(s)
+
γ
w−
k;j (s)

w−;j(s)

)
, (80)

then we have
κj(t) = κj(0)e

−ηϵj(t). (81)
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Proof. The proof applies the dynamics of w+ and that of w−:

dκ

dt
= ẇ+ ⊙w− + ẇ− ⊙w+

=

(
−
∇w+L

1− µ
− ηγw+

k

)
⊙w− +w+ ⊙

(
−
∇w−L

1− µ
− ηγw−

k

)
= −η

(
γ
w+

k ⊙w− +w+ ⊙ γw−
k

)
, (82)

where we use Eq. (26) in the second equality and Eq. (79) in the third equality. As a result, for the
j-th component of κ, we have

κ̇j = −ηκj

(
γ
w+

k;j

w+;j
+
γ
w−
k;j

w−;j

)
=⇒ κj(t) = κj(0)e

−ηϵj(t). (83)

It is also interesting to investigate the dynamics of w as shown below.

Lemma B.2. If w± is run with HBF, then the dynamics of w satisfies that

ẇ = −4v ⊙ ∇wL

1− µ
− ηΓw

k (84)

where we let

v = (w+ ⊙w+ +w− ⊙w−) , Γw
k = 2

(
γ
w+

k ⊙w+ − γw−
k ⊙w−

)
. (85)

Proof. Using the dynamics of w± Eq. (26), we can show that

ẇ = 2ẇ+ ⊙w+ − 2ẇ− ⊙w−

= 2

(
−
∇w+

L

1− µ
− ηγw+

k

)
⊙w+ − 2

(
−
∇w−L

1− µ
− ηγw−

k

)
⊙w−

= −4 (w+ ⊙w+ +w− ⊙w−)⊙
∇wL

1− µ
− 2η

(
γ
w+

k ⊙w+ − γw−
k ⊙w−

)
. (86)

To show the implicit bias of HBF, we need to first explore the dynamics of w, which is present in the
following lemma.

Lemma B.3 (Dynamics of w for diagonal linear networks under HBF). Under conditions of Theo-
rem 3.1, if the diagonal linear network f(x;w) is trained with HBF (Theorem 2.1), let

ΛGF
j (w;κ(t)) =

2κj(t)

4

[
wj(t)

2κj(t)
arcsinh

(
wj(t)

2κj(t)

)
−

√
1 +

w2
j (t)

4κ2j (t)
+ 1

]

φj(t) =
η

4

∫ t

0

ds

[
γ
w+

k;j (s)

w+;j(s)
−
γ
w−
k;j (s)

w−;j(s)

]
Λj(w, t;κ) = ΛGF

j (w;κ(t)) +wj(t)φj(t), (87)

then the learning dynamics of the parameter w satisfies that

d

dt
∂wj

Λj +
∂wjL

1− µ
= 0. (88)

The proof of this lemma can be found in Appendix B.2. In the following we first focus on the proof
of Theorem 3.1.
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B.1 Proof of Theorem 3.1

Now we can prove Theorem 3.1 with above helper lemmas.

Proof. Recall the definition of Λj in Lemma B.3 and we further define

Λ(w, t;κ) =

d∑
j=1

Λj(w, t;κ), (89)

then Lemma B.3 gives us

d

dt
∇wΛ(w, t;κ) =

(
d

dt
∂w1Λ1(w, t;κ), . . . ,

d

dt
∂wd

Λd(w, t;κ)

)T

= − XT r

n(1− µ)

=⇒ ∇wΛ(w(∞),∞;κ(∞)) −∇wΛ(w(0), 0;κ(0)) = −
n∑

i=1

xi
∫∞
0
ri(τ)dτ

n(1− µ)
=

n∑
i=1

xici (90)

where we let ci = −
∫ ∞
0

ri(τ)dτ

n(1−µ) . Let ∇wΛ(w(0), 0;κ(0)) = 0 and recall the definition of Λ(w;κ)

in Theorem 3.1., then Eq. (90) is equivalent to

∇wΛ(w;κ)−
n∑

i=1

xici = 0,

which is exactly the KKT condition of argminw:Xw=y Λ(w;κ) proposed in Theorem 3.1. Therefore,
we finish the proof.

B.2 Proof of Lemma B.3

In this section we present the proof of Lemma B.3.

Proof. For simplicity, in the following we write the subscripts explicitly. According to Lemma B.2,
the dynamics of wj can be written as

ẇj = −
4

1− µ
vj∂wj

L− ηΓw
k;j . (91)

Note that
v2
j −w2

j = 4w2
+;jw

2
−;j =⇒ v2

j =
√

w2
j + 4κ2j , (92)

then Eq. (91) can be written as

ẇj

4
√
w2

j + 4κ2j

= −
∂wjL

1− µ
− η

Γw
k;j

4
√

w2
j + 4κ2j

. (93)

We now define a function
Λj(w, t;κ) = Λ̄j(w, t;κ) +wjφj(t) (94)

for some Λ̄j(w, t;κ) and φj(t) such that

d

dt
∂wjΛj(w, t;κ) =

ẇj + ηΓw
k;j

4
√

w2
j + 4κ2j

, (95)

the we can prove this lemma. Now we continue to find the Λ̄j(w, t;κ) and φj(t). By definition,

d

dt
∂wj

Λj(w, t;κ) = ∂2wj
Λ̄jẇj + ∂t∂wj

Λ̄j + φ̇j , (96)
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which, when compared with Eq. (95), implies that

∂2wj
Λ̄j =

1

4
√
w2

j + 4κ2j

. (97)

Solving this equation gives us

∂wj
Λ̄j =

1

4

∫
dwj√

w2
j + 4κ2j

=
ln
(√

w2
j + 4κ2j +wj

)
4

+ c (98)

where c is a constant and can be determined by requiring ∂wj
Λ̄j |t=0 + φj(0) = 0 =⇒ c =

− ln(2κj(0))/4. Thus Eq. (98) becomes

∂wj Λ̄j =
1

4
ln


√
w2

j + 4κ2j (t) +wj

2κj(t)

− ηϵj(t)

4

where we have used the definition of ϵj(t) in Lemma B.1. Solving the above equation will give us
the form of Λ̄j

Λ̄j =
1

4

∫
dwj arcsinh

(
wj

2κj(t)

)
− ηϵj(t)wj

4

=
1

4

[
wj arcsinh

(
wj

2κj(t)

)
−
√

w2
j + 4κ2j (t) + 2κj(t)

]
− ηϵj(t)wj

4

= ΛGF
j (w;κ(t))− ηϵj(t)wj

4
(99)

where we use the definition of ΛGF in Eq. (25). Comparing the rest parts of Eq. (96) with Eq. (95)
requires that

∂t∂wj
Λ̄j + φ̇j = η

Γw
k;j

4
√
w2

j + 4κ2j (t)

=⇒ φ̇j(t) =
ηκ2j (t)ϵ̇j(t)(

wj +
√

w2
j + 4κ2j (t)

)√
w2

j + 4κ2j (t)
+ η

Γw
k;j

4
√
w2

j + 4κ2j (t)
. (100)

When combined with the form of Λ̄j , we can find the form of Λj :

Λj(w, t;κ) = ΛGF
j (w;κ(t)) + ηwj

∫
ds√

w2
j + 4κ2j (s)

[
κ2j (s)

wj +
√
w2

j + 4κ2j (s)
ϵ̇j

−

√
w2

j + 4κ2j (s)ϵ̇j

4
+

Γw
k;j

4

]

= ΛGF
j (w;κ(t)) + ηwj

∫
ds√

w2
j + 4κ2j (s)

[
−wj ϵ̇j

4
+

Γw
k;j

4

]

= ΛGF
j (w;κ(t)) + ηwj

∫
ds

[
γ
w+

k;j

w+;j
−
γ
w−
k;j

w−;j

]
(101)

where we use the definition of ϵj (Lemma B.1) and Eq. (92) in the last equality.

B.3 Implicit Bias of HBF for Diagonal Linear Networks when α = 2

In this case, the correction term γw± will be

γw± =
1 + µ

2(1− µ)3
∇w±L · ∇2

w±
L.
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We need to first find the Hessian∇2
w±
L. Due to the element-wise product, it will be convenient to

derive the Hessian by writing the subscripts explicitly. We start with w+.

∂w+;i
∂w+;j

L =
2

n
∂w+;i

(
w+;j(X

T r)j
)

=
2

n

[
δij(X

T r)j +

n∑
c=1

w+;j∂w+;i

(
xc;j(x

T
c w − yc)

)]

=
2

n

[
δij(X

T r)j + 2

n∑
c=1

w+;jxc;jxc;iw+;i

]
, (102)

where we use the delta symbol δij = 1 if i = j otherwise δij = 0. Therefore, we can conclude that

∇2
w+
L =

2

n

[
diag(XT r) + 2

n∑
c=1

(w+ ⊙ xc)(w+ ⊙ xc)T
]
. (103)

Following a similar approach, we obtain that for w−

∂w−;i∂w−;jL = − 2

n
∂w−;i

(
w−;j(X

T r)j
)

=
2

n

[
−δij(XT r)j + 2

n∑
c=1

w−;jxc;jxc;iw−;i

]
(104)

=⇒ ∇2
w−
L =

2

n

[
−diag(XT r) + 2

n∑
c=1

(w− ⊙ xc)(w− ⊙ xc)T
]
. (105)

It is now left for us to find the form of ∇w±L · ∇2
wL. Again, it is convenient to write the subscripts

explicitly:(
∇w+L · ∇2

w+
L
)
j
=

d∑
i=1

∂w+;i∂w+;jL∂w+;iL

=
4

n2

d∑
i=1

[
δij(X

T r)j + 2

n∑
c=1

w+;jxc;jxc;iw+;i

]
w+;i(X

T r)i

=
4

n2

[
w+;j((X

T r)j)
2 + 2

n∑
c=1

w+;jxc;j (xc ⊙w+ ⊙w+)
T
XT r

]
. (106)

Similarly,(
∇w−L · ∇2

w−
L
)
j
=

4

n2

[
w−;j((X

T r)j)
2 − 2

n∑
c=1

w−;jxc;j (xc ⊙w− ⊙w−)
T
XT r

]
. (107)

Using Eq. (106) and (107), we can derive that

γ
w±
j

w±;j
=

2(1 + µ)

(1− µ)3n2

[
((XT r)j)

2 ± 2

n∑
c=1

xc;j (xc ⊙w± ⊙w±)
T
XT r

]
, (108)

which further gives us the integral ϵj :

ϵ̇j =
γ
w+

j

w+;j
+
γ
w−
j

w−;j

=
4(1 + µ)

(1− µ)3n2

[
((XT r)j)

2 +

n∑
c=1

d∑
i=1

xc;jxc;i(X
T r)i

(
w2

+;i −w2
−;i
)]

=
4(1 + µ)

(1− µ)3n2

[
((XT r)j)

2 +

n∑
c=1

xc;jx
T
c (w ⊙ (XT r))

]

=
4(1 + µ)

(1− µ)3

[
(∇wL)

2
j +

1

n

(
XTX(w ⊙∇wL)

)
j

]
. (109)
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On the other hand, according to Lemma B.2, ∂wiL can be written as

−(1− µ) ẇi

4vi
− η(1− µ) Γ

w
i

4vi
, (110)

which further gives us that

η

∫ t

0

ds
(
XTX(w ⊙∇wL)

)
j
= −η(1− µ)

n∑
c=1

d∑
i=1

xc;jxc;i

∫ wi(t)

wi(0)

dwi
wi(s)

4vi(s)
+O

(
η2
)

= −η(1− µ)
n∑

c=1

d∑
i=1

xc;jxc;i

∫ wi(t)

wi(0)

dwi
wi(s)

4
√
w2

i (s) + 4κ2i (s)
+O

(
η2
)

= −η(1− µ)
4

n∑
c=1

d∑
i=1

xc;jxc;i

(√
w2

i (t) + 4κ2i (t)−
√

w2
i (0) + 4κ2i (0)

)
.

where we use Lemma B.2 in the first equality and Eq. (92) in the second equality. Since w(0) = 0
and Lemma B.1, we obtain

η

∫ t

0

ds
(
XTX(w ⊙∇wL)

)
j
= −η(1− µ)

4

n∑
c=1

d∑
i=1

xc;jxc;i

(√
w2

i (t) + 4κ2i (0)− 2κi(0)

)
= −η(1− µ)

4

(
XTXq(t)

)
j

(111)

where we let q ∈ Rd with

qi(t) =
√
w2

i (t) + 4κ2i (0)− 2κi(0) ≥ 0.

Now combining Eq. (109) and Eq. (111), we can derive

ηϵj(t) =
4η(1 + µ)

(1− µ)3

∫ t

0

ds(∂wjL)
2 − η(1 + µ)

(1− µ)2n
(
XTXq

)
j
+O

(
η2
)
. (112)

To obtain the full potential function, we still need to find the form of φj . According to the definition
of v and ϵj and Eq. (108), we can derive

2γ
w+

k;j w+;j − 2γ
w−
k;j w−;j −wj ϵ̇j = vj

(
γ
w+

k;j

w+
−
γ
w−
k;j

w−

)

=
4(1 + µ)

(1− µ)3n

n∑
c=1

d∑
i=1

vjxc;jxc;ivi∂wi
L, (113)

which, when combined with the definition of φj in Lemma B.3, further gives us

φ̇j = η
(1 + µ)

(1− µ)3n

n∑
c=1

d∑
i=1

xc;jxc;ivi∂wiL

= − η(1 + µ)

4(1− µ)2n

n∑
c=1

d∑
i=1

xc;jxc;iẇi +O
(
η2
)

(114)

where we use Eq. (110) in the second equality. As a result,

φj(∞) = − η(1 + µ)

4(1− µ)2n

n∑
c=1

d∑
i=1

xc;jxc;iwi(t) =
η(1 + µ)

4(1− µ)2n
(
XTXw

)
j
. (115)

One interesting thing aspect of φj if w converges to an interpolation solution where Xw(∞) = y is

φj(∞) =
η(1 + µ)

4(1− µ)2
∂wj

L(0). (116)

In summary, the potential function O
(
η2
)
-close HBF is

κj(∞) = κj(0) exp

(
−4η(1 + µ)

(1− µ)3

∫ ∞
0

ds(∂wj
L)2 +

η(1 + µ)

(1− µ)2n
(
XTXq(∞)

)
j

)
Λj(w,∞;κ) = ΛGF

j (w, κ(∞)) +
η(1 + µ)

4(1− µ)2
wj∂wjL(0). (117)
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C Details for Numerical experiments

The experiments are conducted on a CentOS Linux 7.9.2 platform equipped with an Intel(R) Xeon
CPU E5-2683 at 3.00 GHz, 256GB of RAM, and an NVIDIA Tesla A100 graphics card.

C.1 Details for Section 2.2.2

For the experiment of Figure 1, we conduct observation on the comparison of directional smoothness
for HB and GD on the CIFAR-10 dataset Krizhevsky et al. (2009). A multilayer perceptron with two
hidden layers (each of width 200) is trained for 2000 epochs using full-batch GD and HB (µ = 0.9),
and the step size is set to 0.1.

C.2 Details for Section 4

For the discrete learning dynamics of HB and GD, we set the step size as η and the momentum factor
is µ. For the continuous approximations, we use ηEuler = η/10 as the Euler step sizes to approximate
the dynamics. These hyper-parameters are listed in Table 2.

x, y 1, 0.6
Starting point a1 = 2.8, a2 = 3.5

η 5× 10−3

µ 0.7
ηEuler 5× 10−4

Table 2: Hyper-parameters for 2-d model.

We let the model parameter be β = (a1, a2)
T ∈ R2. For RGF, we use the ODE

β̇ = − ∇βL

1− µ
=⇒ βk+1 = βk − ηEuler

∇βL

1− µ
.

Formulations of HBFs with α = 2, 3 are denoted in Table 1. We denote 1d = (1, . . . , 1)T ∈ Rd. For
the dataset {(xi, yi)}di=1, we set n = 40, d = 100. The data point follows a Gaussian distribution
N (0, Id). To make the ground truth solution w∗ sparse, we let 5 components of it be nonzero. Recall
that the initialization is κ(0) = s21d where s controls the initialization scale. In Fig. 6(b), we make
the initialization as w+ = w− = s1d with s = 0.01. We set the step size η for HB as 10−3. For RGF
and HBF, we let the Euler step size ηEuler = 10−4 to simulate the continuous dynamics. In Fig. 6(a)
and 6(b), we set η = 10−2. For the initialization, to make the task slightly harder, we let w+ = ϑs1d

and w− = s1d/ϑ with ϑ = 0.9 such that we still have κ(0) = s21d while the initialization symmetry
is slightly broken.

Addition experiments for different ηEuler We additionally run the experiments in Fig. 2 for each
of ηEuler = {η/10, η/100, η/1000}, and confirm that the observations and conclusions hold in all
different ηEuler Fig. 3.

C.3 Additional Numerical Experiments for Non-Linear Networks

We conduct experiments of Fig. 2(b) in the MNIST dataset, where we now train a three-layer
fully-connected neural networks (FCNN). The FCNN has a structure of Linear(784×128) →
SiLU→Linear(128×128)→BatchNormalization→Linear(128×10). Cross-entropy is used
for the loss function. The batch size is 60,000 and the momentum factor µ ∈ (0.7, 0.8). The learning
rate is η = 0.01. The results (reported in Fig. 4) well align with the results for the toy model in
Fig. 2(b): HBF with α = 3 has lower discretization error compared to HBF with α = 2, and both of
them are better than the RGF.

C.4 Additional Numerical Experiments for Diagonal Linear Networks

We now investigate the implicit bias of HB for 2-layer diagonal linear networks

f(x;w) = wTx = (w+ ⊙w+ −w− ⊙w−)
Tx (118)
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Figure 3: Trajectories of continuous approximations with different ηEuler.
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Figure 4: Discretization error of HBF in MNIST when training a three non-linear networks.

for a dataset {(xi, yi)}ni=1 where x ∈ Rd, y ∈ R. The empirical loss is

L(w+,w−) =
∑
i

(f(xi;w)− yi)2. (119)

We let n < d and denote the ground truth solution as w∗ such that w∗Tx = y. We let w∗ be sparse.
For a given scale s we let

κ(0) = w+(0)⊙w−(0) = s2(1, . . . , 1)T ∈ Rd. (120)

C.4.1 Discretization Error for Different Approximations

Our first experiment explores the discretization error, where we let k denote the iteration count and
first obtain wHB

k by training f(x;w) with HB. In addition, we also train f(x;w) with RGF (Eq. (1))
and HBF (Corollary 3.2), respectively. We calculate the discretization error as

∥wHB
k −w(tk)∥22 (121)

for w(tk) obtained from HBF or RGF and present the results in Fig. 5, where HBF enjoys smaller
discretization error than RGF for different µ, supporting our theoretical claims.

C.4.2 Implication for difference of implicit bias between HB and GD

We first discuss the implication obtained from our HBF. Setting µ = 0 in Corollary 3.2 gives us the
implicit bias of O

(
η2
)
-close continuous approximation of GD, i.e., IGR (Barrett and Dherin, 2022)
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Figure 5: Discretization errors ∥wHB
k − w(tk)∥22 for HBF (dotted lines) and RGF (solid lines),

respectively, when training the 2-layer diagonal linear networks.

Flow (IGRF). Both IGRF and HBF have the initialization rescaling effect. The difference between
them is closely connected with the composed parameter

ψ :=
η(1 + µ)

(1− µ)2
(122)

and the value of Φ/(1−µ). And the discrepancy between the implicit bias of HB and that of GD will
be more obvious for large value of µ. These observations stand in contrast to the case for O (η)-close
RGF, which cannot distinguish the implicit bias of HB from that of GD.

In addition, we note the following observations: (i). the value of

κ ∝ exp(−η4(1 + µ)

(1− µ)3

∫ ∞
0

ds(∂L)2) (123)

is related to the speed of convergence since it depends on the integral of gradient along the training
trajectory, implying that a faster speed of convergence would possibly lead to a smaller

∫∞
0
ds(∂L)2

which then leads to a larger κ; (ii). a smaller κ implies a better sparsity and generalization performance
for sparse regression, because the objective function in Corollary 3.2 will be closer to the ℓ1-norm.

Now let κHBF and κIGRF be κ obtained from HBF and IGRF, respectively. As HB converges faster
than GD in practice, then ∂L becomes neglectable very quickly for HBF if it converges too fast,
and, according to our observation (i) above, we conclude that κHBF > κIGRF . Then according
to our observation (ii) above, IGRF will generalize better than HBF. On the other hand, if the
speed of convergence of HBF and that of IGRF are similar (e.g., blue line in Fig. 6(b)), then HBF
and IGRF will have similar values of Φ =

∫∞
0
ds(∂L)2 while κHBF additionally depends on a

coefficient 1+µ
(1−µ)3 > 1, thus it is possible that in this cae κHBF < κIGRF , which implies that HBF

will generalize better in this case. In summary, there might exist a tension between the speed of
convergence and the generalization for HB, i.e., if HB converges too fast, κ would be larger for HB
hence solutions of GD would enjoy better generalization properties.

Below we conduct experiments for the above claims. In particular, we compare the implicit bias
of HB with that of GD. Given s, we train f(x;w) with GD and HB, respectively. We calculate the
distance between the returned solution w(∞) and the ground truth solution w∗, i.e., ∥w(∞)−w∗∥2,
as a measure of generalization performance and report the results in Fig. 6(a). It can be seen that,
when the initialization scale s is small, solutions of GD generalize better than those of HB. This can
be explained by Corollary 3.2: compared to GD, when s is small, L(w) decreases much faster for
HB (green lines in Fig. 6(b)), which leads to a smaller

∫
dsL(w) and weaker initialization mitigation

effect, thus the solutions of HB generalize worse than GD solutions. Recall that in Corollary 3.2, as
κj(0) = s2 increases, Φ determines the generalization performances for HB and GD since it controls
the extent of the initialization mitigation effect. Furthermore, L(w) does not decrease much faster
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Figure 6: (a). Generalization performances ∥w(∞)−w∗∥2 for different initialization scales s when
f(x;w) is trained by GD and HB with different values of µ. (b). L(w) during training processes of
HB (µ = 0.9) and GD for different s.

for HB than for GD (blue lines in Fig. 6(b)), thus GD and HB have a similar value of Φ, which is
further enhanced by a factor of (1 + µ)/(1− µ)3 for HB according to Corollary 3.2. As a result, HB
solutions will generalize better than GD and the discrepancy between them is more significant for
large µ (large (1 + µ)/(1− µ)3) as shown in Fig. 6(a).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper provides a new continuous time model for HB method, HBF, and
investigates several properties of the discrete HB method through lens of the HBF. These
contributions exactly match those in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see the separate paragraph “Limitation" in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: Proofs for all theorems are presented in Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have presented numerical experiments in Section 2.2.2 and Section 4 with
the corresponding experimental details in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: We use synthetic data and open-source data, which are discussed in Ap-
pendix C.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please see Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: We do not have error bars to report.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conform with the NeurIPS Code of Ethis in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This is a theoretical paper, which dose not have direct potential societal
impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This is a theoretical paper, which does not provide new data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use the open-source data CIFAR-10, which are properly credited in this
paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not provide new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: These topics are not covered by this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: This paper does not involve any of these subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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