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Abstract

We study few-shot reranking for multi-hop QA001
(MQA) with open-domain questions. To alle-002
viate the need for a large number of labeled003
question-document pairs for retriever training,004
we propose PROMPTRANK, which relies on005
large language models prompting for multi-hop006
path reranking. PROMPTRANK first constructs007
an instruction-based prompt that includes a can-008
didate document path and then computes the009
relevance score between a given question and010
the path based on the conditional likelihood011
of the question given the path prompt accord-012
ing to a language model. PROMPTRANK yields013
strong retrieval performance on HotpotQA with014
only 128 training examples compared to state-015
of-the-art methods trained on thousands of ex-016
amples — 73.6 recall@10 by PROMPTRANK017
vs. 77.8 by PathRetriever (Asai et al., 2020)018
and 77.5 by multi-hop dense retrieval (Xiong019
et al., 2021).020

1 Introduction021

Many information-seeking queries are in the form022

of multi-hop questions. For instance, to answer023

the question “What 1988 Christmas comedy film024

did Brian-Doyle Murray star in?”, we need to (i)025

search for movies starring Brian Murray, then (ii)026

identify which of them were released in 1988 dur-027

ing Christmas. Evidence required to answer such028

questions is often dispersed in different documents,029

requiring sequential, multi-step reasoning to reach030

the answer (Perez et al., 2020), typically referred031

to as multi-hop question answering (MQA).032

Given a multi-hop question and a large docu-033

ment corpus, existing MQA systems largely fol-034

low a retrieve-then-read pipeline, where a retriever035

module first identifies relevant documents from036

the corpus, and a reader module produces the an-037

swer based on the retrieved output (Asai et al.,038

2020; Li et al., 2021; Singh et al., 2021; Qi et al.,039

2021). The retriever module is trained to predict the040
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Figure 1: Multi-hop retrieval recall@k on HotpotQA.
PROMPTRANK, using only 128 examples, outperforms DrKit
(Dhingra et al., 2020) and performs closely to Multi-hop Dense
Retrieval (Xiong et al., 2021). Both fully supervised models
are trained on ~90K examples.

ground-truth evidence document(s) given the ques- 041

tion (Karpukhin et al., 2020; Qi et al., 2021; ). How- 042

ever, curating large datasets of question-document 043

pairs is expensive, especially for low-resource lan- 044

guages or domains that require unique expertise 045

(e.g., medical or legal documents), thus creating a 046

bottleneck for building QA pipelines (Ram et al., 047

2022). Moreover, resorting to heuristics for data la- 048

beling can lead to incorrect annotation (Izacard and 049

Grave, 2021). This difficulty is further exacerbated 050

in the case of multi-hop questions, as they need to 051

be annotated with multiple support documents. 052

The majority of existing data-efficient retrieval 053

and reranking methods are restricted to single- 054

hop QA, and it is unclear how to extend them 055

to the multi-hop setting. For instance, Ram et al. 056

(2022) proposed “recurrent span retrieval” to obtain 057

psuedo question-document pairs in an unsupervised 058

way for single-hop QA. However, in the multi-hop 059

case, it is less likely that we can retrieve recur- 060

rent spans from multiple documents that follow a 061

valid reasoning trajectory. Moreover, their method 062

requires intensive pretraining on the obtained cor- 063

pus. Seonwoo et al. (2021) focus on weakly super- 064

vised multi-hop QA retrieval, yet their method uses 065
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Figure 2: An overview of the full retrieval system. (a): Initial documents from TF-IDF are retrieved and expanded based on
hyperlinks for H times. PROMPTRANK converts each path into a prompt τc and scores through PLM(q|τc) for a given question q
using a language model. For simplicity, we omit intermediate scoring steps where paths of length h < H are scored using the
same fashion and only the top-scored ones are expanded. (b): A sample of what a 2-hop path prompt looks like. Prompts are
constructed in terms of an instruction and the document path.

corpus-specific (e.g., Wikipedia) heuristics and also066

requires pretraining. This motivates the need for067

data-efficient multi-hop retrieval methods that (i)068

work out-of-the-box without requiring additional069

(pre)training, and (ii) do not rely on hand-designed070

heuristics for data collection and annotation.071

To this end, we present PROMPTRANK, which072

leverages the power of large language mod-073

els (LLMs) for few-shot multi-hop retrieval.074

PROMPTRANK combines a simple unsupervised075

retrieval method i.e., TF-IDF similarity, with an076

LLM reranker that scores the relevance of docu-077

ment paths to a question based on the conditional078

likelihood of generating the question given the079

path. Our approach makes use of instruction-based080

prompting (Sanh et al., 2021; Ouyang et al., 2022)081

to steer the LLM towards assigning higher scores082

to more relevant support document chains.1 To cal-083

ibrate the model’s reranking scores and alleviate084

prompt sensitivity (Zhao et al., 2021b), we borrow085

techniques from the literature such as temperature086

scaling (Kull et al., 2019) and instruction ensem-087

bling (Schick and Schütze, 2021a). We also uti-088

lize demonstration ensembling to leverage more089

examples than what can fit into the context of trans-090

former LLMs by combining reranking probabilities091

computed with different demonstrations.092

We evaluate few-shot PROMPTRANK on Hot-093

potQA (Yang et al., 2018), a standard MQA bench-094

mark, and show that it compares favorably against095

state-of-the-art models while using orders of mag-096

nitude fewer examples. More precisely, with only097

128 training examples, PROMPTRANK outperforms098

DrKit (Dhingra et al., 2020) and is only 4.2 Re-099

1We use path and chain interchangeably throughout the
paper.

call@10 points lower than multi-hop dense re- 100

trieval (MDR) (Xiong et al., 2021) (see Figure 1). 101

We also showcase PROMPTRANK as part of a QA 102

pipeline, again, displaying close QA performance 103

to fully-supervised retrievers—only 4.1 F1 points 104

lower than MDR. 105

In summary, our contributions in this paper are: 106

1. We propose PROMPTRANK, a few-shot rerank- 107

ing approach for multi-hop QA that reranks a 108

given document path based on the likelihood of 109

generating the question given a path prompt. 110

2. PROMPTRANK exhibits strong few-shot re- 111

trieval performance with as few as 128 exam- 112

ples and compares favorably to fully supervised 113

methods (§3.1). 114

3. PROMPTRANK leads to strong QA performance 115

when combined with a pretrained reader module, 116

performing close to fully-supervised retrievers 117

(§3.2). 118

2 Method 119

An overview of the full retrieval system is displayed 120

in Figure 2: Given a question q, the system expands 121

sequences of supporting documents into paths of 122

length H , which are used to answer the question. 123

At each step, we first use TF-IDF similarity to ob- 124

tain an initial set of supporting document paths.2 125

We then use PROMPTRANK to rerank the current 126

document chains based on their relevance to the 127

question (§2.1). 128

Concretely, we start with retrieving F candidate 129

documents using TF-IDF for the ‘first hop’. These 130

‘1-hop’ candidates are scored by PROMPTRANK 131

and K1 top-ranked documents are kept and further 132

2PROMPTRANK is agnostic to the retrieval approach and
can be combined with other retrieval techniques.
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expanded based on their hyperlinks to obtain 2-hop133

reasoning paths.3 These 2-hop reasoning chains134

are again reranked and the most promising K2 can-135

didates are further expanded. The process repeats136

until we obtain paths of length H , where H can137

be a hyperparameter.4 As the document graph can138

have a high branching factor, we only keep the139

top-L hyperlinks as reranking candidates based on140

TF-IDF similarity between the hyperlink document141

and the question. We have found this pruning step142

to improve efficiency without much performance143

drop. This process is shown in Figure 2(a).144

2.1 Path Reranking with PROMPTRANK145

Given a question q and a reasoning path or chain c,146

we use an LM to score c according to its relevance147

to q. Concretely, we measure the likelihood of the148

question given the path as follows:149

Scoreq(c) = PLM(q|τc) (1)150

where PLM(q|τc) is the conditional probability of151

generating the question given a prompt τc contain-152

ing path τc using an LM. Our initial experiments153

show that using PLM(q|τc) works substantially154

better than PLM(c|τq) for a question-containing155

prompt τq, which agrees with the findings in dos156

Santos et al. (2020).5 We argue that two factors157

contribute to this gap. First, LMs can be sensi-158

tive to the surface form (Holtzman et al., 2021) of159

reasoning paths, making it difficult to reliably com-160

pare the probabilities of different reasoning paths161

using PLM(c|τq). For instance, PLM(c|τq) tends162

to be higher for shorter paths. On the other hand,163

PLM(q|τc) does not suffer from this issue since164

we compare the probabilities of the same string165

(i.e., the question) by conditioning on different166

reasoning paths. Second, the prompt format us-167

ing PLM(q|τc)—the question follows a document—168

agrees more with the web data used for LM pre-169

training, where documents are usually followed by170

FAQs, questionnaires, and surveys, rather than the171

other way around. We further add a temperature172

parameter to scale the model output logits before173

computing P (q|τc). This can be seen as an instance174

of model calibration (Guo et al., 2017; Desai and175

Durrett, 2020; Jiang et al., 2021) with the goal of176

3We assume the presence of hyperlinks following pre-
vious work (Asai et al., 2020; Qi et al., 2021) although
PROMPTRANK is agnostic to how a candidate path is ob-
tained.

4This process can be viewed as a variation of beam search.
5Earlier experiments showed that the recall of PLM(q|τc)

was at least 60% better than that of PLM(c|τq).

improving the reranking scores. We show that tem- 177

perature scaling boosts reranking performance in 178

§3.1. 179

Constructing Prompt τc As shown in Figure 2 180

(b), the prompt consists of an instruction along 181

with the document path. The instruction’s goal 182

is to encourage higher scores for more relevant 183

paths by eliciting the LM reasoning ability (Ouyang 184

et al., 2022). We note that the instruction part is 185

fixed across all prompts constructed for different 186

candidate paths. 187

The path is expressed in the prompt by concate- 188

nating all documents in the chain and prepending 189

each document with a fixed prefix, such as “Docu- 190

ment:” or “Passage:”. The concatenation of path 191

documents significantly improves reranking by si- 192

multaneously considering all hops, which allows 193

the LM to do a context-aware evaluation of path 194

relevance. 195

2.2 Instruction Search and Ensembling 196

Although instructions can be manually engineered 197

to trigger the LM to accomplish the task (e.g., 198

“Read the following documents and generate a ques- 199

tion”), this requires human expertise and can be 200

sub-optimal. Therefore, we leverage automated in- 201

struction search Gao et al. (2021), where we use an 202

encoder-decoder LM, e.g., a T5-Base model (Raf- 203

fel et al., 2020), that is trained to fill masked text 204

spans to generate instructions. 205

Specifically, we fill in the template “Task: <X> 206

documents and <Y> question. Question:”, where 207

<X> and <Y> are the masked spans expected to be 208

filled in by the model (e.g., for a human-written in- 209

struction example, <X> = “Read the following” and 210

<Y> = “answer the”). We consider two variations 211

of this template corresponding to the cases where 212

the document path appears before/after the tem- 213

plate. We constrained the template to contain the 214

words ‘documents’ and ‘question’ to ensure that 215

the model generates relevant prompts. We have 216

found that using a less specific template without 217

such tokens leads to more diverse but less relevant 218

instructions. The exact templates used are in Ap- 219

pendix A.2. 220

Previous work has shown that mixing multiple 221

prompts can improve few-shot performance (Gao 222

et al., 2021; Schick and Schütze, 2021b). Similarly, 223

such ensembling could produce more regularized 224

path scores by alleviating prompt sensitivity (Zhao 225

et al., 2021b). Given a path, we combine the scores 226
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of obtained through different instructions. We ex-227

periment with both mean and max ensembling.228

2.3 Demonstration Ensembling229

We employ in-context learning (ICL) (Brown et al.,230

2020) to teach the LLM to do reranking by showing231

the model examples i.e., demonstrations of ques-232

tions and their gold paths. A major obstacle to this233

approach is the input length limit in standard trans-234

former LMs. Since paths are comprised of multiple235

documents, in most cases we cannot feed more than236

two demonstrations without exceeding the limit of237

1024 tokens, a standard setup for pretrained LMs.238

To workaround that, we utilize demonstration en-239

sembling, where different in-context demonstra-240

tions are used to compute scores for a given path,241

and the scores are combined by a mean or max242

operation.243

3 Experiments244

Data We evaluate our method on HotpotQA245

(Yang et al., 2018), which consists of two-hop ques-246

tions over diverse topics. We focus on the fullwiki247

setting in which two Wikipedia passages are re-248

quired to answer the questions. Since the gold249

passages for the test set are not available, we fol-250

low prior work and evaluate PROMPTRANK on the251

development set, which has 7,405 questions. There252

are two main question types in HotpotQA: (1) com-253

parison questions usually require contrasting two254

entities and (2) bridge question can be answered255

by following a connecting entity that links one doc-256

ument to another.257

Compute Infrastructure All our reranking ex-258

periments are run on a workstation with a single259

Nvidia A40 GPU and 256GB of RAM. Our QA260

experiments in §3.2 are run on a workstation with261

two Nvidia Quadro RTX 8000 GPUs and 128GB262

of RAM.263

Models We use HuggingFace implementations264

(Wolf et al., 2020) of GPT2-XL (1.5B) (Brown265

et al., 2020), T5-Base (220M), T5-Large (770M)266

and T5-XL (3B) (Raffel et al., 2020) in our exper-267

iments. We use the ‘LM adapted’ version of T5268

models since they have been shown to work better269

for prompt-based learning (Lester et al., 2021). We270

report additional results with the OPT-30B model271

(Zhang et al., 2022) in §4.3.272

Hyperparameters For PROMPTRANK, we use a273

path length of H = 2 for all experiments. For prun-274

ing the search space we use K1 = 5 and L = 3.275

We use the TF-IDF index implemented by Asai 276

et al. (2020) and initially retrieved F = 100 docu- 277

ments from TF-IDF. We truncate path documents 278

to 230 tokens before constructing the prompt and 279

limit the prompt length to 600 tokens. When using 280

in-context demos, we use the maximum length of 281

1024 tokens. 282

Metrics Retrieval performance is measured using 283

both Recall (R@k) and Answer Recall (AR@k), 284

with k ∈ {2, 10, 20}. R@k measures whether the 285

two gold documents are present in the top-k re- 286

trieved documents and AR@k is the recall of the 287

answer string in the top-k retrieved documents. For 288

HotpotQA, we only compute AR over questions 289

with span answers (we ignore yes/no and compari- 290

son questions). Since we do not have access to the 291

HotpotQA test set, we report results on the original 292

development set provided by Yang et al. (2018). 293

Document Scores We compute document scores 294

from path scores as follows. Similar to Das et al. 295

(2019), we take a document score to be the max- 296

imum of all its path scores. We find this change 297

to yield better recall than using path scores, with 298

details elaborated in Appendix B. 299

Instruction Search and Temperature For in- 300

struction search, we generate 200 different instruc- 301

tions as described in §2.2 using top-k sampling 302

with k = 10. Then, we select the best instruction 303

based on R@2 over our development set of 128 304

examples. The same process is used to select the 305

optimal temperature value. Table A1 shows the 306

best 10 instructions identified. 307

Baselines We compare our reranker to the follow- 308

ing baselines. TF-IDF retrieves top similar docu- 309

ments to the question using TF-IDF similarity and 310

TF-IDF + BM25 adds an extra step where retrieved 311

documents and their hyperlinks are reranked using 312

BM25 (Robertson et al., 1995). PathRetriever 313

(Asai et al., 2020) is a graph-based retriever trained 314

to expand an initial pool of documents based on 315

Wikipedia links and searches for the best path us- 316

ing beam search.6 DrKIT (Dhingra et al., 2020) is 317

an end-to-end trained dense retrieval approach that 318

starts from question entities and traverses a virtual 319

knowledge base to find the relevant entities. Multi- 320

hop Dense Retrieval (MDR) (Xiong et al., 2021) 321

encodes the question and the documents retrieved 322

6We run PathRetriever on HotpotQA with original hyper-
parameters except for an initial TF-IDF pool size=100 to allow
for fair comparison to our approach.
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# Ex. R@2 R@10 R@20 AR@2 AR@10 AR@20

Unsupervised Baselines
TF-IDF – 9.9 27.6 35.0 37.6 53.8 60.2
TF-IDF + BM25 – 19.1 54.7 61.8 49.5 74.7 79.9

Fully-supervised Baselines
DrKit ~90K 38.3 67.2 71.0 – – –
MDR ~90K 65.9 77.5 80.2 – – –
PathRetriever ~90K 66.4 77.8 78.7 82.2 90.5 90.5

PROMPTRANK, no ICL
GPT2-XL† – 36.6 60.5 65.9 63.0 83.9 87.4
T5-XL† – 42.8 68.9 74.1 69.3 86.8 89.0

+ best inst. 128 47.8 71.4 76.0 74.0 87.9 89.7
+ temp. scaling 128 49.7 71.9 76.2 76.2 88.4 89.9
+ inst. ensemble 128 51.3 72.0 76.4 77.6 88.5 90.3

PROMPTRANK, with ICL
T5-XL, Ndemos = 2 128 52.3 (.7) 73.1 (.2) 77.1 (.2) 78.6 (.7) 88.7 (.0) 90.3 (.1)

T5-XL, Ndemos = 8 128 54.5 (.7) 73.6 (.3) 76.9 (.1) 79.1 (.6) 89.0 (.1) 90.5 (.0)

T5-XL, Ndemos = 10 128 54.4 (.5) 73.5 (.3) 76.9 (.1) 78.9 (.4) 88.9 (.1) 90.5 (.0)

Table 1: Retrieval performance on HotpotQA comparing PROMPTRANK to baselines. †: No instruction used. PROMPTRANK
results except those marked with † use a labeled set of 128 examples for tuning the instruction and the temperature parameter.
Few-shot experiments use the best instruction found on a held-out set of 128 examples (See Table A1 in Appendix) and
temperature (T = 1.4). In-context learning (ICL) experiments are run 5 times with demos sampled from the same 128-example
set and we report mean and (std). Our best results are highlighted in bold.

by each step into a dense vector and uses maximum323

inner-product search (MIPS) to find the next hop.324

Below, we start with the evaluation of the zero-325

and few-shot reranking of PROMPTRANK (§3.1).326

Then, we move to evaluate downstream MQA per-327

formance in the few-shot setting (§3.2).328

3.1 Retrieval Performance329

Table 1 shows the performance of PROMPTRANK330

and other comparisons in zero- and few-shot set-331

tings.332

Zero-shot Performance We start with dis-333

cussing the retrieval performance of zero-shot334

PROMPTRANK on HotpotQA. First, we observe335

that simple TF-IDF performs poorly in terms of336

different recall metrics, while TF-IDF + BM25337

performs much better, yet still worse than fully-338

supervised approaches. Next, we look at the per-339

formance of the zero-shot PROMPTRANK (T5-XL)340

which uses no instructions, i.e., the prompt con-341

sists of only the document path. These models ob-342

tain better recalls than TF-IDF + BM25 and even343

outperform the fully-supervised DrKit. Although344

this approach does not use any labeled data, it is345

only 3.7 AR@10 points worse than PathRetriever,346

which is trained on ~90K examples. These find-347

ings demonstrate PROMPTRANK’s effectiveness at348

reranking paths of documents.349

Few-shot Performance The zero-shot perfor-350

mance of PROMPTRANK can be further improved351
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Figure 3: Demonstration ensembling (§2.3) is able to lever-
age more examples (N > 2) than what is allowed by the
T5-XL context window size. We show R@2 and AR@2 on
HotpotQA with different numbers of demonstrations. Metrics
are averaged over 5 runs with different demos sampled from a
128-example set.

with access to a small set of labeled examples (in 352

our case, we only used 128 examples from Hot- 353

potQA) for instruction search and finding tempera- 354

ture value. We observe a substantial boost of 11.6% 355

(42.8 → 47.8) in R@2 of PROMPTRANK when us- 356

ing the best instruction found by instruction search. 357

Furthermore, temperature scaling with T = 1.4 358

also provides a boost of 3.9% (47.8 → 49.7) points 359

in R@2. 360

We also observe that instruction ensembling 361

gives a further performance boost, reaching 51.3 362

R@2 with PROMPTRANK. We show the perfor- 363

mance of max ensembling, which we have found 364

to perform better than mean ensembling in terms 365

of R@2. We hypothesize that max ensembling 366

computes an upper bound on the path scores, com- 367

pensating for any underestimation of path scores 368
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that can happen when using a single instruction.369

In-context learning We experiment with an N -370

shot setting while making sure that the two demon-371

strations cover both question types in HotpotQA372

(bridge and comparison). Figure 3 shows that both373

R@2 and AR@2 improve as we use more demon-374

strations. With only 2 examples, we observe a375

large boost of 6.3% (49.2 → 52.3) in R@2. Since376

we cannot fit more than 2 demonstrations in the377

1024 context window, we use demonstration en-378

sembling (§2.3). For instance, 6-shot ensembling379

scores a path by combining 3 different contexts,380

each obtained using 2 demonstrations. We use max381

ensembling as it is found to work best. Figure 3382

shows the in-context learning performance with a383

different number of demonstrations. We observe384

a steady increase in R@2 until N = 8. AR@2385

also improves with more demonstrations but drops386

slightly with N = 10. Interestingly, demonstration387

ensembling has enabled us to leverage more ex-388

amples than permitted by the context window size389

of T5-XL. We leave it to future work to study the390

applicability of this technique to other tasks.391

3.2 Full QA Performance392

Here, we analyze the performance of393

PROMPTRANK when used as the retriever394

in a QA pipeline. We adopt an extractive reader395

model based on ELECTRA Large (Clark et al.,396

2020) with two heads to predict the start and end of397

the answer span. We use the checkpoint provided398

by Xiong et al. (2021), and the same inference399

setting.7 Details on the inference hyperparameters400

for the reader are in Appendix C.1.401

In Table 2, we compare the QA performance on402

HotpotQA development set with PROMPTRANK403

as the retriever against a fully-supervised retriever,404

namely MDR (Xiong et al., 2021) as well as unsu-405

pervised TF-IDF. PROMPTRANK with Ndemos =406

10 is only 4.6 F1 points worse than MDR, which is407

using the same reader module. Table 3 shows per-408

formance on HotpotQA test set with different fully-409

supervised systems compared to PROMPTRANK410

(Ndemos = 2), where PROMPTRANK is only 1.9411

and 4.2 EM points below PathRetriever and MDR,412

respectively.413

7https://github.com/facebookresearch/
multihop_dense_retrieval.git

Retriever EM F1

Fully-supervised
MDR (Xiong et al., 2021) 62.3 75.1

Zero-shot
TF-IDF 39.6 49.4
PROMPTRANK, no inst 55.7 67.7

Few-shot
PROMPTRANK, (Ndemos = 2) 57.8 (.1) 70.0 (.1)

PROMPTRANK, (Ndemos = 10) 58.3 (.0) 70.5 (.1)

Table 2: Answer EM and F1 on HotpotQA development
set. PROMPTRANK results are aggregated over 3 runs with
different demonstrations. We show metrics mean and (std). To
allow for a fair comparison, only the retriever is varied over
these systems while the reader module is the same.

Retriever EM F1

DrKit (Dhingra et al., 2020) 42.1 51.7
PathRetriever (Asai et al., 2020) 60.0 73.0
MDR (Xiong et al., 2021) 62.3 75.3

PROMPTRANK, (Ndemos = 2) 58.1 71.1

Table 3: Answer EM and F1 on HotpotQA test set. MDR and
PROMPTRANK use the same ELECTRA reader, while other
systems use different readers.

4 Analysis 414

4.1 Comparison to Single-hop Reranking 415

The key idea behind our approach is to conduct 416

joint reasoning with documents in the path using 417

the LM, as opposed to reranking each document in 418

the path separately (single-hop reranking). More 419

specifically, in single-hop reranking, we expand 420

paths using the same setup of PROMPTRANK but 421

rerank each document d separately using p(q|τd), 422

for a given document prompt τd. 423

To assess whether our multi-hop reranking ap- 424

proach offers the advantage of global reasoning, 425

we compare both approaches by running two exper- 426

iments with identical settings except for how docu- 427

ments are reranked. For evaluation, we use a set of 428

4K questions from HotpotQA and T5-Large, and 429

no instruction is used, i.e., the prompt only contains 430

the document(s). Table 4 shows the retrieval per- 431

formance of both approaches. Interestingly, a large 432

gap in recall scores is observed between single-hop 433

and multi-hop reranking. This supports our hypoth- 434

esis that jointly considering multiple documents 435

in the path helps the LM better model documents’ 436

relevance to the question. 437

4.2 Role of Instruction 438

Our goal here is to investigate (i) how useful is the 439

presence of the instruction in the prompt, (ii) how 440

much benefit (if any) automated instruction search 441
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Re-ranking R@2 R@10 AR@2 AR@10

Single-hop 22.8 52.0 54.9 73.8
Multi-hop 46.9 67.6 75.4 87.9

Table 4: Recall measured on 4K questions from HotpotQA
in two settings: reranking each document separately with the
LM (single-hop) and reranking the full path at once (multi-
hop). Multi-hop reranking performs substantially better than
single-hop.

T5-base T5-large T5-XL

44.0

45.0

46.0

47.0

48.0

49.0
R@2

manual inst.
best inst.
no inst.

T5-base T5-large T5-XL

72.0

73.0

74.0

75.0

76.0

77.0

AR@2

manual inst.
best inst.
no inst.

Figure 4: R@2 and AR@2 with different kinds of instruc-
tions for three different T5 sizes: XL, Large, and Base. The
recall is measured over 1K questions from HotpotQA train
set using 200 different instructions obtained using automated
search §2.2.

provides over manual instructions, and (iii) whether442

the instruction’s location in the prompt matters.443

To answer these questions, we analyze the recall444

over 200 different instructions generated using the445

method described in §2.2 and using 1K examples446

from HotpotQA with different LM sizes: T5-XL,447

T5-Large, and T5-Base, with results displayed in448

Figure 4. This analysis uses an initial set of TFIDF449

documents of size F = 30.450

Usefulness of Instruction We can see that us-451

ing no instruction consistently yields poorer perfor-452

mance than using an instruction of any sort, across453

all variants of T5. Interestingly, without the instruc-454

tion, the three model sizes have almost the same455

R@2. The difference in their performances be-456

comes apparent when an instruction is added. Strik-457

ingly, in the no instruction case, T5-Large performs458

worse than T5-Base in terms of AR@2, showing459

that scaling does not consistently help recall when460

no instructions are used. This hints at the fact that461

instructions play a major role in harnessing the full462

power of LLMs, at least for our task.463

Benefit of Automated Instruction Search Next,464

we compare a human-written instruction against465

an instruction found through automated instruction466

search on a labeled set of 128 examples. The man-467

ual instruction we use is “Please write a question468

based on these passages.”, which is used by Sachan469

Model R@2 R@10 AR@2 AR@10

OPT-30B 36.9 65.4 61.0 82.0
GPT2-XL 47.2 70.3 57.1 85.7

Table 5: Document and answer recall of GPT2 and OPT
models based on 1000 questions from HotpotQA.

et al. (2022).8 In Figure 4, we compare the recall 470

when using these instructions. Interestingly, the 471

search-based instruction outperforms the manual 472

one in almost all cases. We also observe that the 473

manual instruction performs poorly for AR@2 on 474

T5-base, even worse than no instruction. These 475

observations hint at the utility of automated instruc- 476

tion search for path reranking. However, it is worth 477

noting that the best instruction on a relatively small 478

held-out set will not necessarily generalize during 479

test time: The search-based instruction produces 480

AR@2 and R@2 that are almost the same or worse 481

than the median instruction, respectively with T5- 482

Large. 483

Location of Instruction We study the perfor- 484

mance of two different kinds of prompts, where the 485

instruction appears before and after the path. Fig- 486

ure 5 shows the R@2 and AR@2 in both cases for 487

T5 models of different sizes. We observe that plac- 488

ing the instruction after the path performs consis- 489

tently better than placing before it, across all model 490

variants. We hypothesize this to be an instance 491

of the recency bias exhibited by LMs (Zhao et al., 492

2021b), i.e., placing the instruction right before 493

where the model is asked to generate the question 494

better primes the LM for the task and produces bet- 495

ter calibrated path scores. We expect such finding 496

to generalize to other tasks where instruction-based 497

prompting is used. 498

4.3 Choice of Language Model 499

Table 5 compares the reranking performance of 500

GPT2-XL and OPT-30B (Zhang et al., 2022) mod- 501

els. Despite having an order of magnitude more 502

parameters, we observe that the OPT model is gen- 503

erally worse compared to the smaller GPT2-XL 504

model. We suspect this is due to domain mismatch 505

between pre-training data and task relevant data. 506

Pre-training data of GPT2 models is potentially 507

more biased towards Wikipedia data compared to 508

the OPT models which are trained on more diverse 509

data. Importantly, this shows that scaling up the 510

8We average recall of the two cases where the instruction
falls before and after the path. See the next paragraph for more
context.
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T5-base T5-Large T5-XL

44

45

46

47

48

49

R@2
inst. before path
inst. after path

T5-base T5-Large T5-XL

73

74

75

76

77

AR@2
inst. before path
inst. after path

Figure 5: Retrieval performance when placing the instruction
before and after the document path in the prompt. The recall
is measured over 1K questions from HotpotQA train set using
200 different instructions. Having the instruction after the path
performs consistently better which is likely due to recency
bias (Zhao et al., 2021b).

language model doesn’t necessarily guarantee bet-511

ter reranking performance and domain gap is an512

important consideration.513

4.4 Further Analysis and Comparisons514

We further analyze the inference cost of515

PROMPTRANK compared to PathRetriever and516

MDR in Appendix D.1. In Appendix D.2, we study517

PROMPTRANK’s recall sensitivity to document or-518

der in the prompt τc by comparing performance519

using two different document ordering schemes in520

the prompt. Lastly, we compare PROMPTRANK to521

few-shot PathRetriever and LOUVRE (Seonwoo522

et al., 2021) in Appendix D.3.523

5 Related Work524

Multi-hop Retrieval The majority of approaches525

for multi-hop question answering rely on two main526

components: a retriever and a reader. The retriever527

component can be a sparse index or heuristic-based528

such as TF-IDF or BM25 (Chen et al., 2017; Nie529

et al., 2019) or dense index (Karpukhin et al., 2020;530

Xiong et al., 2021; Zhao et al., 2021a). Other ap-531

proaches aimed to improve the retriever with an532

additional reranking step on top of a simple re-533

triever (Wang et al., 2018; Lee et al., 2018; Htut534

et al., 2018). Asai et al. (2020) combined TF-IDF535

retriever with a recurrent graph retriever and used536

the reader module to rerank paths based on an-537

swer confidence. Qi et al. (2021) used a single538

transformer model to perform retrieval, reranking539

and reading in an iterative fashion. However, the540

good performance of previous work comes mainly541

from training on a large number of examples and542

is likely to fail in low-data settings. To treat this543

issue, Seonwoo et al. (2021) proposed to pretrain544

MDR (Xiong et al., 2021) on a large number of545

weakly-supervised examples of questions and the 546

corresponding document paths. Although promis- 547

ing in low-data settings, their pretraining is com- 548

putationally expensive as it is done on millions of 549

examples. On the other hand, our approach requires 550

no task-specific pretraining. 551

Language Models Prompting Prompt-based 552

learning aims to construct better inputs, i.e., 553

prompts to language models to elicit better zero- 554

or few-shot performance (Brown et al., 2020; Liu 555

et al., 2021). Recently, instruction tuning, where 556

a language model is trained to follow natural lan- 557

guage instruction, has shown impressive zero-shot 558

performance on unseen tasks (Wei et al., 2021; 559

Ouyang et al., 2022). In our work, we use instruc- 560

tions to guide to model toward assigning better 561

scores to more relevant document paths. 562

LM-based Reranking Our scoring function is 563

related to query likelihood retrieval (Lavrenko and 564

Croft, 2017; Ponte and Croft, 2017) and is in line 565

with previous work that employed generative lan- 566

guage models for passage reranking (Nogueira 567

et al., 2020). dos Santos et al. (2020) performed 568

single-hop reranking using question likelihood 569

given the passage, but their setting was limited to 570

fully-supervised, single-hop QA. Concurrent with 571

our work is (Sachan et al., 2022), where the authors 572

leverage LLMs for unsupervised passage reranking 573

for QA. While their focus is on single passages, we 574

study the reranking of multi-passage paths, which 575

is more challenging. Moreover, their exploration 576

of prompting is limited to a single manual instruc- 577

tion, whereas we provide an in-depth analysis of 578

the effect of different prompting aspects on the re- 579

call such as instruction importance, location in the 580

prompt, and manual vs. automated. 581

6 Conclusion 582

We introduced PROMPTRANK, a method to per- 583

form few-shot reranking of multi-document paths 584

for multi-hop question answering based on large 585

language models. Experiments on a standard multi- 586

hop QA benchmark show the strong performance 587

of PROMPTRANK in the few-shot setting compared 588

to fully-supervised multi-hop reranking systems. 589

Future avenues of exploration include combining 590

PROMPTRANK with efficient tuning techniques 591

such as prefix tuning and efficient strategies for 592

instruction search. 593
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7 Limitations594

One limitation to LM-based reranking is the compu-595

tational overhead involved in reranking paths. Our596

approach requires a forward pass through the LM597

to rerank each path, which can become expensive598

when using relatively large models such as GPT-3599

or when dealing with more hop count that creates600

combinatorially more paths. Another limitation601

of PROMPTRANK is imposed by the transformer602

context window length. Since PROMPTRANK re-603

quires the prompt to include all path documents, it604

could be infeasible to fit all path documents into605

the prompt for paths with a larger hop count. A po-606

tential direction to workaround this is to condense607

or summarize the path documents beforehand. We608

leave it to future work to explore this and other609

techniques.610
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A Instructions898

A.1 Best Instructions899

Table A1 shows the top 10 performing instructions900

found by instruction search (§2.2) based on R@2901

and using T5-XL.902

A.2 Instruction Search903

The actual templates we feed T5 are “Task: <X>904

documents <Y> question based on them. Ques-905

tion:” and “Task: <X> previous documents and906

<Y> question based on them. Question:”. We have907

found using the phrase “based on them” to be es-908

sential in directing the model to generate sensible909

instructions. Otherwise, the model would generate910

something like “Read the documents in question..”.911

However, we remove that phrase from the obtained912

instructions”.913

B Document Scores914

It is not immediately obvious how to compute a915

final score for each document since PROMPTRANK916

is mainly used to score document. The main issue917

is that a document can fall on multiple paths at the918

same time (some of which could be incomplete or919

not fully expanded yet) and therefore could have920

multiple such scores.921

For example, assume a path A → B → C of922

consisting of the documents A, B, and C, respec-923

tively. Considering the document B, we see that924

two scores are associated with B: score of the sub-925

path A → B and score of the full A → B → C926

path. To compute the final score of B, we could927

either just take the score of the longest path, or928

combine the two scores using mean, minimum, or929

maximum operations. What we found to work best930

compared to other alternatives is to take maximum,931

which is similar to what is done in (Das et al., 2019).932

We use this formulation when computing our recall933

metrics in §3.1.934

C Hyperparameters935

C.1 ELECTRA Reader936

We use the same reader setting as in Xiong et al.937

(2021), where the top-100 retrieved paths are fed938

to the reader to obtain an answer from each path.939

Answers are then sorted based on a linear combi-940

nation of path score and answer confidence, and941

the top answer is returned. We use the default hy-942

perparameters for HotpotQA from (Xiong et al.,943

2021) in their codebase.9 We use a maximum path 944

length of 512 tokens, maximum question length of 945

64, and answer length of 30. In their experiments, 946

Xiong et al. (2021) combine the answer confidence 947

along with a ranking score using linear interpola- 948

tion with a hyperparameter λ. For our experiments, 949

we use the path scores produced by PROMPTRANK 950

instead and learn λ on a held-out development set. 951

The value we end up using for λ is 0.9. 952

D Analysis and More Experiments 953

D.1 Inference Cost 954

Here, we analyze inference cost in terms of latency 955

per query. We run retrieval using each method over 956

100 queries and then compute the average time 957

per query. Inference was run over a single Nvidia 958

Quadro RTX 8000 GPU. We run each method with 959

the maximum batch size that fits within the GPU. 960

One parameter that highly affects the speed for 961

both PathRetriever and MDR is the beam size. We 962

use the default beam size for PathRetriever, which 963

is 8, and we use a beam size of 5 for MDR, to 964

closely match PROMPTRANK’s pruning parameter 965

K1 = 5. Other than beam size, we use the default 966

parameters for each method. 967

Table A2 shows number of parameters of 968

each method and average time per query in sec- 969

onds. First, we note that PROMPTRANK uses 970

the most number of parameters since it is based 971

on T5-XLwhile PathRetriever and MDR both 972

rely on much smaller LMs such as BERT and 973

RoBERTa. Interestingly, however, we can see that 974

PROMPTRANK without ensembling has lower la- 975

tency than PathRetriever, which is slowed down by 976

the beam search process done since it has to expand 977

and encode outgoing links from each passage in 978

the beam at each step. As expected, ensembling 979

almost multiplies the latency of PROMPTRANK by 980

the number of ensembles. Lastly, we note that 981

MDR has significantly lower latency than both 982

models, i.e., about 60x faster than PathRetriever 983

and 46x than PROMPTRANK, which is mainly due 984

to the fast implementation of the exact inner prod- 985

uct search (Johnson et al., 2019). It is worth not- 986

ing, however, that MDR requires an expensive in- 987

dexing step where every document in the corpus 988

(Wikipedia in our case) is encoded using the docu- 989

ment encoder. PROMPTRANK, on the other hand, 990

9https://github.com/facebookresearch/
multihop_dense_retrieval
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ID Prompt

1 Document: [D1] Document: [D2] , ...,
Review previous documents and ask some question.
Question:

2 Document: [D1] Document: [D2] , ...,
Review the previous documents and answer question.
Question:

3 Document: [D1] Document: [D2] , ...,
Read the previous documents and write the following question.
Question:

4 Document: [D1] Document: [D2] , ...,
Search previous documents and ask the question.
Question:

5 To analyze the documents and ask question.
Document: [D1] Document: [D2] , ...,
Question:

6 Document: [D1] Document: [D2] , ...,
To read the previous documents and write a question.
Question:

7 Document: [D1] Document: [D2] , ...,
Read previous documents and write your exam question.
Question:

8 Document: [D1] Document: [D2] , ...,
Read the previous documents and ask this question.
Question:

9 Read two documents and answer a question.
Document: [D1] Document: [D2] , ...,
Question:

10 Identify all documents and ask question.
Document: [D1] Document: [D2] , ...,
Question:

Table A1: Top 10 instructions found through automated instruction search (§2.2) using T5-XL. Instructions are
sorted in descending order according to R@2 on a held-out development set of size 128 from HotpotQA (Yang
et al., 2018). We use the first 5 for instruction ensembling (section §2.2). Blue represents fixed text that does not
depend on the path i.e the instruction. The tokens [D1], [D2],.., etc. indicate where path documents are inserted.

System #params Avg. query time(s)

PathRetriever 110M 1.95
MDR 125M 0.03

PROMPTRANK 3B 1.38
PROMPTRANK (ens) 3B 5.22

Table A2: Inference cost and number of parameters of three
systems comparing PROMPTRANK to PathRetriever and MDR.
Query time is obtained by averaging the time to process 100
queries.

can work directly out-of-the-box without requiring991

such expensive indexing.992

D.2 Sensitivity to Document Order993

Here, study PROMPTRANK’s recall sensitivity to994

the document order in the prompt τc by running a995

simple experiment comparing two document order-996

ing schemes: link-based and inverted link-based.997

Link-based ordering is the standard approach used998

in PROMPTRANK, which orders the documents in 999

the path based on their Wikipedia hyperlink traver- 1000

sal order. The inverted scheme, reverses the order 1001

of the documents in the prompt. No instruction is 1002

used for this experiment. 1003

Table A3 shows the retrieval performance with 1004

both orderings. Interestingly, reversing the order 1005

of the documents in the path does not seem to have 1006

a tangible effect on the reranking performance. 1007

While it is expected that p(q|τc) will change by 1008

reversing the document order in the prompt, it ap- 1009

pears that the ranks of different paths remain almost 1010

unchanged, which explains why the recall is hardly 1011

affected. 1012

In other words, the path scores output by T5-XL 1013

does not appear to be sensitive to the document 1014

order prompt and can still. This might point to 1015

another benefit of LM-based path reranking: Since 1016
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Doc. ordering R@2 R@10 AR@2 AR@10

T5-Large
Link-based 44.9 66.9 73.6 88.0

Inverted 44.5 67.7 72.6 87.8

T5-XL
Link-based 44.6 67.9 74.1 88.2

Inverted 45.7 69.0 74.4 88.3

Table A3: Retrieval performance of PROMPTRANK
using two different orderings of the documents in the
prompt. Evaluation is done on a set of 2K examples
from HotpotQA train set. PROMPTRANK exhibits mini-
mal sensitivity to the document ordering.

the performance is hardly affected by the document1017

order, we do not have to worry about finding paths1018

in the correct order (if such order exists) since the1019

LM will still be able to assess the path relevance1020

given different orders.1021

D.3 Comparison to Few-shot Systems1022

So far, we have mainly compared PROMPTRANK1023

to systems trained on many more examples. Here1024

we compare PROMPTRANK to few-shot LOU-1025

VRE (Seonwoo et al., 2021) and PathRetriever1026

(Asai et al., 2020). To this end, we train PathRe-1027

triever on N examples from HotpotQA for N ∈1028

50, 100, 500, 1000 and compare its performance to1029

PROMPTRANK (Ndemos = 10). Since we were un-1030

able to obtain good performance by fine-tuning1031

LOUVRE on few examples, we directly com-1032

pare to the results reported in their paper, where1033

1% of training data is used (~90 examples). Ta-1034

ble A4 shows performance of both few-shot sys-1035

tems compared to PROMPTRANK. While PathRe-1036

triever’s performance improves as we add more1037

examples, we can see that it is much less data effi-1038

cient than PROMPTRANK. Even with 1K examples1039

i.e., around 10x more data than PROMPTRANK, it1040

performs significantly worse across all metrics. We1041

also observe that PROMPTRANK performs better1042

than LOUVRE in terms of R@2 and AR@2 (more1043

than 6 points better) and very close with respect to1044

other metrics even though PROMPTRANK does not1045

involve any (pre)training.1046

Approach # Ex R@2 R@10 AR@2 AR@10

PathRetriever

50 7.1 (4.4) 14.5 (4.6) 29.5 (6.2) 40.0 (3.7)

100 10.8 (1.1) 19.1 (0.3) 34.8 (1.5) 43.1 (0.6)

500 15.7 (0.3) 22.4 (0.3) 40.4 (0.3) 46.4 (0.4)

1K 17.7 (0.4) 23.6 (0.3) 41.8 (0.3) 47.1 (0.3)

LOUVRE 1% 53.5 75.5 72.3 –

PROMPTRANK 128 54.4 73.5 78.9 88.9(Ndemos = 10)

Table A4: Retrieval performance of PROMPTRANK
compared to Few-shot PathRetriever. We show mean
and (std) of PathRetriever’s performance over 5 different
seeds. The results of LOUVRE are take directly from
(Seonwoo et al., 2021). We observe that PathRetriever
performs very poorly in low-data settings, even when
using about 10x more data than PROMPTRANK. T
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