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Abstract

Achieving higher accuracy in Deep Neural Net-
works (DNNs) often reaches a plateau despite ex-
tensive training, retraining, and fine-tuning. This
paper introduces an analytical study using approx-
imate multipliers to investigate potential accuracy
improvements. Leveraging the principles of the
Information Bottleneck (IB) theory, we analyze
the enhanced information and feature extraction
capabilities provided by approximate multipliers.
Through Information Plane (IP) analysis, we gain
a detailed understanding of DNN behavior un-
der this approach. Our analysis indicates that
this technique can break through existing accu-
racy barriers while offering computational and
energy efficiency benefits. Compared to tradi-
tional methods that are computationally intensive,
our approach uses less demanding optimization
techniques. Additionally, approximate multipliers
contribute to reduced energy consumption during
both the training and inference phases. Experi-
mental results support the potential of this method,
suggesting it is a promising direction for DNN
optimization.

1. Introduction
Deep Neural Networks (DNNs) have achieved remarkable
success across various applications, yet they often encounter
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a performance ceiling where traditional methods like retrain-
ing and fine-tuning fail to yield further accuracy improve-
ments. This paper explores the innovative use of approx-
imate multipliers as a form of approximate computing to
break through these accuracy barriers. By integrating ap-
proximate multipliers into DNNs, we explore the potential
for achieving improved accuracy levels. This pioneering
approach leverages the IB theory to analyze and illustrate
the improvements, providing a new paradigm in feature
and information extraction. Additionally, our technique sig-
nificantly reduces computational demands and energy con-
sumption, offering an efficient alternative to conventional
optimization techniques.

Despite the potential benefits of approximate multipliers,
their application within the framework of IB theory remains
unexplored. This study aims to fill this gap by presenting
a comprehensive analysis of DNN behavior when approx-
imate multipliers are employed. The following sections
will discuss the role of approximate multipliers and the rel-
evance of IB theory in understanding and enhancing DNN
performance.

1.1. Approximate Multipliers

Approximate computing techniques, specifically approxi-
mate multipliers, have emerged as a promising approach to
enhancing the efficiency and performance of DNNs. Tra-
ditional multipliers are resource-intensive, leading to high
power consumption and latency, which are critical concerns
in both the training and inference phases of DNNs. Ap-
proximate multipliers, by design, offer a trade-off between
computational accuracy and resource utilization, resulting
in significant reductions in power without severely compro-
mising performance.

Several studies have explored different architectures of ap-
proximate multipliers tailored for DNN accelerators. For in-
stance, adaptive fault-tolerant approximate multipliers have
been proposed to mitigate soft errors and optimize hard-
ware resources, achieving reliability levels close to exact
multipliers while utilizing significantly less area and power
(Taheri et al., 2024). Techniques like ScaleTRIM employ
scalable truncation-based methods for integer multiplica-
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tion, leveraging curve fitting and error compensation to
maintain accuracy while reducing hardware costs (Farah-
mand et al., 2023). Other innovative approaches include
Dynamic Range Unbiased Multipliers (DRUM) (Hashemi
et al., 2015) and Truncation-and-Rounding-Based Scalable
Approximate Multipliers (TOSAM), which balance accu-
racy and efficiency in various DNN applications (Vahdat
et al., 2019).

These innovations illustrate the potential of approximate
multipliers to enhance DNN efficiency. However, their ap-
plication to surpass accuracy limits in DNN training and
inference remains underexplored. This paper seeks to extend
the current understanding by demonstrating how approxi-
mate multipliers can break through the performance ceiling
of DNNs and provide new insights into their inner workings
through the lens of IB theory.

1.2. Information Bottleneck Theory

The IB theory provides a powerful framework for under-
standing and analyzing the behavior of DNNs (Tishby et al.,
2000; Tishby & Zaslavsky, 2015). The IB principle focuses
on the trade-off between compression and prediction, aim-
ing to extract the most relevant information from the input
data with respect to the output task (Hafez-Kolahi & Kasaei,
2019). By examining the mutual information between in-
put, output, and hidden layers, the IB theory sheds light
on the internal workings of DNNs and their generalization
capabilities.

Previous research has demonstrated that DNN training in-
volves distinct phases of fitting and compression, with
the latter being critical for effective generalization (Hafez-
Kolahi & Kasaei, 2019; Lorenzen et al., 2021). The IP, a
visualization tool within the IB framework, plots the mutual
information between layers and provides insights into the
dynamics of information flow during training (Hafez-Kolahi
& Kasaei, 2019; Goldfeld et al., 2018). This method has
been used to reveal how information is processed and com-
pressed in various network architectures, influencing their
ability to generalize from training data to unseen data.

Despite its theoretical robustness, the application of IB the-
ory to approximate computing, specifically with approxi-
mate multipliers, has not been investigated. This study aims
to bridge this gap by employing IB analysis to elucidate
the benefits of integrating approximate multipliers in DNNs,
thereby uncovering new pathways to enhance accuracy and
efficiency. Our approach involves using the IB framework
to analyze the changes in information flow and compression
when approximate multipliers are introduced, providing a
detailed understanding of how these components influence
DNN performance.

The remainder of this paper is organized as follows. Sec-

tion 2 presents our hypothesis, detailing the specific proposi-
tions we aim to test through our analysis. Section 3 provides
a comprehensive background analysis, discussing the de-
sign and implementation of approximate multipliers and
their integration with IB theory. Section 4 describes the ex-
perimental setup and discusses the results, highlighting the
improvements in accuracy and power efficiency achieved
through our approach. Finally, Section 5 concludes the
paper and outlines potential directions for future research.

2. Hypothesis
In this section, we present our hypothesis, which forms the
basis for our analysis and supports the results observed in
our experiments.

We hypothesize that the inherent differences in the output
results of approximate multipliers, which lead to variations
in entropy, can significantly influence the information flow
in DNNs. Traditional training processes, which consistently
employ exact multiplication operations, may fail to achieve
higher accuracy due to the limitations imposed by this uni-
form computational paradigm.

By contrast, the use of a set of approximate multipliers, each
characterized by unique output behaviors and entropy lev-
els, can introduce a heterogeneous computational paradigm
within the DNN. We propose that this heterogeneous ap-
proach, wherein different layers of the network utilize dif-
ferent approximate multipliers, can enhance the information
flow from input to output in a manner that is unattainable
through conventional training and retraining processes.

To support our hypothesis, we use the information plane,
a powerful tool that can visualize and illustrate the infor-
mation flow in DNNs. The information plane has been
utilized in many research works to study and demonstrate
the dynamics of information processing within neural net-
works. By employing this tool, we aim to observe and
analyze the impact of heterogeneous approximate multipli-
ers on the information flow in DNNs. This visualization
will help us understand how the variations in computational
paradigms affect the network’s ability to extract and process
information, thereby providing empirical evidence for our
hypothesis.

This approach, which can be considered a retraining method,
achieves this improvement with a significantly lower number
of computations compared to traditional retraining proce-
dures. Our approach aims to efficiently enhance accuracy
with reduced computational overhead, thus demonstrating
the practical benefits and feasibility of our hypothesis.

In summary, our hypothesis is that the strategic use of hetero-
geneous approximate multipliers, with their distinct output
entropies, can lead to a computational paradigm shift that
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enables DNNs to achieve higher accuracy levels than those
possible with traditional exact multiplication-based training
processes. The information plane will be used to visualize
these changes in information flow, and our proposed method
will demonstrate the efficiency and effectiveness of this ap-
proach, thereby supporting our hypothesis through detailed
empirical observations and practical validation.

3. Analytical Framework
3.1. Role of Approximate Multipliers in DNNs

Approximate multipliers are a type of approximate comput-
ing technique that introduces trade-offs between computa-
tional accuracy and speed, area or energy efficiency (or all
three). These multipliers sacrifice computational accuracy
by introducing errors in the results through the removal or
simplification of certain hardware components (Amirafshar
et al., 2023). While this can generate errors due to the lack
of exact processing compared to precise multipliers, it can
lead to lower delays in computations, reduced energy con-
sumption (or increased power efficiency), potentially fewer
components (depending on the technique used), and less
area (less silicon costs).

Recent studies have demonstrated the utility of approximate
multipliers in various machine learning and deep learning
applications, which are inherently error-resilient (Shakib-
hamedan et al., 2024a; Damsgaard et al., 2024; TaheriNejad
& Shakibhamedan, 2022). Many deep learning models can
tolerate computational errors, allowing for more efficient
operations with negligible accuracy drops that can be com-
pensated or ignored depending on the application. Research
indicates that using approximate multipliers instead of exact
multipliers results in minor accuracy reductions, which are
often acceptable within the context of deep learning tasks.

Quantization is another technique used to enhance efficiency
and reduce energy consumption in deep learning and ma-
chine learning models (Liang et al., 2021). By reducing
the bit width used in computations, quantization decreases
the computational energy required and the memory foot-
print. One popular number representation in deep learning
is INT8, which offers a suitable balance between dynamic
range and computational efficiency. INT8 is supported by
major deep learning frameworks such as TensorFlow (Abadi
et al., 2015) and PyTorch (Paszke et al., 2019).

Recently, a family of quantized approximate multipliers
for DNNs, known as Signed Carry Disregard Multipliers
(SCDM8), was proposed (Shakibhamedan et al., 2024b).
These multipliers introduce approximation by disregarding
the carry value propagation from the lower bits to the higher
bits, reducing the number of components compared to exact
multipliers. This approach results in significant energy effi-
ciency and power savings during multiplication operations,

Table 1. Energy Savings and Accuracy Degradation of Approxi-
mate Multipliers Compared to Exact Multipliers in Various DNN
Architectures

DNN DATASET
ACCURACY (TOP-1)

DEGRADATION
ENERGY
SAVING

VGG16 IMAGENET 0.49% 61%
RESNET152 IMAGENET 0.23% 68%
MOBILENETV2 IMAGENET 0.10% 45%
CONVVEXT-T IMAGENET 0.37% 56%
LENET5-INSPIRED MNIST 0.07% 51%

albeit with some computational errors.

The SCDM8 family includes up to 100 variations of ap-
proximate multipliers, each representing different levels
of approximation and error in the results. Experimental
evaluations on well-known DNNs for image classification
tasks, including VGG16/19, ResNet101/152, MobileNetV2,
ConvNeXt, and a LeNet5-inspired CNN, demonstrated that
20 of these approximate multipliers provide satisfactory
performance. These evaluations were conducted using Post-
Training Quantization (PTQ) on pre-trained datasets.

The behavioral models of these multipliers, which simulate
the output of the multiplication operations, are available
at (Shakibhamedan et al., 2024b). According to the re-
sults of this study, these approximate multipliers achieve
satisfactory accuracy for image classification tasks while
delivering significant power savings. Some of the results,
demonstrating energy savings compared to exact multipliers,
are summarized in Table 1.

For our studies and experiments, we selected 20 approxi-
mate multipliers from the SCDM8 family, as identified in the
original study. Using the naming convention SCDM8 XY
(where X and Y represent the number of approximate bits),
we chose the set SCDM8 XY (X:4–8, Y:1–4), which corre-
sponds to 20 approximate multipliers labeled Approx Mult
1-20 in our experiments.

To illustrate the computational errors introduced by approx-
imate multipliers, we present the results of the exact multi-
plier, and 20 used approximate multipliers for input values
in the range of [-10, 10]. These results are depicted in
Appendix A.1, highlighting the trade-offs between accu-
racy and energy efficiency achieved by different levels of
approximation.

The differences in outputs, which result from using different
arithmetic operations, and their demonstrated performance
in various DNNs, motivated us to study and analyze their
performance in feature extraction from data. We also exam-
ined their effects on data encoding and decoding, as well
as the information flow within DNNs. Our goal was to de-
termine if these different computational paradigms could
reveal information or phenomena that traditional computa-
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tional paradigms cannot achieve.

3.2. Entropy Analysis

As the first step, we studied the entropy of the output of
approximate multipliers and compared it to the output of the
exact multiplier. Entropy, a concept introduced by Shannon
(1948), quantifies information by measuring the uncertainty
or the intrinsic amount of information associated with a
variable. For a given discrete random variable X , with
values coming from the set of possible values X and density
function p(x), the entropy is given by:

H(X) = −
∑

p(x) log p(x) (1)

Due to the approximations in the multipliers’ computations,
the entropy of the outputs of approximate multipliers dif-
fers from that of exact multipliers. This difference directly
affects feature extraction, information encoding, and in-
formation flow in DNNs. The results of this analysis are
illustrated in Section 4.

As mentioned, these variations in computations motivated
us to study their effects on the information flow within
DNNs and examine how these computational paradigms
can affect the accuracy of trained DNNs. Another question
we aim to address is how the information flow is affected
by heterogeneous computation flows when using different
approximate multipliers in a DNN. Moreover, we study their
effects on the ‘fitting’ and ‘compressing’ features in DNNs.

3.3. Information Theory Analysis in DNNs

For this purpose, we used the IB concept. The IB con-
cept, proposed by Tishby & Zaslavsky (2015), studies and
demonstrates information flow in DNNs using information
theory.

In addition to entropy, another tool used in the IB concept is
mutual information. Mutual information measures the mu-
tual “knowledge” or “dependency” between two variables.
Consider a second random variable Y , with the probability
distribution p(y) that takes values from the set of possible
values Y . The joint probability distribution p(x, y) repre-
sents the probability of x and y occurring together. Mutual
information, expressed as I(X;Y ), measures how much
information X knows about Y and is given by:

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
(2)

In the IB framework, each layer of a DNN is considered a
random variable, including the first layer (input data) and the
last layer (the output). For a DNN with m hidden (middle)
layers, the input layer X and output layer Ŷ are illustrated
in Figure 1 According to the principles of the IB concept by

X T1 T2 T3 Tm ෠𝑌

Input Hidden layers Output

Figure 1. DNN schematic with input X , output Y , and hidden
layers T1 to Tm for IB analysis.

Tishby & Zaslavsky (2015), if there are labels Y associated
with the input data X , a Markov chain can be applied to a
DNN as follows:

Y → X → T1 → T2 → . . . → Tm → Ŷ (3)

where Ti denotes the i-th hidden layer, X is the input, Y is
the corresponding label, and Ŷ is the output of the DNN.
According to (Tishby & Zaslavsky, 2015; Saxe et al., 2019),
by applying the IB principle to a DNN, the hidden layers
(Ti) are considered relevant components that “squeeze” the
information from X through a bottleneck in the form of the
variable Ti. Essentially, Ti (or generally T ) is a compressed
representation of X . The mutual information between Y
and T (I(Y ;T )) indicates the level of “informativeness” of
T about Y .

The IB method proposes that the optimal representation T
should maximize information about Y while minimizing
mutual information with X . In other words, simultaneously
maximizing I(T ;Y ) and minimizing I(X;T ) leads to bet-
ter fitting and compression, respectively. This objective can
be formulated as a Lagrangian:

L = I(Y ;T )− βI(X;T ) (4)

where β is a regularization parameter.

By considering the applied IB to (3) by (Tishby & Zaslavsky,
2015) and according to the data processing inequality (DPI),
the following inequalities hold for the information flow in
DNNs:

I(Y ;X) ≥ I(Y ;T1) ≥ . . . ≥ I(Y ;Tm) (5)

I(X;X) ≥ I(X;T1) ≥ . . . ≥ I(X;Tm) (6)

As shown by (5) and (6), the DPI imposes upper and lower
bounds on I(Y ;T ) and I(X;T ), which are considered in
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our studies. According to the definitions in information the-
ory and the IB concept, the terms of (4) can be reformulated
using the following equations:

I(X;T ) = H(T )−H(T |X) = H(T ) (7)

I(T ;Y ) = I(Y ;T ) = H(T )−H(T |Y ) (8)

where H(T |Y ) is the conditional entropy of T given Y , and
H(T |X) is the conditional entropy of T given X . Since T
is assumed to be a deterministic function of X , H(T |X)
equals zero.

By defining I(X;T ) and I(Y ;T ), a visual representation
called the information plane can be defined. In the infor-
mation plane, the x-axis represents I(X;Ti), and the y-axis
represents I(Y ;Ti). This concept provides detailed insights
into the information flow in each layer and the entire DNN.
It is usually used in the training phase to visualize and study
trends in information flow.

As discussed by Shwartz-Ziv & Tishby (2017) and Loren-
zen et al. (2021) in several observations of training various
datasets and using different activations (e.g., ReLU and
Tanh), the fitting and compression phases have been ob-
served. These phases, especially the compression phase,
which is conjectured to contribute to good generalization,
have been deeply studied in the literature (Yu et al., 2020;
Kirsch et al., 2020; Shwartz-Ziv & Alemi, 2020; Jónsson
et al., 2020; Darlow & Storkey, 2020; Goldfeld et al., 2018).

3.4. Improving DNNs with Heterogeneous
Computational Paradigms

Our approach harnesses the different computational
paradigms and output entropies of approximate multipliers
to examine new possibilities for feature extraction and in-
formation flow. These paradigms enable us to reach certain
points on the information plane that are unattainable with
traditional computational paradigms, such as conventional
training methods.

We observed that the output entropy of each approximate
multiplier is distinct from one another and from the en-
tropy of exact multipliers. This diversity provides a range
of computational paradigms. Our novel approach involves
using a different approximate multiplier for each layer in a
DNN, creating a heterogeneous computational environment.
This heterogeneity, arising from varying levels of multipli-
cation entropy, positively impacts the information flow on
the information plane, leading to better fitting (accuracy)
and compression. To identify suitable configurations for
such a heterogeneous implementation, we utilized a genetic
algorithm, as detailed in Section 4. Moreover, as previously

mentioned, the power consumption of approximate multi-
pliers is lower compared to exact multipliers. Therefore,
any layer-wise combination of approximate multipliers will
have less power consumption compared to a fully quantized
INT8 DNN.

In summary, by using a heterogeneous information flow with
different multipliers, we achieved better accuracy (fitting)
and compression, along with improved power efficiency.
This can be considered a novel technique for retraining,
which offers significant benefits in terms of accuracy, com-
pression, and energy efficiency during both training and
inference.

4. Experimental Setup and Results
In this section, we present and illustrate the results of our
study and the conducted experiments. As mentioned in
the previous section, we used 20 quantized (INT8) approx-
imate multipliers from (Shakibhamedan et al., 2024b) for
our experiments. Due to the applied approximations, the
proposed approximate multipliers consume less energy for
performing multiplications, thus achieving power efficiency.
The power efficiency of the used approximate multipliers
is illustrated in Appendix A.2. The power efficiency is cal-
culated in comparison to exact multipliers. The ACE-CNN
(Shakibhamedan et al., 2024b) implemented approximate
multipliers homogeneously, meaning they used one of the
approximate multipliers for all layers in the DNNs.

For our experiments, we select the LeNet5-inspired CNN,
which was proposed and used in (Shakibhamedan et al.,
2024b), as our case study. This CNN is trained on the
MNIST dataset (Deng, 2012). We also used the MNIST
dataset in our experiments. The architecture of the used
CNN is illustrated in Table 2.

Table 2. Architecture of the LeNet5-inspired CNN for MNIST
dataset experiments (T stands as the batch size).

LAYER TYPE (NAME) FILTERS OUTPUT DIMENSION
CONV2D (CONV LAYER 1) [1X1X64] TX28X28X64
ACTIVAT (RELU) - TX28X28X64
CONV2D (CONV LAYER 2) [1X1X32] TX28X28X32
ACTIVAT (RELU) - TX28X28X32
CONV2D (CONV LAYER 3) [1X1X16] TX28X28X16
ACTIVAT (RELU) - TX28X28X16
CONV2D (CONV LAYER 4) [3X3X8] TX26X26X8
ACTIVAT (RELU) - TX26X26X8
CONV2D (CONV LAYER 5) [3X3X4] TX24X24X4
ACTIVAT (RELU) - TX24X24X4
FLATTEN - -
FC (FC LAYER 1) [2304X128] TX128
FC (FC LAYER 2) [128X64] TX64
FC (FC LAYER 3) [64X10] TX10

As mentioned before, the entropy of the approximate multi-
pliers’ output is different, providing us with various compu-

5



Analytical Approach to Enhancing DNN Efficiency and Accuracy Using Approximate Multiplication

tational paradigms. The entropy of exact and approximate
multipliers is presented in Appendix A.3. The entropy is
calculated by considering all possible 256×256 inputs.

As the first step, we trained the mentioned CNN proposed by
Shakibhamedan et al. (2024b) from scratch (in float32 num-
ber representation) to reach the reported accuracy. In our
experiments, we trained the CNN with the MNIST dataset
(training data of MNIST). The batch size was 1024, the loss
function was set to cross-entropy, and the Adam optimizer
(with a learning rate of 10−4) was used (with 5000 epochs)
for optimization. The output of each layer during training
was saved for calculating the needed mutual information
I(X;T ) and I(Y ;T ). After training, the information plane
of this training procedure was computed and illustrated in
Figure 2.

Figure 2. Information plane of LeNet5-inspired CNN training. The
x-axis shows I(X;Ti) and the y-axis shows I(Y ;Ti). The right-
most curve is the first layer, and the leftmost curve is the last layer,
in sequential order.

As shown, the information curves of convolutional layers
have different structures, and various trends in fitting and
compressing can be observed. Similar to the ACE-CNN
research work (Shakibhamedan et al., 2024b), we applied
PTQ to the weights. However, we did not limit applying
PTQ just after training. Instead, we applied PTQ after each
epoch to calculate the output of each layer in a quantized
manner. This means that the saved output of each layer
was quantized throughout the training process, ensuring
that all mutual information calculations were performed on
quantized data.

As mentioned in (Lorenzen et al., 2021), computing MI in
quantized neural networks is exact and has higher accuracy
compared to calculating MI for non-quantized neural net-
works. We used the proposed tool in (Lorenzen et al., 2021)
for calculating the values of MI.

The information values of the last epoch are illustrated in
Figure 3. Next, to study the effects of using approximate

Figure 3. Information values of the last epoch for each layer of
the LeNet5-inspired CNN. The plot shows the mutual information
between the input X and the hidden layers Ti I(X;Ti) on the
x-axis, and the mutual information between the output Y and the
hidden layers TiI(Y ;Ti) on the y-axis, illustrating the information
flow and the final fitting and compression states of the network.

multipliers on the information values of the last epoch in
Figure 3, we replaced the exact multiplier in each layer
with the proposed approximate multipliers. The achieved
accuracy, power efficiency (due to using approximate multi-
pliers), and information values are reported in Appendix A.4
and Figure 4, respectively.

As shown, there are some drifts in the information values
compared to the values from Figure 2. Using approximate
multipliers has led to more compression (reducing the values
of I(X;T )), which shows the effects of using different
computational paradigms. On the other hand, a drift in the
values of I(Y ;T ) (fitting procedure) can also be observed,
which occurs due to the computational errors and accuracy
reduction reported in Appendix A.4.

We used these findings to conduct our ultimate goal of im-
plementing layer-wise heterogeneous approximate multi-
pliers to find the point on the information plane that not
only has more compression (similar to what happened in
homogeneous implementation) but also achieves more accu-
racy (increasing the values of I(Y ;T ) in the fitting phase).
For this experiment, we used a genetic algorithm to achieve
more computational efficiency compared to retraining (more
details are discussed in Appendix C).

For implementing the genetic algorithm, we set the input
number to 8 (as we have 8 layers in our CNN), the popula-
tion size to 50, and the number of generations to 25. The
mutation rate was set to 0.1. The details of the implemented
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Figure 4. Information values of the last epoch after replacing ex-
act multipliers with approximate multipliers in each layer of the
LeNet5-inspired CNN. The x-axis shows I(X;Ti) and the y-axis
shows I(Y ;Ti), highlighting the changes in information flow, fit-
ting, and compression due to the use of approximate multipliers.

Table 3. Energy savings and accuracy improvement of heteroge-
neous approximate multipliers implementation compared to the
exact multiplier with an accuracy of 99.25%.

APPROX MULT
COMBINATION

ACCURACY
(TOP-1)

ENERGY
SAVING

19,10,6,3,10,6,12,10 99.29% 56%
18,5,14,10,3,8,6,19 99.36% 57%
18,5,6,13,7,3,1,14 99.41% 50%
12,8,14,2,5,9,15,2 99.45% 61%

genetic algorithm are described in Algorithm 1.

By conducting the genetic algorithm (which can be consid-
ered a form of re-training), we found some combinations of
approximate multipliers that not only provide more compres-
sion but also deliver higher accuracy. These combinations
allowed us to reach points on the information plane that
could not be reached using traditional training procedures
and exact INT8 multipliers. The achieved accuracies and
the points reached on the information plane are illustrated
in Table 3 and Figure 5, respectively. Moreover, the energy
efficiency of inference, due to using heterogeneous approxi-
mate multipliers during the inference phase, is also reported
in Table 3 (details are discussed in Appendix A.4.1). In
summary, our experiments demonstrated that by using a
heterogeneous information flow with different approximate
multipliers, we can achieve better accuracy (fitting) and
compression, along with improved power efficiency. Such
a ‘retraining’ can be performed using simple algorithms
such as genetic algorithm. This novel method for retraining

Algorithm 1 Details of implemented genetic algorithm
Input: Initial Approx Mult for: Conv Lyr 1,
Conv Lyr 2, Conv Lyr 3, Conv Lyr 4, Conv Lyr 5,
FC Lyr 1, FC Lyr 2, FC Lyr 3
Set:
Generation Num = 50
Population Size = 50
Mutation rate = 0.1
Input range: Approx Mult 1:20
Desired output (Accuracy) = 1
Create the initial population
Output: Desired Approx Mult combination:
CL1, CL2, CL3, CL4, CL5, FC1, FC2, FC3
repeat

1. Evaluate the fitness of each individual
2. Select parents for reproduction
3. Create the next generation through crossover and
mutation
4. Replace the old population with the offspring

until Number of Generations
Find the best individual in the final population
Return the desired results.

offers significant benefits in terms of accuracy, compres-
sion, and efficiency during both training and inference. The
results highlight the potential of approximate multipliers
to surpass the prediction performance limits of traditional
methods while reducing computational costs and energy
consumption.

5. Conclusion and Discussion
In this section, we summarize our findings and discuss the
implications of using approximate multipliers in DNNs,
focusing on accuracy improvements, energy efficiency, and
potential future research directions.

The results of our study demonstrate that approximate mul-
tipliers can enhance the performance (accuracy) and effi-
ciency of DNNs. By incorporating these multipliers, we
were able to achieve higher accuracy levels that surpass the
traditional limits encountered with conventional training
methods. This was demonstrated through the novel appli-
cation of the IB theory, which provided a comprehensive
framework to understand the effects of using approximate
multipliers and optimizing the information flow within the
network.

Our experiments with the LeNet5-inspired CNN on the
MNIST dataset highlighted several key advantages of using
approximate multipliers:

1. Improved Accuracy: Using a heterogeneous combi-
nation of approximate multipliers for each layer, re-
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Figure 5. Information plane of the LeNet5-inspired CNN after
implementing layer-wise heterogeneous approximate multipliers.
The x-axis represents I(X;Ti) and the y-axis represents I(Y ;Ti).
This figure highlights the points on the information plane achieved
through genetic algorithm optimization, showing enhanced com-
pression and fitting compared to traditional training methods.

sulted in improved fitting and compression, confirming
our hypothesis. This led to higher accuracy levels, as
shown by the enhanced mutual information values in
the information plane.

2. Energy Efficiency: The use of approximate multipli-
ers resulted in significant power savings during both
the training and inference phases. This efficiency is
particularly beneficial for edge and IoT applications
where energy consumption is a critical factor.

3. New Retraining Approach: We proposed a retrain-
ing approach that offers multiple benefits. First, this
method is significantly more efficient, as discussed in
detail in Appendix C, where we compare normal re-
training (training) with a simpler algorithmic approach.
This novel approach leverages a new computational
paradigm that is distinct from those used in conven-
tional training and retraining methods. It benefits from
mathematical principles and insights from information
theory-based analysis, which are not utilized in current
methods.

4. Information Plane Discovering: Using the informa-
tion plane as a tool for visualizing what is happening
within the DNNs, we demonstrated that our efficient
proposed training method can reach points on the infor-
mation plane that other methods cannot achieve. This
highlights the unique advantages of our approach in
terms of information flow and network optimization.

5.1. Future Research Directions

While our study has established the potential of approximate
multipliers in enhancing DNN performance, several avenues
for future research remain:

1. Broader Application Scope: Extending the applica-
tion of approximate multipliers to other types of neural
networks and datasets could provide further validation
of their effectiveness and versatility.

2. From-Scratch Training: One of the future directions
we plan to explore is using this method for from-scratch
training. This could provide further insights into the
fundamental advantages of using approximate multi-
pliers throughout the entire training process.

3. Optimization Algorithms: Exploring other optimiza-
tion techniques beyond genetic algorithms could yield
even more efficient methods for selecting approximate
multipliers.

4. Theoretical Foundations: Further theoretical explo-
ration of the relationship between approximation levels,
entropy, and mutual information could deepen our un-
derstanding of the fundamental principles governing
DNN behavior. One potential avenue is to incorporate
such analysis results as feedback for selecting the ap-
proximate multipliers. For instance, introducing a term
based on a parameter from this analysis into the fit-
ness function used in our optimization algorithm could
enhance the selection process and overall performance.

In conclusion, the use of approximate multipliers in con-
junction with the IB theory represents a promising direction
for advancing the capabilities of DNNs. Our findings un-
derscore the potential for achieving superior accuracy and
energy efficiency, paving the way for more robust and sus-
tainable AI applications.
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A. Appendix
A.1. Visualization of Values for All Approximate Multipliers and Exact Multipliers

In this appendix, we provide a detailed visualization of the outputs for all 20 approximate multipliers and the exact multiplier
when the input values range from [−10, 10]. This visualization helps to illustrate the differences in computational results
due to the approximations and to highlight the trade-offs between accuracy and energy efficiency achieved by different
levels of approximation. To visualize the output, we used a color spectrum from red to green (from the lowest value to the
highest value).

The following figures present the output results for the exact multiplier and each of the 20 approximate multipliers (labeled
Approx Mult1 to Approx Mult20). Each figure plots the output of the multiplication for input values in the range of
[−10, 10].

Exact Multiplier Approximate Multiplier 1 Approximate Multiplier 2

Approximate Multiplier 3 Approximate Multiplier 4 Approximate Multiplier 5

Approximate Multiplier 6 Approximate Multiplier 7 Approximate Multiplier 8
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Approximate Multiplier 9 Approximate Multiplier 10 Approximate Multiplier 11

Approximate Multiplier 12 Approximate Multiplier 13 Approximate Multiplier 14

Approximate Multiplier 15 Approximate Multiplier 16 Approximate Multiplier 17

Approximate Multiplier 18 Approximate Multiplier 19 Approximate Multiplier 20

Figure 6. Output of exact multiplier and approximate multipliers (Approx Mult1 to Approx Mult20) for input values in the range
[−10, 10]. Each subplot uses a color spectrum from red to green to represent the output values from lowest to highest.
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The visualizations provided in these figures clearly demonstrate the computational differences introduced by each approxi-
mate multiplier compared to the exact multiplier. These differences are crucial for understanding the trade-offs between
energy efficiency and accuracy in DNN computations.

A.2. Power Efficiency of Approximate Multipliers

In this section, we provide information about the power efficiency of the approximate multipliers used in our experiments.
The power efficiency is measured by the power usage coefficient, which compares the energy consumption of each
approximate multiplier to that of the exact multiplier. A lower power usage coefficient indicates higher energy efficiency.

Type of Multiplier Power Usage Coefficient
Exact Multiplier 1.00
Approximate Multiplier 1 0.78
Approximate Multiplier 2 0.76
Approximate Multiplier 3 0.74
Approximate Multiplier 4 0.69
Approximate Multiplier 5 0.69
Approximate Multiplier 6 0.64
Approximate Multiplier 7 0.61
Approximate Multiplier 8 0.58
Approximate Multiplier 9 0.66
Approximate Multiplier 10 0.61
Approximate Multiplier 11 0.58
Approximate Multiplier 12 0.55
Approximate Multiplier 13 0.63
Approximate Multiplier 14 0.54
Approximate Multiplier 15 0.49
Approximate Multiplier 16 0.43
Approximate Multiplier 17 0.58
Approximate Multiplier 18 0.52
Approximate Multiplier 19 0.46
Approximate Multiplier 20 0.40

Table 4. Power Usage Coefficients for Exact and Approximate Multipliers

A.3. Entropy of Outputs from Exact and Approximate Multipliers

In this section, we provide information about the entropy of the outputs from the exact and approximate multipliers. Entropy,
a concept introduced by Shannon, is a measure of uncertainty or the amount of information inherent in a variable. The
entropy of the output reflects the variability and unpredictability of the results produced by the multipliers. Higher entropy
indicates more variability in the output.

Type of Multiplier Output Entropy Type of Multiplier Output Entropy Type of Multiplier Output Entropy
Exact Multiplier 12.856 Approximate Multiplier 7 13.458 Approximate Multiplier 14 13.525
Approximate Multiplier 1 13.183 Approximate Multiplier 8 13.600 Approximate Multiplier 15 13.502
Approximate Multiplier 2 13.261 Approximate Multiplier 9 13.438 Approximate Multiplier 16 13.637
Approximate Multiplier 3 13.372 Approximate Multiplier 10 13.436 Approximate Multiplier 17 13.625
Approximate Multiplier 4 13.580 Approximate Multiplier 11 13.516 Approximate Multiplier 18 13.633
Approximate Multiplier 5 13.325 Approximate Multiplier 12 13.632 Approximate Multiplier 19 13.634
Approximate Multiplier 6 13.379 Approximate Multiplier 13 13.513 Approximate Multiplier 20 13.641

Table 5. Output Entropy for Exact and Approximate Multipliers
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A.4. Benefits of Replacing Exact Multiplier with Approximate Multipliers for Inference

In this section, we present the benefits of replacing the exact multiplier with approximate multipliers during the inference
phase after training. The use of approximate multipliers can lead to significant energy savings while maintaining high
accuracy. The table below shows the accuracy (TOP-1) and energy savings achieved by using various approximate multipliers
compared to the exact multiplier.

Type of Multiplier Accuracy (TOP-1) Energy Saving (%)
Exact Multiplier 99.25% 0%
Approximate Multiplier 1 99.25% 28%
Approximate Multiplier 2 99.24% 32%
Approximate Multiplier 3 99.04% 36%
Approximate Multiplier 4 98.27% 44%
Approximate Multiplier 5 99.20% 45%
Approximate Multiplier 6 99.18% 56%
Approximate Multiplier 7 98.91% 63%
Approximate Multiplier 8 98.72% 72%
Approximate Multiplier 9 99.12% 52%
Approximate Multiplier 10 99.21% 64%
Approximate Multiplier 11 98.61% 71%
Approximate Multiplier 12 98.44% 82%
Approximate Multiplier 13 98.70% 60%
Approximate Multiplier 14 98.62% 84%
Approximate Multiplier 15 98.98% 106%
Approximate Multiplier 16 97.24% 130%
Approximate Multiplier 17 89.06% 71%
Approximate Multiplier 18 94.60% 94%
Approximate Multiplier 19 94.57% 118%
Approximate Multiplier 20 94.47% 151%

Table 6. Accuracy (TOP-1) and Energy Savings for Exact and Approximate Multipliers During Inference

This table highlights the trade-offs between accuracy and energy savings when using approximate multipliers for inference.
The results show that it is possible to achieve significant energy savings with only a small reduction in accuracy. In some
cases, approximate multipliers can even provide energy savings of over 100%, demonstrating their potential for improving
the energy efficiency of DNNs without substantial sacrifices in performance.

A.4.1. ENERGY SAVING CALCULATION

According to the architecture of the used DNN (Table 2), the number of required multiplications is calculated for each
layer. The number of multiplications in each layer is also detailed in Appendix C. To define energy saving, we consider
the power usage of the exact multiplier as 1, and the power usage of the approximate multipliers as reported in Table 4 in
Appendix A.2. The energy saving is calculated as the ratio of the power usage of the exact multiplier to the power usage of
the approximate multipliers.

Table 7 below provides a breakdown of the required multiplications for each layer in the DNN architecture. To calculate the
energy saving values of Table 3 when we use the approximate multipliers heterogeneously for the layers in the DNN, we
consider the energy usage of the exact multiplier as Ex and the energy usage of the used approximate multiplier for the i-th
layer as Epi

. The energy saving is calculated using the following formula:

Energy Saving =

(
50176·

(
Ex
Ep1

)
+1605632·

(
Ex
Ep2

)
+401408·

(
Ex
Ep3

)
+778752·

(
Ex
Ep4

)
+165888·

(
Ex
Ep5

)
+294912·

(
Ex
Ep6

)
+8192·

(
Ex
Ep7

)
+640·

(
Ex
Ep8

)
3586592 − 1

)
× 100

For each combination of heterogeneous approximate multipliers, the values of Ex and Epi are the corresponding values
from Table 4.
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Table 7. Energy Saving Calculation for CNN Architecture

LAYER TYPE (NAME) FILTERS OUTPUT DIMENSION NUMBER OF MULTIPLICATIONS
CONV2D (CONV LAYER 1) [1X1X64] TX28X28X64 50176
ACTIVAT (RELU) - TX28X28X64 -
CONV2D (CONV LAYER 2) [1X1X32] TX28X28X32 1605632
ACTIVAT (RELU) - TX28X28X32 -
CONV2D (CONV LAYER 3) [1X1X16] TX28X28X16 401408
ACTIVAT (RELU) - TX28X28X16 -
CONV2D (CONV LAYER 4) [3X3X8] TX26X26X8 778752
ACTIVAT (RELU) - TX26X26X8 -
CONV2D (CONV LAYER 5) [3X3X4] TX24X24X4 165888
ACTIVAT (RELU) - TX24X24X4 -
FLATTEN - - -
FC (FC LAYER 1) [2304X128] TX128 294912
FC (FC LAYER 2) [128X64] TX64 8192
FC (FC LAYER 3) [64X10] TX10 640
TOTAL - - 3586592

In summary, the energy saving is calculated by taking the weighted average of the energy savings for each layer, considering
the number of multiplications in each layer, and then multiplying by 100 to express it as a percentage.

B. Appendix-Training Parameters Evaluation
During the training phase, we experimented with various parameters over 5,000 epochs to determine the optimal settings for
our study. We evaluated different combinations of batch sizes, learning rates, and other hyperparameters. Despite extensive
experimentation, the parameters detailed in the Experiments chapter were chosen as they consistently yielded the best results
in terms of accuracy and efficiency.

The parameters we tested include:

• Batch sizes: Ranging from 256 to 4096

• Learning rates: Ranging from 10−5 to 10−3

• Normalization techniques: Including batch normalization

Batch normalization and dropout were used in all training configurations, including the chosen one.

After thorough evaluation, the combination of a batch size of 1024, a learning rate of 10−4, and the Adam optimizer with a
cross-entropy loss function was found to be the most effective. These parameters provided the highest accuracy and stability
throughout the training process, as detailed in the Experiments chapter.

To ensure a fair comparison, we used 10,000 images from the dataset as the validation dataset in the training procedure. The
same decision was applied to the genetic algorithm, which used only 10,000 images for the test (to have a fair comparison).

The table below provides the architecture of the LeNet5-inspired CNN used for the MNIST dataset experiments. This
architecture was used for all training configurations:

The table below shows the results of various parameter combinations we tested during the training phase. The chosen
parameters (batch size of 1024 and learning rate of 10−4) were selected because they provided the best balance between
accuracy and training stability, as evidenced by the results.

Table 9 results file provides a comprehensive overview of the various parameter combinations we tested and their corre-
sponding performance metrics. This extensive analysis underscores the importance of selecting the appropriate training
parameters to achieve optimal performance in DNNs.
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Table 8. Architecture of the LeNet5-inspired CNN for MNIST dataset experiments (T stands as the batch size).

LAYER TYPE FILTERS OUTPUT DIMENSION
CONV2D [1X1X64] TX28X28X64
ACTIVAT (RELU) - TX28X28X64
BATCH NORMALIZATION - TX28X28X64
CONV2D [1X1X32] TX28X28X32
ACTIVAT (RELU) - TX28X28X32
BATCH NORMALIZATION - TX28X28X32
CONV2D [1X1X16] TX28X28X16
ACTIVAT (RELU) - TX28X28X16
BATCH NORMALIZATION - TX28X28X16
CONV2D [3X3X8] TX26X26X8
ACTIVAT (RELU) - TX26X26X8
BATCH NORMALIZATION - TX26X26X8
CONV2D [3X3X4] TX24X24X4
ACTIVAT (RELU) - TX24X24X4
BATCH NORMALIZATION - TX24X24X4
FLATTEN - TX2304
FC [2304X128] TX128
BATCH NORMALIZATION - TX128
DROPOUT (0.2) - TX128
FC [128X64] TX64
BATCH NORMALIZATION - TX64
DROPOUT (0.2) - TX64
FC [64X10] TX10

Table 9. Performance of Various Training Configurations over 5,000 Epochs.

TRAINING PARAMETERS LEARNING RATE :1E-3 LEARNING RATE :5E-4 LEARNING RATE :1E-4 LEARNING RATE :5E-5 LEARNING RATE :1E-5
BATCH SIZE: 256 99.19 99.19 99.19 99.2 99.21
BATCH SIZE: 512 99.2 99.21 99.22 99.22 99.22
BATCH SIZE: 1024 99.23 99.24 99.25 99.24 99.24
BATCH SIZE: 2048 99.23 99.23 99.24 99.24 99.24
BATCH SIZE: 4096 99.24 99.24 99.24 99.24 99.24

C. Appendix-Computational Complexity Analysis
C.1. Computational Complexity of Training a Convolutional Neural Network (CNN)

C.1.1. NETWORK ARCHITECTURE AND TRAINING SPECIFICATIONS

The computational complexity for training a Convolutional Neural Network (CNN) is analyzed based on the following
specifications:

• Input image size: 28× 28× 1

• Number of layers: 8

– First 5 layers are convolutional with kernel sizes:

* 1× 1× 64

* 1× 1× 32

* 1× 1× 16

* 3× 3× 8

* 3× 3× 4

– Last 3 layers are fully connected with sizes:

* 128

* 64

* 10

• Batch size: 1024
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• Training set size: 50000

• Number of epochs: 5000

C.1.2. COMPLEXITY CALCULATION FOR CONVOLUTIONAL LAYERS

The number of operations for each convolutional layer is calculated as:

O(K × (W − F + 1)× (H − F + 1)× F 2 ×D)

Where:

• K is the number of filters (kernels) in the layer.

• W is the width of the input to the layer.

• F is the spatial dimension (width and height) of the filter.

• H is the height of the input to the layer.

• D is the depth (number of channels) of the input to the layer.

For each convolutional layer:

• Layer 1: 1× 1× 64

– Output size: 28× 28× 64

– Number of operations: 50176

• Layer 2: 1× 1× 32

– Output size: 28× 28× 32

– Number of operations: 1605632

• Layer 3: 1× 1× 16

– Output size: 28× 28× 16

– Number of operations: 401408

• Layer 4: 3× 3× 8

– Output size: 26× 26× 8

– Number of operations: 778752

• Layer 5: 3× 3× 4

– Output size: 24× 24× 4

– Number of operations: 165888

C.1.3. COMPLEXITY CALCULATION FOR FULLY CONNECTED LAYERS

The number of operations for each fully connected layer is calculated as:

O(N ×M)

Where N and M stand for the input size dimension and output dimension, respectively. For each fully connected layer:

• Layer 6: 128 neurons

– Number of operations: 294912

• Layer 7: 64 neurons

– Number of operations: 8192

• Layer 8: 10 neurons

– Number of operations: 640
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C.1.4. TOTAL COMPLEXITY FOR ONE FORWARD PASS

Summing the operations for all layers gives the total complexity for one forward pass:

Total forward pass operations = 50, 176+1, 605, 632+401, 408+778, 752+165, 888+294, 912+8, 192+640 = 3, 337, 600

C.1.5. TOTAL COMPLEXITY FOR ONE BACKWARD PASS

The backward pass typically requires approximately twice the number of operations as the forward pass (Goodfellow et al.,
2016; nie):

Total backward pass operations = 2× 3, 337, 600 = 6, 675, 200

C.1.6. TOTAL COMPLEXITY FOR ONE EPOCH

To calculate the total complexity for one epoch, we first determine the number of iterations, which is the number of training
examples divided by the batch size:

Number of iterations per epoch =
Training set size

Batch size
=

50, 000

1024
≈ 48.83

The total complexity for one epoch is then the number of iterations multiplied by the batch size and the complexity of both
forward and backward passes:

Total operations per epoch = Number of iterations×Batch size×(Forward pass complexity+Backward pass complexity)

= 48.83× 1024× (3, 337, 600 + 6, 675, 200)

= 48.83× 1024× 10, 012, 800

= 48.83× 10, 250, 675, 200

≈ 500, 000, 000, 000

C.1.7. TOTAL COMPLEXITY FOR 5000 EPOCHS

Total operations for 5000 epochs = 5000× 500, 000, 000, 000 = 2.5× 1015

C.2. Computational Complexity of a Genetic Algorithm

C.2.1. GENETIC ALGORITHM SPECIFICATIONS

• Population size (P): 50

• Number of generations (G): 50

• Input size (N): 8

• Fitness function complexity: Equivalent to the forward pass of the CNN for a batch size of 1024

• CNN Forward Pass Complexity for 1024 images: O(1024× 3, 337, 600) = O(3.417× 109) operations

C.2.2. COMPLEXITY CALCULATION

Fitness Function Evaluation Given F = O(3.417×109), the complexity for evaluating the fitness of the entire population
is:

O(P × F ) = O(50× 3.417× 109) = O(1.7085× 1011)

Selection Assuming a selection process with complexity O(P logP ):

O(50 log 50) ≈ O(50× 3.91) = O(195.5)
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Crossover and Mutation The complexity for crossover and mutation per individual is:

O(P ×N) = O(50× 8) = O(400)

Total Complexity for One Generation Combining the fitness evaluation, selection, crossover, and mutation complexities:

O(P × F + P logP + P ×N) = O(1.7085× 1011 + 195.5 + 400) ≈ O(1.7085× 1011)

Total Complexity for All Generations The total complexity for G generations:

O(G× (P × F + P logP + P ×N)) = O(50× 1.7085× 1011) = O(8.5425× 1012)

C.3. Comparison

• Total complexity for training the CNN over 5000 epochs: O(2.5× 1015) operations.

• Total complexity for running the genetic algorithm for 50 generations: O(8.5425× 1012) operations.

C.3.1. COMPLEXITY OF ONE EPOCH VS ONE GENERATION

• Total complexity for one epoch of CNN training: O(500, 000, 000, 000) operations.

• Total complexity for one generation of the genetic algorithm: O(1.7085× 1011) operations.

C.3.2. SUMMARY

The computational complexity of training the CNN for 5000 epochs is significantly higher than running the genetic algorithm
for 50 generations. Specifically, the CNN training requires approximately two orders of magnitude more operations than the
genetic algorithm. Furthermore, the complexity of one epoch of CNN training is substantially higher than one generation of
the genetic algorithm, emphasizing the computational expense associated with deep learning models compared to heuristic
optimization methods.
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