
Interpretability in the Wild: a Circuit for
Indirect Object Identification in GPT-2 small

Anonymous Author(s)
Affiliation
Address
email

Abstract

Research in mechanistic interpretability seeks to explain behaviors of ML models1

in terms of their internal components. However, most previous work either focuses2

on simple behaviors in small models, or describes complicated behaviors in larger3

models with broad strokes. In this work, we bridge this gap by presenting an expla-4

nation for how GPT-2 small performs a natural language task that requires logical5

reasoning: indirect object identification (IOI). Our explanation encompasses 286

attention heads grouped into 7 main classes, which we discovered using a combina-7

tion of interpretability approaches including causal interventions and projections.8

To our knowledge, this investigation is the largest end-to-end attempt at reverse-9

engineering a natural behavior “in the wild" in a language model. We evaluate the10

reliability of our explanation using three quantitative criteria–faithfulness, com-11

pleteness and minimality. Though these criteria support our explanation, they also12

point to remaining gaps in our understanding. Our work provides evidence that a13

mechanistic understanding of large ML models is feasible, opening opportunities14

to scale our understanding to both larger models and more complex tasks.15

1 Introduction16

Transformer-based language models (Vaswani et al., 2017; Brown et al., 2020) have demonstrated17

an impressive suite of capabilities, but largely remain black boxes. Understanding these models18

is difficult because they employ complex non-linear interactions in densely-connected layers and19

operate in a high-dimensional space. Despite this, they are already deployed in high-impact set-20

tings, underscoring the urgency of understanding and anticipating possible model behaviors. Some21

researchers have even argued that interpretability is necessary for the safe deployment of advanced22

machine learning systems (Hendrycks & Mazeika, 2022).23

Work in mechanistic interpretability aims to discover, understand and verify the algorithms that24

model weights implement by reverse engineering model computation into human-understandable25

components (Olah, 2022; Meng et al., 2022; Geiger et al., 2021; Geva et al., 2020). By understanding26

underlying mechanisms, we can better predict out-of-distribution behavior (Mu & Andreas, 2020),27

identify and fix model errors (Hernandez et al., 2021; Vig et al., 2020), and understand emergent28

behavior (Nanda & Lieberum, 2022; Barak et al., 2022; Wei et al., 2022).29

In this work, we aim to understand how GPT-2 small (Radford et al., 2019) implements a natural30

language task. To do so, we locate components of the network that produce specific behaviors, and31

study how they compose to complete the task. Specifically, we discover circuits: induced subgraphs32

of a model’s computational graph that are human-understandable and responsible for a behavior. We33

employed a number of techniques, most notably activation patching, knockouts, and projections,34

which we believe are useful, general techniques for circuit discovery.35

Submitted to the ML Safety Workshop at the 36th Conference on Neural Information Processing Systems
(NeurIPS 2022). Do not distribute

When
Mary

and
John

Knock Out

Source sequence

When
Alice

and
John

Target sequence

When
Mary

and
John

Patching

IO

S1

Layer0 1 10 11

When
Mary

and
John
went

S2

END

GPT2-small
Prediction

John 2.3%

Mary 68.3%

the 4.4%

them 11.7%

her 1.9%

the
store

,

John
gave

a

drink
to

to

Figure 1: Left: We isolated a circuit (in orange) responsible for the flow of information connecting
the indirect object ‘Mary’ to the next token prediction. The nodes are attention blocks and the edges
represent the interactions between attention heads. Right: We discovered and validated this circuit
using activation experiments, including both patches and knockouts of attention heads.

We focus on understanding a non-trivial, algorithmic natural language task that we call Indirect36

Object Identification (IOI). In IOI, sentences such as ‘When Mary and John went to the store, John37

gave a drink to’ should be completed with ‘Mary’. We chose this task because it is linguistically38

meaningful and admits a complex but interpretable algorithm: of the two names in the sentence,39

predict the name that isn’t the subject of the last clause.40

We discover a circuit of 28 attention heads–1.5% of the total number of (head, token position)41

pairs–that completes this task. The circuit uses 7 different categories of heads (see Figure 2) to42

implement the algorithm. Together, these heads route information between different name tokens,43

to the end position, and finally to the output. Our work provides, to the best of our knowledge, the44

most detailed attempt at reverse-engineering a natural end-to-end behavior in a transformer-based45

language model.46

Explanations for model behavior can easily be misleading or non-rigorous (Jain & Wallace, 2019;47

Bolukbasi et al., 2021). To remedy this problem, we formulate three criteria to help validate our48

circuit explanations. These criteria are faithfulness (the circuit can perform the task as well as49

the whole model), completeness (the circuit contains all the nodes used to perform the task), and50

minimality (the circuit doesn’t contain nodes irrelevant to the task). Our circuit shows significant51

improvements compared to a naïve (but faithful) circuit, but fails to pass the most challenging tests.52

In summary, our main contributions are: (1) We identify a large circuit in GPT-2 small that performs53

indirect-object identification (Figure 2 and Section 3); (2) Through example, we identify useful54

techniques for understanding models, as well as surprising pitfalls; (3) We present criteria that ensure55

structural correspondence between the circuit and the model, and check experimentally whether our56

circuit meets this standard (Appendix B).57

2 Background58

In this section, we introduce the IOI task, review the transformer architecture, define circuits more59

formally and describe a technique for “knocking out” nodes in a model.60

Task description. In indirect object identification (IOI), two names (the indirect object (IO) and the61

first occurrence of the subject (S1)) are introduced in an initial dependent clause (see Figure 1). A62

main clause then introduces the second occurrence of the subject (S2), who is usually exchanging63

an item. The task is to complete the main clause, which always ends with the token ‘to’, with the64

non-repeated name (IO). We create many dataset samples for IOI (pIOI) using 15 templates (see65

Appendix C) with random single-token names, places and items.66

To quantify GPT-2 small’s performance on the IOI task, we use two different metrics: logit difference67

and IO probability. Logit difference measures the difference in logit value between the two names,68

where a positive score means the correct name (IO) has higher probability. IO probability measures69

the absolute probability of the IO token under the model’s predictions. Both metrics are averaged70

2

over pIOI. GPT-2 small has mean logit difference of 3.55, averaged across over 100,000 dataset71

examples, and mean IO probability of 49%.72

2.1 Circuits73

In mechanistic interpretability, we want to reverse-engineer models into interpretable algorithms. A74

useful abstraction for this goal are circuits. If we think of a model as a computational graph M where75

nodes are terms in its forward pass (neurons, attention heads, embeddings, etc.) and edges are the76

interactions between those terms (residual connections, attention, projections, etc.), a circuit C is a77

subgraph of M responsible for some behavior (such as completing the IOI task). This definition of78

a circuit is slightly different from that in Olah et al. (2020), where nodes are features (meaningful79

directions in the latent space of a model) instead of model components.80

2.2 Knockouts81

Just as the entire model M defines a function M(x) from inputs to logits, we also associate each82

circuit with a function C(x), via knockouts. A knockout removes a set of nodes K in a computational83

graph M with the goal of “turning off” nodes in K but capturing all other computations in M . Thus,84

C(x) is defined by knocking out all nodes in M\C and taking the resulting logit outputs in the85

modified computational graph.86

A first naïve knockout approach consists of simply deleting each node in K from M . The net effect87

of this removal is to zero ablate K, meaning that we turn its output to 0. This naïve approach has88

an important limitation: 0 is an arbitrary value, and subsequent nodes might rely on the average89

activation value as an implicit bias term. Because of this, we find zero ablation to lead to noisy results90

in practice.91

To address this, we instead knockout nodes through mean ablation: replacing them with their average92

activation value across some reference distribution (similar to the bias correction method used in93

Nanda & Lieberum (2022)). Mean-ablations will remove the influence of components sensitive to94

the variation in the reference distribution (i.e. attention heads that move names in pIOI), but will not95

influence components using information constant in the distribution (i.e. attention patterns that are96

constant in pIOI). Through mean-ablations, we are interested in finding the components that move97

information about names, which is the core of the IOI task and also varies with the distribution.98

In this work, all knockouts are performed in a modified pIOI distribution with three random names,99

so the sentences no longer have a single plausible IO. We mean-ablate on this distribution, which we100

call the ‘ABC’ distribution, because mean-ablating on the pIOI distribution would not remove enough101

information, like information constant in pIOI that is helpful for the task. To knockout a single node,102

a (head, token position) pair in our circuit, we compute the mean of that node across samples of the103

same template. Computing means across the entire distribution instead of templates would average104

activations at different tokens, like names, verbs and conjunctions, mixing information destructively.105

3 Circuit Overview106

We seek to explain how GPT-2 small implements the IOI task (Section 2). Recall the example sentence107

“When Mary and John went to the store, John gave a drink to". The following human-interpretable108

algorithm suffices to perform this task:109

1. Identify all previous names in the sentence (Mary, John, John).110

2. Remove all names that are duplicates (in the example above: John).111

3. Output the remaining name.112

Our circuit contains three major classes of heads, corresponding to these three components:113

• Duplicate Token Heads identify tokens that have already appeared in the sentence. They are114

active at the S2 token, attend primarily to the S1 token and write a ‘signal’ into the residual115

stream that token duplication has occurred.116

• S-Inhibition Heads perform step 2 of the human-interpretable algorithm. They are active at117

the END token, attend to the S2 token and write to bias the query of the Name Mover Heads118

against both S1 and S2 tokens.119

3

• Name Mover Heads, by default, attend to previous names in the sentence, but due to the120

S-Inhibition Heads attend less to the S1 and S2 tokens. Their OV matrix is a name copying121

matrix, so in pIOI, they increase the logit of the IO token.122

IO

S2

END

When
Mary

and
S1 John

went

the
store

,

John
gave

a
drink

to

S+1 Previous token heads
2.2 2.9 4.11

Duplicate token heads
0.1 0.10 3.0

Induction heads
5.5 5.8 5.9 6.9

S-inhibition heads
7.3 7.9 8.6 8.10

Backup name movers heads
10.10 10.6 10.2 10.1 11.2 11.9 11.3 9.7

Name mover heads
9.9 9.6 10.0

Negative name mover heads
10.7 11.10

to

Class of Heads
Layer.Head

Key / Value

OutputQuery

Legend

Figure 2: We discover a circuit in GPT-2 small that implements IOI. The input tokens on the left are
passed into the residual stream. Attention heads move information between residual streams: the
query and output arrows show which residual streams they write to, and the key/value arrows show
which residual streams they read from.

A fourth major family of heads writes in the opposite direction of the Name Mover Heads, thus123

decreasing the confidence of the predictions. We speculate that these Negative Name Mover Heads124

might help the model “hedge” so as to avoid high cross-entropy loss when making mistakes.125

There are also three minor classes of heads that perform related functions to the components above:126

• Previous Token Heads copy the embedding of S to position S+1.127

• Induction Heads perform the same role as the Duplicate Token Heads through an induction128

mechanism. They are active at position S2, attend to token S+1 (mediated by the Previous129

Token Heads), and output a signal that the S token previously appeared in the context.130

• Finally, Backup Name Mover Heads do not normally move the IO token to the output, but131

take on this role if the regular Name Mover Heads are knocked out.132

In Appendix A, we show step-by-step how we discovered each component, providing evidence that133

they behave as described above.134

4 Discussion135

A major motivation for this work was to gain evidence that mechanistic explanations for large136

language models is possible. Does this approach scale? In initial analyses with GPT-2 medium, we137

find that GPT-2 medium also has a sparse set of heads writing in the WU [IO] −WU [S] direction.138

However, not all of these heads attend to IO and S, suggesting more complex behavior than the Name139

Movers Heads in GPT-2 small. Furthering this investigation is an exciting line of future work.140

After completing this work, we learned several lessons useful for future interpretability efforts. We141

found that specifying a behavior and representative distribution for this behavior is a fundamental142

difficulty. For this reason, we think algorithmic tasks, as opposed to heuristics, are easier to interpret143

because they impose a clearer structure on model internals. In the circuit discovery process, we found144

activation patching useful for the discovery of important nodes. Activation patching is particularly145

useful with algorithmic tasks that have input schemas (Appendix C) because they suggest relevant146

source distributions for patching.147

In this work, we discover, understand and check a circuit in GPT-2 small that identifies indirect148

objects. However, there are still several components we still do not understand, including the attention149

patterns of the S-Inhibition Heads, and the effect of MLPs and layer norms. We hope that our work150

spurs further efforts in mechanistic explanations of larger language models computing different151

natural language tasks, with the eventual goal of understanding full language model capabilities.152

4

References153

Boaz Barak, Benjamin L Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang.154

Hidden progress in deep learning: Sgd learns parities near the computational limit. arXiv preprint155

arXiv:2207.08799, 2022.156

Tolga Bolukbasi, Adam Pearce, Ann Yuan, Andy Coenen, Emily Reif, Fernanda B. Viégas, and157

Martin Wattenberg. An interpretability illusion for BERT. CoRR, abs/2104.07143, 2021. URL158

https://arxiv.org/abs/2104.07143.159

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,160

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel161

Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,162

Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,163

Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,164

and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,165

R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Sys-166

tems, volume 33, pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.167

neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.168

Guy Dar, Mor Geva, Ankit Gupta, and Jonathan Berant. Analyzing transformers in embedding space.169

arXiv preprint arXiv:2209.02535, 2022.170

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda171

Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,172

Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal173

Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris174

Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.175

https://transformer-circuits.pub/2021/framework/index.html.176

Matthew Finlayson, Aaron Mueller, Sebastian Gehrmann, Stuart Shieber, Tal Linzen, and Yonatan177

Belinkov. Causal analysis of syntactic agreement mechanisms in neural language models, 2021.178

URL https://arxiv.org/abs/2106.06087.179

Atticus Geiger, Hanson Lu, Thomas F Icard, and Christopher Potts. Causal abstractions of neural180

networks. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances181

in Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=182

RmuXDtjDhG.183

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are184

key-value memories. arXiv preprint arXiv:2012.14913, 2020.185

Dan Hendrycks and Mantas Mazeika. X-risk analysis for ai research. arXiv, abs/2206.05862, 2022.186

Evan Hernandez, Sarah Schwettmann, David Bau, Teona Bagashvili, Antonio Torralba, and Jacob187

Andreas. Natural language descriptions of deep visual features. In International Conference on188

Learning Representations, 2021.189

Sarthak Jain and Byron C. Wallace. Attention is not Explanation. In Proceedings of the 2019190

Conference of the North American Chapter of the Association for Computational Linguistics:191

Human Language Technologies, Volume 1 (Long and Short Papers), pp. 3543–3556, Minneapolis,192

Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1357.193

URL https://aclanthology.org/N19-1357.194

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual195

associations in gpt. arXiv preprint arXiv:2202.05262, 2022.196

Jesse Mu and Jacob Andreas. Compositional explanations of neurons. Advances in Neural Information197

Processing Systems, 33:17153–17163, 2020.198

Neel Nanda and Tom Lieberum. A mechanistic interpretability analysis of grokking,199

2022. URL https://www.alignmentforum.org/posts/N6WM6hs7RQMKDhYjB/200

a-mechanistic-interpretability-analysis-of-grokking.201

5

https://arxiv.org/abs/2104.07143
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2106.06087
https://openreview.net/forum?id=RmuXDtjDhG
https://openreview.net/forum?id=RmuXDtjDhG
https://openreview.net/forum?id=RmuXDtjDhG
https://aclanthology.org/N19-1357
https://www.alignmentforum.org/posts/N6WM6hs7RQMKDhYjB/a-mechanistic-interpretability-analysis-of-grokking
https://www.alignmentforum.org/posts/N6WM6hs7RQMKDhYjB/a-mechanistic-interpretability-analysis-of-grokking
https://www.alignmentforum.org/posts/N6WM6hs7RQMKDhYjB/a-mechanistic-interpretability-analysis-of-grokking

nostalgebraist. interpreting gpt: the logit len, 2020. URL https://www.lesswrong.com/posts/202

AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens.203

Chris Olah. Mechanistic interpretability, variables, and the importance of interpretable bases. https:204

//www.transformer-circuits.pub/2022/mech-interp-essay, 2022. Accessed: 2022-15-205

09.206

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.207

Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.208

https://distill.pub/2020/circuits/zoom-in.209

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language210

models are unsupervised multitask learners. 2019.211

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz212

Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information213

Processing Systems, pp. 5998–6008, 2017.214

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and215

Stuart Shieber. Investigating gender bias in language models using causal mediation analysis.216

Advances in Neural Information Processing Systems, 33:12388–12401, 2020.217

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,218

Maarten Bosma, Denny Zhou, Donald Metzler, Ed Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy219

Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models. ArXiv,220

abs/2206.07682, 2022.221

5 Appendix222

A Discovering the Circuit223

A.1 Which heads directly write to the output? (Name Mover Heads)224

We begin by identifying which attention heads directly affect the model’s output: in other words, the225

heads writing in the residual stream at the END position, in a direction that has high dot product with226

the logit difference. Formally, let WU denote the unembedding matrix, LN a layer norm operation227

(see Appendix H) and WU [IO], WU [S] the corresponding unembedding vectors for the IO and S228

tokens. We searched for heads (i, j) such that229

λi,j
def
= EX∼pIOI [⟨LN ◦ hi,j(X),WU [IO]−WU [S]⟩] (1)

had large magnitude. Recall that hi,j(X) is the value that head (i, j) writes into the residual stream230

on input X . Therefore, heads with λi,j > 0 correctly promote the IO token over the S token (on231

average). The unembedding projection in (1) is called the logit lens and has been used in previous232

work to interpret intermediate activations (nostalgebraist, 2020) and parameters (Dar et al., 2022).233

We display the values of λi,j in Figure 3 A. We see that only a few heads in the final layers have large234

logit projection λi,j . Specifically, 9.6, 9.9, and 10.0 have a large positive score, while 10.7 and 11.10235

have a large negative score.236

Name Mover Heads. To understand the positive heads, we first study their attention patterns. We find237

that they attend strongly to the IO token: the average attention probability of all heads over pIOI is238

0.59. Since attention patterns can be misleading (Jain & Wallace, 2019), we check whether attention239

is correlated with the heads’ functionality. We do so by scatter plotting the attention probability240

against the logit score ⟨hi(X),WU [IO]⟩. The results are shown in Figure 3 B: higher attention241

probability on the IO token is linearly correlated with higher output in the IO direction (correlation242

ρ > 0.81, N = 500). Based on this result, we hypothesize that these heads (i) attend to names and243

(ii) copy whatever they attend to. We therefore call these heads Name Mover Heads.244

To check that the Name Mover Heads copy names generally, we studied what values are written245

via the heads’ OV circuits. We transform the output of the first layer at a name token through the246

OV matrix of a Name Mover Head and then project to the logits. The copy score is the proportion247

6

https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.transformer-circuits.pub/2022/mech-interp-essay
https://www.transformer-circuits.pub/2022/mech-interp-essay
https://www.transformer-circuits.pub/2022/mech-interp-essay

of samples that contain the input name token in the top 5 logits (N = 1000). We find that all three248

Name Mover Heads have a copy score above 95% (compared to less than 20% for an average head).249

Negative Name Mover Heads. In Figure 3, we also observed two heads strongly writing opposite250

the WU [IO]−WU [S] direction. We called these heads Negative Name Mover Heads. Their copy251

score is calculated with the negative of their OV matrix. As described in Figure 3, they share all the252

properties of Name Mover Heads, except they write in the opposite of names they attend to.253

Copy score of name
mover heads

9.9 10.0 9.6
0

20

40

60

80

100

Head

C
op

y
sc

or
e

(%
)

Negative copy score
of negative heads

10.7 11.10
0

20

40

60

80

100

A B C D

Head

N
eg

at
iv

e
co

py
 s

co
re

 (%
)

Head 9.9 attention score
from the query token 'to'

END token

Then

,

 Amy

 and

 Brian

 went

 to

 the

 station

.

 Amy

 gave

 a

 ring

 to

 Brian

Value-weighted
Attention score

K
ey

s

0

2

4

6

8

Head 11.10 attention score
 from the query token 'to'

Projection of the output of 11.10 along the
name embedding vs to attention probability

0 0.2 0.4 0.6 0.8 1

−50

−40

−30

−20

−10

0

Attn Prob on Name

D
ot

 w
 N

am
e

E
m

be
d

Name Type

IO
S

Projection of the output of 9.9 along the
name embedding vs to attention probability

0 0.2 0.4 0.6 0.8 1

−20

0

20

40

60

80

Attn Prob on Name

D
ot

 w
 N

am
e

E
m

be
d

Name Type

IO
S

Name
movers
Heads

Negative
heads

Unembedding projection of
head output

0 10

10

8

6

4

2

0

2 4

Normalized dot
product

−2

−1

0

1

2

Head

La
ye

r

6 8

END token

Then

,

 Amy

 and

 Brian

 went

 to

 the

 station

.

 Amy

 gave

 a

 ring

 to

 Brian

K
ey

s

Value-weighted
Attention score

0

1

2

3

4

5

Figure 3: A: Name Movers and Negative Name Movers Heads are the heads that most strongly write
in the WU [IO]−WU [S] direction. B: Attention probability vs projection of the head output along
WU [IO] or WU [S] respectively. Note that for S tokens, we sum the attention probability on both S1
and S2. C: Value-weighted attention score with the query at the end token. D, top: Positive copying
score for the Name Mover Heads. D, bottom: Negative copying score for the Negative Name Mover
Heads. Dashed lines are the average scores for all heads.

A.2 Which heads affect the Name Mover Heads’ attention? (S-Inhibition Heads)254

Given that the Name Mover Heads are primarily responsible for constructing the output, we ask why255

these Name Mover Heads pay preferential attention to the IO token. First, there are two ways to256

affect the Name Mover Heads’s attention: through the query vector at the END token or the key257

vector at the IO token. Since the key vector appears early in the context, it likely does not contain258

much task-specific information, so we focus on the END query vector.259

Then, by investigating Name Mover Heads on the ABC distribution (where the three names are260

distinct; see Section 2.2), we observed that their attention is not selective: they pay equal attention to261

the first two names. We thus ask: what has changed from the ABC distribution to the pIOI distribution262

to cause the Name Mover Heads to attend to the IO token preferentially?263

To empirically answer this question, we perform a patching experiment. As illustrated in Figure 1 this264

technique consists of two steps. First we save all activations of the network run on a source sequence.265

Then we run the network on a target sequence, replacing some activations with the activations from266

the source sequence. We can then measure the behavior of the patched model. Doing this for each267

node individually locates the nodes that explain why model behavior is different in the source and268

target sequences.269

In our case, we run activation patching with source sentences from the ABC distribution and target270

sentences from pIOI. We then compute the change in attention probability from END to IO, averaged271

over the three Name Mover Heads. Since the Name Mover Heads attention on the IO is high in the272

pIOI distribution and low in ABC, patching at important heads from ABC to pIOI should decrease273

Name Mover Heads attention on IO. The results from patching every head at the END token position274

are shown in Figure 4, right. We observe that patching heads 7.3, 7.9, 8.6, 8.10 causes a decrease275

in the attention probability on IO, indicating that they are counterfactually important for the Name276

Mover Heads’s attention probability on the IO token. We call these heads S-Inhibition Heads,277

because in pIOI they primarily cause the Name Mover Head attention to drop on the S tokens (thus278

increasing the attention on the IO token).279

7

0 2 4 6 8 10

8

6

4

2

0
Variation in

attention prob.
from end to IO of

Name Movers

−0.06

−0.04

−0.02

0

Head

La
ye

r
Patching ABC ➡ IOI at S+1

0 2 4 6 8 10

8

6

4

2

0 Variation in
attention prob.

from end to IO of
Name Movers

−0.1

−0.05

0

Head

La
ye

r

Patching ABC ➡ IOI at S2

0 2 4 6 8 10

8

6

4

2

0
Variation in

attention prob.
from end to IO of

Name Movers

Head

La
ye

r

Patching ABC ➡ IOI at END

−0.3

−0.2

−0.1

0

S2IO
When Mary and John went to the store . John gave a drink to

S1 ENDS+1

Clara

IOI

ABC (S2)

ClaraABC (S1)

Figure 4: The attention probability to IO averaged over three Name Mover Heads is decreased most
by the Previous Token Heads (left), Induction Heads (center) and S-Inhibition Heads (right) when we
patch these attention heads from a sentence with a different S2 name (center and right), or a different
S1 name (left).

A.3 What information do the S-Inhibition Heads move?280

How do the S-Inhibition Heads differentiate between IO and S, so they inhibit one but not the other?281

We measured their attention pattern and found that they preferentially attend to the S2 token. We282

therefore studied what information these heads move from the S2 token position to the END position.283

Towards this end, we ran a patching experiment at S2 from the ABC distribution to the IOI distribution284

and measured the variation in Name Mover Heads attention. The results (Figure 4, center) reveal a285

large set of heads influencing Name Mover Heads’ attention that did not appear at the END position.286

Logically, S-Inhibition Heads mediate this effect, as they are the only heads influencing Name Mover287

Heads at the END position. This reasoning suggests that the outputs of this set of head is moved by288

S-Inhibition Heads from S2 to the END token. When we analyze the attention patterns of these heads,289

we see two distinct groups emerge.290

Duplicate Token Heads. One group attends from S2 to S1. We call these Duplicate Token Heads on291

the hypothesis that they detect duplicate tokens. To validate this, we analyze their attention pattern292

on sequences of random tokens (with no semantic meaning), we found that 2 of the 3 Duplicate293

Token Heads pay strong attention to a previous occurrence of the current token if it exists (see294

Appendix F for more details). How do the duplicate token heads affect the S2 attention patterns?295

There is strong evidence that Duplicate Token Heads write a ‘copying signal’ into the residual stream296

that S2 Inhibition heads are able to attend to, that doesn’t encode information about the tokens that297

are copied. Appendix G explores the correlational and causal case for this behavior.298

Induction Heads and Previous Token Heads. The other group of heads attends from S2 to S1+1299

(the token after the S1 token): the classic attention pattern of an induction head. Previously described300

in Elhage et al. (2021), induction heads recognize the general pattern [A] [B] ... [A] and contribute301

to predicting [B] as the next token. For this, they act in pair with a Previous Token Head. The302

Previous Token Head should write information about [A] into the residual stream at [B], so that the303

Induction Head can match the next occurrence of [A] to that position (and subsequently copy [B] to304

the output).305

We therefore seek to identify Previous Token Heads used by our purported Induction Heads. To this306

end, we patched activations from a sentence where S1 is replaced by a random name, at the S+1 token307

index. As shown in figure 4, some heads (and particularly 4.11) appear to influence Name Mover308

Heads. Then, by looking at the attention pattern of the heads with the most important influence in309

this patching experiment, we identified 3 Previous Token Heads. After analyzing attention patterns310

on random token sequences, we found that 2 of the 3 Previous Token Heads and 2 of the 4 Induction311

Heads demonstrated the expected behavior in this out-of-distribution case (Appendix F).312

In our task, the Induction Heads writing into the S2 residual stream is an additional way for S-313

Inhibition Heads to detect that S occurs earlier in the context, on top of the Duplicate Token Heads’314

role. These Induction Heads, like Duplicate Token Heads, appear to be writing a copying signal into315

the residual stream at S2 (Appendix G), making them somewhat unlike traditional induction heads316

that simply copy the token [B].317

8

A.4 Did we miss anything? The Story of the Backup Name Movers Heads318

Each type of head in our circuit has many copies, suggesting that the model implements redundant319

behavior. To make sure that we didn’t miss any copies, we knocked out all of the Name Mover Heads320

at once. To our surprise, the circuit still worked (only 10% drop in logit difference). In addition,321

many heads write along WU [IO]−WU [S] after the knockout, which did not do so previously.322

We kept the height heads with the strongest λi,j , and call them Backup Name Mover Heads. See323

appendix D for further details on these heads. Among the height heads identified, we investigated324

their behavior before the knockout. We observe diverse behavior: 3 heads show close resemblance to325

Name Mover Heads; 3 heads equally attend to IO and S and copy them; 1 head pays more attention326

to S1 and copies it; 1 head seems to track and copy subjects of clauses, copying S2 in this case.327

B Experimental validation328

In this section, we check that our circuit provides a good account of GPT-2’s true behavior. In general,329

our criteria depend on a measure F of the performance of a circuit on a task. In our case, suppose330

X ∼ pIOI, and f(C(X);X) is the logit difference between the IO and S tokens when the circuit C331

is run on the input X . The average logit difference F (C)
def
= EX∼pIOI

[f(C(X);X)] is a measure of332

how much a circuit predicts IO rather than S, i.e performs the IOI task.333

Firstly, we check that C is faithful to M , i.e. that it computes similar outputs. We do so by measuring334

|F (M)− F (C)|, and find that it is small: 0.2, or only 6% of F (M) = 3.55.335

In Section B.1 we define a running toy example of a model M for which faithfulness is not sufficient336

to prescribe which circuits explain a behavior defined by a measure F well. This motivates the criteria337

of completeness and minimality that we then check on our circuit.338

B.1 Completeness339

As a running example, suppose a model M uses two similar and disjoint serial circuits C1 and C2.340

The two sub-circuits are run in parallel before applying an OR operation to their results. Identifying341

only one of the circuits is enough to achieve faithfulness, but we want explanations that include both342

C1 and C2, since these are both used in the model’s computation.343

To solve this problem, we introduce the completeness criterion: for every subset K ⊆ C, |F (C \344

K)− F (M \K)| should be small. In other words, C and M should not just be similar, but remain345

similar under knockouts.346

In our running example, we can show that C1 is not complete by setting K = C1. Then C1 \K is347

the empty circuit while M \K still contains C2. The metric |F (C1 \K)− F (M \K)| will be large348

because C1 \K has trivial performance while M \K successfully performs the task. However, this349

definition doesn’t cover all cases of ‘incompleteness’ we would wish to cover1.350

The criterion of completeness requires a search over exponentially many subsets K ⊆ C. This is351

computationally intractable given the size of our circuit, hence we use three sampling methods to find352

examples of K that give large completeness score:353

• The first sampling method chooses subsets K ⊆ C uniformly at random.354

• The second sampling method set K to be an entire class of circuit heads G, e.g the Name355

Mover Heads. C \ G should have low performance since it’s missing a key component,356

whereas M \G might still do well if it has redundant components that fill in for G.357

• Thirdly, we greedily optimized K node-by-node to maximize the completeness score (see358

appendix K for the detail of the optimization procedure).359

These first two methods of sampling K suggested to us that our circuit was ε-complete for a small360

value of ε. However, the third resulted in sets K that had high completeness score: up to 3.09. All361

such results are found in figure 5, on the left.362

1If two nodes in M \K perfectly cancel each other, independent from C then the completeness definition
could be met without including either of these important nodes in a circuit. We could also check that F(C)
doesn’t change after adding nodes: ∀K ⊆ M, |F (C \K)− F (M \K)| ≤ ε. However, in practice such cases
of compensation are improbable.

9

Naive circuit completeness tests

−2 0 2 4 6
−2

−1

0

1

2

3

4

5

6

F(C \ K)

F
(M

 \
K

)

Full circuit completeness tests

−2 0 2 4 6
−2

−1

0

1

2

3

4

5

6

F(C \ K)

F
(M

 \
K

)

x=y

Random set

Greedy search set

Name mover

S-inhibition

Induction

Duplicate token

Previous token

Negative

Empty set

Empty set

Negative heads

Figure 5: Plot of points (xK , yK) = (F(M \K),F(C \K)) for our circuit (left) and a naive circuit
(right). Each point is for a different choice of K: 50 uniformly randomly chosen K ⊆ C, K = ∅, and
the five K with the highest completeness score found by greedy optimization. Since the completeness
score is |xK − yK |, we show the line y = x for reference.

B.2 Minimality363

A faithful and complete circuit may contain unnecessary components, and so be overly complex. To364

avoid this, we should check that each of its nodes v is actually necessary. This can be evaluated by365

showing that v can significantly recover F after knocking out a set of nodes K.366

Formally, the minimality criterion is whether for every node v ∈ C there exists a subset K ⊆ C \{v}367

that has minimality score |F (C \ (K ∪ {v}))−F (C \K)| ≥ A. We call a circuit A-minimal if this368

holds.369

In the running example, C1 ∪ C2 is A-minimal for some non-trivial A. We can sketch a proof of this370

result given an informal defintion of ‘non-trivial’. To show this, note that if v1 ∈ C1 and K = C2,371

then the minimality score is equal to |F (C1 \ {v1}) − F (C1)| which is large since C1 is a serial372

circuit and so removing v1 will destroy the behavior. We then proceed symmetrically for v2 ∈ C2.373

What happens in practice for our circuit? We need to exhibit for every v a set K such that the374

minimality score is at least A. For most heads, removing the class of heads G that v is a part375

of provides a reasonable minimality score. We describe the sets K that are required for them in376

Appendix J. The importance of individual nodes is highly variable, but they all have a significant377

impact on the final metric (at least 3% of the original logit difference). These results ensure that378

we did not interpret irrelevant nodes, but do show that the individual contribution of some single379

attention heads is small.380

(10, 0)

(9, 9)

(9, 6)

(10, 7)

(11, 10)

(8, 10)

(7, 9)

(8, 6)

(7, 3)

(5, 5)

(6, 9)

(5, 9)

(5, 8)

(0, 1)

(0, 10)

(3, 0)

(4, 11)

(2, 2)

(2, 9)

(11, 2)

(10, 2)

(10, 6)

(10, 1)

(10, 10)

(9, 7)

(11, 9)

(11, 3)

0

0.5

1

1.5

2

2.5 name mover

negative

s2 inhibition

induction

duplicate token

previous token

backup name mover

Attention head

C
ha

ng
e

in
 lo

gi
t d

iff
er

en
ce

Figure 6: Plot of minimality scores |F (C \ (K ∪ {v})) − F (C \K)| for all components v in our
circuit. The sets K used for each component, as well as the initial and final values of the logit
difference for each of these v is in Appendix J. Our circuit is 0.06-minimal.

B.3 Comparison with a naive circuit381

In the previous sections, we reviewed our circuit on the three quantitative criteria. But without a382

relative comparison, these numbers are not particularly useful. In order to get a relative sense of the383

success of our explanation by our criteria, we compare the results on a naïve circuit that consists of384

the Name Mover Heads (but no Backup Name Mover Heads), S-Inhibition Heads, two Induction385

10

Heads, two Duplicate Token Heads and two Previous Token Heads. This circuit has a faithfulness386

score 0.1, a score comparable to our circuit’s faithfulness score. However, contrary to our circuit,387

the naive circuit can be easily proven incomplete: by sampling random sets or by knocking-out by388

classes, we see that F (M \K) is much higher than F (C \K) (Figure 5, left). Nonetheless, when389

we applied the greedy heuristic to optimize for the completeness score, both circuits have similarly390

large completeness scores. Thus, we conclude that our worst-case completeness criteria was too high391

a bar, which future work could use as a high standard to validate circuit discovery.392

C IOI Templates393

We list all the template we used in Table 7. Each name was drawn from a list of 100 English first394

names, while the place and the object were chosen among a hand made list of 20 common names.395

All the word chosen were one token long to ensure proper sequence alignment computation of the396

mean activations.397

Templates in pIOI

Then, [B] and [A] went to the [PLACE]. [B] gave a [OBJECT] to [A]
Then, [B] and [A] had a lot of fun at the [PLACE]. [B] gave a [OBJECT] to [A]

Then, [B] and [A] were working at the [PLACE]. [B] decided to give a [OBJECT] to [A]
Then, [B] and [A] were thinking about going to the [PLACE]. [B] wanted to give a [OBJECT] to [A]

Then, [B] and [A] had a long argument, and afterwards [B] said to [A]
After [B] and [A] went to the [PLACE], [B] gave a [OBJECT] to [A]

When [B] and [A] got a [OBJECT] at the [PLACE], [B] decided to give it to [A]
When [B] and [A] got a [OBJECT] at the [PLACE], [B] decided to give the [OBJECT] to [A]

While [B] and [A] were working at the [PLACE], [B] gave a [OBJECT] to [A]
While [B] and [A] were commuting to the [PLACE], [B] gave a [OBJECT] to [A]
After the lunch, [B] and [A] went to the [PLACE]. [B] gave a [OBJECT] to [A]

Afterwards, [B] and [A] went to the [PLACE]. [B] gave a [OBJECT] to [A]
Then, [B] and [A] had a long argument. Afterwards [B] said to [A]

The [PLACE] [B] and [A] went to had a [OBJECT]. [B] gave it to [A]
Friends [B] and [A] found a [OBJECT] at the [PLACE]. [B] gave it to [A]

Figure 7: Templates used in the IOI dataset. All templates in the table fit the ’BABA’ pattern, but we
also use templates that fit the ‘ABBA’ pattern as well (not included for simplicity).

D Backup Name Mover Heads398

Here we discuss in more detail the discovery of the Backup Name Mover Heads. As shown in figure399

8, knocking-out the three main Name Mover Heads doesn’t leave the rest of the heads in a similar400

state as before. They seem to "compensate" the loss of function from the Name Mover Heads such401

that the logit difference is only 10% lower. We observe that the Negative Name Mover Heads head402

write less negatively in the direction of WU [IO]−WU [S], 10.7 even write positively in this direction403

afterwards, while other heads that wrote slightly along WU [IO] − WU [S] before the knock-out404

becomes the main contributor. Both the reason and the mechanism of this compensation effect are405

still unclear, we think that this could be an interesting phenomenon to investigate in future works.406

Among those last categories, we identify S-inhibition heads and a set of other head that we called407

Backup Name Mover Heads. We arbitrarily chose to keep the height heads that were not part of any408

other groups, and wrote in the direction of WU [IO]−WU [S] above the threshold of 0.05.409

In figure 9 we analyze the behavior of those newly identified heads with similar techniques as Name410

Mover Heads. Those can be grouped in 4 categories.411

• 3 heads (10.1, 10.10 and 10.6) that behave similarly as Name Mover Heads according to412

their attention pattern, and scatter plots of attention vs dot product of their output with413

WU [IO]−WU [S] (as 10.10).414

• 3 heads (10.2, 11.9, 11.3) that pay equal attention to S1 and IO and wrote both of them (as415

10.2 in Figure 9).416

11

(9, 9)

(10, 7)

(9, 6)

(11, 10)

(10, 0)

(10, 10)

(10, 6)

(11, 2)

(8, 10)

(10, 1)

(7, 9)

(7, 3)

(10, 2)

(9, 7)

(9, 0)

(9, 5)

(9, 2)

(8, 2)

(11, 9)

(11, 6)

−1

−0.5

0

0.5

1

1.5

backup name mover

negative

s2 inhibition

None

name mover

Head

P
ro

je
ct

io
n

on
 IO

-S

Unembedding projection of head output
(before name movers KO)

Unembedding projection of head output
(after name movers KO)

(10, 10)

(11, 10)

(10, 6)

(10, 2)

(10, 1)

(11, 2)

(8, 10)

(7, 9)

(10, 7)

(7, 3)

(11, 9)

(11, 3)

(9, 7)

(9, 0)

(11, 11)

(11, 6)

(9, 5)

(9, 2)

(10, 3)

(8, 2)
−0.5

0

0.5

Head

Figure 8: Discovery of the Backup Name Mover Heads. After knock-out of the Name Mover Heads
(right) some heads write stronger in the WU [IO] or WU [S] direction than before (left). We also
observed that negative heads seems inhibited by this operation.

• One head, 11.2, that pays more attention to S1 and write preferentially in the direction of417

WU [S]418

• One head, 9.7, that pays attention to S2 and write negatively.419

We did not thoroughly investigate this diversity of behavior, more work can be done to precisely420

describe these heads. However, these heads are also the ones with the less individual importance for421

the task (as shown by their minimality score in Figure 6). The exact choice of Backup Name Mover422

Heads doesn’t change significantly the behavior of the circuit.423

E GPT-2 small full architecture424

GPT-2 small is a decoder-only transformer with 12 layers and 12 attention heads per attention layer.425

In this work, we mostly focus on understanding the mechanisms of attention heads, which we describe426

using notation similar to Elhage et al. (2021). We leave a full description of the model to Appendix E.427

The input to the transformer is the sum of position and token embeddings, x0 ∈ RN×d, where N is428

the number of tokens in the input and d is the model dimension. This input embedding is the initial429

value of the residual stream, which all attention layers and MLPs read from and write to. Attention430

layer i of the network takes as input xi ∈ RN×d, the value of the residual stream before it. The431

attention layer output can be decomposed into the sum of attention heads hi,j . If the output of the432

attention layer is yi =
∑

j hi,j(xi), then the residual stream is updated to xi + yi.433

Focusing on individual heads, each head hi,j is parametrized by four matrices W i,j
Q , W i,j

K , W i,j
V ∈434

Rd× d
H and W i,j

O ∈ R d
H ×d. We rewrite these parameters as low-rank matrices in Rd×d: W i,j

OV =435

W i,j
O W i,j

V and W i,j
QK = (W i,j

Q)TW i,j
K . The QK matrix is used to compute the attention pattern436

Ai,j ∈ RN×N of head (i, j), while the OV matrix determines what is written into the residual stream.437

At the end of the forward pass, a layer norm is applied before the unembed matrix WU projects the438

residual stream into logits.439

Here we define all components of the GPT-2 Architecture, including those we don’t use in the main440

text. GPT-2 small has the following hyperparameters:441

• N : number of input tokens.442

• V : vocabulary of tokens.443

• d: residual stream dimension.444

• L: number of layers.445

• H: number of heads per layer.446

• D: hidden dimension of MLPs447

It uses layer norms, the non-linear function448

12

Projection of the output along the
name embedding vs attention probability

Value weighted attention

10.10

11.2

9.7

10.2

Backup name
mover head

When
Jacob

and
Scott

got
a

drink
at

the
school

,

Jacob
decided

give
to

it
to

Scott

W
he

n
Ja

co
b

an
d

S
co

tt
go

t
a dr

in
k

at th
e

sc
ho

ol
, Ja

co
b

de
ci

de
d

gi
ve

to it to S
co

tt

When
Jacob

and
Scott

got
a

drink
at

the
school

,

Jacob
decided

give
to

it
to

Scott

W
he

n
Ja

co
b

an
d

S
co

tt
go

t
a dr

in
k

at th
e

sc
ho

ol
, Ja

co
b

de
ci

de
d

gi
ve

to it to S
co

tt

When
Jacob

and
Scott

got
a

drink
at

the
school

,

Jacob
decided

give
to

it
to

Scott

W
he

n
Ja

co
b

an
d

S
co

tt
go

t
a dr

in
k

at th
e

sc
ho

ol
, Ja

co
b

de
ci

de
d

gi
ve

to it to S
co

tt

When
Jacob

and
Scott

got
a

drink
at

the
school

,

Jacob
decided

give
to

it
to

Scott

W
he

n
Ja

co
b

an
d

S
co

tt
go

t
a dr

in
k

at th
e

sc
ho

ol
, Ja

co
b

de
ci

de
d

gi
ve

to it to S
co

tt

Figure 9: Four examples of Backup Name Mover Heads. Left: attention probability vs projection
of the head output along WU [IO] or WU [S] respectively. Right: Attention pattern on a sample
sequence.

LN(x)
def
=

x− x̄√∑
i(xi − x̄i)2

, (2)

where the mean and the difference from the mean sum are over all components of the dimension d449

vector in each sequence position.450

In GPT-2 the MLPs all have one hidden layer of dimension D and use the GeLU non-linearity.451

We addressed the parametrisation of each attention head in the main text, and cover the technical452

details of the WQK and WOV matrix here: the attention pattern is Ai,j = softmax(xTW i,j
QKx)453

where the softmax is taken for each token position, and is unidirectional. We then have hi,j(x)
def
=454

(Ai,j ⊗W i,j
OV).x.455

13

Algorithm 1 GPT-2.
Require: Input tokens T ; returns logits for next token.

1: w ← One-hot embedding of T
2: x0 ←WEw (sum of token and position embeddings)
3: for i = 0 to L do
4: yi ← 0 ∈ RN×d

5: for j = 0 to H do
6: yi ← yi + hi,j(xi), the contribution of attention head (i, j)
7: end for
8: y′i ← mi(xi), the contribution of MLP at layer i
9: xi+1 ← xi + yi + y′i (update the residual stream)

10: end for
11: return WU ◦M ◦ LN ◦ xL

Duplicate token attention prob.
 on sequences of random tokens

Previous token attention prob.
 on sequences of random tokens

Induction score on
sequences of random tokens

Figure 10: Sum of attention probabilities on position determined by the role. Left: duplicate score,
the average attention probability from a token to its previous occurrence. Center: Previous token
attention score, it is the average of the off diagonal attention probability. Right: Induction score.
Average attention probability from the second occurence of [A] to [B] on [A][B]...[A].

F Attention pattern analysis on sequences of random tokens456

We run GPT-2 small on sequences of 100 tokens sampled uniformly at random from GPT-2’s token457

vocabulary. Each sequence A was duplicated to form AA, a sequence twice as long where the first and458

second half are identical. On this dataset, we computed three scores from the attention patterns of the459

attention heads:460

• The duplicate token score: for each token Ti in the second half of a sequence S, we average461

the attention probability from Ti to its previous occurrence in the first half of S (i.e. Ti−100).462

• The previous token score: we averaged the attention probability on the off-diagonal. This is463

the attention from the token at position i to position i− 1.464

• The induction score: the attention probability from Ti to the token that comes after the first465

occurrence of Ti (i.e. Ti−99)466

These three score are depicted in Figure 10 for all attention heads. We can identify 3.0 and 0.1 as467

duplicated token heads that also appear in our circuit, 5.5 and 6.9 have high induction score and were468

also identified as induction heads in our investigation and 4.11 and 2.2 have a high previous token469

score. Note that the heads identified are also the ones that have the highest influence in the patching470

experiment shown in Figure 4.471

G Duplicate Token and Induction Copying Signal472

We consider an experimental setup similar to the kind that generated Figure 6. We knock out all473

heads in a circuit class, record the logit difference, and then add back in a vertex of that circuit class474

and measure change in logit difference. We see extremely small effect sizes for Induction Heads and475

Duplicate Token Heads, when we knockout on the IOI distribution (Figure 11).476

14

Figure 11: Very small effect change for Duplicate Token Heads and Induction Heads on the IOI
distribution.

Figure 12: Similar results on the ABC distribution, besides the Duplicate Token Heads and Induction
Heads.

On the other hand these two classes exhibit some of the largest effect sizes on the ABC distribution477

(Figure 12).478

How would this occur? One hypothesis is that that these heads are not copying information about479

the token into the residual stream, but a constant ‘signal’ that copying is occurring. If these heads480

were doing this then we would expect that changing slightly where they attend to would not affect481

this signal being written, as copying can occur over a range of token positions. If there is no copying482

they would attend to the first token which wouldn’t cause the copying signal to be written (Elhage483

et al. (2021) note induction heads attend to the first token when no induction is detected). We could484

test this causally by artificially cyclically permuting the attention patterns of these heads (provided485

we don’t permute into the first token), and we would predict that they would still be able to write486

the copying signal. We permute the attention pattern of all Previous Token and Duplicate Token487

heads at the S token and the next 4 positions. For control, we also permute the Previous Token Head488

attention patterns at the same positions. We see almost constant logit difference for all these cyclic489

permutations, indeed suggesting the constant signal story is correct.490

H Layer norm and the residual stream491

The attention heads and MLPs in GPT-2 small write into the residual stream. Suppose x is the final492

state of the residual stream after the 12 layers, at a particular sequence position. This is then converted493

into logits via WU ◦M ◦ LN(x), where LN is defined in Appendix E, M is the linear transformation494

of the layer norm operation and WU is the unembedding matrix.495

15

Figure 13: Cyclically permuting attention patterns of duplicate token and induction heads does not
affect performance.

In order to attribute the extent to which an attention head hi,j writes in a direction WU [T] where T is496

a token (always IO or S in our case), we can’t simply compute ⟨M ◦ LN ◦ hi,j(X),WU [T]⟩, as the497

scaling factor that’s used is
√∑

i(xi − xi)2. Therefore LN in the main text uses this scaling factor:498

LN(h)
def
= M ◦ h− h√∑

i(xi − xi)2
(3)

where h is the output of a head at the same sequence position as x.499

I Role of MLPs in the task500

In the main text, we focused our investigation on attention heads. Since they are the only module501

able of moving information across token position – a crucial component of the IOI task – they were502

our main subject of interest. However, MLP can still play a significant role in structuring the residual503

stream at a given position. We explored this possibility by performing knock-out of the MLP layers504

(Figure 14). We observe that MLP0 have a significant influence on logit difference after knock-out505

(-100% variation) but the other layers don’t seem to play a big role. We hypothesize that MLP0 can506

be used to perform low level token processing that latter layers relies on.507

Moreover, we also investigated the writing of MLP along the WU [IO]−WU [S] direction. As shown508

in Figure 14, bottom, their λi score is negligible compared to attention heads (Figure 3, left).509

Logit Difference Variation after
knock-out of MLPs at all tokens

0 2 4 6 8 10

−1

−0.5

0

0.5

1

Layer

0 2 4 6 8 10

Logit diff.
relative variation

Projection of MLP outputs on the
IO-S unembedding

−0.001

−0.0005

0

0.0005

0.001

Normalized
dot product

Layer

Figure 14: Top: Relative variation in logit difference from knocking out MLP layers. Only MLP0
causes a significative decrease in logit difference after knock-out. Bottom: We measure how much
MLPs write along the WU [IO]−WU [S] direction by computing the λi score for each MLP layer.

16

Figure 15: MLPs have a very small effect on writing in the IO - S direction (see scale).

J Minimality sets510

The sets that were found for the minimality tests are listed in Table 16.511

K Greedy Algorithm512

The Algorithm 2 describes the procedure used to sample sets for checking the completeness criteria513

using greedy optimization. In practice, because the naïve and the full circuit are not of the same size,514

we chose respectively k = 5 and k = 10 to ensure a similar amount of stochasticity in the process.515

We run the procedure 10 times and kept the 5 sets with the maximal important completeness score516

(including the intermediate K).517

Algorithm 2 The greedy sampling procedure for sets to validate the completeness citeria.
1: K ← ∅
2: for i to N do
3: Sample a random subset V ⊆ C of k nodes uniformly.
4: vMAX ←argmaxv∈V |F(C \ (K ∪ {v}))− F(C \K)|
5: K ← K ∪ {vMAX}
6: end for
7: return K

As visible in Table 17 the sets found by the greedy search contains a combination of nodes from518

different class. Nonetheless, the overlap between different K suggest that we are missing components519

17

v Class K ∪{v} F(C \ (K ∪ {v})) F(C \K)

(9, 9) Name Mover [(9, 9)] 2.78 3.14
(10, 0) Name Mover [(9, 9), (10, 0)] 2.43 2.78
(9, 6) Name Mover [(9, 9), (10, 0), (9, 6)] 2.77 2.43

(10, 7) Negative Name Mover All Negative Name Mover Heads 5.11 3.84
(11, 10) Negative Name Mover All Negative Name Mover Heads 5.11 4.06

(7, 3) S-Inhibition All S-Inhibition Heads 0.33 1.15
(7, 9) S-Inhibition All S-Inhibition Heads 0.33 1.12
(8, 6) S-Inhibition All S-Inhibition Heads 0.33 1.10

(8, 10) S-Inhibition All S-Inhibition Heads 0.33 0.55
(5, 5) Induction Induction Heads and Negative Heads 1.06 3.95
(5, 8) Induction All Induction Heads 1.06 2.58
(5, 9) Induction All Induction Heads 4.40 5.11
(6, 9) Induction Induction Heads and Negative Heads 4.76 5.11
(0, 1) Duplicate Token All Duplicate Token Heads 1.14 2.52

(0, 10) Duplicate Token All Duplicate Token Heads 1.14 2.29
(3, 0) Duplicate Token All Duplicate Token Heads 1.14 1.65
(2, 2) Previous Token All Previous Token Heads 2.03 2.80
(2, 9) Previous Token All Previous Token Heads 2.03 2.42

(4, 11) Previous Token All Previous Token Heads 2.03 2.27
(10, 10) Backup Name Mover All NMs and previous Backup NMs 2.40 2.63
(10, 2) Backup Name Mover All NMs and previous Backup NMs 0.89 1.09
(11, 2) Backup Name Mover All NMs and previous Backup NMs 0.72 0.89
(10, 6) Backup Name Mover All NMs and previous Backup NMs 2.63 2.77
(10, 1) Backup Name Mover All NMs and previous Backup NMs 1.34 1.47
(9, 7) Backup Name Mover All NMs and previous Backup NMs 0.85 1.02

(11, 9) Backup Name Mover All NMs and previous Backup NMs 1.02 1.13
(11, 3) Backup Name Mover [(9, 9), (10, 0), (9, 6), (10, 10), (11, 3)] 2.53 2.59

Figure 16: K sets for minimality for each v.

K found by greedy optimization
(9, 9), (9, 6), (5, 8), (5, 5), (2, 2), (2, 9)

(9, 9), (11, 10), (10, 7), (8, 6), (5, 8), (4, 11)
(10, 7), (5, 5), (2, 2), (4, 11)

(9, 9), (11, 10), (10, 7), (11, 2), (3, 0), (5, 8), (2, 2)

Figure 17: 4 sets K found by the greedy optimization procedure on our circuit.

from M that can take the place of induction heads or S-inhibition Heads when some Name Mover520

Heads are knocked-out.521

L Techniques Overview522

This work involved a variety of techniques that were required to explain model behavior.523

• Knockouts:524

We used knockouts in two different ways: knocking out singular components of models, and525

knocking out everything in the model except particular circuits. The former was somewhat526

useful, and the latter we found powerful.527

– Knockout of single components: as an attribution method, knocking out singular528

components was not always as powerful as techniques such as projections, since the529

compensation (or backup) nature of Backup Name Mover Heads in this task allowed530

components to be knocked out and their true effect size masked.531

– Knockouts of all components except a circuit: on the other hand, knocking out all532

components except a circuit enabled us to isolate behaviors in this task where behavior533

was sparse, and check the components of our circuit while ignoring the vast percentage534

of components of the network, making work manageable.535

18

What was very important for the success of knockout experiments was the choice of reference536

distribution for knockout. The analysis in Appendix G shows the large difference between537

the IOI distribution knockouts and the ABC distribution knockouts in our work, for example.538

This situation more generally exposes how delicate and important the distribution for mean-539

ablations is. For a more general knockout, the OpenWebText dataset, GPT’s training540

data, can be used. However, we found that this led to noisier results (though our circuit541

components still passed the tests of significance when these ablations were used).542

• Attention pattern analysis:543

Using attention patterns to explain behavior is always worrying due to the possibility that544

information has accumulated on that token primarily from previous tokens, or that the545

position with large attention paid to isn’t actually writing an important value into the residual546

stream. In our work however, analyzing attention patterns was generally a necessary first547

step before further experiments could be ran, and in this small model, both of the worrying548

cases did not generally arise.549

• Patching:550

Patching was an important method we used to verify causal explanations that were generally551

formed from correlational evidence. In this way our use case is similar to (Finlayson et al.552

(2021)). We were surprised however that in general patching gave clear signal on the553

changes in behavior. This may be because we generally patched from inputs like the ABC554

distribution (which was successful in knocking out too). Therefore, keeping the context of555

the sentence templates may be generally useful. This could be either because the other words556

in the templates allow the model to realise that it should be doing IOI, or that introducing557

inputs from other distributions introduces noise that the model picks up on and uses, when558

this is not intended.559

19

	Introduction
	Background
	Circuits
	Knockouts

	Circuit Overview
	Discussion
	Appendix
	Discovering the Circuit
	Which heads directly write to the output? (Name Mover Heads)
	Which heads affect the Name Mover Heads' attention? (S-Inhibition Heads)
	What information do the S-Inhibition Heads move?
	Did we miss anything? The Story of the Backup Name Movers Heads

	Experimental validation
	Completeness
	Minimality
	Comparison with a naive circuit

	IOI Templates
	Backup Name Mover Heads
	GPT-2 small full architecture
	Attention pattern analysis on sequences of random tokens
	Duplicate Token and Induction Copying Signal
	Layer norm and the residual stream
	Role of MLPs in the task
	Minimality sets
	Greedy Algorithm
	Techniques Overview

