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ABSTRACT

When talking about computer-based music generation, two are the main threads of
research: the construction of autonomous music-making systems, and the design of
computer-based environments to assist musicians. However, even though creating
accompaniments for melodies is an essential part of every producer’s and song-
writer’s work, little effort has been done in the field of automatic music arrange-
ment in the audio domain. In this contribution, we propose a novel framework
for automatic music accompaniment in the Mel-frequency domain. Using sev-
eral songs converted into Mel-spectrograms – a two-dimensional time-frequency
representation of audio signals – we were able to automatically generate origi-
nal arrangements for both bass and voice lines. Treating music pieces as images
(Mel-spectrograms) allowed us to reformulate our problem as an unpaired image-
to-image translation problem, and to tackle it with CycleGAN, a well-established
framework. Moreover, the choice to deploy raw audio and Mel-spectrograms en-
abled us to more effectively model long-range dependencies, to better represent
how humans perceive music, and to potentially draw sounds for new arrangements
from the vast collection of music recordings accumulated in the last century. Our
approach was tested on two different downstream tasks: given a bass line creat-
ing credible and on-time drums, and given an acapella song arranging it to a full
song. In absence of an objective way of evaluating the output of music generative
systems, we also defined a possible metric for the proposed task, partially based
on human (and expert) judgement.

1 INTRODUCTION

The development of home music production has brought significant innovations into the process of
pop music composition. Software like Pro Tools, Cubase, and Logic – as well as MIDI-based tech-
nologies and digital instruments – provide a wide set of tools to manipulate recordings and simplify
the composition process for artists and producers. After recording a melody, maybe with the aid of a
guitar or a piano, song writers can now start building up the arrangement one piece at a time, some-
times not even needing professional musicians or proper music training. As a result, singers and
song writers – as well as producers – have started asking for tools that could facilitate, or to some
extent even automate, the creation of full songs around their lyrics and melodies. To meet this new
demand, the goal of designing computer-based environments to assist human musicians has become
central in the field of automatic music generation (Briot et al., 2020). IRCAM OpenMusic (Assayag
et al., 1999), Sony CSL-Paris FlowComposer (Papadopoulos et al., 2016), and Logic Pro X Easy
Drummer are just some examples. In addition, more solutions based on deep learning techniques,
such as RL-Duet (Jiang et al., 2020) – a deep reinforcement learning algorithm for online accom-
paniment generation – or PopMAG, a transformer-based architecture which relies on a multi-track
MIDI representation of music (Ren et al., 2020), continue to be studied. A comprehensive review of
the most relevant deep learning techniques applied to music is provided by (Briot et al., 2020). Most
of these strategies, however, suffer from the same critical issue, which makes them less appealing in
view of music production for commercial purposes: they rely on a symbolic/MIDI representation of
music. The approach proposed in this paper, instead, is a first attempt at automatically generating an
euphonic arrangement (two or more sound patterns that produce a pleasing and harmonious piece of
music) in the audio domain, given a musical sample encoded in a two-dimensional time-frequency
representation (in particular, we opted for the Mel-spectrogram time-frequency representation). Al-
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though arrangement generation has been studied in the context of symbolic audio, indeed, switching
to Mel-spectrograms allows us to preserve the sound heritage of other musical pieces (allowing op-
erations such as sampling) and is more suitable for real-life cases, where voice, for instance, cannot
be encoded in MIDI.

We focused our attention on two different tasks of increasing difficulty: (i) given a bass line to cre-
ate credible and on-time drums, and (ii) given the voice line, to output a new and euphonic musical
arrangement. Incidentally, we found out that – for training samples – our model was able to recon-
struct the original arrangement pretty well, even though no pairing among the Mel-spectrograms of
the two domains was performed. By means of the Mel-spectrogram representation of music, we
can consider the problem of automatically generating an arrangement or accompaniment for a spe-
cific musical sample equivalent to an image-to-image translation task. For instance, if we have the
Mel-spectrogram of an acapella song, we may want to produce the Mel-spectrogram of the same
song including a suitable arrangement. To solve this task, we tested an unpaired image-to-image
translation strategy known as CycleGAN (Zhu et al., 2017), which consists of translating an image
from a source domain X to a target domain Y in the absence of paired examples, by training both
the mapping from X to Y and from Y to X simultaneously, with the goal of minimizing a cycle
consistency loss. The aforementioned system was trained on 5s pop music samples (equivalent to
256×256 Mel-spectrograms) coming both from the Free Music Archive (FMA) dataset (Defferrard
et al., 2017; 2018), and from the Demucs dataset (Défossez et al., 2019). The short sample duration
does not affect the proposed methodology, at least with respect to the arrangement task we focus
on, and inference can be performed also on full songs. Part of the dataset was pre-processed first,
since the FMA songs lack source separated channels (i.e. differentiated vocals, bass, drums, etc.).
The required channels were extracted using Demucs (Défossez et al., 2019). The main innovations
presented in this contribution are as follows: (i.) treating music pieces as images, we developed
a framework to automatically generate music arrangement in the Mel-frequency domain, different
from any other previous approach; (ii.) our approach is able to generate arrangements with low
computational resources and limited inference time, if compared to other popular solutions for au-
tomatic music generation (Dhariwal et al., 2020); (iii.) we developed a metric – partially based on
or correlated to human (and expert) judgement – to automatically evaluate the obtained results and
the creativity of the proposed system, given the challenges of a quantitative assessment of music. To
the best of our knowledge, this is the first work to face the automatic arrangement production task
in the audio domain by leveraging a two-dimensional time-frequency representation.

2 RELATED WORKS

The interest surrounding automatic music generation, translation and arrangement has greatly in-
creased in the last few years, as proven by the high numbers of solutions proposed – see (Briot
et al., 2020) for a comprehensive and detailed survey. Here we present a brief overview of the key
contributions both in symbolic and audio domain.

Music generation & arrangement in the symbolic domain. There is a very large body of research
that uses a symbolic representation of music to perform music generation and arrangement. The
following contributions used MIDI, piano rolls, chord and note names to feed several deep learning
architectures and tackle different aspects of the music generation problem. In (Yang et al., 2017),
CNNs are used for generating melody as a series of MIDI notes either from scratch, by following a
chord sequence, or by conditioning on the melody of previous bars. In (Mangal et al., 2019; Jaques
et al., 2016; Mogren, 2016; Makris et al., 2017), LSTM networks are used to generate musical notes,
melodies, polyphonic music pieces, and long drum sequences, under constraints imposed by metri-
cal rhythm information and a given bass sequence. The authors of (Yamshchikov & Tikhonov, 2017;
Roberts et al., 2018), instead, use VAE networks to generate melodies. In (Boulanger-Lewandowski
et al., 2012), symbolic sequences of polyphonic music are modeled in a completely general piano-
roll representation, while the authors of (Hadjeres & Nielsen, 2017) propose a novel architecture to
generate melodies satisfying positional constraints in the style of the soprano parts of the J.S. Bach
chorale harmonisations encoded in MIDI. In (Johnson, 2017), RNNs are used for prediction and
composition of polyphonic music; in (Hadjeres et al., 2017), highly convincing chorales in the style
of Bach were automatically generated using note names; (Lattner et al., 2018) added higher-level
structure on generated, polyphonic music, whereas (Mao et al., 2018) designed an end-to-end gener-
ative model capable of composing music conditioned on a specific mixture of composer styles. The
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approach described in (Hawthorne et al., 2018), instead, relies on notes as an intermediate represen-
tation to a suite of models – namely, a transcription model based on a CNN and a RNN network
(Hawthorne et al., 2017), a self-attention-based music language model (Huang et al., 2018) and a
WaveNet model (Oord et al., 2016) – capable of transcribing, composing, and synthesizing audio
waveforms. Finally, (Zhu et al., 2018) proposes an end-to-end melody and arrangement genera-
tion framework, called XiaoIce Band, which generates a melody track with several accompaniments
played by several types of instruments. As this extensive literature on music generation in the sym-
bolic domain shows, a promising approach would be to work with symbolic music and then use
state-of-the-art synthesizers to produce sounds. MIDI, music sheets and piano rolls, however, are
not always easy to find or produce. Moreover, many musicians and artists can not read music and
would be more comfortable to work in a less formalized setting. Finally, state-of-the-art synthesiz-
ers, although increasingly indistinguishable from live recordings, can not yet reproduce the infinite
nuances of real voices and instruments. Conversely, raw audio representation could be more appeal-
ing for some creators given its flexibility and little music competence required.

Music generation & arrangement in the audio domain. Some of the most relevant approaches
proposed so far in the field of waveform music generation deal with raw audio representation in the
time domain. Many of these approaches draw methods and ideas from the extensive literature on
audio and speech synthesis. For instance, in (Prenger et al., 2019) a flow-based network capable of
generating high quality speech from mel-spectrograms is proposed, while in (Wang et al., 2019) the
authors present a neural source-filter (NSF) waveform modeling framework that is straightforward
to train and fast to generate waveforms. In (Zhao et al., 2020) recent neural waveform synthesiz-
ers such as WaveNet, WaveG-low, and the neural-source-filter (NSF) models are compared. (Mehri
et al., 2016) tested a model for unconditional audio generation based on generating one audio sample
at a time, and (Bhave et al., 2019) applied Restricted Boltzmann Machine and LSTM architectures to
raw audio files in the frequency domain in order to generate music. A fully probabilistic and autore-
gressive model, with the predictive distribution for each audio sample conditioned on all previous
ones, is used in (Oord et al., 2016) to produce novel and often highly realistic musical fragments.
(Manzelli et al., 2018) combined two types of music generation models, namely symbolic and raw
audio models, to train a raw audio model based on the WaveNet architecture, but that incorporates
the notes of the composition as a secondary input to the network. Finally, in (Dhariwal et al., 2020)
the authors tackled the long context of raw audio using a multi-scale VQ-VAE to compress it to
discrete codes, and modeled such context through Sparse Transformers, in order to generate music
with singing in the raw audio domain. Nonetheless, due to the computational resources required to
directly model long-range dependencies in the time domain, either short samples of music can be
generated or complex and large architectures and long inference time are required. On the other
hand, in (Vasquez & Lewis, 2019) a novel approach is discussed, which proves that long-range de-
pendencies can be more tractably modelled in two-dimensional time-frequency representations such
as Mel-spectrograms. More precisely, the authors of this contribution designed a highly expressive
probabilistic model and a multiscale generation procedure over Mel-spectrograms capable of gener-
ating high-fidelity audio samples which capture structure at timescales. It is worth recalling, as well,
that treating spectrograms as images is the current standard for many Music Information Retrieval
tasks, such as music transcription (Sigtia et al., 2016) and chord recognition.

Generative adversarial networks for music generation. Our work is precisely founded on this
novel assumption, thus taking the best from the raw audio representation, while tackling the main
issues induced by musical signals long-range dependencies thanks to the waveform-to-spectrograms
conversion. Such two-dimensional representation of music paves the way to the application of sev-
eral image processing techniques and image-to-image translation networks to carry out style trans-
fer and arrangement generation (Isola et al., 2017; Zhu et al., 2017). It is worth recalling that the
application of GANs to music generation tasks is not new: in (Brunner et al., 2018), Generative
Adversarial Networks are applied on symbolic music to perform music genre transfer; however, to
the best of our knowledge, GANs have never been applied to raw audio in the Mel-frequency do-
main for music generation purposes. As to the arrangement generation task, also in this case the
large majority of approaches proposed in literature is based on symbolic representation of music: in
(Ren et al., 2020), a novel Multi-track MIDI representation (MuMIDI) is presented, which enables
simultaneous multi-track generation in a single sequence and explicitly models the dependency of
the notes from different tracks by means of a Transformer-based architecture; in (Jiang et al., 2020),
a deep reinforcement learning algorithm for online accompaniment generation is described. Coming
to the most relevant issues in the development of music generation systems, both the training and
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evaluation of such systems haven proven challenging, mainly because of the following reasons: (i)
the available datasets for music generation tasks are challenging due to their inherent high-entropy
(Dieleman et al., 2018), and (ii) the definition of an objective metric and loss is a common problem
to generative models such as GANs: at now, generative models in the music domain are evaluated
based on the subjective response of a pool of listeners, and just for the MIDI representation a set of
simple musically informed objective metrics was proposed (Yang & Lerch, 2020).

3 METHOD

3.1 SOURCE SEPARATION FOR MUSIC

We present a novel framework for automatic music arrangement generation using an adversarially
trained deep learning model. A key challenge to our approach is the scarce availability of mu-
sic data featuring source separated channels (i.e. differentiated vocals, bass, drums, ...). To this
end, we leverage Demucs by Défossez et al., a freely available tool, which separates music into its
generating sources. Demucs features a U-NET encoder-decoder architecture with a bidirectional
LSTM as middle hidden layer. In particular we used a pre-trained model made available by the
original authors, consisting of 6 convolutional encoder and decoder blocks and a middle hidden size
of length 3200. Demucs is time–equivariant, meaning that shifts in the input mixture will cause a
congruent shifts in the output. The model does not feature this property naturally, but it is achieved
through a workaround (randomized equivariant stabilization) as explained by the original authors.
Nonetheless, at times this method produces noisy separations – with watered-down harmonics and
traces of other instruments in the vocal segment – effectively hindering the ability of later part of
the pipeline to properly recognise and reconstruct accompaniment, of which harmonics are a critical
part. While better source-separation methods are available [Sota SDR = 5.85, Demucs SDR = 5.67],
we chose to use Demucs because it was faster and easier to embed in our pipeline. Moreover, for
bass source separation it beats the state of the art [Sota SDR = 5.28, Demucs SDR = 6.21]. Finally,
we were adamant about picking a tool using deep learning because this may open the possibility to
build an end-to-end trained pipeline in the future. This at least partially solves the challenge of data
availability and allows us to feed our model with the appropriate signals.

3.2 MUSIC REPRESENTATION – FROM RAW AUDIO TO MEL-SPECTROGRAMS

One of the main features of our method is to choose a two-dimensional time-frequency representa-
tion of the audio samples rather than a time representation. The spectrum is a common transformed
representation for audio, obtained via a Short-Time Fourier transform (STFT). The discrete STFT of
a given signal x : [0 : L− 1] := {0, 1, . . . , L− 1} → R leads to the kth complex Fourier coefficient
for the mth time frame X (m, k) :=

∑N−1
n=0 x(n + mH) · w(n) · e− 2πikn

N , with m ∈ [0 : M ] and
K ∈ [0 : K], and where w(n) is a sampled window function of length N ∈ N and H ∈ N is
the hop size, which determines the step size in which the window is to be shifted across the signal
(Müller, 2015). The spectrogram is a two-dimensional representation of the squared magnitude of
the STFT, i.e. Y(m, k) := |X (m, k)|2, with m ∈ [0 : M ] and K ∈ [0 : K]. Figure 1 shows a
Mel-spectrogram example (Stevens et al., 1937), which is treated as single channel image, repre-
senting the sound intensity with respect to time – x axis – and frequency – y axis (Briot et al., 2020).
This decision allows to better deal with long-range dependencies typical of such kind of data and to
reduce the computational resources and inference time required. Moreover, the Mel-scale is based
on a mapping between the actual frequency f and perceived pitch m = 2595 · log10(1 + f

700 ), as the
human auditory system does not perceive pitch in a linear manner. Finally, using Mel-spectrograms
of pre-existing songs to train our model potentially enables to draw sounds for new arrangements
from the vast collection of music recordings accumulated in the last century.

After the source separation task was carried out on our song dataset, each source (and the full
song) waveforms were turned into corresponding Mel-spectrograms. This has been done using
PyTorch Audio1, to take advantage of robust, GPU accelerated conversion. We decided to discard
the phase information in this process, to reduce the dimensionality of the representation. To revert
back to the time-domain signal, we: (i.) apply a conversion matrix (using triangular filter banks)

1Available at: https://pytorch.org/audio/stable/index.html

4

https://pytorch.org/audio/stable/index.html


Under review as a conference paper at ICLR 2021

Figure 1: Example of a Mel-spectrogram

to convert the Mel-frequency STFT to a linear scale STFT, where the matrix is calculated using a
gradient-based method (Decorsière et al., 2015) to minimize the euclidean norm between the original
Mel-spectrogram and the product between reconstructed spectrogram and filter banks; (ii.) use the
Griffin-Lim’s algorithm (Griffin & Jae Lim, 1984) to reconstruct phase information.

It is worth noticing that Mel-scale conversion and the removal of STFT phases respectively discard
frequency and temporal information, that results in a distortion in the recovered signal. To minimize
this problem, we use a high-enough resolution of the Mel-spectrograms (Vasquez & Lewis, 2019),
whose size can be tweaked with number of mels and STFT hop size parameters. Thus, the optimal
parameters we found were the following ones: the sampling rate was initially set to 22050 Hz, the
window length N to 2048, the number of Mel-frequency bins to 256 and the hop size H to 512. To
fit our model requirements, we cropped out 256 × 256 windows from each Mel-spectrogram with
an overlapping of 50 time frames, obtaining multiple samples from each song (each equivalent to 5
seconds of music).

3.3 IMAGE TO IMAGE TRANSLATION - CYCLEGAN

The automatic arrangement generation task was faced through an unpaired image-to-image transla-
tion framework, by adapting the CycleGAN model to our purpose. CycleGAN is a framework able
to translate between domains without paired input-output examples, by assuming some underlying
relationship between the domains and trying to learn that relationship. Based on a set of images in
domain X and a different set in domain Y , the algorithm learns both a mapping G : X → Y and a
mapping F : Y → X , such that the output ŷ = G(x) for every x ∈ X , is indistinguishable from
images y ∈ Y and x̂ = G(y) for every y ∈ Y , is indistinguishable from images x ∈ X . The other
relevant assumption is that, given a mapping G : X → Y and another mapping F : Y → X , then G
and F should be inverses of each other, and both mappings should be bijections. This assumption is
implemented by training both the mapping G and F simultaneously, and adding a cycle consistency
loss that encourages F (G(x)) ≈ x and G(F (y)) ≈ y. The cycle consistency loss is then combined
with the adversarial losses on domains X and Y (Zhu et al., 2017).

3.4 AUTOMATIC MUSIC PRODUCTION

The method we propose takes as input a set of N music songs in the waveform domain X =
{xi}Ni=1, where xi is a waveform whose number of samples depends on the sampling rate and the
audio length. Each waveform is then separated by Demucs into three different sources. Thus, we
end up having four different WAV files for each song, which means a new set of data of the kind:
XNEW = {xi,vi,di,bi}Ni=1, where vi,bi,di represents vocal, bass, and drums respectively. Each
track is then converted to its Mel-spectrogram representation. Since the CycleGAN model takes
256 × 256 images as input, each spectrogram is chunked into smaller pieces with an overlapping
window of 50 time frames; finally, in order to obtain one channel images from the original spectro-

5



Under review as a conference paper at ICLR 2021

Figure 2: Representation of the CycleGAN model, which consists of two mapping functions G and
F , two discriminators DX and DY and two cycle-consistency losses (Zhu et al., 2017)

grams, we performed a discretization step in the range [0 − 255]. In the final stage of our pipeline,
we feed the obtained dataset to the CycleGan model, that has been adapted to the structure of this
data. Even though the discretization step introduces some distortion – original spectrogram values
are floats – the impact on the audio quality is negligible.

At training time, as the model takes into account two domainsX and Y , we considered two different
experimental settings of increasing difficulty: (i.) we feed the model with bass and drums lines
in order to create suitable drums given a bass line; (ii.) we take the vocals and the whole song
respectively, with the goal of generating an arrangement euphonic to the vocal line. Solving the
bass2drums task effectively would represent a first interesting intermediary goal. Drums and bass
are usually the first instruments to be recorded when producing a song. Ideally, though, a system
the automatically generates a full song given a voice line as input would be far more ambitious and
disruptive because it would allow anyone to express her/himself in music.

4 EXPERIMENTS

4.1 DATASET

For the quality of the generated music samples, it is important to carefully pick the training dataset.
To train and test our model we decided to use the Free Music Archive (FMA), and the musdb18
dataset (Rafii et al., 2017) that were both made available quite recently. The Free Music Archive
(FMA) is the largest publicly available dataset suitable for music information retrieval tasks (Def-
ferrard et al., 2017; 2018). In its full form it provides 917 GB and 343 days of Creative Commons-
licensed audio from 106,574 tracks from 16,341 artists and 14,854 albums, arranged in a hierarchical
taxonomy of 161 unbalanced genres. It provides full-length and high-quality audio, pre-computed
features, together with track- and user-level metadata, tags, and free-form text such as biographies.
Given the size of FMA, we chose to select only untrimmed songs tagged as either pop, soul-RnB, or
indie-rock, for a total of approximately 10,000 songs ( 700 hours of audio). It is possible to read the
full list of songs at FMA website, selecting the genre. We discarded all songs that were recorded
live by filtering out all albums that contained the word ”live” in the title. Finally, in order to better
validate and fine-tune our model we decided to also use the full musdb18 dataset. This rather small
dataset is made up of 100 tracks taken from the DSD100 dataset, 46 tracks from the MedleyDB, 2
tracks kindly provided by Native Instruments, and 2 tracks from the Canadian rock band The Easton
Ellises. It represents a unique and precious source of songs delivered in multi-track fashion. Each
song comes as 5 audio files – vocals, bass, drums, others, full song – perfectly separated at the
master level. We used the 100 tracks taken from the DSD100 dataset to fine-tune the model ( 6.5
hours), and the remaining 50 songs to test it ( 3.5 hours). It is worth noting that DEMUCS is not
a perfect method for source separation: it introduces artefacts and noise of the original song in the
separated sources output, making the task easier and inducing the model to learn to amplify it. For
this reason our training strategy is to pre-train with the artificial FMA dataset then fine-tune with
musdb18. Intuitively, the former, which is much larger, helps the model to create a good representa-
tion of musical signal; the latter, which is of higher quality, contributes to reducing bias induced by
the noise and to further specializing to generate a base relying only on the (clean) input given.
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Table 1: Pearson’s correlation matrix for all 4 annotators
Guitarist Drummer Producer 1 Producer 2

Guitarist na 0.82 0.75 0.77
Drummer 0.82 na 0.76 0.79
Producer 1 0.75 0.76 na 0.85
Producer 2 0.77 0.79 0.85 na

4.2 TRAINING OF THE CYCLE-GAN MODEL

For both the bass2drums and voice2song tasks, we trained our model on 2 Tesla V100 SXM2 GPUs
with 32 GB of RAM for 12 epochs (FMA dataset), and fine-tuned it for 20 more epochs (musdb18
dataset). Each task required 6 days of training. For both the settings, as a final step, the spectrograms
obtained were converted to the waveform domain, to evaluate the produced music. As to the Cycle-
GAN model used for training, we relied on the default network available at this GitHub repository.
As a result, the model uses a resnet 9blocks ResNet generator and a basic 70x70 PatchGAN as a
discriminator. The Adam optimizer (Kingma & Ba, 2014) was chosen both for the generators and
the discriminators, with betas (0.5, 0.999) and learning rate equal to 0.0002. The batch size was set
to 1. The λ weights for cycle losses were both equal to 10.

4.3 EXPERIMENTAL SETTING

There is an intrinsic difficulty in objectively evaluating artistic artifacts such as music. As a human
construct, there are no objective, universal criteria for appreciating music. Nevertheless, in order
to establish some form of benchmark and allow comparisons among different approaches, many
generative approaches to raw audio, such as Jukebox (Dhariwal et al., 2020) or Universal Music
Translation Network (Mor et al., 2018), try to overcome this obstacle by having the results manually
tagged by human experts. Although this rating may be the best in terms of quality, the result is still
somehow subjective, thus different people may end up giving different or biased ratings based on
their personal taste. Moreover, the computational cost and time required to manually annotate the
dataset could become prohibitive even for relatively few samples (over 1000). Aware of the great
limits linked to this human-based approach and unable to find a more convincing evaluation proce-
dure, we propose a new metric that highly correlates with human judgment. This could represent a
first benchmark for the tasks at hand. The results remain somehow subjective, but at least we were
able to automatically replicate our evaluators’ criteria and grades, saving time and money.

4.4 METRICS

If we consider as a general objective for a system the capacity to assist composers and musicians,
rather than to autonomously generate music, we should also consider as an evaluation criteria the
satisfaction of the composer (notably, if the assistance of the computer allowed him to compose and
create music that he may consider not having been possible otherwise), rather than the satisfaction of
the auditors (who remain too often guided by some conformance to a current musical trend) (Briot
et al., 2020).

However, as previously stated, an exclusive human evaluation may be unsustainable in terms of
computational cost and time required. Thus we carried out the following quantitative assessment
of our model. We first produced 400 test samples – from as many different songs and authors –
of artificial arrangements and drum lines starting from voice and bass lines that were not part of
the training set. We then asked a professional guitarist who has been playing in a pop-rock band
for more than 10 years, a professional drum player from the same band, and two pop and indie-rock
music producers with more than 4 years of experience to manually annotate these samples, capturing
the following musical dimensions: quality, euphony, coherence, intelligibility. More precisely, for
each sample, we asked them to rate from 1 to 10 the following aspects: (i) Quality: a rating from 1
to 10 of the naturalness and absence of artifacts or noise, (ii) Contamination: a rating from 1 to 10
of the contamination by other sources, (iii) Credibility: a rating from 1 to 10 of the credibility of the
sample, (iv) Time: a rating from 1 to 10 of whether the produced drums and arrangements are on
time the bass and voice lines. The choice fell on these four aspects after we asked the evaluators to

7

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix


Under review as a conference paper at ICLR 2021

list and describe the most relevant dimensions in the perceived quality of a piece of pop-rock music.
The correlation matrix for all 4 annotators is shown in Table 1.

Ideally, we want to produce some quantitative measure whose outputs – when applied to generated
samples – highly correlates (i.e. predict) expert average grades. To achieve this goal, we trained
a logistic regression model with features obtained through a comparison between the original ar-
rangement and the model output, as well as the original drums and the artificial drums. Here are the
details on how we obtained suitable features:

STOI-like features. We created a procedure – inspired by the STOI (Andersen et al., 2017) – whose
output vector somehow measures the Mel-frequency bins correlation throughout time between the
original sample (arrangement/drums) and the fake one. The obtained vector can then be used to feed
a multi regression model whose independent variable is the human score attributed to that sample.

Here is the formalisation: HumanScore =
∑256

i ai

[∑256
t (x

(t)
i − x̄(t))(y

(t)
i − ȳ(t))

]
. To simplify,

to each pair of samples (original and generated one) a 256 element long vector is associated as
follows: S(X ,Y, l)(i) =

∑256
t (x

(t)
i − x̄(t))(y

(t)
i − ȳ(t)). Where: (i.) X and Y are, respectively,

the Mel-spectrogram matrices of original and generated samples; (ii.) ai is the i-th coefficient
for the linear regression; (iii.) x

(t)
i and y

(t)
i the i-th element of the t-th column of matrices X

and Y , respectively; (iv.) x̄(t) and ȳ(t) are the means along the t-th column of matrices X and
Y , respectively. Each feature i of the regression model is a sort of Pearson correlation coefficient
between row i of X and row i of Y throughout time.

FID-based features. In the context of GANs result evaluation, the Fréchet Inception distance (FID)
is supposed to improve on the Inception Score by actually comparing the statistics of generated
samples to real samples (Salimans et al., 2016; Heusel et al., 2017). In other words, FID mea-
sures the probabilistic distance between two multivariate Gaussians, where Xr = N(µr,Σr) and
Xg = N(µg,Σg) are the 2048-dimensional activations of the Inception-v3 pool3 layer – for real
and generated samples respectively – modeled as normal distributions. The similarity between the
two distributions is measured as follow: FID = ‖µr − µg‖2 + Tr(Σr + Σg − 2(ΣrΣg)1/2). Nev-
ertheless, since we want to assign a score to each sample, we just estimated the Xr = N(µr,Σr)
parameters – using different activation layers of the Inception pre-trained network – and then we
calculated the probability density associated to each fake sample. Finally, we added these scores to
the regression model predictors.

4.5 EXPERIMENTAL RESULTS

For the bass2drums task, Figure 3 shows the distribution of grades for the 400 test samples – aver-
aged among all four independent evaluators and over all the four dimensions. We rounded the results
to the closest integer to make the plot more readable. The higher the grade, the better the sample
will sound. Additionally, to fully understand what to expect from samples graded similarly, we dis-
cussed the model results with the evaluators. We collectively listened to a random set of samples and
it turned out that all four raters followed similar principles in assigning the grades. Samples with
grade 1-3 are generally silent or very noisy. In samples graded 4-5 few sounds start to emerge, but
they are usually not very pleasant to listen to, nor coherent. Grades 6-7 identify drums that sound
good, that are coherent, but that are not continuous: they tend to follow the bass line too closely.
Finally, samples graded 8 and 9 are almost indistinguishable from real drums, both in terms of sound
and timing. In the labeling of non graded samples phase, we therefore assigned a 0 to those samples
whose average grade was between 1 and 5, and 1 to those between 6 and 10. Finally, we trained
a multi-logistic regression model with both the STOI-like and the FID-based features. The model
accuracy on test set was 87%.

Given this pretty good result, we could then used this trained logistic model to label 14000 different
5s fake drums clips, produced from as many real bass lines. Two third of these were labeled as
good sounding and on time. Here is a private Sound Cloud playlist where you can listen to some of
the most interesting results. Regarding instead the voice2song task, results were less encouraging.
Even though some nice arrangements were produced, the model failed to properly and euphonically
arrange the input voice lines. For this reason, here we limit to report some of the best produced
samples, in the hope to improve the model greatly in the following months. As for baselines, ini-
tially we thought about comparing our results to three particularly notable works (Dhariwal et al.,
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Figure 3: Grade distribution of generated drums samples

2020; Vasquez & Lewis, 2019; Mor et al., 2018), but after running some experiments we eventually
realized that they could not be properly used for arrangement purposes. All three model produce
very nice music samples, but none of them can take as input vocals or bass lines and produce a
complementary arrangement. It is possible though that these models could be fine tuned to solve
this new task. In addition, we replicated exactly the same experiments using Pix2Pix by Isola et al.,
a well known paired image-to-image architecture. Despite long training, results were very poor and
quite unpleasant to listen to. Due to space concerns we do not report more details about this set of
experiments.

Finally, with respect to the computational resources and time required to generate new arrangements,
our approach shows several advantages, compared to auto-regressive models (Dhariwal et al., 2020).
Since the output prediction can be fully parallelised, the inference time amounts to a forward pass
and a Mel-spectrogram-waveform inverse conversion, whose duration depends on the input length,
but it never exceeds few minutes. Indeed, it is worth noting that, at inference time, arbitrary long
inputs can be processed and arranged.

5 CONCLUSIONS AND FUTURE WORK

In this work, we presented a novel approach to automatically produce euphonic music arrange-
ments starting from a voice line or a bass line. We applied Generative Adversarial Networks to real
music pieces, treated as grayscale images (Mel-spectrograms). Given the novelty of the problem,
we proposed a reasonable procedure to properly evaluate our model outputs. Notwithstanding the
promising results, some critical issues need to be addressed before a more compelling architecture
can be developed. First and foremost, a larger and cleaner dataset of source separated songs should
be created. In fact, manually separated track always contain a big deal of noise. Moreover, the model
architecture should be further improved to focus on longer dependencies and to take into account
the actual degradation of high frequencies. Finally, a certain degree of interaction and randomness
should be inserted to make the model less deterministic and to give creators some control over the
sample generation. Our contribution is nonetheless a first step toward more realistic and useful au-
tomatic music arrangement systems and we believe that further significant steps could be made to
reach the final goal of human-level automatic music arrangement production. Already now software
like Melodyne (Neubäcker, 2011; Senior, 2009) delivers producers a powerful user interface to di-
rectly intervene on a spectrogram-based representation of audio signals to correct, perfect, reshape
and restructure vocals, samples and recordings of all kinds. It is not unlikely that in the future artists
and composers will start creating their music almost like they were drawing.
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