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ABSTRACT

Estimating single-cell responses across various perturbations facilitates the iden-
tification of key genes and enhances drug screening, significantly boosting ex-
perimental efficiency. However, single-cell sequencing is a destructive process,
making it impossible to capture the same cell’s phenotype before and after pertur-
bation. Consequently, data collected under perturbed and unperturbed conditions
are inherently unpaired, creating a critical yet unresolved problem in single-cell
perturbation modeling. Moreover, the high dimensionality and sparsity of single-
cell expression make direct modeling prone to focusing on zeros and neglecting
meaningful patterns. To address these problems, we propose a new paradigm for
single-cell perturbation modeling. Specifically, we leverage dual diffusion mod-
els to learn the control and perturbed distributions separately, and implicitly align
them through a shared Gaussian latent space, without requiring explicit cell pair-
ing. Furthermore, we introduce a sparsity masking strategy in which the mask
model learns to predict zero-expressed genes, allowing the diffusion model to fo-
cus on capturing meaningful patterns among expressed genes and thereby preserv-
ing diversity in high-dimensional sparse data. We introduce Doloris, a generative
framework that defines a new paradigm for modeling unpaired, high-dimensional,
and sparse single-cell perturbation data. It leverages dual conditional diffusion
models for separate learning of control and perturbed distributions, complemented
by a sparsity masking strategy to enhance prediction of zero-valued genes. The
results on publicly available datasets show that our model effectively captures the
diversity of single-cell perturbations and achieves state-of-the-art performance.
To facilitate reproducibility, we include the code in the supplementary materials.
Code available at https://github.com/ChangxiChi/Doloris.

1 INTRODUCTION

Different single-cell perturbations, including CRISPR-based gene knockouts (Barrangou & Doudna,
2016; Lino et al., 2018) and small-molecule treatments (Peidli et al., 2024), act at different layers
of cellular mechanisms. Despite significant advancements in sequencing technology, producing
perturbation data remains costly and time-consuming. As it is impractical to perform experiments
across all cell types and perturbation conditions, accurately predicting perturbation responses under
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Figure 1: Single-cell perturbation data are unpaired as cells cannot be measured twice.

novel conditions is crucial. This capability significantly enhances biomedical research, particularly
in advancing the understanding of gene functions and accelerating drug screening.
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Figure 2: Intra-distance across
different model settings. See
Section 4.5 for details.

RNA-seq requires cell lysis to release RNA during sequencing,
making it an irreversible and destructive process for cells (Mor-
tazavi et al., 2008). Consequently, in single-cell perturbation ex-
periments, capturing the same cell’s phenotype before and af-
ter perturbation is not feasible (Fig. 1). As a result, single-cell
perturbation data are fundamentally unpaired. Although existing
methods (Roohani et al., 2022; Hetzel et al., 2022b; Bereket &
Karaletsos, 2024; Wu et al., 2022; He et al., 2024; Wang et al.,
2024; Piran et al., 2024; Chi et al., 2025) for predicting cell re-
sponses under unseen perturbation conditions have made signifi-
cant progress, they often overlook the inherently unpaired nature
of single-cell perturbation data, either by forcibly matching sam-
ples from the perturbed and unperturbed groups or by disregard-
ing their relationships during modeling. On the other hand, while
the unpaired nature of the data has been considered in some stud-
ies (Bunne et al., 2023; Cao et al., 2024), their lack of explicit
perturbation modeling limits generalization to unseen perturba-
tions. As shown in Fig. 2, directly learning the expression matrix
reduces model diversity, as the high dimensionality and sparsity of single-cell data with abundant
zero or near-zero values (Xie et al., 2023; Chi et al., 2024) obscures meaningful patterns (Johnstone
& Titterington, 2009; Bühlmann & Van De Geer, 2011).

To address these issues, we propose Doloris (Dual Conditional Diffusion Implicit Bridges with
Sparsity Masking Strategy for Unpaired Single-Cell Perturbation Estimation), a new paradigm for
modeling single-cell perturbations that predicts cellular responses to unseen genetic and molecular
perturbations. Inspired by (Su et al., 2022), Doloris leverages a dual conditional diffusion (DDIB)
framework to model unpaired single-cell perturbation. To address the challenge of unpaired data,
it uses a source model for unperturbed cells and a target model for perturbed cells, sharing a latent
Gaussian space to implicitly bridge control and perturbed states, while a perturbation specific em-
bedding incorporates gene and molecular perturbation information. Besides, we show that adding
more genes reduces the SNR (Fig. 8), indicating that higher dimensionality makes pattern learning
harder. On top of this high-dimensional background, single-cell expression is also sparse (Fig. 5).
We introduce a sparsity masking strategy that predicts zero-valued genes and steers the diffusion
model to focus on expressed signals. Section 4.5 shows that the sparsity masking strategy is effec-
tive in mitigating the model’s tendency to overfit zeros and preserving diversity.

The main contributions of our work are as follows:

• We introduce Doloris, a new paradigm for single-cell perturbation modeling. It explicitly
addresses the challenge of unpaired data by learning separate distributions for unperturbed
and perturbed cells while maintaining a shared latent space to implicitly bridge control and
perturbed distributions, without requiring explicit cell pairing.

• To handle the sparsity and high dimensionality of gene expression, it leverages a sparsity
masking strategy that predicts zero-valued genes, ensuring the diffusion model focuses on
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meaningful expression patterns instead of abundant zeros. Ablation studies further confirm
that the masking strategy effectively mitigates overfitting to zeros and preserving diversity.

• We show that Doloris outperforms existing methods across a broad range of evaluation
metrics on public genetic and molecular perturbation datasets.

2 RELATED WORK AND PRELIMINARIES

2.1 PERTURBATION ESTIMATION MODEL

Genetic and molecular perturbations constitute the two main research directions in single-cell per-
turbation studies. Existing methods have made significant progress in modeling single-cell perturba-
tion responses. Some approaches rely on regression models to predict the outcomes of perturbations
(Roohani et al., 2022; Chi et al., 2025; Cheng et al., 2025). Other methods employ generative mod-
els to reconstruct the distribution of perturbed states (Lotfollahi et al., 2019; Cui et al., 2024; Hetzel
et al., 2022a; Wu et al., 2022; Bereket & Karaletsos, 2024; Wang et al., 2024; Piran et al., 2024).
However, many of these approaches largely overlook the intrinsic relationship between control and
perturbed samples during modeling. A separate class of methods enforces explicit pairing between
unperturbed and perturbed samples, which may introduce unrealistic assumptions about the data.

2.2 DIFFUSION PROCESS AND LEARNING OBJECTIVE

In this section, we introduce the basic formulation of diffusion (Luo, 2022; Guo et al., 2023). Given
an input sample x0, we progressively add noise to it via the forward diffusion process as follows:

xt =
√
ᾱt · x0 +

√
1− ᾱt · ϵ, ϵ ∼ N (0, I) (1)

where t ∈ [0, 1] denotes the time step in the diffusion process, and ᾱt is the signal-to-noise ratio at
step t. The objective of the diffusion model ϵθ is to predict the true noise from the noisy sample xt.
The formula is as follows:

L = Ex0,ϵ∼N (0,I),t

[
∥ϵ− ϵθ(xt, t)∥2

]
(2)

2.3 DDIM INVERSION

The DDIM (Song et al., 2020) proposes a straightforward inversion technique based on the ODE
process, which significantly accelerates the inversion of xT back to x0, based on the assumption
that the ODE process can be reversed in the limit of small steps, which can be written as:

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt

)
+

√
1− ᾱt−1 − η2 · ϵθ(xt, t) + ηϵt (3)

where η determines the stochasticity in the forward process, and ϵt is standard Gaussian noise.

2.4 DDIB INFERENCE

Dual Diffusion Implicit Bridges (DDIB,(Su et al., 2022)) provide a mechanism to model transitions
between two distributions by learning separate diffusion models ϵ(s)θ and ϵ

(t)
θ for source and target

domains, while connecting them through a shared latent space. Specifically, the process begins by
adding noise to sample x(s) from the source distribution as follow:

x(l) = ODESolve(x(s); ϵ
(s)
θ , 0, 1), ODESolve(xt0 ; ϵθ, t0, t1) = xt0 +

∫ t1

t0

ϵθ(t, xt)dt (4)

Then, starting from the latent representation x(l), the target diffusion model ϵ(t)θ performs the reverse
denoising process to generate a sample x(t) in the target domain:

x(t) = ODESolve(x(l); ϵ
(t)
θ , 1, 0) (5)
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Figure 3: Overview of Doloris. Doloris predicts cellular responses under unseen perturbation con-
ditions. The source model first maps an unperturbed cell xc into the shared latent space by applying
a DDIM-based forward process conditioned on covariates cov(s), obtaining the latent embedding xl.
Conditioned on a given perturbation covariates cov(t), the target model then performs DDIM-based
denoising from xl to generate the predicted perturbed cell xt. For clarity, only the core framework
is shown here. The mask model will be introduced later in detail.

3 METHODOLOGY

In this section, we introduce our proposed model Doloris. The overview is shown in Fig. 3. Specif-
ically, the source model learns the distribution of unperturbed cells, while the target model learns
the distribution of cells under various perturbation conditions. By using a source model and a target
model that share a prior space, we align the distributions of unperturbed and perturbed cells, thereby
addressing the issue of unpaired data. It is worth noting that Fig. 3 illustrates only the core frame-
work. In addition, Doloris employs a sparsity masking strategy to predict zero-valued genes. The
details of the mask model are presented in Sec. 3.5.

3.1 INPUT AND OUTPUT

In the single-cell perturbation prediction task, our goal is to predict the gene expression levels of
cells under specific perturbation conditions. During training, the model takes real cell samples as
input to learn the transition from the true expression distribution to a Gaussian noise distribution
(Section 3.3 and Section 3.4), where the source model is conditioned on cov(s) and the target model
is conditioned on cov(t). At the same time, the mask model learns the probabilities of gene acti-
vation under perturbation (Section 3.5), which are conditioned solely on cov(t). During inference,
control cell sample xc and condition cov(s) are input to generate a latent embedding xl, which is
then denoised under the given perturbation condition cov(t) to output the predicted perturbed gene
expression. See Section 3.6 for details.

3.2 DATA PREPROCESSING

We first apply the SCANPY package Wolf et al. (2018) to perform log1p normalization on the gene
expression data. Here, N represents the dimensionality of the gene expression vector for each single
cell. To facilitate stable training, we normalize the gene expression values to the range [0, 1] using
the max value xmax from the training set after splitting the dataset as: x′ = x

xmax
. When generating

predictions, we restore the normalized values back to the original scale by multiplying by xmax.

3.3 SOURCE MODEL FOR THE DISTRIBUTION OF UNPERTURBED CELLS

The source model is a conditional diffusion model designed to capture the gene expression distribu-
tions of unperturbed cells. It models the alignment of control cells under different conditions (here
represented by cell type labels) with a standard Gaussian latent space.
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Unlike conventional diffusion models (Guo et al., 2023), which predict the noise at each time step
(Eq. 2), modeling the noise in gene expression data is particularly challenging due to its complexity
and weak structure. Therefore, our model directly predicts x0, the clean gene expression data. These
two parameterizations are theoretically equivalent because (Luo, 2022):

x0 =
xt −

√
1− ᾱtϵ0√
ᾱt

(6)

Formally, given a control cell sample xc
0 from cell type ct drawn from the unperturbed distribution

p
(s)
ct , we obtain the noisy sample xc

t by applying a forward diffusion process (Eq. 1):

xc
t =

√
ᾱt · xc

0 +
√
1− ᾱt · ϵ, ϵ ∼ N (0, I) (7)

The model outputs can be uniformly written as:

x̂c
0 = x̂(s)

θ (xc
t , t, cov

(s)), cov(s) = {ct} (8)

Considering the sparsity of gene expression data, we design a mask model, trained independently
from the main model, to predict which genes are zero-valued. Consequently, the diffusion model
computes the loss only over expressed genes during training. Finally, the diffusion model is trained
by minimizing the reconstruction loss between the predicted and true clean gene expression:

L(s) = Exc
0,t,cov

(s)


∥∥∥M c ⊙ (xc

0 − x̂(s)
θ (xc

t , t, cov
(s)))

∥∥∥2∑
i M

c
i

 (9)

here, M c is a binary mask vector defined as:

M c
i =

{
1, if xc

0,i ̸= 0

0, otherwise
(10)

3.4 TARGET MODEL FOR THE DISTRIBUTION OF PERTURBED CELLS

The target model is largely analogous to the source model, with the main difference being that it
learns the distribution of cells under various perturbation conditions, conditioned on both cell type
ct and perturbation P . Given a treated cell sample xt

0 from cell type ct drawn from the perturbed
distribution p

(t)
ct , we obtain the noisy sample xt

t at timestep t obtained from the perturbed cell xt
0:

xt
t =

√
ᾱt · xt

0 +
√
1− ᾱt · ϵ, ϵ ∼ N (0, I) (11)

Considering that perturbations are applied to unperturbed cells to simulate their responses, we need
to provide the target model with information about the unperturbed group. However, since the pertur-
bation data is unpaired, we can’t directly input a sample from the unperturbed group. Furthermore,
using only the expectations µct ∈ RN of unperturbed group gene expression p

(s)
ct is unreasonable,

as it disregards cell heterogeneity. During training, random Gaussian noise is added internally to
µct with scale σct (Eq. 12) to preserve cellular heterogeneity. Importantly, this does not assume
that gene expression follows a Gaussian distribution, but rather serves as a stochastic mechanism to
avoid collapsing to mean profiles.

xnoisy = µct + σct · ϵ, ϵ ∼ N (0, I) (12)

Finally, the objective of the target model is analogous to the source model, except that it learns from
perturbed cells under specific perturbation conditions. Formally, the loss is defined as:

L(t) = Ext
0,t,cov

(t)


∥∥∥M t ⊙ (xt

0 − x̂(t)
θ (xt

t, t, cov
(t)))

∥∥∥2∑
i M

t
i

 (13)

where M t is a binary mask vector defined in Eq. 10, computed based on the clean sample xt
0. For

notational simplicity, we define cov(t) = {ct, µct, σct, P}, where ct denotes the cell type, µct and
σct represent the expectation and standard deviation of the corresponding unperturbed distribution
psct, and P denotes the perturbation.
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3.5 SPARSITY MASKING STRATEGY FOR ZERO-VALUED GENE PREDICTION

High-dimensional data are inherently challenging, as learning meaningful patterns becomes increas-
ingly difficult when the number of features grows (Johnstone & Titterington, 2009; Bühlmann & Van
De Geer, 2011). In the context of single-cell expression, our analysis shows that as more genes are
considered, the relative signal-to-noise ratio (SNR) of the expression data decreases significantly
(Fig. 8), indicating that pattern learning becomes more difficult in this high-dimensional space. On
top of this high-dimensional challenge, single-cell expression is also sparse (Fig. 5). This sparsity
can cause the model to overfit the abundant zeros, obscuring meaningful perturbation-specific pat-
terns. To address this, we introduce a sparsity masking strategy that predicts silenced genes under
perturbation, ensuring that the diffusion model focuses on truly expressed genes and learns non-
trivial perturbation-specific patterns instead of collapsing to zero-dominant solutions.

Specifically, besides computing the diffusion loss only over expressed genes during model training
(Eq. 9 and Eq. 13), the sparsity masking strategy also requires an additional Mask Model m̂θ to be
trained. This Mask Model predicts which genes are silenced after each perturbation. The output
of m̂θ can be interpreted as probabilities of gene activation, and the final training objective is to
minimize the cross-entropy loss as follow:

Lmask = − 1

N

N∑
i=1

[
M t

i log(m̂θ(cov
(t))) + (1−M t

i ) log(1− m̂θ(cov
(t)))

]
(14)

here M t is obtained from the observed cell sample x0 under perturbation P and cell type ct using
Eq. 10. However, it only characterizes the predicted marginal distribution. How to derive meaningful
samples from this predicted marginal distribution will be discussed in the following section.

3.6 INFERENCE

Inference consists of two main steps. First, we generate continuous gene expression values under
perturbation conditions using DDIB inference (Sec. 2.4). Second, the Mask Model predicts the
expression states of genes after perturbation. In this section, we provide a detailed explanation of
how these steps are implemented.

Conditioned on perturbation P and cell type ct, we first generate continuous gene expression values
using DDIB inference, as illustrated in the lower part of Fig. 3. Specifically, we first randomly
sample a control cell xc from cell type ct, and then apply a forward diffusion process to obtain the
corresponding latent embedding xl using source model x̂(s)

θ :

xl = ODESolve(xc; x̂(s)
θ , cov(s), 0, 1) (15)

where cov(s) = {ct}. Then, starting from the latent embedding xl, the target model x̂(t)
θ performs

the denoising process to generate the predicted gene expression profile xt under perturbation P . We
note that during inference, we assume a true control cell sample xc as the starting point. Therefore,
unlike during training, there is no need to construct the input using the mean and standard deviation
of the unperturbed group. The actual sample xc is used directly in place of xnoisy (Eq. 12).

xt = ODESolve(xl; x̂(t)
θ , cov(t), 1, 0) (16)

where cov(t) = {ct, xc, P}.

For gene activation prediction, we first feed the control sample xc with the given condition cov(t)

into the Mask Model m̂θ, which outputs a probability score pm̂θ
∈ [0, 1]N for each gene being active.

However, directly drawing independent Bernoulli samples from these probabilities can accumulate
severe errors and yield globally inconsistent gene activation patterns. To address this, we propose
a more coherent strategy that first identifies training-condition subsets with empirical marginal dis-
tributions similar to pm̂θ

, and then updates samples from these subsets according to the predicted
probabilities to obtain the final binary activation mask M̂ ∈ {0, 1}N (Appendix A.11 for details).

Finally, the prediction is obtained by applying the sparsity mask M̂ to the predicted continuous gene
expression values xt via element-wise multiplication, followed by rescaling to the original scale.

x̂ = (M̂ ⊙ xt)× xmax (17)
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3.7 IMPLEMENTATION

During training, we separately optimize the dual diffusion models (x̂(s)
θ and x̂(t)

θ ) and the Mask
Model m̂θ. Since the source and target models share the same architecture, with the target model
only requiring additional conditioning inputs (e.g., perturbation P , etc., see Sec. 3.4), we unify them
into a single implementation that jointly handles both cov(s) and cov(t) to simplify training.

The embedding of cell type ct is directly learned as a trainable label representation from the training
data, without relying on external models. After receiving perturbation information, the model passes
it through a perturbation-specific embedding module, which generates conditional signals for gene
and molecular perturbations. Specifically, for gene perturbations, we follow the embedding strategy
of (Chi et al., 2025), which enables our model to handle multi-gene knockouts and capture combi-
natorial perturbation effects. For molecular perturbations, we leverage a pre-trained model (Zhou
et al., 2023) to extract molecular representations, which are then used as conditional inputs for the
diffusion model to guide generation.

4 EXPERIMENTS AND RESULTS

4.1 DATASETS

We utilize the Adamson (Adamson et al., 2016) and Norman (Norman et al., 2019) datasets for
CRISPR knockouts, and the sci-Plex3 (Srivatsan et al., 2020b) dataset for chemical perturbations.
Detailed preprocessing and data splitting procedures are provided in Appendix A.2.

4.2 EXPERIMENT SETTINGS

The model is trained using the AdamW (Loshchilov, 2017) optimizer with a learning rate of 0.001
and a batch size of 32. The diffusion process is configured with a total of 500 steps. For inference,
we adopt DDIM (Song et al., 2020) sampling with 50 steps. For datasets Adamson, Norman and
SciPlex3, training steps are adjusted to 10, 000, 10, 000 and 100, 000, respectively. All our method
and its competitors are conducted using one Nvidia A100 80G GPU.

4.3 DOLORIS OUTPERFORM EXISTING METHODS

Unperturbed Perturbed

Figure 4: Under the same experimental con-
dition, many genes show a bimodal distri-
bution. The figure shows top DE genes for
ZNF326 knockout versus unperturbed cells.

For evaluation, we observe strong heterogeneity in
single-cell data, where many differentially expressed
(DE) genes exhibit bimodal distributions under the
same condition (Fig. 4). This limitation renders
expectation-based metrics unreliable. In particu-
lar, for bimodal gene expression distributions, the
conditional mean is not biologically meaningful,
and metrics such as RMSE computed on the mean
fail to capture the true distributional characteristics.
To address this, we introduce Energy Distance (E-
distance) and Earth Mover’s Distance (EMD). E-
distance captures overall distributional alignment by
considering both inter-group and intra-group dis-
tances, while EMD quantifies gene-level shifts by
measuring the minimal cost to align predicted and
true distributions. Together, they provide a com-
prehensive and robust assessment of model perfor-
mance at both the population and gene levels. Detailed computation procedures are provided in the
Appendix A.6.

Table 1 shows that Doloris outperforms GEARS (Roohani et al., 2022), graphVCI (Wu et al., 2022),
scGPT (Cui et al., 2024), BioLord (Piran et al., 2024), and GRAPE (Chi et al., 2025) across most
evaluation metrics, all of which rely on forced pairing of perturbed and unperturbed cells during
training. For the regression models, this setup tends to bias learning toward the mean of the data,
preventing the capture of the heterogeneity of single-cell gene expression profiles. Methods such as
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Table 1: Comparisons on Adamson and sci-Plex3 datasets. Metrics include RMSE, E-distance,
and EMD computed on all and top-20/40 DE genes. Tasks correspond to unseen single-gene and
drug–cell line-dosage perturbations, respectively.

Model All DE20 DE40

RMSE(↓) E-distance(↓) EMD(↓) RMSE(↓) E-distance(↓) EMD(↓) RMSE(↓) E-distance(↓) EMD(↓)
- Unseen single genetic perturbation prediction results

Doloris 0.0336
±0.0103

0.4682
±0.1398

0.0348
±0.0033

0.1094
±0.0506

0.4653
±0.1930

0.0789
±0.0514

0.0987
±0.0578

0.4976
±0.1847

0.0811
±0.0452

ScLambda 0.0505
±0.0257

1.9939
±0.1296

0.0906
±0.0040

0.2539
±0.0192

0.6996
±0.2997

0.0914
±0.0476

0.2197
±0.0589

0.7229
±0.2615

0.0950
±0.0389

GRAPE 0.0510
±0.0110

0.8705
±0.0484

0.0444
±0.0024

0.1850
±0.0066

0.7514
±0.0523

0.1528
±0.0234

0.1697
±0.0047

0.7648
±0.0565

0.1503
±0.0182

GEARS 0.0544
±0.0088

0.8921
±0.1304

0.0531
±0.0027

0.1759
±0.0078

0.7884
±0.1245

0.1298
±0.0324

0.1781
±0.0054

0.7935
±0.1273

0.1221
±0.0231

scGPT 0.5372
±0.1482

2.6318
±0.0441

0.1724
±0.0355

0.7151
±0.1246

1.2571
±0.3373

0.3895
±0.1032

0.7021
±0.2207

1.4484
±0.3087

0.3781
±0.0866

linear 0.0473
±0.0008

0.8658
±0.0251

0.0373
±0.0024

0.2143
±0.0068

0.8583
±0.0525

0.1702
±0.02265

0.2007
±0.0040

0.8958
±0.0429

0.1631
±0.0199

- Unseen molecular perturbation prediction results

Doloris 0.0287
±0.0157

0.4055
±0.2190

0.0265
±0.0051

0.0625
±0.0412

0.2484
±0.1710

0.0743
±0.0216

0.0547
±0.0460

0.2406
±0.1671

0.0649
±0.0219

BioLord 0.0409
±0.0180

1.2739
±0.1947

0.0703
±0.0103

0.1094
±0.0622

0.8823
±0.1529

0.2157
±0.0645

0.0945
±0.0497

1.0314
±0.1451

0.1920
±0.0477

chemCPA 0.0570
±0.0130

0.7847
±0.1029

0.0838
±0.0081

0.1462
±0.0271

0.4717
±0.1571

0.1836
±0.0358

0.1314
±0.0167

0.5008
±0.1659

0.1784
±0.0261

CPA 0.0697
±0.0253

0.9894
±0.1336

0.1357
±0.0461

0.2006
±0.0935

0.9737
±0.9768

0.3761
±0.0667

0.1807
±0.0667

1.0794
±1.1890

0.3856
±0.0387

GraphVCI 0.6212
±0.0772

0.8393
±0.1823

0.0986
±0.0108

0.5886
±0.1441

0.4958
±0.1275

0.2016
±0.0379

0.6007
±0.1231

0.5174
±0.1347

0.1861
±0.0288

Tr
ue

PCC=0.9678 PCC=0.9369

Prediction Prediction Prediction Prediction

(a). HSD17B12 (b). HSD17B12_0.05 (c). A549_Enzastaurin_1𝜇M

PCC=0.9880 PCC=0.9814

(d). A549_Enzastaurin_1𝜇M_0.05

Figure 5: Visualization of predicted gene activation probabilities by the Mask Model. Panels (a)
and (c) show the results under perturbation of HSD17B12 and A549-Enzastaurin-1µM (cell type-
drug-dosage), respectively, while panels (b) and (d) display only genes with predicted activation
probabilities greater than 0.05 from (a) and (c).

CPA (Lotfollahi et al.), chemCPA (Hetzel et al., 2022a) and scLambda (Wang et al., 2024) further
underperform because some of them reconstruct only perturbed cells without explicitly modeling the
transition from the unperturbed state. Notably, while linear baseline (?) achieves competitive perfor-
mance against some deep learning models (?), it fundamentally lacks the capacity to model complex,
non-linear distributional shifts. More importantly, the modeling paradigm employed by Doloris
overcomes the challenges posed by high-dimensional and sparse single-cell data. By leveraging an
additional sparsity masking strategy, the diffusion model can focus on expressed genes rather than
fitting zero-valued entries, thereby capturing more biologically relevant information (Fig. 2). Cru-
cially, Doloris addresses the limitations of paired data by employing dual implicit bridges, which
explicitly and flexibly model the relationship between unperturbed and perturbed states.

To validate the effectiveness of the Mask Model, Fig. 5 shows that it achieves good performance in
predicting gene activation probabilities under different perturbation conditions. We compared the
predicted gene activation probabilities for all genes with the empirical probabilities for genes with
expression levels greater than 0.05.
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4.4 DOLORIS PERFORMS WELL ON OOD DRUG AND DOUBLE GENE PERTURBATION

To further validate the effectiveness of Doloris, we evaluate its performance on double gene knock-
outs using the Norman dataset (Norman et al., 2019) and on out-of-distribution (OOD) drugs (de-
scribed in Sec. 4.1) in Tab. 2. Double gene knockouts involve complex gene–gene interactions,
and experimental results show that our model effectively captures these interactions. To predict the
effects of double gene perturbations, we use all observed samples under single gene perturbations
and unperturbed conditions as the training set. It has been previously demonstrated that OOD drugs
(Srivatsan et al., 2020a; Hetzel et al., 2022a), which were not observed during training, predomi-
nantly target epigenetic regulation, tyrosine kinase signaling, and cell cycle regulation. These drugs
are representative of key biological processes and are often distinct from the drug in the training
set. Our model demonstrates superior performance, suggesting that it better captures the effects
of unseen molecules on cellular behavior. Importantly, our design allows us to infer the effects of
previously unseen drug molecules as well as unobserved gene perturbations.

Table 2: Evaluation of model performance on dou-
ble gene (Norman) and OOD drug perturbations (sci-
Plex3). We highlights the top two methods in red and
orange, respectively.

- Double gene perturbations
Doloris linear GRAPE GEARS ∆Score

RMSE All 0.0385 ±0.0129 0.0405 ±0.0001 0.0516 ±0.0187 0.0533 ±0.0079 +0.0020
RMSE DE20 0.2431 ±0.0828 0.2523 ±0.0108 0.2871 ±0.0629 0.3095 ±0.04222 +0.0092
RMSE DE40 0.2095 ±0.0678 0.2123 ±0.0174 0.2947 ±0.0846 0.3284 ±0.0525 +0.0028
E-distance All 0.6819 ±0.1232 0.7886 ±0.0611 0.7862 ±0.0899 1.1204 ±0.0206 +0.1043
E-distance DE20 0.7888 ±0.1277 0.8276 ±0.0637 0.9272 ±0.0806 0.8665 ±0.0213 +0.0388
E-distance DE40 0.8143 ±0.1524 0.8835 ±0.0651 0.9601 ±0.0842 0.9614 ±0.0163 +0.0692
EMD All 0.0179 ±0.0039 0.0190 ±0.0020 0.0289 ±0.0019 0.0306 ±0.0033 +0.0011
EMD DE20 0.2025 ±0.0825 0.2175 ±0.0314 0.2385 ±0.0381 0.2403 ±0.0304 +0.0150
EMD DE40 0.1678 ±0.0694 0.1857 ±0.0256 0.1978 ±0.0304 0.2347 ±0.0246 +0.0179
- OOD molecular perturbations

Doloris chemCPA GraphVCI -
RMSE All 0.0547 ±0.0305 0.0689 ±0.0150 0.5431 ±0.0852 - +0.0142
RMSE DE20 0.1549 ±0.1131 0.2902 ±0.0690 0.3387 ±0.1685 - +0.1353
RMSE DE40 0.1313 ±0.0910 0.2489 ±0.0263 0.3968 ±0.1331 - +0.1176
E-distance All 0.7071 ±0.1298 0.8861 ±0.0678 0.8468 ±0.1914 - +0.1397
E-distance DE20 0.4744 ±0.1876 0.7377 ±0.2248 0.7123 ±0.1945 - +0.2379
E-distance DE40 0.4839 ±0.1643 0.7710 ±0.2004 0.8469 ±0.1914 - +0.2871
EMD All 0.0295 ±0.0088 0.0959 ±0.0096 0.0986 ±0.0121 - +0.0664
EMD DE20 0.1305 ±0.0611 0.3435 ±0.0761 0.3163 ±0.0631 - +0.1858
EMD DE40 0.1071 ±0.0514 0.3004 ±0.0745 0.2776 ±0.0500 - +0.1705

Adamson Sci-Plex3

Doloris w/o 𝜇! , 𝜎! w/o latent w/o Mask Strategy

Figure 6: Ablation study results.

4.5 ABLATION STUDY

To further evaluate the effectiveness of Doloris, we compare it with the following methods through
an ablation study. 1)w/o µc, σc: Excludes the mean and variance of the unperturbed group from the
model input. 2)w/o latent: During sampling, the input latent embedding xl in Eq. 16. b is replaced
with random Gaussian noise. 3)w/o mask model: Removing the mask model forces the model to
predict the expression of all genes during training. The results are shown in Fig.6.

The experimental results indicate that the µc, σc of unperturbed cells are crucial, as perturbations
essentially represent a transition from the unperturbed state. Compared to random Gaussian noise,
latent embeddings generated by adding noise to unperturbed cells provide a more structured and
interpretable initialization, leading to significantly improved generation quality and modeling effi-
ciency. Experimental results highlight the critical role of the mask model. Due to the sparsity of
gene expression data, with many zero-valued genes, models without masking tend to focus on pre-
dicting zeros, which diverts attention from actively expressed genes and reduces both diversity and
biological fidelity in the generated profiles. As shown in Fig. 2, the intra-class distances (Eq. 20) of
predictions decrease in models trained without masking strategy.

5 CONCLUSION

In this work, we present Doloris, a novel paradigm for single-cell perturbation modeling that explic-
itly addresses the challenges of unpaired data. By leveraging a dual conditional diffusion framework,
our approach aligns the distributions of unperturbed and perturbed cells without requiring explicit
sample pairing, while a perturbation-specific embedding module provides genetic and molecular
level conditional signals. To handle the sparsity and high dimensionality of single-cell gene expres-
sion, we introduce a mask model that predicts zero-valued genes, ensuring that the model focuses
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on biologically meaningful signals and preserves diversity. Furthermore, we propose a biologically
grounded evaluation metric that captures cellular heterogeneity and the diversity of single-cell re-
sponses. Experimental results on genetic and molecular perturbation datasets demonstrate that Do-
loris outperforms existing methods and generalizes to unseen perturbations. Our work establishes a
new modeling paradigm for single-cell perturbation, enabling more accurate and biologically faith-
ful predictions of cellular responses under novel conditions.
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cellular responses to novel drug perturbations at a single-cell resolution. Advances in Neural
Information Processing Systems, 35:26711–26722, 2022b.

Ruochen Jiang, Tianyi Sun, Dongyuan Song, and Jingyi Jessica Li. Statistics or biology: the zero-
inflation controversy about scrna-seq data. Genome biology, 23(1):31, 2022.

Iain M Johnstone and D Michael Titterington. Statistical challenges of high-dimensional data, 2009.

Christopher A Lino, Jason C Harper, James P Carney, and Jerilyn A Timlin. Delivering crispr: a
review of the challenges and approaches. Drug delivery, 25(1):1234–1257, 2018.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

M Lotfollahi, AK Susmelj, and C De Donno. Learning interpretable cellular responses to complex
perturbations in high-throughput screens. biorxiv. 2021. 2021.04. 14.439903.

Mohammad Lotfollahi, F Alexander Wolf, and Fabian J Theis. scgen predicts single-cell perturba-
tion responses. Nature methods, 16(8):715–721, 2019.

Calvin Luo. Understanding diffusion models: A unified perspective. arXiv preprint
arXiv:2208.11970, 2022.

Ali Mortazavi, Brian A Williams, Kenneth McCue, Lorian Schaeffer, and Barbara Wold. Mapping
and quantifying mammalian transcriptomes by rna-seq. Nature methods, 5(7):621–628, 2008.

Thomas M Norman, Max A Horlbeck, Joseph M Replogle, Alex Y Ge, Albert Xu, Marco Jost,
Luke A Gilbert, and Jonathan S Weissman. Exploring genetic interaction manifolds constructed
from rich single-cell phenotypes. Science, 365(6455):786–793, 2019.

Stefan Peidli, Tessa D Green, Ciyue Shen, Torsten Gross, Joseph Min, Samuele Garda, Bo Yuan,
Linus J Schumacher, Jake P Taylor-King, Debora S Marks, et al. scperturb: harmonized single-
cell perturbation data. Nature Methods, 21(3):531–540, 2024.

Zoe Piran, Niv Cohen, Yedid Hoshen, and Mor Nitzan. Disentanglement of single-cell data with
biolord. Nature Biotechnology, 42(11):1678–1683, 2024.

P Qiu. Embracing the dropouts in single-cell rna-seq analysis. nat commun 11: 1169, 2020.

Yusuf Roohani, Kexin Huang, and Jure Leskovec. Gears: Predicting transcriptional outcomes of
novel multi-gene perturbations. BioRxiv, pp. 2022–07, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

11



Published as a conference paper at ICLR 2026
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A APPENDIX

A.1 USE OF LLM

The LLM only assisted us in checking spelling and grammar.

A.2 DATASETS DETAILS

Adamson This dataset contains 87 types of single-gene perturbations in a single cell type. We
perform single-gene perturbation prediction on this dataset. For data splitting, 30% of the perturba-
tion conditions are randomly selected as the test set, while the remaining perturbations and control
cells are used for training. Data preprocessing follows the procedures described in (Chi et al., 2025).

Norman This dataset includes both single-gene and double-gene perturbations. In our study, we
focus on predicting double-gene perturbations. For data splitting, all control cells and single-gene
perturbations are used as the training set, while all double-gene perturbations are reserved for the
test set. Data preprocessing follows the procedures described in (Chi et al., 2025).

sci-Plex3 We use it to evaluate model performance on out-of-distribution (OOD) drugs and on
unseen combinations of cell type, drug, and dosage. The dataset comprises experiments on three
cell lines treated with 188 drugs, each at four dosages. For data splitting, we first designate all
samples under certain drug conditions as the OOD (Out-of-Distribution) test set, based on prior
analyses reported in Srivatsan et al. (2020a); Hetzel et al. (2022a). For the remaining data, all
control group cells are included in the training set. Then, for each experimental condition defined
by a unique combination of drug, dosage, and cell type, the corresponding group of cells is assigned
to the test set with a 30% probability, and to the training set otherwise. Data preprocessing follows
the procedures described in (Hetzel et al., 2022a).

A.3 EFFECT OF THE NUMBER OF FUNCTION EVALUATIONS (NFE)

In addition, we evaluated the effect of the Number of Function Evaluations (NFE) of diffusion
sampling steps on reconstruction performance. As shown in Fig. 7, using a single step results in
drastically worse reconstruction metrics, highlighting that multi-step denoising is essential. Increas-
ing the number of steps to 30 yields substantial improvements, while further increasing to 50 or 70
steps provides only marginal gains. Thus we adopt 50 steps to balance reconstruction quality and
computational efficiency.

Figure 7: Performance across different NFE.

A.4 COMPUTATIONAL COST

Assuming that the forward and reverse diffusion processes each incur a computational cost of N
(corresponding to the number of DDIM sampling steps) and that the Mask Model introduces a
lightweight cost of 1, the theoretical cost per generated sample is 2N + 1.
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In the context of large-scale perturbation generation, where there is a single control cell type and k
distinct perturbation conditions with n samples per condition, we can significantly reduce compu-
tation by reusing the latent representations obtained from the forward diffusion process rather than
regenerating them for each sample. Letting m denote the number of control cells used in the forward
process, the total computational cost is then given by (1 +N) · k · n+m ·N .

For moderate m and large k, this cost is comparable to that of a standard diffusion model which
directly denoises k · n samples, N · k · n. This indicates that when generating a large number of
samples, our method has a computational cost similar to standard diffusion.

A.5 CURSE OF DIMENSION

In this experiment, we select the top 50, 100, 200, 500, 1000 and 2000 highly variable genes (HVGs)
and compute the signal-to-noise ratio (SNR) for each perturbation type using only these genes. To
better highlight the relative differences across gene sets, the SNR values are normalized relative to
the top 50 genes.

SNR is defined as the ratio of the between-condition variance to the within-condition variance:

SNR =
1
C

∑C
c=1 ∥µc − µoverall∥22

1
N

∑N
i=1 ∥xi − µyi∥22 + ϵ

, (18)

where C is the number of perturbation conditions, N is the total number of cells, µc is the mean
expression vector for condition c, µoverall is the overall mean across all cells, xi is the expression
vector of cell i, yi is its condition label, and ϵ is a small constant to prevent division by zero.

The Relative SNR defined as:

Relative SNRtop k =
SNRtop k

SNRtop 50
(19)

A.6 EVALUATION METRIC

In this section, we introduce two metrics—Energy Distance (E-distance) and Earth Mover’s Dis-
tance (EMD)—which we propose to better quantify the prediction performance of single-cell per-
turbation models. Given the prediction X = X1, X2, . . . , Xn ∈ Rn×N and the true samples
Y = Y1, Y2, . . . , Ym ∈ Rm×N , where n and m denote the number of cells and D the number
of genes.

The E-Distance between X and Y is defined as:

DE(X,Y ) =
2

nm

n∑
i=1

m∑
j=1

∥Xi − Yj∥2︸ ︷︷ ︸
2 × inter-class distance

− 1

n2

n∑
i=1

n∑
j=1

∥Xi −Xj∥2︸ ︷︷ ︸
intra-class distance (X)

− 1

m2

m∑
i=1

m∑
j=1

∥Yi − Yj∥2︸ ︷︷ ︸
intra-class distance (Y)

(20)

where ∥ · ∥2 denotes the Euclidean norm.

Different from the traditional formulation of Earth Mover’s Distance (EMD) based on optimal trans-
port, we adopt a practical implementation that averages the one-dimensional Wasserstein distances
across gene dimensions. Specifically, the EMD between X and Y is calculated as:

DEMD(X,Y ) =
1

|N |
∑
j∈N

EMD(X:,j , Y:,j), (21)

where X:,j ∈ Rn and Y:,j ∈ Rm denote the predicted and true expression values of gene j across
all cells, respectively. Each EMD(X:,g, Y:,g) is computed as the 1D Wasserstein distance between
the marginal distributions of gene g.

In summary, our evaluation framework integrates E-distance for population-level structure and EMD
for individual gene-level accuracy, ensuring a robust and comprehensive assessment.
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Figure 8: Trend of Relative SNR as more genes are included. Details of the calculation are provided
in the Appendix A.5.

A.7 PERTURBATION MODELING

To model cellular perturbations, we leverage prior biological knowledge in the form of a gene reg-
ulatory network (GRN) G ∈ {0, 1}N×N , which is represented as an unweighted graph capturing
relationships among genes. Within our model, a Graph Attention Network (GAT) is applied to the
GRN to generate a gene embedding, which acts as the perturbation representationfor downstream
prediction.

f = GAT(G) (22)

We chose GAT because its attention mechanism allows adaptive weighting of gene–gene interac-
tions, which is particularly useful for modeling regulatory effects under perturbations. To con-
struct the initial node features, we aggregated the gene expression data from the training set. Con-
sidering the computational intractability of using individual cell samples directly, we computed
the expectation of gene expression for all samples within each perturbation condition. The initial
node feature matrix (∈ RN×K) was then formed by concatenating these condition-specific expecta-
tions (∈ RN×NP ), followed by Principal Component Analysis (PCA) for dimensionality reduction
(Ahlmann-Eltze et al., 2025). These initialized features serve as static priors and remain frozen
(non-trainable) throughout the entire training process.

Unlike random initialization, which treats genes as indistinguishable entities lacking semantic con-
text, our data-driven initialization explicitly incorporates the intrinsic biological properties and ex-
pression patterns of each gene. This ensures that the model starts with a biologically meaningful
representation space, rather than learning from scratch.

For gene perturbations, we first perform GAT message passing to aggregate regulatory information
across the graph. Subsequently, we extract the updated node embedding of the specific perturbed
gene from the aggregated graph representations. This context-aware embedding is then utilized
as the perturbation condition. For molecular perturbations, we first extract molecular embeddings
using a pretrained molecule model (Zhou et al., 2023). These embeddings are then combined with
associated treatment information, such as dosage, to form a condition-specific perturbation vector.

A.8 RELATION WITH HURDLE MODELS

Our sparsity masking strategy can be interpreted as a Hurdle Model applied at the single-cell level:
the first component models the probability of gene activation, and the second models the expression
values for active genes, while explicitly preserving global dependencies across genes.
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A.9 ZERO EXPRESSION CARRY BIOLOGICAL MEANING IN SCRNA-SEQ DATA

Numerous studies have shown that dropout is not purely random, and many observed zeros carry
meaningful biological informationChoi et al. (2020); Qiu (2020); Jiang et al. (2022). Therefore,
leveraging gene–gene dependencies to predict gene activation states is fully justified in this setting
and does not constitute a “big claim”.

A.10 OTHER RELATED WORK

Although (Bunne et al., 2023; Dong et al., 2023) also address unpaired data, their task assumes
access to both pre- and post-perturbation cells and focuses on finding optimal pairings between
them. In contrast, our task is to predict the post-perturbation state directly from the control cells and
the perturbation condition, which is fundamentally different.

A.11 MASK MODEL PREDICTION STRATEGY

Let the model predict gene activation probabilities from m̂θ for a cell as pm̂θ
= (p1, p2, . . . , pN ). A

naive independent Bernoulli sampling would give:

M̂i ∼ Bernoulli(pi), i = 1, . . . , N, (23)

which often leads to globally inconsistent masks. To address this, we purpose a solution as follow.

For a given perturbation condition, we first identify a reference subset of training cells

Scond ∈ Dcond (24)

here, D denotes the entire training dataset containing all cells under various perturbation conditions.
Dcond ⊂ D represents all observed cells under a specific perturbation condition. Scond denotes a
sample from Dcond.

The empirical marginal activation distributions of cells in the reference subset {qScond
i }Ni=1 are re-

quired to be as close as possible to the model-predicted probabilities pm̂θ
. Formally, the reference

subset Scond is selected from all cells under the same perturbation condition Dcond by minimizing the
Euclidean (L2) distance between the predicted probabilities and the empirical marginal distributions:

S∗
cond = arg min

S′⊂Dcond

∥∥∥pm̂θ
− {qS

′

i }Ni=1

∥∥∥
2
. (25)

From the selected reference subset S∗
cond, we randomly sample a real sample:

s̃ ∼ UniformSample
(
{s | s ∈ Scond}

)
(26)

and then we obtain real mask sample m̃ by applying Eq. 10 on s̃.

We then update the sampled mask m̃ according to the predicted probabilities pm̂θ
using high and low

thresholds δh and δl, which are set to 0.95 and 0.05, respectively:

M̂i =


1, if pm̂θ,i ≥ δh,

0, if pm̂θ,i ≤ δl,

m̃i, otherwise,
(27)

Finally, the coherent binary mask for the cell is

M̂ = (M̂1, M̂2, . . . , M̂N ) ∈ {0, 1}N . (28)
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