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ABSTRACT

Pre-training representations (a.k.a. foundation models) has recently become a
prevalent learning paradigm, where one first pre-trains a representation using
large-scale unlabeled data, and then learns simple predictors on top of the rep-
resentation using small labeled data from the downstream tasks. There are two
key desiderata for the representation: label efficiency (the ability to learn an accu-
rate classifier on top of the representation with a small amount of labeled data) and
universality (usefulness across a wide range of downstream tasks). In this paper,
we focus on one of the most popular instantiations of this paradigm: contrastive
learning with linear probing, i.e., learning a linear predictor on the representa-
tion pre-trained by contrastive learning. We show that there exists a trade-off
between the two desiderata so that one may not be able to achieve both simul-
taneously. Specifically, we provide analysis using a theoretical data model and
show that, while more diverse pre-training data result in more diverse features for
different tasks (improving universality), it puts less emphasis on task-specific fea-
tures, giving rise to larger sample complexity for down-stream supervised tasks,
and thus worse prediction performance. Guided by this analysis, we propose a
contrastive regularization method to improve the trade-off. We validate our analy-
sis and method empirically with systematic experiments using real-world datasets
and foundation models.

1 INTRODUCTION

Representation pre-training is a recent successful approach that utilizes large-scale unlabeled data to
address the challenges of scarcity of labeled data and distribution shift. Different from the traditional
supervised learning approach using a large labeled dataset, representation learning first pre-trains
a representation function using large-scale diverse unlabeled datasets by self-supervised learning
(e.g., contrastive learning), and then learns predictors on the representation using small labeled
datasets for downstream target tasks. The pre-trained model is commonly referred to as a foundation
model (Bommasani et al., 2021), and has achieved remarkable performance in many applications,
e.g., BERT (Devlin et al., 2019), GPT-3 (Brown et al., 2020), CLIP (Radford et al., 2021), and
Flamingo (Alayrac et al., 2022). To this end, we note that there are two properties that are key
to their success: (1) label efficiency: with the pre-trained representation, only a small amount of
labeled data is needed to learn accurate predictors for downstream target tasks; (2) universality: the
pre-trained representation can be used across various downstream tasks.

In this work, we focus on contrastive learning with linear probing that learns a linear predictor
on the representation pre-trained by contrastive learning, which is an exemplary pre-training ap-
proach (e.g., (Arora et al., 2019; Chen et al., 2020)). We highlight and study a fundamental trade-off
between label efficiency and universality, though ideally, one would like to have these two key prop-
erties simultaneously. Since pre-training with large-scale diverse unlabeled data is widely used in
practice, such a trade-off merits deeper investigation.

Theoretically, we provide an analysis of the features learned by contrastive learning, and how the
learned features determine the downstream prediction performance and lead to the trade-off. We
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propose a hidden representation data model, which first generates a hidden representation contain-
ing various features, and then uses it to generate the label and the input. We first show that con-
trastive learning is essentially generalized nonlinear PCA that can learn hidden features invariant to
the transformations used to generate positive pairs. We also point out that additional assumptions
on the data and representations are needed to obtain non-vacuous guarantees for prediction perfor-
mance. We thus consider a setting where the data are generated by linear functions of the hidden
representation, and formally prove that the difference in the learned features leads to the trade-off.
In particular, pre-training on more diverse data learns more diverse features and is thus useful for
prediction on more tasks. But it also down-weights task-specific features, implying larger sample
complexity for predictors and thus worse prediction performance on a specific task. This analysis
inspires us to propose a general method – contrastive regularization – that adds a contrastive loss to
the training of predictors to improve the accuracy on downstream tasks.
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Figure 1: Illustration of the trade-off between
universality and label efficiency. x-axis: from left
to right, incrementally add CINIC-10 (C), SVHN
(S), GTSRB (G), and ImageNet32 (I) for pre-
training MoCo v2. For example, “CS” means
CINIC-10+SVHN. The average test accuracy of
prediction on all 4 datasets (red line) increases
with more diverse pre-training data, while that on
the target task CIFAR-10 (blue line) decreases.
(The variance of the blue line is too small to be
seen.) Please refer to Section 3.1 for details.

Empirically, we first perform controlled experiments
to reveal the trade-off. Specifically, we first pre-train
on a specific dataset similar to that of the target task,
and then incrementally add more datasets into pre-
training. In the end, the pre-training data includes
both datasets similar to the target task and those not
so similar, which mimics the practical scenario that
foundation models are pre-trained on diverse data to
be widely applicable for various downstream tasks.
Fig. 1 gives an example of this experiment: As we
increase task diversity for contrastive learning, it in-
creases the average accuracy on all tasks from 18.3%
to 20.1%, while it harms the label efficiency of an
individual task, on CIFAR-10 the accuracy drops
from 88.5% to 76.4%. We also perform experi-
ments on contrastive regularization, and demonstrate
that it can consistently improve over the typical fine-
tuning method across multiple datasets. In several
cases, the improvement is significant: 1.3% test ac-
curacy improvement for CLIP on ImageNet, 4.8%
for MoCo v3 on GTSRB (see Table 1 and 2 for de-
tails). With these results, we believe that it is of im-
portance to bring the community’s attention to this
trade-off and the forward path of foundation models.

Our main contributions are summarized as follows:

• We propose a hidden representation data model and prove that contrastive learning is es-
sentially generalized nonlinear PCA, and can encode hidden features invariant to the trans-
formations used in positive pairs (Section 2.1).

• We formally prove the trade-off in a simplified setting with linear data (Section 2.2).

• We empirically demonstrate the trade-off across different methods and datasets for con-
trastive learning with linear probing (Section 3.1 and 3.2).

• We propose a contrastive regularization method for training the predictor on a target task
(Section 2.2), which achieves consistent improvement in our experiments (Section 3.3).

Related Work on Representation Pre-training. This paradigm pre-trains a representation func-
tion on a large dataset and then uses it for prediction on various downstream tasks (Devlin et al.,
2019; Kolesnikov et al., 2020; Brown et al., 2020; Newell & Deng, 2020). The representations
are also called foundation models (Bommasani et al., 2021). There are mainly two kinds of ap-
proaches: (1) supervised approaches (e.g., (Kolesnikov et al., 2020)) that pre-train on large labeled
datasets; (2) self-supervised approaches (e.g., (Newell & Deng, 2020)) that pre-train on large and
diverse unlabeled datasets. Recent self-supervised pre-training can compete with or outperform su-
pervised pre-training on the downstream prediction performance (Ericsson et al., 2021). Practical
examples like BERT (Devlin et al., 2019), GPT-3 (Brown et al., 2020), CLIP (Radford et al., 2021),
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DALL·E (Ramesh et al., 2022), PaLM (Chowdhery et al., 2022) and Flamingo (Alayrac et al., 2022)
have obtained effective representations universally useful for a wide range of downstream tasks.

A popular method is contrastive learning, i.e., to distinguish matching and non-matching pairs of
augmented inputs (e.g., (van den Oord et al., 2018; Chen et al., 2020; He et al., 2020; Grill et al.,
2020; Chen & He, 2021; Zbontar et al., 2021; Gao et al., 2021)). Some others solve “pretext tasks”
like predicting masked parts of the inputs (e.g.,(Doersch et al., 2015; Devlin et al., 2019)).

Related Work on Analysis of Self-supervised Pre-training. There exist abundant studies analyz-
ing self-supervised pre-training (Arora et al., 2019; Tsai et al., 2020; Yang et al., 2020; Wang &
Isola, 2020; Garg & Liang, 2020; Zimmermann et al., 2021; Tosh et al., 2021; HaoChen et al., 2021;
Wen & Li, 2021; Liu et al., 2021; Kotar et al., 2021; Van Gansbeke et al., 2021; Lee et al., 2021;
Saunshi et al., 2022a; Shen et al., 2022; Kalibhat et al., 2022). They typically focus on pre-training
or assume the same data distribution in pre-training and prediction. Since different distributions
are the critical reason for the trade-off we focus on, we provide a new analysis. Some studies have
connected contrastive learning to component analysis (Balestriero & LeCun, 2022; Tian, 2022; Ko
et al., 2022). Our analysis focuses on the trade-off, while also showing a connection to PCA based
on our notion of invariant features and is thus fundamentally different. Recently, Cole et al. have
attempted to identify successful conditions for contrastive learning and pointed out that diverse pre-
training data can decrease prediction performance compared to pre-training on the specific task data.
However, they do not consider universality and provide no systematic study. Similarly, Bommasani
et al. call for more research on specialization vs. diversity in pre-training data but provide no study.
We aim to provide a better understanding of the trade-off between universality and label efficiency.

2 THEORETICAL ANALYSIS

Our experiments in Section 3.1 demonstrate a trade-off between the universality and label efficiency
of contrastively pre-trained representations when used for prediction on a distribution different from
the pre-training data distribution. See Fig. 1 for an example. Intuitively, from the unlabeled data,
pre-training can learn semantic features useful for prediction on even different data distributions. To
analyze this, we need to formalize the notion of useful semantic features. So we introduce a hidden
representation data model where a hidden representation (i.e., a set of semantic features) is sampled
and then used for generating the data. Similar models have been used in some studies (HaoChen
et al., 2021; Zimmermann et al., 2021), while we introduce the notion of spurious and invariant
features and obtain a novel analysis for contrastive learning.

Using this theoretical model of data, Section 2.1 investigates what features are learned by contrastive
learning. We show that contrastive learning can be viewed as a generalization of Principal Compo-
nents Analysis, and it encodes the invariant features not affected by the transformations but removes
the others. We also show that further assumptions on the data and the representations are needed nec-
essary for any non-vacuous bounds for downstream prediction. So Section 2.2 considers a simplified
setting with linear data. We show that when pre-trained on diverse datasets (modeled as a mixture
of unlabeled data from different tasks), it encodes all invariant features from the different tasks and
thus is useful for all tasks. On the other hand, it essentially emphasizes those that are shared among
the tasks, but down-weights those that are specific to a single task. Compared to pre-training only
on unlabeled data from the target task, this then leads to a larger sample complexity and thus worse
generalization for prediction on the target task. Therefore, we show that the trade-off between uni-
versality and label efficiency occurs due to the fact that when many useful features from diverse data
are packed into the representation, those for a specific target task can be down-weighted and thus
worsen the prediction performance on it. Based on this insight, we propose a contrastive regular-
ization method for using representations in downstream prediction tasks, which achieves consistent
improvement over the typical fine-tuning method in our experiments in Section 3.3.

Contrastive Learning. Let X ⊆ Rd denote the input space, Y the label space, and Z ⊆ Rk the out-
put vector space of the learned representation function. Let Φ denote the hypothesis class of repre-
sentations ϕ : X → Z , and Fϕ the hypothesis class of predictors on ϕ. A task is simply a data distri-
bution over X ×Y . In pre-training, using transformations on unlabeled data from the tasks, we have
some pre-train distribution Dpre over positive pairs (x, x+) and negative examples x−, where x, x+

are obtained by applying random transformations on the same input (e.g., cropping or color jitter
for images), and x− is an independent example. The contrastive loss is ℓ

(
ϕ(x)⊤(ϕ(x+)− ϕ(x−))

)
3
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where ℓ(t) is a suitable loss function. Typically, the logistic loss ℓ(t) = log(1 + exp(−t)) is used,
while our analysis also holds for other loss functions. A representation ϕ is learned by:

min
ϕ∈Φ

E(x,x+,x−)∼Dpre

[
ℓ
(
ϕ(x)⊤(ϕ(x+)− ϕ(x−))

)]
. (1)

(We simply consider the population loss since pre-training data are large-scale.) Then a predictor f
is learned on top of ϕ using m labeled points {(xi, yi)}mi=1 from a specific target task D:

min
f∈Fϕ

1

m

m∑
i=1

ℓc(f(ϕ(xi)), yi) (2)

where ℓc is a prediction loss (e.g. cross-entropy). Usually, f is a linear classifier (Linear Probing)
with a bounded norm: Fϕ = {f(z) = u⊤z : u ∈ Rk, ∥u∥ ≤ B}, where ∥ · ∥ denotes the ℓ2 norm.

Hidden Representation Data Model. We now consider the pre-train distribution Dpre over
(x, x+, x−). To capture that pre-training can learn useful features, we assume a hidden representa-
tion for generating the data: first sample a hidden representation z ∈ Z from a distribution Dz over
some hidden representation space Z ⊆ Rd, and then generate the input x and the label y from z.
(The space Z models semantic features, and can be different from the learned representation space
Z .) The dimensions of z are partitioned into two disjoint subsets of [d] := {1, · · · , d}: spurious
features U that are affected by the transformations, and invariant features R that are not. Specifi-
cally, let DU ,DR denote the distributions of zU and zR, respectively, and let x = g(z) denote the
generative function for x. Then the positive pairs (x, x+) are generated as follows:

z = [zR; zU ] ∼ Dz, z+U ∼ DU , z+ = [zR; z
+
U ], x = g(z), x+ = g(z+). (3)

That is, x, x+ are from the same zR but two random copies of zU that model the random transfor-
mations. Finally, x− is an i.i.d. sample from the same distribution as x: z− ∼ Dz, x− = g(z−).

2.1 WHAT FEATURES ARE LEARNED BY CONTRASTIVE LEARNING?

To analyze prediction performance, we first need to analyze what features are learned in pre-training.

Contrastive Learning is Generalized Nonlinear PCA. Recall that given data x from a distribution
D, Principal Components Analysis (PCA) (Pearson, 1901; Hotelling, 1933) aims to find a linear pro-
jection function ϕ on some subspace such that the variance of the projected data ϕ(x) is maximized,
i.e., it is minimizing the following PCA objective:

−Ex∼D[∥ϕ(x)− Ex′∼D[ϕ(x
′)]∥2] = −Ex∼D[∥ϕ(x)− ϕ0∥2] (4)

where ϕ0 := E[ϕ(x′)] is the mean of the projected data. Nonlinear PCA replaces linear representa-
tion functions ϕ with nonlinear ones. We next show that contrastive learning is a generalization of
nonlinear PCA on the smoothed representation after smoothing out the transformations.
Theorem 2.1. If ℓ(t) = −t, then the contrastive loss is equivalent to the PCA objective on ϕzR :

E
[
ℓ
(
ϕ(x)⊤[ϕ(x+)− ϕ(x−)]

)]
= −E

[
∥ϕzR − ϕ0∥2

]
(5)

where ϕzR := E[ϕ(x) | zR] = E[ϕ(g(z)) | zR]. If additionally ϕ(x) is linear in x, then it is equiva-
lent to the linear PCA objective −E

[
∥ϕ(x̄)− ϕ0∥2

]
on data x̄ := E[x|zR] = E[g(z)|zR].

So contrastive learning is essentially nonlinear PCA when ℓ(t) = −t, and further specializes to
linear PCA when the representation is linear. As PCA finds directions with large variances, the
analogue is that contrastive learning encodes important invariant features but not spurious ones.

Contrastive Learning Encodes Invariant Features and Removes Spurious Features. For a for-
mal statement we need some weak assumptions on the data, the representations, and the loss:

(A1) zR can be recovered from x, i.e., the inputs x = g(z) from different zR’s are disjoint.
(A2) The representation functions are the regular functions with ∥ϕ(x)∥ = Br (∀x) for some

Br > 0. Being regular means there are a finite L and a partition of Z into a finite number
of subsets, such that in each subset all ϕ ◦ g have Lipschitz constants bounded by L.

(A3) The loss ℓ(t) is convex, decreasing, and lower-bounded.
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The first condition means the invariant features zR can be extracted from x (note that g need not be
invertible). The regular condition on the representation is to exclude some pathological cases like
the Dirichlet function; essentially reasonable functions relevant for practice satisfy this condition,
e.g., when g is Lipschitz and ϕ are neural networks with the ReLU activation. Also, note that the
logistic loss typically used in practice satisfies the last condition.

We say a function f(z) is independent of a subset of input dimensions zS , if there exists a function
f ′ such that f(z) = f ′(z−S) with probability 1, where z−S denotes the set of all zj with j ̸∈ S. We
say the representation ϕ encodes a feature zi, if ϕ ◦ g : Z → Z is not independent of zi as long as
the generative function g(z) is not independent of zi.
Theorem 2.2. Under Assumptions (A1)(A2)(A3), the optimal representation ϕ∗ satisfies:

(1) ϕ∗ does not encode the spurious features zU : ϕ∗ ◦ g(z) is independent of zU .

(2) For any invariant feature i ∈ R, there exists Bi > 0 such that as long as the repre-
sentations’ norm Br ≥ Bi, then ϕ∗ encodes zi. Furthermore, if Z is finite, then Bi is
monotonically decreasing in Pr[zR\{i} = z−R\{i}, zi ̸= z−i ], the probability that in zR and
z−R , the i-th feature varies while the others remain the same.

So contrastive learning aims to remove the spurious features and preserve the invariant features.
Then the transformations should be chosen such that they will not affect the useful semantic features,
but change those irrelevant to the label. Interestingly, the theorem further suggests that contrastive
learning tends to favor the more “spread-out” invariant features zi, as measured by Pr[zR\{i} =

z−R\{i}, zi ̸= z−i ]. As we increase the representation capacity Br, Br passes the threshold Bi for
more features zi, so ϕ∗ first encodes the more spread-out invariant features and then the others.

This further suggests the following intuition for the trade-off. When pre-trained on diverse data
modeled as a mixture from multiple tasks with different invariant features, the representation en-
codes all the invariant features and thus is useful for prediction on all the tasks. When pre-trained on
only a specific task, features specific to this task are favored over those that only show up in other
tasks, which leads to smaller sample complexity for learning the predictor and thus better prediction.
However, to formalize this, some inductive bias assumptions about the data and the representation
are necessary to get any non-vacuous guarantee for the prediction (see discussion in Appendix A.1).
Therefore, Section 2.2 introduces additional assumptions and formalizes the trade-off.

2.2 ANALYZING THE TRADE-OFF: LINEAR DATA
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Figure 2: Illustration of the features
in our data distributions.

To analyze the prediction performance, we first need to model
the relation between the pre-training data and the target task. We
model the diverse pre-training data as a mixture of data from T
different tasks Dt’s, while the target task is one of the tasks. All
tasks share a public feature set S of size s, and each task Dt
additionally owns a private disjoint feature set Pt of size r − s,
i.e., Pt ∩ S = ∅ and Pt1 ∩ Pt2 = ∅ for t1 ̸= t2 (Fig. 2). The
invariant features for Dt are then Rt = S ∪ Pt. All invariant
features are R = ∪Tt=1Rt, and spurious features are U = [d]\R.
In task Dt, the (x, x+) are generated as follows:

zRt
∼ N (0, I), zR\Rt

= 0, zU ∼ N (0, I), z = [zR; zU ], x = g(z), (6)

z+U ∼ N (0, I), z+ = [zR; z
+
U ], x+ = g(z+), (7)

and x− is simply an i.i.d. copy from the same distribution as x. In practice, multiple in-
dependent negative examples are used, and thus we consider the following contrastive loss
minϕ∈Φ E(x,x+)

[
ℓ
(
ϕ(x)⊤(ϕ(x+)− Ex−ϕ(x−))

)]
for a convex and decreasing ℓ(t) to pre-train

a representation ϕ. Then, when using ϕ for prediction in the target task Dt, the predictor class
should contain a predictor matching the ground-truth label:

Fϕ,t = {f(z) = u⊤z : u ∈ Rk, ∥u∥ ≤ Bϕ,t} (8)

where Bϕ,t is the minimum value such that there exists ut ∈ Fϕ,t with y = u⊤
t ϕ(x) on Dt.
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Now, given the necessity of inductive biases for non-vacuous guarantees (see Appendix A.1), and
inspired by classic dictionary learning and recent analysis on such data (e.g., Olshausen & Field
(1997); Wen & Li (2021); Shi et al. (2022)), we assume linear data and linear representations:

• x is linear in z: x = g(z) = Mz where M ∈ Rd×d is an orthonormal dictionary. Since
linear probing has strong performance on pre-trained representations, we thus assume that
the label in each task t is linear in its invariant features y = (u∗

t )
⊤zRt for some u∗

t ∈ Rr.
• The representations are linear functions with weights of bounded spectral/Frobenius norms:

Φ = {ϕ(x) = Wx : W∈Rk×d, ∥W∥≤1, ∥W∥F≤
√
r}.

Here the norm bounds are chosen to be the minimum values to allow recovering the invari-
ant features in the target task, i.e., there exists ϕ ∈ Φ such that ϕ(x) = [zRt ;0].

We compare two representations: a specific one pre-trained on unlabeled data from the target task
Dt, and a universal one pre-trained on an even mixture of data from T tasks. (Appendix B provides
analysis for more general cases like uneven mixtures.) This captures the situation that the pre-
training data contains some data similar to the target task and also other less similar data. Let
vt,1 =

∑
j∈S(u

∗
t )

2
j and vt,2 =

∑
j∈Pt

(u∗
t )

2
j be the weights on the shared and task-specific invariant

features, respectively. Also, assume the prediction loss ℓc is L-Lipschitz.
Proposition 2.3. The representation ϕ∗ obtained on an even mixture of data from all the tasks
{Dt : 1 ≤ t ≤ T} satisfies ϕ∗◦g(z) = Q

(∑
j∈S

√
αzjej +

∑
j∈R\S

√
βzjej

)
for some α ∈ [0, 1],

β = min
(
1, r−αs

T (r−s)

)
, where ej’s are the basis vectors and Q is any orthonormal matrix.

The Empirical Risk Minimizer û ∈ Fϕ∗,t on ϕ∗ using m labeled data points from Dt has risk

E(x,y)∼Dt
[ℓc(û

⊤ϕ∗(x), y)]

≤ 4L

√
1

m

(
vt,1
α

+
vt,2
β

)(√
sα+ (r − s)β +O

(√
r

sα+ (r − s)β

))
+ 8

√
2 ln(4/δ)

m
.

Proposition 2.4. The representation ϕ∗
t obtained on data from Dt satisfies ϕ∗

t ◦ g(z) =

Q
(∑

j∈Rt
zjej

)
where ej’s are the basis vectors and Q is any orthonormal matrix.

The Empirical Risk Minimizer û ∈ Fϕ∗
t ,t

on ϕ∗
t using m labeled data points from Dt has risk

E(x,y)∼Dt
[ℓc(û

⊤ϕ∗
t (x), y)] ≤ 4L

√
r

m
∥u∗

t ∥+ 8

√
2 ln(4/δ)

m
.

While on task Di(i ̸= t), any linear predictor on ϕ∗
t has error at least minu EDi

[ℓc(u
⊤zS , y)].

Difference in Learned Features Leads to the Trade-off. The key of the analysis (in Appendix B)
is about what features are learned in the representations. Pre-trained on all T tasks, ϕ∗ is a rotation
of the weighted features, where the shared features are weighted by

√
α and task-specific ones are

weighted by
√
β. Pre-trained on one task Dt, ϕ∗

t is a rotation of the task-specific features Rt. So
compared to ϕ∗

t , ϕ∗ encodes all invariant features but down-weights the task-specific features Pt.

The difference in the learned features then determines the prediction performance and results in a
trade-off between universality and label efficiency: compared to ϕ∗

t , ϕ∗ is useful for more tasks but
has worse performance on the specific task Dt. For illustration, suppose r = 2s, and the shared and
task-specific features are equally important for the labels on the target task: vt,1 = vt,2 = ∥u∗

t ∥2/2.

In Appendix B.3 we show that ϕ∗ has α = 1, β = 1
T and the error is O

(
L
√

Tr
m ∥u∗

t ∥
)

, while the

error using ϕ∗
t is O

(
L
√

r
m∥u∗

t ∥
)
. Therefore, the error when using representations pre-trained on

data from T tasks is O(
√
T ) worse than that when just pre-training on data from the target task. On

the other hand, the former can be used in all T tasks and the prediction error diminishes with the
labeled data number m. While the latter only encodes Rt and the only useful features on the other
tasks are zS , then even with infinite labeled data the error can be large (≥ minu E[ℓc(u⊤zS , y)], the
approximation error using only the common features zS for prediction).

Improving the Trade-off via Contrastive Regularization. The above analysis provides some
guidance on improving the trade-off, in particular, improving the target prediction accuracy when
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given a pre-trained representation ϕ∗. It suggests that when ϕ∗ is pre-trained on diverse data, one can
update it by contrastive learning on some unlabeled data from the target task, which can get better
features and better predictions. This is indeed the case for the illustrative example above. We can
show that updating ϕ∗ by contrastive learning on Dt can increase the weights β on the task-specific
features zPt

, and thus improve the generalization error (formal analysis in Appendix B.4).

In practice, typically one will learn the classifier and also fine-tune the representation with a la-
beled dataset {(xi, yi)}mi=1 from the target task. We thus propose contrastive regularization for
fine-tuning: for each data point (x, y), generate contrastive pairs R = {(x̃, x̃+, x̃−)} by applying
transformations, and add the contrastive loss on these pairs as a regularization term to the classifica-
tion loss:

ℓc(f(ϕ(x)), y) +
λ

|R|
∑

(x̃,x̃+,x̃−)∈R

ℓ
(
ϕ(x̃)⊤(ϕ(x̃+)− ϕ(x̃−))

)
. (9)

This method is simple and generally applicable to different models and algorithms. Similar ideas
have been used in graph learning (Ma et al., 2021), domain generalization (Kim et al., 2021) and
semi-supervised learning (Lee et al., 2022), while we use it in fine-tuning for learning predictors.
Our experiments in Section 3.3 show that it can consistently improve the prediction performance
compared to the typical fine-tuning approach.

3 EXPERIMENTS

We conduct experiments to answer the following questions. (Q1) Does the trade-off between uni-
versality and label efficiency exist when training on real datasets? (Q2) What factors lead to the
trade-off? (Q3) How can we alleviate the trade-off, particularly in large foundation models? Our
experiments provide the following answers: (A1) The trade-off widely exists in different models
and datasets when pre-training on large-scale unlabeled data and adapting with small labeled data
(see Section 3.1). This justifies our study and aligns with our analysis. (A2) Different datasets
own many private invariant features leading to the trade-off, e.g., FaceScrub and CIFAR-10 do not
share many invariant features (see Section 3.2). It supports our analysis in Section 2.2. (A3) Our
proposed method, Finetune with Contrastive Regularization, can improve the trade-off consistently
(see Section 3.3). Please refer to our released code1 for more details.

3.1 VERIFYING THE EXISTENCE OF THE TRADE-OFF
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Figure 3: Trade-off between universality and label efficiency for MoCo v2. Appendix C.5 shows similar
results for more methods and datasets. x-axis: incrementally add datasets for pre-training MoCo v2. (a) Pre-
training data: CINIC-10 (C), SVHN (S), GTSRB (G), and ImageNet32 (I). E.g., “CS” on the x-axis means
CINIC-10+SVHN. Target task: CIFAR-10. Red line: average test accuracy of Linear Probing on all 4 datasets.
Blue line: test accuracy on the target task. (b) EMNIST-Digits&Letters (E), Fashion-MNIST (F), GTSRB
(G), ImageNet32 (I). Target: MNIST. (c) FaceScrub (F), CIFAR-10 (C), SVHN (S), ImageNet32 (I). Target:
Fer2013. Note that training does not follow the online learning fashion, e.g., the model will pre-train from
scratch (random initialization) on the CSG datasets, rather than using the model pre-trained on the CS datasets.

Evaluation & Methods. We first pre-train a ResNet18 backbone (He et al., 2016) with different con-
trastive learning methods and then do Linear Probing (LP, i.e., train a linear classifier on the feature

1https://github.com/zhmeishi/trade-off_contrastive_learning
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Figure 4: Trade-off between universality and label efficiency on ImageNet. x-axis: from left to right, in-
crementally add ImageNet-Bird (B), ImageNet-Vehicle (V), ImageNet-Cat/Ball/Shop/Clothing/Fruit (+), and
ImageNet (ALL) for pre-training (a) MoCo v3 with backbone ViT-S (b) SimSiam with backbone ResNet50.
For example, “BV” means ImageNet-Bird + ImageNet-Vehicle. Target: ImageNet-Bird.

extractor) with the labeled data from the target task. We report the test accuracy on a specific target
task and the average test accuracy on all pre-training datasets (i.e., using them as the downstream
tasks). Appendix C.2 presents full details and additional results, while Fig. 3 shows the results for
the method MoCo v2. The size and diversity of pre-training data are increased on the x-axis by
incrementally adding unlabeled training data from: (a) CINIC-10, SVHN, GTSRB, ImageNet32
(using only a 500k subset); (b) EMNIST-Digits&Letters, Fashion-MNIST, GTSRB, ImageNet32;
(c) FaceScrub, CIFAR-10, SVHN, ImageNet32. We further perform larger-scale experiments: (1)
on ImageNet (see Fig. 4); (2) on ImageNet22k and GCC-15M (see Appendix C.2.1).

Results. The results show that when the pre-training data becomes more diverse, the average test ac-
curacy on all pre-training datasets increases (i.e., universality improves), while the test accuracy on
the specific target task decreases (i.e., label efficiency drops). This shows a clear trade-off between
universality and label efficiency. It supports our claim that diverse pre-training data allow learning
diverse features for better universality, but can down-weight the features for a specific task result-
ing in worse prediction. Additional results in the appendix show similar trends (e.g., for methods
NNCLR and SimSiam). This validates our theoretical analysis of the trade-off.

3.2 INSPECTING THE TRADE-OFF: FEATURE SIMILARITY
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Figure 5: Linear CKA similarity among Fer2013 features from
MoCo v2 pre-trained on different datasets. Left: each representa-
tion in the first four columns/rows is pre-trained on a single dataset.
“Union” indicates the model pre-trained on the union of the four dis-
joint datasets. Right: from left column to right, from top row to
bottom, we incrementally add datasets for pre-training.

Here we compute the similarity
of the features learned from dif-
ferent pre-training datasets for a
target task. For each pre-trained
model, we extract a set of features
for the target task Fer2013 using
the pre-trained representation func-
tion. Then we compute the similar-
ities between the extracted features
based on different pre-training
dataset pairs using linear Centered
Kernel Alignment (CKA) (Korn-
blith et al., 2019), a widely used
tool for high-dimensional feature
comparison. Figure 5 reports
the results (rows/columns are pre-
training data; numbers/colors show
the similarity). The left figure shows that the features from different pre-training datasets have low
similarities. This is consistent with our setup in Section 2.2 that different tasks only share some fea-
tures and each owns many private ones. The right figure shows a decreasing trend of similarity along
each row. This indicates that when gradually adding more diverse pre-training data, the learned rep-
resentation will encode more downstream-task-irrelevant features, and become less similar to that
prior to adding more pre-training data. Additional results with similar observations, finer-grained
investigation into the trade-off, and some ablation studies are provided in Appendix C.3.
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3.3 IMPROVING THE TRADE-OFF: FINETUNE WITH CONTRASTIVE REGULARIZATION

Pre-training dataset
Method CINIC-10 +SVHN +GTSRB +ImageNet32

LP 88.41±0.01 85.18±0.01 82.07±0.01 75.64±0.03

FT 93.58±0.14 93.35±0.10 93.42±0.13 92.92±0.06

Ours 94.51±0.02 94.26±0.01 94.32±0.13 93.66±0.12

Table 1: Test accuracy on CIFAR-10 with different evalua-
tion methods on MoCo v2 by using all CIFAR-10 training data.
From left to right: incrementally add datasets for pre-training.

Evaluation & Methods. We pre-train
ResNet18 by MoCo v2 as in Section 3.1
and report the test accuracy on CIFAR-
10 when the predictor is learned by:
Linear Probing (LP), Finetune (FT), and
Finetune with Contrastive Regulariza-
tion (Ours). LP follows the training pro-
tocol in Section 3.1. FT and Ours learn a
linear predictor and update the represen-
tation, and use the same data augmenta-
tion for a fair comparison. FT follows MAE (He et al., 2022), while Ours uses MoCo v2 contrastive
loss and regularization coefficient λ = 0.1. More details and results are given in Appendix C.4.

Results. Table 1 shows that our method can consistently outperform the other baselines. In partic-
ular, it outperforms the typical fine-tuning method by about 0.7% – 1%, even when the latter also
uses the same amount of data augmentation. This confirms the benefit of contrastive regularization.
To further support our claim, Fig. 13 in Appendix C.4 visualizes the features of different methods by
t-SNE, showing that contrastive regularization can highlight the task-specific features and provide
cleaner clustering, and thus improve the generalization, as discussed in our theoretical analysis.

CLIP MoCo v3 SimCSE
Method ImageNet SVHN GTSRB CIFAR-10 SVHN GTSRB IMDB AGNews

LP 77.84±0.02 63.44±0.01 86.56±0.01 95.82±0.01 61.92±0.01 75.37±0.01 86.49±0.16 87.76±0.66

FT 83.65±0.01 78.22±0.18 90.74±0.06 96.17±0.12 65.36±0.33 76.45±0.29 92.31±0.26 93.57±0.23

Ours 84.94±0.09 78.72±0.37 92.01±0.28 96.71±0.10 66.29±0.20 81.28±0.10 92.85±0.03 93.94±0.02

Table 2: Test accuracy for different evaluation methods on different datasets using all training data and using
foundation models from CLIP, MoCo v3, and SimCSE. Data augmentation is not used for LP (Linear Probing).
For FT (Finetune) and Ours (our method), 10 augmentations to each training images are used for CLIP, MoCo
v3, and unique augmentation in each training step is used for SimCSE. More results are in Appendix C.4.1.

Larger Foundation Models. We further evaluate our method on several popular real-world large
representation models (foundation models). On some of these models, the user may be able to fine-
tune the representation when learning predictors. On very large foundation models, the user typically
extracts feature embeddings of their data from the models and then trains a small predictor, called
adapter (Hu et al., 2021; Sung et al., 2022), on these embeddings. We evaluate CLIP (ViT-L (Doso-
vitskiy et al., 2020) as the representation backbone), MoCo v3 (ViT-B backbone), and SimCSE (Gao
et al., 2021) (BERT backbone). They are trained on (image, text), (image, image), and (text, text)
pairs, respectively, so cover a good spectrum of methods. For CLIP and MoCo v3, the backbone is
fixed. LP uses a linear classifier, while FT and Ours insert a two-layer ReLU network as an adapter
between the backbone and the linear classification layer. Ours uses the SimCLR contrastive loss on
the output of the adapter. For SimCSE, all methods use linear classifiers. LP fixes the backbone,
while FT and Ours train the classifier and fine-tune the backbone simultaneously. Ours uses the
SimCSE contrastive loss on the backbone feature. We set the regularization coefficient λ = 1.0.

Table 2 again shows that our method can consistently improve the downstream prediction perfor-
mance for all three models by about 0.4% – 4.8%, and quite significantly in some cases (e.g., 1.3%
for CLIP on ImageNet, 4.8% for MoCo v3 on GTSRB). This shows that our method is also useful
for large foundation models, even when the foundation models cannot be fine-tuned and only the
extracted embeddings can be adapted. Full details and more results are provided in Appendix C.4.1.

4 CONCLUSION AND FUTURE WORK

In this work, we have shown and analyzed the trade-off between universality and label efficiency of
representations in contrastive learning. There are many interesting open questions for future work.
(1) What features does the model learn from specific pre-training and diverse pre-training datasets
beyond linear data? (2) Do the other self-supervised learning methods have a similar trade-off? (3)
Can we address the trade-off better to gain both properties at the same time?
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Appendix

A PROOFS FOR SECTION 2.1

Theorem A.1 (Restatement of Theorem 2.1). If ℓ(t) = −t, then the contrastive loss is equivalent
to the PCA objective on ϕzR :

E
[
ℓ
(
ϕ(x)⊤[ϕ(x+)− ϕ(x−)]

)]
= −E

[
∥ϕzR − ϕ0∥2

]
. (10)

If additionally ϕ(x) is linear in x, then the contrastive loss is equivalent to the linear PCA objective
on data from the distribution px̄ of x̄ = EzU [x]:

E
[
ℓ
(
ϕ(x)⊤[ϕ(x+)− ϕ(x−)]

)]
= −E

[
∥ϕ(x̄)− ϕ0∥2

]
. (11)

Proof. We first present some preliminaries for the proof. Recall that in our hidden representation
data model x = g(z). The learned representation is ϕ(x) = ϕ(g(z)) = ϕ ◦ g(z). For brevity, let us
define ϕ(x) = ϕ ◦ g(z) := h(z). Also, the hidden representations corresponding to (x, x+, x−) are
given by (z, z+, z−), where

z = [zR ; zU ], z+ = [zR ; z+U ], z− = [z−R ; z−U ],

where zR and z−R are sampled independently from the distribution DR; and zU , z
+
U , and z−U are sam-

pled independently from the distribution DU . The expectation of an arbitrary function f(z, z+, z−)
can be simplified as follows:

E(z,z+,z−)

[
f(z, z+, z−)

]
= E(zR,z

−
R ,zU ,z

+
U ,z

−
U )

[
f(z, z+, z−)

]
= E(zR,z

−
R )

[
E(zU ,z

+
U ,z

−
U )

[
f(z, z+, z−) | zR, z−R

] ]
.

The second step follows the law of iterated expectations.

The negative expected contrastive loss is

− E(x,x+,x−)

[
ℓ
(
ϕ(x)⊤[ϕ(x+)− ϕ(x−)]

) ]
(12)

= −E(z,z+,z−)

[
ℓ
(
ϕ(g(z))⊤[ϕ(g(z+))− ϕ(g(z−))]

) ]
(13)

= E(z,z+,z−)

[
h(z)⊤[h(z+)− h(z−)]

]
(14)

= E(zR,z
−
R )

[
E
[
h(z)⊤[h(z+)− h(z−)] | zR, z−R

] ]
(15)

= E(zR,z
−
R )

[
E [h(z) | zR]⊤

(
E
[
h(z+) | zR

]
− E

[
h(z−) | z−R

]) ]
(16)

= E(zR,z
−
R )

[
E [ϕ(x) | zR]⊤

(
E
[
ϕ(x+) | zR

]
− E

[
ϕ(x−) | z−R

]) ]
(17)

= E(zR,z
−
R )

[
ϕ⊤
zR

(
ϕzR − ϕz−R

)]
. (18)

The second equality follows from the choice of loss ℓ(t) = −t, and the fourth equality follows from
the fact that zU , z+U , and z−U are sampled independently from the distribution DU . Also, we have
defined ϕzR := E [ϕ(x) | zR].
Denote the centered representation as ϕ̄zR = ϕzR − ϕ0. Then we have

− E(x,x+,x−)

[
ℓ
(
ϕ(x)⊤[ϕ(x+)− ϕ(x−)]

)]
(19)

= E(zR,z
−
R )

[
ϕ⊤
zR

(
ϕzR − ϕz−R

)]
(20)

= E(zR,z
−
R )

[
(ϕ̄zR + ϕ0)

⊤
(
ϕ̄zR + ϕ0 − ϕ̄z−R

− ϕ0

)]
(21)

= E(zR,z
−
R )

[
(ϕ̄zR + ϕ0)

⊤
(
ϕ̄zR − ϕ̄z−R

)]
(22)

= E(zR,z
−
R )

[
ϕ̄⊤
zR ϕ̄zR − ϕ̄⊤

zR ϕ̄z−R

]
+ E(zR,z

−
R )

[
ϕ⊤
0

(
ϕ̄zR − ϕ̄z−R

)]
. (23)
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Since ϕ̄zR and ϕ̄z−R
are independent with mean 0, we have E(zR,z

−
R )[ϕ̄

⊤
zR ϕ̄z−R

] =

0, E(zR,z
−
R )[ϕ

⊤
0 ϕ̄zR ] = 0, and E(zR,z

−
R )[ϕ

⊤
0 ϕ̄z−R

] = 0. Therefore,

− E(x,x+,x−)

[
ℓ
(
ϕ(x)⊤[ϕ(x+)− ϕ(x−)]

)]
(24)

= EzR
[
ϕ̄⊤
zR ϕ̄zR

]
(25)

= EzR
[
∥ϕ̄zR∥2

]
(26)

= EzR
[
∥ϕzR − ϕ0∥2

]
, (27)

which is the PCA objective on the mean representation ϕzR .

If additionally ϕ(x) is linear in x, then

− E(x,x+,x−)

[
ℓ
(
ϕ(x)⊤[ϕ(x+)− ϕ(x−)]

)]
(28)

= EzR
[
∥ϕzR − ϕ0∥2

]
(29)

= Ex̄
[
∥ϕ(x̄)− ϕ(x0)∥2

]
(30)

which is the linear PCA objective on the data from the distribution of x̄ = E[x|zR].

Theorem A.2 (Restatement of Theorem 2.2). Under Assumptions (A1)(A2)(A3):

(1) The optimal representation ϕ∗ does not encode zU : ϕ∗ ◦ g(z) is independent of zU .

(2) For any invariant feature i ∈ R, there exists Bi > 0 such that as long as the representa-
tions’ norm Br ≥ Bi, the optimal representation encodes zi. Furthermore, if zR is discrete,
then Bi is monotonically decreasing in Pr[zR\{i} = z−R\{i}, zi ̸= z−i ], the probability that
in zR and z−R , the i-th feature varies while the others remain the same.

Proof. (1) Recall that

ϕzR = E[ϕ ◦ g(z) | zR], ϕ0 = Ez[ϕ ◦ g(z)] = EzR [ϕzR ]. (31)

Then the contrastive loss at pre-training is:

E(x,x+,x−)

[
ℓ
(
ϕ(x)⊤[ϕ(x+)− ϕ(x−)]

) ]
(32)

= E(z,z+,z−)

[
ℓ
(
(ϕ ◦ g(z))⊤(ϕ ◦ g(z+)− ϕ ◦ g(z−))

) ]
(33)

= E(zR,z
−
R )

[
E
[
ℓ
(
(ϕ ◦ g(z))⊤(ϕ ◦ g(z+)− ϕ ◦ g(z−))

)
| zR, z−R

] ]
(34)

≥ E(zR,z
−
R )

[
ℓ
(
E
[
(ϕ ◦ g(z))⊤(ϕ ◦ g(z+)− ϕ ◦ g(z−)) | zR, z−R

] ) ]
(35)

= E(zR,z
−
R )

[
ℓ
(
E[ϕ ◦ g(z) | zR]⊤

(
E[ϕ ◦ g(z+) | zR]− E[ϕ ◦ g(z−) | z−R ]

) ) ]
(36)

= E(zR,z
−
R )

[
ℓ
(
ϕ⊤
zRϕzR − ϕ⊤

zRϕz−R

)]
, (37)

where the inequality comes from the convexity of ℓ(z) and Jensen’s inequality applied to the inner
expectation. The inequality becomes equality when the representation function ϕ is invariant to the
spurious features zU , i.e., with probability 1 over the distribution, ϕ ◦ g(z) = ϕzR . Therefore, the
spurious features zU are not encoded in the optimal representation, proving the first part.

(2) First consider the case when z has discrete values from a finite set. When the generative function
g(z) is not independent of zi, we assume for contradiction that the optimal representation ϕ is
independent of zi. From (1), we know that it is independent of zU . So there exists an f such that
ϕ ◦ g(z) = f(zR\{i}). Without loss of generality, suppose U = ∅, then ϕ ◦ g(z) = f(z−i).

Since the generative function g(z) is not independent of zi, there exist z and z−, such that z−i = z−−i,
zi ̸= z−i , g(z) ̸= g(z−), and z, z− have non-zero probabilities. So Pr[z−i = z−−i, zi ̸= z−i ] > 0.

Now construct a new representation function ϕ̄ ∈ Rk+n, n = |Z| such that ϕ̄ ◦ g(z) = h(z) as
follows :

h(z) =
[√

1− α2f(z−i), α∥f(z−i)∥Iz
]

(38)
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where Iz is the one-hot encoding of the value z. Note that ϕ̄ still satisfies that norm bound since
∥ϕ̄(x)∥ = ∥h(z)∥ = ∥f(z−i)∥. We next show that the contrastive loss of ϕ̄ can be smaller than that
of ϕ, leading to a contradiction and finishing the proof.

The contrastive loss of ϕ̄ (using the fact that z+ = z when U = ∅) is

E(z,z−)

[
ℓ
(
h(z)⊤h(z)− h(z)⊤h(z−)

)]
(39)

= E(z,z−)

[
ℓ
(
h(z)⊤h(z)− h(z)⊤h(z−)

)
| z ̸= z−

]
Pr[z ̸= z−] + Ez,z− [ℓ(0)] Pr[z = z−].

(40)

We only need to consider the first term.

E(z,z−)

[
ℓ
(
h(z)⊤h(z)− h(z)⊤h(z−)

)
| z ̸= z−

]
Pr[z ̸= z−] (41)

= E(z,z−)

[
ℓ
(
∥f(z−i)∥2 − (1− α2)f(z−i)

⊤f(z−−i)
)︸ ︷︷ ︸

T1

| z−i ̸= z−−i
]
Pr[z−i ̸= z−−i] (42)

+ E(z,z−)

[
ℓ
(
α2∥f(z−i)∥2

)︸ ︷︷ ︸
T2

| z−i = z−−i, zi ̸= z−i
]
Pr[z−i = z−−i, zi ̸= z−i ]. (43)

When α = 0, the above reduces to the corresponding terms for ϕ, so we would like to show that
there exists non-zero α that leads to smaller loss values.

Recall that ℓ(·) is decreasing by property (A3). Let α =
√
1/2/Br, where Br = ∥f(z−i)∥.

Then when switching from ϕ to ϕ̄, T2 goes from ℓ(0) to ℓ(1/2), a constant reduction. For
T1, if f(z−i)

⊤f(z−−i) is positive, then T1 decreases; if f(z−i)
⊤f(z−−i) is negative, then T1 in-

creases from ℓ(B2
r − f(z−i)

⊤f(z−−i)) to ℓ(B2
r − f(z−i)

⊤f(z−−i) + α2f(z−i)
⊤f(z−−i)). Note that

|α2f(z−i)
⊤f(z−−i)| ≤ 1 (by the Cauchy-Schwarz inequality); so the increase in T1 diminishes when

Br grows, by the property (A3) of ℓ. Then when Br is large enough, the increase in T1 is smaller
than the decrease in T2. So from ϕ to ϕ̄, the contrastive loss decreases, contradicting that ϕ is opti-
mal. Finally, since the reduction in (43) is smaller when Pr[z−i = z−−i, zi ̸= z−i ] is smaller, then Bi
needs to be larger. So Bi is monotonically decreasing in Pr[z−i = z−−i, zi ̸= z−i ].

Now consider the general case when z may not be from a finite set. For any ϵ0 > 0, there exists a ℓ2
ball B of bounded radius such that the probability of z outside the ball is at most ϵ0. Since ϕ ◦ g’s
are regular by assumption, there exists a partition Z ∩B into finitely many subsets such that in each
subset and for each ϕ ◦ g, the function value varies by at most ϵ0. Construct a new distribution D′

z
for z: select a representative point in each subset, and put a probability mass to it equal to that of
the original distribution Dz in this subset, and normalize the probabilities over the subsets. The new
distribution is over a finite set so the above argument holds. Furthermore, the difference in the T1

term for D′
z and Dz can be made arbitrarily small by choosing sufficiently small ϵ0; similarly for

T2. Then the argument also holds for Dz , which completes the proof for the general case.

A.1 INDUCTIVE BIASES ARE NEEDED FOR ANALYZING PREDICTION SUCCESS

We have analyzed what features are encoded in the representation. However, encoding the infor-
mation does not equate to good prediction performance, in particular, with linear predictors. Re-
cently, Saunshi et al. (2022b) demonstrated that existing analyses that ignore the inductive biases of
the model and algorithm cannot adequately explain the prediction success, and provided examples
where such analysis can lead to vacuous bounds. One may wonder if our hidden representation data
model can provide inductive biases that avoid such vacuous bounds. Unfortunately, similar issues
as in Saunshi et al. (2022b) remain.

To illustrate that inductive biases are still needed in our data model, consider the following simple
example. Suppose zR ∈ {−1, 1}2 and can be recovered from x; the label y is simply the first
coordinate in zR. Suppose the representation satisfies ϕ(x) ∈ R2, ∥ϕ(x)∥ = 1, and contrastive
learning uses the logistic loss ℓ(z). Let ϕ(x) be such that ϕ ◦ g(z) = h(zR), and h((−1,−1)) =
(−1, 0), h((−1, 1)) = (1, 0), h((1,−1)) = (0,−1), h((1, 1)) = (0, 1). It can be verified that this ϕ
is optimal for the contrastive loss. However, on the representation ϕ, the classification is an XOR-
problem (Fig. 6), for which there is no non-trivial error bound for linear predictors. This contradicts
the success of linear probing in practice.
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Figure 6: A two-dim example of XOR structure in the space of ϕ.

Furthermore, some restrictions on the data distributions are also needed. Suppose all optimal rep-
resentations are linearly separable with certain inductive biases on the representation function class.
Suppose the label y depends on zR. Without restrictions on the labeling function, one can consider
a random y ∈ {−1,+1} over any zR. Then for any linear predictor on any optimal representation,
in expectation the error is 1/2, so there is always a labeling function for which no non-trivial error
can be achieved. Our analysis thus requires restrictions on the dependence of the label on zR (in
particular, we will assume linear dependence).

B PROOFS AND MORE ANALYSIS FOR SECTION 2.2

B.1 LEMMAS FOR A MORE GENERAL SETTING

We will prove the results in a more general setting, where the mixture can be uneven and the vari-
ances of different types of features can be different. The results in Section 2.2 then follow from
these lemmas.

In the more general setting, the diverse pre-training data is a mixture of data from T different tasks
Dt’s, while the target task is one of the tasks. In the mixture, the task Dt has weight wt > 0 and∑T
t=1 wt = 1. All tasks share a public feature set S of size s, and each task Dt additionally owns

a private disjoint feature set Pt of size r − s, i.e., Pt ∩ S = ∅ for t ∈ [T ] and Pt1 ∩ Pt2 = ∅ for
t1 ̸= t2. The invariant features for Dt are then Rt = S ∪Pt. All invariant features are ∪Tt=1Rt ⊆ R,
k := |R|, and spurious features are U = [d] \R. In task Dt, the positive pairs (x, x+) are generated
as follows:

zS ∼ N (0, σ2
S,tI), zPt

∼ N (0, σ2
R,tI), zR\Rt

= 0, (44)

zU ∼ N (0, σ2
U,tI), z = [zR; zU ], x = g(z), (45)

z+U ∼ N (0, σ2
U,tI), z

+ = [zR; z
+
U ], x+ = g(z+), (46)

and x− is simply an i.i.d. copy from the same distribution as x. In practice, multiple independent
negative examples are used, and thus we consider the following contrastive loss

min
ϕ∈Φ

E(x,x+)

[
ℓ
(
ϕ(x)⊤(ϕ(x+)− Ex−ϕ(x−))

)]
(47)

to pre-train a representation ϕ. Then, when using ϕ for prediction in the target task Dt, the predictor
class should contain a predictor matching the ground-truth label, so consider the class:

Fϕ,t = {f(z) = u⊤
t z : ut ∈ Rk, ∥ut∥ ≤ Bϕ,t} (48)

where Bϕ,t is the minimum value such that there exists ut ∈ Fϕ,t with y = u⊤
t ϕ(x) on Dt.

Recall that we assume a linear data model and linear representation functions ϕ:

19



Published as a conference paper at ICLR 2023

• x is linear in z: x = g(z) = Mz where M ∈ Rd×d is an orthonormal dictionary. The label
in task Dt is linear in its invariant features y = (u∗

t )
⊤zRt

for some u∗
t ∈ Rr.

• The representations are linear functions with weights of bounded spectral/Frobenius norms:

Φ = {ϕ(x) = Wx : W∈Rk×d, ∥W∥≤1, ∥W∥F≤
√
r}.

Here the norm bounds are chosen to be the minimum values to allow recovering the invari-
ant features in the target task, i.e., there exists ϕ ∈ Φ such that ϕ(x) = [zRt

;0].

Lemma B.1. Consider the above setting. Let α, αt(t ∈ [T ]) be the optimizer for

min
α̃,α̃1,...,α̃T

T∑
t=1

wtE
[
ℓ
(
α̃σ2

S,tZ + α̃tσ
2
R,tZt

)]
, (49)

subject to α̃s+

T∑
t=1

α̃t(r − s) ≤ r, (50)

α̃, α̃t ∈ [0, 1], (51)

where Z ∼ χ2
s and Zt ∼ χ2

r−s.

Then the optimal representation ϕ∗(x) the loss (47) in contrastive learning satisfies ϕ∗(x) = W ∗x
with any W ∗ of the form:

W ∗ = [QA∗, 0]M−1 (52)

where Q ∈ Rk×k is any orthonormal matrices, A∗ is a k × k diagonal matrix with

A∗
jj =


√
α if j ∈ S,√
αt if j ∈ Pt,

0 otherwise,

(53)

and the matrix of zeros has size k × (d− k).

Proof. For each Dt,

E(x,x+)

[
ℓ
(
ϕ(x)⊤[ϕ(x+)− Ex−ϕ(x−)]

)]
(54)

= E(z,z+)

[
ℓ
(
(WMz)⊤(WMz+ − Ez− [WMz−])

)]
(55)

= E(z,z+)

[
ℓ
(
z⊤(M⊤W⊤WM)(z+ − Ez− [z−])

)]
(56)

≥ EzR
[
ℓ
(
(EzU [z])⊤M⊤W⊤WM(Ez+U [z

+]− Ez− [z−])
)]

(57)

= EzR
[
ℓ
(
[zR; 0]⊤M⊤W⊤WM([zR; 0]− 0)

)]
(58)

= EzR
[
ℓ
(
∥WM [zR; 0]∥2

)]
(59)

where the inequality comes from the convexity of ℓ(t) and Jensen’s inequality. Similar to The-
orem 2.2, the equality holds if and only if WMz does not depend on zU and WMz+ does not
depend on z+U , so the optimal solution should satisfy this condition.

Let WM = [AR, AU ] where AR ∈ Rk×k, AU ∈ Rk×(d−k). By rotational invariance of zS , and zPt
,

without loss of generality, we can assume AR = QA where A is a diagonal matrix with diagonal
entries ajj’s and Q is any orthonormal matrix. Furthermore, AU = 0 in the optimal solution since
it does not affect the loss but only decreases the norm bound on AR. So on data from the task Dt,

EDt

[
ℓ
(
∥WM [zR; 0]∥2

)]
= EzRt

ℓ
∑
j∈Rt

a2jjz
2
j

 . (60)
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Then on the mixture,

E(x,x+)

[
ℓ
(
ϕ(x)⊤[ϕ(x+)− Ex−ϕ(x−)]

)]
(61)

≥
T∑
t=1

wtE{zj}

ℓ
∑
j∈Rt

a2jjz
2
j

 (62)

=

T∑
t=1

wtE{z̃j∼N (0,1)}

ℓ
∑
j∈S

a2jjσ
2
S,tz̃

2
j +

∑
j∈Pt

a2jjσ
2
R,tz̃

2
j

 (63)

:=g({ajj}), (64)

where each z̃j is a random variable drawn from standard Gaussian.

Now consider the minimum of the function g({ajj}) on the right hand side, under the constraints
that |ajj | ≤ 1 and

∑
j a

2
jj ≤ r. Before finishing the proof of Lemma B.1, we have the following

claim for this optimization.

Claim 1. There exist α, αt satisfying 0 ≤ α, αt ≤ 1 and αs +
∑T
t=1 αt(r − s) =

∑
j a

2
jj ≤ r,

such that the minimum of the above optimization (64) is achieved when a2jj = α for any j ∈ S, and
a2jj = αt for any j ∈ Pt and t ∈ [T ].

Proof. We need to prove that to achieve the minimum,

(1) a2ℓℓ = a2ℓ′ℓ′ for any ℓ ̸= ℓ′ ∈ S;

(2) a2ℓℓ = a2ℓ′ℓ′ for any ℓ ̸= ℓ′ ∈ Pt and any t ∈ [T ];

For (1): By symmetry of zj’s and the convexity of ℓ(·), for any t ∈ [T ],

E

ℓ
∑
j∈Rt

a2jjz
2
j

 (65)

=
1

2
E

ℓ
 ∑
j∈S,j ̸=ℓ,j ̸=ℓ′

a2jjz
2
j + a2ℓℓz

2
ℓ + a2ℓ′ℓ′z

2
ℓ′ +

∑
j∈Pt

a2jjz
2
j

 (66)

+
1

2
E

ℓ
 ∑
j∈S,j ̸=ℓ,j ̸=ℓ′

a2jjz
2
j + a2ℓℓz

2
ℓ′ + a2ℓ′ℓ′z

2
ℓ +

∑
j∈Pt

a2jjz
2
j

 (67)

≥ E

ℓ
 ∑
j∈S,j ̸=ℓ,j ̸=ℓ′

a2jjz
2
j +

a2ℓℓ + a2ℓ′ℓ′

2
z2ℓ′ +

a2ℓℓ + a2ℓ′ℓ′

2
z2ℓ +

∑
j∈Pt

a2jjz
2
j

 . (68)

Then

g({ajj}) ≥
T∑
t=1

wtE

ℓ
 ∑
j∈S,j ̸=ℓ,j ̸=ℓ′

a2jjz
2
j +

a2ℓℓ + a2ℓ′ℓ′

2
z2ℓ′ +

a2ℓℓ + a2ℓ′ℓ′

2
z2ℓ +

∑
j∈Pt

a2jjz
2
j

 .

(69)

Therefore, the minimum is achieved when a2ℓℓ = a2ℓ′ℓ′ .

A similar argument as above proves statement (2).

These statements mean that, for any t ∈ [T ], the minimum is achieved when a2jj = α for j ∈ S, and
a2jj = αt for j ∈ Pt, for some values α, αt ≥ 0. Let Z =

∑
j∈S z̃

2
j , Zt =

∑
j∈Pt

z̃2j . Then Z ∼ χ2
s
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and Zt ∼ χ2
r−s, and we have:

g({ajj}) =
T∑
t=1

wtE

ℓ
∑
j∈S

ασ2
S,tz̃

2
j +

∑
j∈Pt

αtσ
2
R,tz̃

2
j

 (70)

=

T∑
t=1

wtE
[
ℓ
(
ασ2

S,tZ + αtσ
2
R,tZt

)]
. (71)

Given the constraint αs+
∑T
t=1 αt(r− s) =

∑
j a

2
jj ≤ r, 0 ≤ α, αt ≤ 1, we complete the proof of

Lemma B.1.

Given this result we can now analyze the generalization error when predicting on the target task Dt.
Lemma B.2. Consider any t ∈ [T ]. Let vt,1 =

∑
j∈S(u

∗
t )

2
j and vt,2 =

∑
j∈Pt

(u∗
t )

2
j . Suppose in

ϕ∗ (calculated in Lemma B.1), α, αt > 0. Suppose the prediction loss ℓc is L-Lipschitz.

Then the Empirical Risk Minimizer ût ∈ Fϕ∗,t on ϕ∗ using m labeled data points from Dt has risk

E(x,y)∼Dt
[ℓc(ût

⊤ϕ∗(x), y)] ≤ 8

√
2 ln(4/δ)

m

+ 4L

√
1

m

(
vt,1
α

+
vt,2
αt

)(√
sασ2

S,t + (r − s)αtσ2
R,t +O

(√
max{ασ2

S,t, αtσ
2
R,t}2r

sασ2
S,t + (r − s)αtσ2

R,t

))
.

Proof. For any t ∈ [T ], we only need to bound the Rademacher complexity Rm(Fϕ∗,t) of Fϕ∗,t;
the statement then follows from standard generalization bounds,

E(x,y)∼Dt
[ℓc(ût

⊤ϕ∗(x), y)] ≤ 4LRm(Fϕ∗,t) + 8

√
2 ln(4/δ)

m
.

Given the representation ϕ∗ in Lemma B.1, to ensure there exists a predictor in Fϕ∗,t matching the
ground-truth label, f(ϕ∗(x)) = u⊤

t ϕ
∗(x) = y = (u∗

t )
⊤zRt

, predictor ut should satisfy

EDt [(ŷ − y)2] = 0 ⇔∀zRt , ut
⊤[QA∗, 0]M−1M [zRt ; 0; zU ] = u∗

t
⊤zRt (72)

⇔∀zRt , ut
⊤QA∗[zRt ; 0] = u∗

t
⊤zRt (73)

(∗)⇔A∗
1:r,1:r(Q

⊤)1:r,1:kut = u∗
t (74)

⇔∀v ∈ Rr, ut = Q1:k,1:r(A
∗
1:r,1:r)

−1u∗
t +Q1:k,r+1:kv. (75)

The (∗) is from non-zero variance for zRt
. ut = Q1:k,1:r(A

∗
1:r,1:r)

−1u∗
t is the least-norm optimal

solution, so we have Bϕ∗,t = ∥Q1:k,1:r(A
∗
1:r,1:r)

−1u∗
t ∥ =

√
vt,1
α +

vt,2
αt

. So the predictor class
should be

Fϕ∗,t =

{
f(ϕ∗) = u⊤

t ϕ
∗ : ut ∈ Rk, ∥ut∥ ≤ Bϕ∗,t =

√
vt,1
α

+
vt,2
αt

}
. (76)

The empirical Rademacher complexity and Rademacher complexity of Fϕ∗,t with m samples are

R̂m(Fϕ∗,t) =
1

m
Eσ

[
sup

fu,ϕ∈Fϕ∗,t

m∑
i=1

σifu,ϕ(x
(i))

]
(77)

=
1

m
Eσ

[
sup

∥u∥≤Bϕ∗,t

m∑
i=1

σiut
⊤QA∗[z

(i)
Rt

; 0]

]
(78)

=
1

m
Eσ

[
sup

∥u∥≤Bϕ∗,t

ut
⊤

m∑
i=1

σiQ1:k,1:rA
∗
1:r,1:rz

(i)
Rt

]
(79)

=
Bϕ∗,t

m
Eσ

[∥∥∥∥∥
m∑
i=1

σiQ1:k,1:rA
∗
1:r,1:rz

(i)
Rt

∥∥∥∥∥
]
, (80)
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Rm(Fϕ∗,t) =EzR,zU
[
R̂m(Fϕ∗,t)

]
(81)

=
Bϕ∗,t

m
E
z
(i)
Rt

[
Eσ

[∥∥∥∥∥
m∑
i=1

σiQ1:k,1:rA
∗
1:r,1:rz

(i)
Rt

∥∥∥∥∥
]]

(82)

=
Bϕ∗,t

m
E
z
(i)
Rt

[∥∥∥∥∥A∗
1:r,1:r

m∑
i=1

z
(i)
Rt

∥∥∥∥∥
]
. (83)

For any t ∈ [T ], define Xt := A∗
1:r,1:r

∑m
i=1 z

(i)
Rt

. Note that for j ∈ S, Xt,j = α
∑m
i=1 z

(i)
j is

a Gaussian of mean zero and variance E[X2
t,j ] = αE

[(∑m
i=1 z

(i)
j

)2]
= αE

[∑m
i=1

(
z
(i)
j

)2]
=

mασ2
S,t. Similarly, for j ∈ Pt, Xt,j = αt

∑m
i=1 z

(i)
j is a Gaussian of mean zero and variance

E[X2
t,j ] = mαtσ

2
R,t. Since Xt,j is sub-gaussian, X2

t,j −mασ2
S,t for j ∈ S and X2

t,j −mαtσ
2
R,t for

j ∈ Pt are sub-exponential and more precisely

∥X2
t,j −mασ2

S,t∥ψ1
≤ C1∥X2

t,j∥ψ1
= C1∥Xt,j∥2ψ2

≤ C2mασ2
S,t, j ∈ S, (84)

∥X2
t,j −mαtσ

2
R,t∥ψ1

≤ C1∥X2
t,j∥ψ1

= C1∥Xt,j∥2ψ2
≤ C2mαtσ

2
R,t, j ∈ Pt, (85)

where C1, C2 are absolute constants and C2 > 1. Let K = max(C2mασ2
S,t, C2mαtσ

2
R,t) =

C2mmax{ασ2
S,t, αtσ

2
R,t} and µ := m(sασ2

S,t + (r − s)αtσ
2
R,t). By Bernstein’s inequality, we

have for every γ ≥ 0 that

P
{∣∣∣∣1r (∥Xt∥2 − µ)

∣∣∣∣ ≥ γ

}
≤ 2 exp

[
−cmin

(
γ2

K2
,
γ

K

)
r

]
(86)

⇒P
{∣∣∣∣∥Xt∥2

µ
− 1

∣∣∣∣ ≥ rγ

µ

}
(87)

≤ 2 exp

[
− c

C2
2

min

(
γ2

m2 max{ασ2
S,t, αtσ

2
R,t}2

,
γ

mmax{ασ2
S,t, αtσ

2
R,t}

)
r

]
, (88)

where c is an absolute constant. For all numbers z ≥ 0, we have |z − 1| ≥ δ ⇒ |z2 − 1| ≥
max(δ, δ2). Thus, for any δ ≥ 0, we have

P
{∣∣∣∣∥Xt∥√

µ
− 1

∣∣∣∣ ≥ δ

}
(89)

≤P
{∣∣∣∣∥Xt∥22

µ
− 1

∣∣∣∣ ≥ max(δ, δ2)

}
(90)

≤2 exp

− c

C2
2

min

( µmax(δ, δ2)

mmax{ασ2
S,t, αtσ

2
R,t}r

)2

,
µmax(δ, δ2)

mmax{ασ2
S,t, αtσ

2
R,t}r

 r

 (91)

≤2 exp

− c

C2
2

(
µ

mmax{ασ2
S,t, αtσ

2
R,t}r

)2

min
((

max(δ, δ2)
)2
,max(δ, δ2)

)
r

 (92)

=2 exp

[
− c

C2
2

µ2

m2 max{ασ2
S,t, αtσ

2
R,t}2r

δ2

]
, (93)

where the last inequality is from µ = m(sασ2
S,t + (r − s)αtσ

2
R,t) ≤ mmax{ασ2

S,t, αtσ
2
R,t}r.

Changing variables to θ = δ
√
µ, we obtain the desired sub-gaussian tail

P {|∥Xt∥ −
√
µ| ≥ θ} ≤2 exp

[
− c

C2
2

µ

m2 max{ασ2
S,t, αtσ

2
R,t}2r

θ2

]
. (94)
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By generalization of integral identity, we have

|E [∥Xt∥ −
√
µ]| =

∣∣∣∣∫ ∞

0

P{∥Xt∥ −
√
µ > θ}dθ −

∫ 0

−∞
P{∥Xt∥ −

√
µ < θ}dθ

∣∣∣∣ (95)

≤2

∫ ∞

0

P{|∥Xt∥ −
√
µ| > θ}dθ (96)

≤4

∫ ∞

0

exp

[
− c

C2
2

µ

m2 max{ασ2
S,t, αtσ

2
R,t}2r

θ2

]
dθ (97)

≤C3

mmax{ασ2
S,t, αtσ

2
R,t}

√
r

√
µ

, (98)

where C3 is an absolute constant. Thus, we have∣∣∣∣∣Rm(Fϕ∗,t)−

√
1

m

(
vt,1
α

+
vt,2
αt

)
(sασ2

S,t + (r − s)αtσ2
R,t)

∣∣∣∣∣ (99)

=
Bϕ∗,t

m
|E [∥Xt∥ −

√
µ]| (100)

≤ O

(√
1

m

(
vt,1
α

+
vt,2
αt

)
max{ασ2

S,t, αtσ
2
R,t}2r

sασ2
S,t + (r − s)αtσ2

R,t

)
. (101)

B.2 PROOFS OF PROPOSITION 2.3 AND PROPOSITION 2.4

Given the lemmas for the general case, we are now ready to prove the results in Proposition 2.3 and
Proposition 2.4.

Proposition B.3 (Restatement of Proposition 2.3). Suppose σS,t = σR,t = σU,t = 1 for any
t ∈ [T ]. The representation ϕ∗ obtained on an even mixture of data from all the tasks {Dt :

1 ≤ t ≤ T} satisfies ϕ∗ ◦ g(z) = Q
(∑

j∈S
√
αzjej +

∑
j∈R\S

√
βzjej

)
for some α ∈ [0, 1],

β = min
(
1, r−αs

T (r−s)

)
, where ej’s are the basis vectors and Q is any orthonormal matrix.

The Empirical Risk Minimizer û ∈ Fϕ∗,t on ϕ∗ using m labeled data points from Dt has risk

E(x,y)∼Dt
[ℓc(û

⊤ϕ∗(x), y)]

≤4L

√
1

m

(
vt,1
α

+
vt,2
β

)(√
sα+ (r − s)β +O

(√
r

sα+ (r − s)β

))
+ 8

√
2 ln(4/δ)

m
.

Proof. This follows from Lemma B.1, and considering the optimal α, αt for the following:

g({α, αt}) =
T∑
t=1

wtE
[
ℓ
(
ασ2

S,tZ + αtσ
2
R,tZt

)]
(102)

=
1

T

T∑
t=1

E [ℓ (αZ + αtZ1)] (103)

≥ E

[
ℓ

(
αZ + Z1

T∑
t=1

1

T
αt

)]
. (104)

The second equation is from that Zt’s follow the same distribution by the symmetry of z̃j’s. The
inequality comes from the convexity of ℓ(t) and Jensen’s inequality. So the minimum is achieved
when αt := β for any t ∈ [T ], leading to

g({α, αt}) = E [ℓ (αZ + βZ1)] (105)
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subject to the constraints αs+ Tβ(r − s) ≤ r, 0 ≤ α, β ≤ 1. Then we get ϕ∗ ◦ g(z) = W ∗Mz =

Q
(∑

j∈S
√
αzjej +

∑
j∈R\S

√
βzjej

)
for some α ∈ [0, 1], β = min

(
1, r−αs

T (r−s)

)
, where ej’s are

the basis vectors and Q is any orthonormal matrix.

Finally, the generalization bound follows from Lemma B.2, and that

O

(√
max{α, β}2r
sα+ (r − s)β

)
= O

(√
r

sα+ (r − s)β

)
. (106)

This completes the proof.

Proposition B.4 (Restatement of Proposition 2.4). Suppose σS,t = σR,t = σU,t = 1. The represen-

tation ϕ∗
t obtained on data from Dt satisfies ϕ∗

t ◦ g(z) = Q
(∑

j∈Rt
zjej

)
where ej’s are the basis

vectors and Q is any orthonormal matrix.
The Empirical Risk Minimizer û ∈ Fϕ∗

t ,t
on ϕ∗

t using m labeled data points from Dt has risk

E(x,y)∼Dt
[ℓc(û

⊤ϕ∗
t (x), y)] ≤ 4L

√
r

m
∥u∗

t ∥+ 8

√
2 ln(4/δ)

m
.

While on task Di(i ̸= t), any linear predictor on ϕ∗
t has error at least minu EDi [ℓc(u

⊤zS , y)].

Proof. Following Lemma B.1 (with r = s), we get ϕ∗
t ◦ g(z) = Q

(∑
j∈Rt

zjej

)
, where ej’s are

the basis vectors and Q is any orthonormal matrix. Following the same argument as in the proof of
Lemma B.2, we get

Rm(Fϕ∗,t) =
∥u∗

t ∥
m

E
z
(i)
Rt

[∥∥∥∥∥
m∑
i=1

z
(i)
Rt

∥∥∥∥∥
]

(107)

≤
√

r

m
∥u∗

t ∥, (108)

where the last inequality comes from the property of chi-squared distribution expectation.

B.3 IMPLICATION FOR THE TRADE-OFF

The propositions then imply the trade-off between universality and label efficiency. Below we for-
malize the example discussed in Section 2.2.
Proposition B.5 (A specific version of Proposition 2.3). Suppose σS,t = σR,t = σU,t = 1 for any
t ∈ [T ] and r = 2s. The representation ϕ∗ obtained on an even mixture of data from all the tasks

{Dt : 1 ≤ t ≤ T} satisfies ϕ∗ ◦ g(z) = Q
(∑

j∈S zjej +
∑
j∈R\S

√
1
T zjej

)
, where ej’s are the

basis vectors and Q is any orthonormal matrix.
The Empirical Risk Minimizer û ∈ Fϕ∗,t on ϕ∗ using m labeled data points from Dt has risk

E(x,y)∼Dt
[ℓc(û

⊤ϕ∗(x), y)] ≤ 4L

√
1

m
(vt,1 + Tvt,2)

(√
r

(
T + 1

2T

)
+O (1)

)
+ 8

√
2 ln(4/δ)

m
.

Proof. This follows from Proposition 2.3, and noting that when r = 2s, α = 1 and β = 1/T are
the optimal for:

g({α, β}) = E [ℓ (αZ + βZ1)] (109)

= E
[
ℓ

(
αZ +

r − αs

T (r − s)
Z1

)]
(110)

= E
[
ℓ

(
αZ +

2− α

T
Z1

)]
(111)

subject to the constraints αs+Tβ(r−s) ≤ r, 0 ≤ α, β ≤ 1. To see this, note that Z ∼ χ2
s and Z1 ∼

χ2
r−s = χ2

s follow the same distribution, so αZ + 2−α
T Z1 for α = 1 will stochastically dominate its

value for other α ∈ [0, 1). The optimal is then achieved when α = 1 and β = 2−α
T = 1

T .
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B.4 IMPROVING THE TRADE-OFF BY CONTRASTIVE REGULARIZATION

The above analysis shows that contrastive learning a representation on unlabeled data from the target
task can help in prediction on this target task. This suggests that given a representation ϕ∗ pre-trained
on diverse data, one can fine-tune it by contrastive learning on some unlabeled data from the target
task to get a representation that can lead to better prediction on the target task. In the following, we
will formally show that this is indeed the case for the illustrative example in Section 2.2.

Recall that in this example, σS,t = σR,t = σU,t = 1, r = 2s, and vt,1 = vt,2. The representation
ϕ∗ obtained on an even mixture of data from all the tasks {Dt : 1 ≤ t ≤ T} satisfies ϕ∗ ◦ g(z) =
Q
(∑

j∈S
√
αzjej +

∑
j∈R\S

√
βzjej

)
, where ej’s are the basis vectors and Q is any orthonormal

matrix, and α = 1, β = 1
T .

Now, suppose we are given unlabeled data from Dt, and we use them to fine-tune ϕ∗(x) = W ∗x by
contrastive learning on these unlabeled data. That is, we find W near W ∗ to minimize the contrastive
loss on the unlabeled data from Dt:

min
ϕ(x)=Wx

E
[
ℓ
(
ϕ(x)⊤(ϕ(x+)− Ex−ϕ(x−))

)]
(112)

subject to ∥W −W ∗∥F ≤ γ, ∥W∥ ≤ 1. (113)

for some small γ > 0.
Proposition B.6. For (112), ϕ∗

CR,t satisfying the following on x from Dt is an optimal representation:

ϕ∗
CR,t ◦ g(z) = Q

∑
j∈S

√
αzjej +

∑
j∈Pt

√
βzjej


where

√
α = 1,

√
β = min

(
1,
√

1
T + γ√

s

)
.

Proof. Following the argument in Lemma B.1, we still have that ϕ∗
CR,t(x) = Wx where W =

Q2[A2;0]M
−1 for any orthonormal matrix Q2 and some diagonal matrix A2 = diagonal(ajj), with

ajj =
√
α for j ∈ S and ajj =

√
β for j ∈ Pt for some α, β ∈ [0, 1]. And the contrastive loss is:

E
[
ℓ
(
ϕ(x)⊤(ϕ(x+)− Ex−ϕ(x−))

)]
= E

ℓ
∑
j∈Rt

a2jjz
2
j

 (114)

= E

ℓ
α

∑
j∈S

z2j + β
∑
j∈Pt

z2j

 . (115)

Recall that ϕ∗(x) = W ∗x with W = Q[A;0]M−1 for any orthonormal matrix Q and some diagonal
matrix A, with Ajj = 1 for j ∈ S and Ajj =

√
1/T for j ∈ Ri \ S for any i ∈ [T ]. Then

∥W −W ∗∥F = ∥Q2[A2;0]M
−1 −Q[A;0]M−1∥F (116)

= ∥Q2A2 −QA∥F (117)

= ∥A2 −Q−1
2 QA∥F . (118)

Since Q−1
2 Q is a rotation and A,A2 are diagonal, we can always set Q2 = Q without increasing

∥W −W ∗∥F . Then

∥W −W ∗∥2F = ∥A2 −A∥2F (119)

= s(
√
α− 1)2 + s(

√
β −

√
1/T )2 +

∑
j∈Pi,i̸=t

((A2)jj −
√

1/T )2. (120)

To minimize the contrastive loss, we need α, β to be as large as possible, subject to ∥W −
W ∗∥2F ≤ γ2, and α, β, (A2)

2
jj ∈ [0, 1]. The optimal is then achieved when α = 1,

√
β =

min
(
1,
√

1
T + γ√

s

)
, and (A2)jj =

√
1/T for j ∈ Pi, i ̸= t.
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Now, recall that by Proposition 2.3, the ERM has risk:

E(x,y)∼Dt
[ℓc(û

⊤ϕ∗(x), y)]

≤ 4L

√
1

m

(
vt,1
α

+
vt,2
β

)(√
sα+ (r − s)β +O

(√
r

sα+ (r − s)β

))
+ 8

√
2 ln(4/δ)

m

= 4L

√
1

m

(
∥u2

t∥2
2α

+
∥u2

t∥2
2β

)(√
sα+ sβ +O (1)

)
+ 8

√
2 ln(4/δ)

m

= O

(
L

√
r∥u∗

t ∥2
m

(
2 +

α

β
+

β

α

))

With the fine-tuning using contrastive learning, in the representation learned, α remains to be 1,
while β increases from 1/T to (

√
1/T + γ/

√
s)2. Then the error bound decreases. This shows

that fine-tuning with contrastive learning on unlabeled data from the target task can emphasize the
task-specific features zPt , which then leads to better prediction performance.

C MORE EXPERIMENTAL DETAILS AND RESULTS

C.1 DATASETS

CIFAR-10. CIFAR-10 (Krizhevsky et al., 2009) dataset consists of 60,000 32× 32 color images in
10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck. Each class has 6,000
images. There are 50,000 training images and 10,000 test images.

CINIC-10. CINIC-10 (Darlow et al., 2018) consists of 32× 32 color images from both CIFAR and
ImageNet and has 90,000 training images with ten classes identical to CIFAR-10.

ImageNet. ImageNet (Deng et al., 2009) is a huge visual dataset which is composed of 1,281,167
training data and 50,000 test data with 1,000 classes. We crop each color image to 224× 224 as the
standard setting.

ImageNet32. ImageNet32 (Deng et al., 2009) is a huge dataset made up of small color images
called the down-sampled version of ImageNet. ImageNet32 comprises 1,281,167 training data and
50,000 test data with 1,000 classes. Each color image is down-sampled to 32× 32.

ImageNet22k. ImageNet22k (Deng et al., 2009; Ridnik et al., 2021) is a superset of ImageNet
which contains 14.2M training data and 522,500 test data with 21,841 classes. We crop each color
image to 224× 224 as the standard setting.

ImageNet-Bird. The ImageNet-Bird is a subset of ImageNet and contains all bird-related images
from ImageNet, which have 59 classes and 76k training images.

ImageNet-Vehicle. The ImageNet-Vehicle is a subset of ImageNet and contains all vehicle-related
images from ImageNet, which have 43 classes and 55k training images.

ImageNet-Cat/Ball/Shop/Clothing/Fruit. The ImageNet-Cat/Ball/Shop/Clothing/Fruit is a subset
of ImageNet and contains all cat/ball/shop/clothing/fruit-related images from ImageNet, which have
76 classes and 100k training images.

GCC-15M. GCC-15M denotes the merged version of GCC-3M (Sharma et al., 2018) and GCC-
12M (Changpinyo et al., 2021). It is a diverse dataset of visual concepts with image-text pairs meant
to be used for vision-and-language pre-training. GCC-15M contains 15M training data and more
than 600k concepts.

SVHN. The Street View House Numbers (Netzer et al., 2011) contains 10 digits color images of
size 32× 32 in the natural scene. It has 73,257 digits for training and 26,032 digits for testing.

MNIST. The Modified National Institute of Standards and Technology (LeCun et al., 1998) is a
database of handwritten gray-scale digits of size 28 × 28. It contains 60,000 training images and
10,000 testing images.
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EMNIST. Extended MNIST (Cohen et al., 2017) includes gray images of handwritten letters and
digits. The images in EMNIST were converted into the same size 28 × 28 by the same process as
MNIST. EMNIST-Letters has 145,600 lowercase characters with 26 balanced classes, and EMNIST-
Digits has 280,000 characters with ten balanced classes.

Fashion-MNIST. Fashion-MNIST (Xiao et al., 2017) is a dataset of 28×28 gray-scale images with
ten classes: T-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, ankle boot. The
training set size is 60,000, and the test set size is 10,000.

Fer2013. Fer2013 is a dataset (Goodfellow et al., 2013) of 48 × 48 gray-scale images with 7 face
expression classes: angry, disgust, fear, happy, sad, surprise, neutral. The training set size is 28,709,
and the test set size is 3,589.

FaceScrub. FaceScrub (Ng & Winkler, 2014) is a dataset with 141,130 color face images of 695
public figures.

GTSRB. The German Traffic Sign Recognition Benchmark (Stallkamp et al., 2012) is a dataset of
color images depicting 43 different traffic signs. The images are not of fixed dimensions and have
a rich background and varying light conditions as expected of photographed images of traffic signs.
The original training set contains 34,799 images, and the original test set contains 12,630 images.
We resize each image to 32×32. The dataset has a significant imbalance in the number of sample
occurrences across classes. We use data augmentation techniques to enlarge the training data and
balance the number of samples in each class. We construct a class-preserving data augmentation
pipeline consisting of rotation, translation, and projection transforms and apply this pipeline to the
training images until each class contains 2,500 examples. So we construct a new training set con-
taining 107,500 images in total. We also construct a new test set by randomly selecting 10,000
images from the original test set for evaluation.

IMDB. IMDB (Maas et al., 2011) is a large movie review text dataset. The dataset is for binary
sentiment classification, positive review or negative review. The dataset contains 25,000 movie
reviews for training and 25,000 for testing.

AGNews. AGNews (Zhang et al., 2015) is a sub-dataset of AG’s corpus of news articles for text
topic classification. It covers the 4 largest classes: world, sports, business, sci/tech. The AG News
contains 30,000 training and 1,900 test samples per class.

C.2 VERIFYING THE EXISTENCE OF THE TRADE-OFF

Model. We evaluate three popular contrastive learning frameworks, MoCo v2 (He et al., 2020),
NNCLR (Dwibedi et al., 2021) and SimSiam (Chen & He, 2021) . MoCo v2 can be regarded as
SimCLR (Chen et al., 2020) equipped with a memory bank, while NNCLR uses nearest-neighbor
as the positive pairs. SimSiam can be regarded as a modification from BYOL (Grill et al., 2020)
similar to Barlow Twins (Zbontar et al., 2021), which does not need negative pairs. We follow the
same data augmentation methods as SimSiam (Chen & He, 2021) for all datasets.

Datasets. We consider three sets of data. In the first set, our downstream task is CIFAR-10, and
the pre-training datasets may include CINIC-10, SVHN, GTSRB, and ImageNet32. CINIC-10
has classes identical to CIFAR-10 and is the most target-relevant, while the others are less sim-
ilar to CIFAR-10. This then provides more and more diverse pre-training data w.r.t. the target
task. In the second set, our downstream task is MNIST, and the pre-training datasets may include
EMNIST-Digits&Letters, Fashion-MNIST, GTSRB, and ImageNet32. Here, the handwritten dataset
EMNIST-Digits&Letters is the most target-relevant. In the last set, our downstream task is Fer2013,
a face expression classification dataset. The pre-training datasets may include FaceScrub, CIFAR-
10, SVHN, and ImageNet32, where the face dataset Facescrub is the most target-relevant.

Evaluation & Methods. We pre-train a ResNet18 network (He et al., 2016) as a feature extractor
under different contrastive learning methods using SGD for 800 epochs with a cosine learning-rate
scheduler, the base learning rate of 0.06, weight decay 5e-4, momentum 0.9 and batch size 512.
Then we fix the pre-trained feature extractor and train a linear classifier (Linear Probing, LP) on
1%, 5%, 10%, 20%, 100% of the labeled data from the downstream task. For LP we use SGD for
200 epochs with a cosine learning-rate scheduler, the base learning rate of 5.0, no weight decay,
momentum 0.9, and batch size 256. We finally report the test accuracy on a specific target task and

28



Published as a conference paper at ICLR 2023

0.175 0.200 0.225 0.250 0.275 0.300 0.325
Averaged Test Accuracy

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875
Ta

rg
et

 Ta
sk

 Te
st

 A
cc

ur
ac

y

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Trade-off: Target Task vs. Avg (moco eval on cifar10)

1% labeled data
5% labeled data
10% labeled data
20% labeled data
100% labeled data

(a) MoCo v2; CIFAR-10

0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30
Averaged Test Accuracy

0.65

0.70

0.75

0.80

0.85

0.90

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y 1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1
2

3

4

Trade-off: Target Task vs. Avg (nnclr eval on cifar10)

1% labeled data
5% labeled data
10% labeled data
20% labeled data
100% labeled data

(b) NNCLR; CIFAR-10

0.20 0.25 0.30 0.35 0.40
Averaged Test Accuracy

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

1

2

3

4

1

2

3 4

1

2

3 4

1

2

3 4

1

2

3

4

Trade-off: Target Task vs. Avg (simsiam eval on cifar10)

1% labeled data
5% labeled data
10% labeled data
20% labeled data
100% labeled data

(c) SimSiam; CIFAR-10

0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28
Averaged Test Accuracy

0.775

0.800

0.825

0.850

0.875

0.900

0.925

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

1 2 3

4

1
2

3

4

1
2

3

4

1
2 3

4

1
2

3

4

Trade-off: Target Task vs. Avg (moco eval on mnist)

1% labeled data
5% labeled data
10% labeled data
20% labeled data
100% labeled data

(d) MoCo v2; MNIST

0.16 0.18 0.20 0.22 0.24 0.26
Averaged Test Accuracy

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95
Ta

rg
et

 Ta
sk

 Te
st

 A
cc

ur
ac

y 12 3

4

12 3

4

12 3

4

12 3

4

12 3

4

Trade-off: Target Task vs. Avg (nnclr eval on mnist)

1% labeled data
5% labeled data
10% labeled data
20% labeled data
100% labeled data

(e) NNCLR; MNIST

0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30
Averaged Test Accuracy

0.75

0.80

0.85

0.90

0.95

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

1

2

3

4

1

2

3

4

1
2

3

4

1
2

3

4

12

3

4

Trade-off: Target Task vs. Avg (simsiam eval on mnist)

1% labeled data
5% labeled data
10% labeled data
20% labeled data
100% labeled data

(f) SimSiam; MNIST

0.05 0.10 0.15 0.20 0.25 0.30
Averaged Test Accuracy

0.32

0.34

0.36

0.38

0.40

0.42

0.44

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

1

2

3

4

1

2 3

4

1 2
3

4

1 2
3

4

1 2 3

4

Trade-off: Target Task vs. Avg (moco eval on fer2013)

1% labeled data
5% labeled data
10% labeled data
20% labeled data
100% labeled data

(g) MoCo v2; Fer2013

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
Averaged Test Accuracy

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

1

2

34

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Trade-off: Target Task vs. Avg (nnclr eval on fer2013)
1% labeled data
5% labeled data
10% labeled data
20% labeled data
100% labeled data

(h) NNCLR; Fer2013

0.10 0.15 0.20 0.25 0.30
Averaged Test Accuracy

0.30

0.35

0.40

0.45

0.50
Ta

rg
et

 Ta
sk

 Te
st

 A
cc

ur
ac

y

1
2

3

4

1
2 3

4

1
2

3

4

1 2
3

4

1
23

4

Trade-off: Target Task vs. Avg (simsiam eval on fer2013)

1% labeled data
5% labeled data
10% labeled data
20% labeled data
100% labeled data

(i) SimSiam; Fer2013

Figure 7: Trade-off of universality and label efficiency for MoCo v2, NNCLR, SimSiam on down-
stream tasks CIFAR-10, MNIST, Fer2013. “1, 2, 3, 4” means incrementally adding datasets for
pre-training. The x-axis is the average test accuracy of Linear Probing on all 4 datasets. The y-
axis is test accuracy on the target task. Pre-training data: (a)(b)(c) CINIC-10, SVHN, GTSRB,
and ImageNet32. Target task: CIFAR-10. (d)(e)(f) EMNIST-Digits&Letters, Fashon-MNIST, GT-
SRB, ImageNet32. Target: MNIST. (g)(h)(i) FaceScrub, CIFAR-10, SVHN, ImageNet32. Target:
Fer2013.

the weighted average test accuracy on all pre-training datasets (i.e., using them as the downstream
tasks). We use the class number of each pre-training dataset as the weight, which is consistent with
random guessing as a baseline. We have three types of models pre-trained on three sets of datasets.
Thus, we have nine tasks in total. For each task, we have two pre-trained models initialized by
different random seeds. We evaluated each model three times and we report the average test accuracy
with standard deviation based on multiple runs (six evaluations).

In Figs. 7(a)(b)(c), we report results for MoCo v2, NNCLR, SimSiam (respectively) on CIFAR-10
as the downstream task. The size and diversity of unlabeled data for pre-training are increased on the
x-axis by incrementally adding datasets in the following order: CINIC-10 (C), SVHN (S), GTSRB
(G), and ImageNet32 (only use a 500k subset)(I). Then, we do LP on CIFAR-10 using different
proportions of labeled samples. Similarly, in Figs. 7(d)(e)(f), we report results for three models on
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MNIST. We incrementally add pretraining datasets in the following order: EMNIST-Digits&Letters
(E), Fashion-MNIST (F), GTSRB (G), ImageNet32 (I). In Figs. 7(g)(h)(i), the downstream task is
Fer2013 and we incrementally add datasets in the following order: FaceScrub (I), CIFAR-10 (C),
SVHN (S), ImageNet32 (I).

Results. In Figs. 7, when the pre-training data becomes more diverse, the average test accuracy on
all pre-training datasets increases (i.e., universality improves), while the test accuracy on the specific
target task decreases (i.e., label efficiency drops). This shows a clear trade-off between universality
and label efficiency. Moreover, with fewer labeled data (from the green line to the red line), the
trade-off phenomenon will be more significant. It supports our claim that diverse pre-training data
allow learning diverse features for better universality, but can down-weight the features for a specific
task resulting in worse prediction. As more diverse unlabeled data are included, more labeled data
from the target task is needed to achieve comparably-good prediction accuracy. This validates our
analysis of the trade-off in Section 2.2.

In Figs. 7(a)(b)(d)(e)(f)(h), the average test accuracy (x-axis) decreases in the end because when
we add one pre-training dataset, it may hurt the test accuracy of all other pre-training datasets. In
Figs. 7(g)(h), the downstream task test accuracy (y-axis) increases in the beginning because when
the pre-training unlabeled data from relevant tasks is not sufficiently large, introducing other pre-
training datasets will help the model to learn features relevant for the downstream task. However,
the downstream task test accuracy will drop later as in other figures.

Please refer to Appendix C.5 for more figures.

C.2.1 LARGER SCALE EXPERIMENTS

The datasets involved are ImageNet (1.2M data points, 1k classes), ImageNet22k (14M, 22k
classes), and GCC-15M (15M). We compare two UniCL representations (Yang et al., 2022): the
more specific representation pre-trained on ImageNet, and the one pre-trained on the more diverse
dataset ImageNet+GCC-15M. We compare their performance in two tasks: classification on Ima-
geNet (using 2k labeled data) and classification on ImageNet22k (using 44k labeled data).

The results are reported in Table 3. From the specific representation to the diverse one, we observe
that the test accuracy on ImageNet decreases (i.e., efficiency drops), while the test accuracy over
ImageNet22k increases (i.e., universality improves). This again confirms the trade-off.

LP Accuracy Pre-training dataset
Target dataset ImageNet ImageNet+GCC-15M

ImageNet (2k label) 79.05 77.66
ImageNet22k (44k label) 9.02 9.86

Table 3: LP test accuracy on ImageNet and ImageNet22k with UniCL (Swin-T) pre-trained 500
epochs on ImageNet and ImageNet+GCC-15M.

C.3 INSPECTING THE TRADE-OFF

C.3.1 FEATURE SIMILARITY

For each set of pre-training data, we extract a set of features for the target task, CIFAR-10, MNIST,
and Fer2013 respectively, using the pre-trained representation function. In Fig. 8 (rows/columns
are pre-training data; numbers/colors show the similarity) first row, the features from different pre-
training datasets have low similarities. This is consistent with our setup in Section 2.2 that different
tasks only share some features and each owns many private ones. In the second row, we can see
a decreasing trend of similarity in each row of each sub-figure. This indicates when gradually
adding more diverse pre-training data, the obtained representation will encode more downstream
task-irrelevant information and become less similar to that before adding more pre-training data.
It will hurt the downstream task performance. This result is consistent with our Proposition 2.3
and 2.4.

Finally, we would like to verify in Theorem 2.2 via CKA similarities. The theorem says that when we
increase the norm bound, the representation can encode more and more features. To verify this, our
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Figure 8: Linear CKA similarity score among downstream task features from MoCo v2 pretrained on
three sets of datasets. For “Independent”, each representation model in the first four columns/rows
is pre-trained on a single dataset. “Union” indicates the model pre-trained on the union among
four disjoint datasets. “Incremental” means from left column to right, from top row to bottom, we
incrementally add datasets for pre-training.
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Figure 9: Linear CKA similarity among CIFAR10 features from MoCo v2 pre-trained on CINIC10.
Each representation in the first three columns/rows is pre-trained with a different weight decay value.

experiments will vary the weight decay regularization coefficient (larger weight decay corresponds
to a smaller norm bound and fewer features learned in the representation). Fig. 9 shows that the
linear CKA similarity decreases with the increase of the weight decay, then it provides some support
for the theorem.

C.3.2 THE EFFECT OF PRE-TRAINING AND LABELED DATA SIZES

We have also conducted finer-grained investigations into the trade-off by varying the pre-training
dataset size and the downstream labeled data on the specific task. Table 4 shows the results for
different pre-training datasets (ImageNet-Bird, ImageNet, and 10% of ImageNet data) and different
labeled datasets (500 to 8k samples from ImageNet-Bird, and the whole ImageNet). Table 5 shows
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the results for a similar setting with ImageNet-Vehicle. Table 6 shows the results of UniCL with
Swin-T backbone using different pre-training datasets (ImageNet, and ImageNet+GCC-15M) and
different labeled datasets (2k samples from ImageNet, 44k samples from ImageNet22k, the whole
ImageNet, and the whole ImageNet22k).

First, we find that the trade-off is hidden when a small amount of data from the specific task is used
for pre-training. The results show that when the specific pre-training data is small, the representation
learned is noisy and the downstream prediction performance is poor. This is not surprising: in the
extreme case with only 1 pre-training image from the bird task or vehicle task, there is essentially no
information for pre-training. In this case, the results are well inside the Pareto front of the trade-off
curve and thus cannot demonstrate the trade-off.

Second, we find that the trade-off is hidden when a large amount of labeled data are available for
learning predictors on the representation in the specific task. If a large amount of labeled data is
available for training the predictor, the prediction performance is similar when using the specific or
universal representations. This is consistent with the insights from our analysis: when pre-training
on diverse data, the features specific to the target task are down-weighted but can still be in the
representation, then with a large amount of labeled data from the specific task, the sample complexity
issue is not significant, and thus the trade-off is hidden.

The above experimental studies show that the trade-off is revealed when we have large-scale pre-
training data and a limited amount of labeled data from the target task, which is indeed the typical
interesting case for using pre-trained representations (especially the large foundation models). The
trade-off is significant in this case and thus crucial for further development of pre-training represen-
tations.

LP Accuracy Pre-training dataset
Target dataset ImageNet-Bird ImageNet 10% ImageNet

ImageNet-Bird (500 label) 76.00 58.78 30.06
ImageNet-Bird (1k label) 81.42 69.39 35.96
ImageNet-Bird (2k label) 82.88 79.66 39.49
ImageNet-Bird (4k label) 83.83 83.59 44.13
ImageNet-Bird (8k label) 84.71 85.93 48.50

ImageNet (all label) 41.38 73.20 54.08

Table 4: LP test accuracy on ImageNet-Bird and ImageNet with MoCo v3 (ViT-S) pre-trained on
ImageNet-Bird and ImageNet.

LP Accuracy Pre-training dataset
Target dataset ImageNet-Vehicle ImageNet 10% ImageNet

ImageNet-Vehicle (500 label) 61.81 57.86 31.48
ImageNet-Vehicle (1k label) 70.93 67.90 37.76
ImageNet-Vehicle (2k label) 72.09 69.81 39.07
ImageNet-Vehicle (4k label) 74.14 72.93 39.62
ImageNet-Vehicle (8k label) 75.53 74.55 43.53

ImageNet (all label) 39.84 73.20 54.08

Table 5: LP test accuracy on ImageNet-Vehicle and ImageNet with MoCo v3 (ViT-S) pre-trained on
ImageNet-Vehicle and ImageNet.

LP Accuracy Pre-training dataset
Target dataset ImageNet ImageNet+GCC-15M

ImageNet (2k label) 79.05 77.66
ImageNet22k (44k label) 9.02 9.86

ImageNet (all label) 79.61 81.37
ImageNet22k (all label) 30.90 36.69

Table 6: LP test accuracy on ImageNet and ImageNet22k with UniCL (Swin-T) pre-trained 500
epochs on ImageNet and ImageNet+GCC-15M.
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C.3.3 MORE ABLATION STUDIES

We report results from three ablation studies: (1) varying the class number of ImageNet32, (2)
varying the percentage of target-relevant pre-training data, and (3) replacing CINIC-10 with CIFAR-
10 in the pre-training dataset. The results consistently show the trade-off.
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Figure 10: Pre-train MoCo v2 and SimSiam on CIFAR-10 + ImageNet32(200k) with varying num-
ber of classes of ImageNet32 from 50 to 1000 (x-axis) under a fixed size of pre-training data. The
y-axis is LP test accuracy on CIFAR-10.
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Figure 11: Trade-off on CIFAR-10 LP test accuracy (y-axis) for MoCo v2 and SimSiam with varying
target relevant (CINIC-10) pre-training data percentage (100%, 50%, 20%).

Varying the Class Number of ImageNet32. To further support A1, we show that the trade-off
between universality and label efficiency also exists under a fixed dataset size. In Fig. 10, we pre-
train MoCo v2 and SimSiam on CIFAR-10 + ImageNet32(200k) and keep the same setting as Fig. 7
except that we vary the class number of ImageNet32(200k). In previous experiments, we randomly
pick 500,000 images from ImageNet32 without considering labels. Here, we fix the number of
classes to 50, 100, 200, 500, 1000. Then we randomly sample 200,000 images from the subset of
classes. The downstream task is CIFAR-10. In Fig. 10, we observe that with a fixed pre-training
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Figure 12: Trade-off on CIFAR-10 LP test accuracy (y-axis) for MoCo v2 and SimSiam pre-trianed
on datasets including CIFAR-10.

datasets size, e.g., 250,000, when the data is more diverse, the pre-training will learn more irrelevant
features, and the performance will drop on the downstream task. This supports our analysis as well.

Varying Target-Relevant pre-training Data Percentage. In Fig. 11, we use (a)(d) 100% (b)(e)
50% (c)(f) 20% CINIC-10 to train MoCo v2 and SimSiam, and keep the same setting as Fig. 7.
For Fig. 11 (b) with 50% CINIC-10, test accuracy drops, e.g., the test accuracy of 1% CIFAR-10 in
Fig. 11 (a) 80.63% vs. (b) 76.45%. We can also see the decreasing curve in Fig. 11 (b). On the other
hand, we also have test accuracy drops in Fig. 11 (c)(e)(f). However, we can see a U-curve rather
than a strictly decreasing curve in Fig. 11 (c)(e)(f). ImageNet32 is more relevant with CIFAR-10 than
SVHN and GTSRB, consistent with human intuition. When we have a small partition of CINIC-10
that does not cover all target-relevant features, the feature extractor can learn these missing features
from ImageNet32. Although there are many irrelevant features in ImageNet32, the positive effect is
larger than the negative effect, and so it plots a U-curve. It is consistent with our statement that we
need a large and target-relevant pre-training dataset rather than a diverse irrelevant one.

Replacing CINIC-10 With CIFAR-10. In Fig. 12, we keep the same setting as Fig. 7 except we
replace CINIC-10 with CIFAR-10. Note that our downstream task is still CIFAR-10. In Fig. 12, we
can see the same phenomena and similar performance as Fig. 7. Thus, if we have a good choice of
a task-relevant pre-training dataset, we can get a similar performance as pre-training on the down-
stream task domain directly.

The pre-training unlabeled data from diverse tasks may have a positive effect when the pre-training
unlabeled data from similar (relevant) tasks is not sufficiently large. Moreover, if we choose a good
task-relevant pre-training dataset, we can directly get a similar performance as pre-training on the
downstream task. However, when the task-relevant dataset is sufficient, the performance will drop
if we introduce task-irrelevant data in the pre-training dataset (Fig. 11 (a)(d)).

C.4 IMPROVING THE TRADE-OFF: FINETUNE WITH CONTRASTIVE REGULARIZATION

Pretrain data Method 1% label data 5% label data 10% label data 20% label data 100% label data

CINIC10
LP 80.63±0.01 84.42±0.01 85.88±0.05 86.75±0.01 88.41±0.01

FT 68.74±0.46 81.46±0.34 85.20±0.14 88.69±0.29 93.58±0.14

Ours 83.66±0.43 83.04±0.08 86.18±0.24 89.61±0.12 94.51±0.02

+SVHN
LP 77.83±0.01 81.43±0.04 82.95±0.01 83.53±0.01 85.18±0.01

FT 66.01±0.52 80.20±0.07 83.96±0.46 88.01±0.07 93.35±0.10

Ours 79.95±0.36 81.77±0.11 84.98±0.02 88.97±0.14 94.26±0.01

+GTSRB
LP 75.64±0.01 78.18±0.01 79.80±0.02 79.81±0.01 82.07±0.01

FT 62.79±0.57 78.90±0.41 83.89±0.03 87.85±0.03 93.42±0.13

Ours 76.20±0.36 80.26±0.05 84.11±0.06 88.74±0.01 94.32±0.13

+ImageNet32
LP 68.26±0.01 71.04±0.01 73.29±0.02 73.73±0.02 75.64±0.03

FT 65.40±0.16 78.99±0.21 82.96±0.17 86.75±0.10 92.92±0.06

Ours 71.70±1.20 78.94±0.06 83.48±0.02 87.77±0.13 93.66±0.12

Table 7: Test accuracy on CIFAR-10 with different evaluation methods on MoCo v2 under different
percentages of labeled data. From top to bottom: incrementally add datasets for pre-training.
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(a) Linear Probing (b) Finetune (c) Ours

Figure 13: The t-SNE visualization (Van der Maaten & Hinton, 2008) for CIFAR-10 training data
normalized features from different evaluation methods, where the model is pre-trained on (CSGI)
defined in Fig. 3. FT and Ours are trained on the 20% CIFAR-10 training dataset. Different colors
correspond to different classes.

Evaluation & Methods. We use the feature extractor (ResNet18) pre-trained as in Section 3.1 by
MoCo v2. Then, we report three evaluation methods, Linear Probing (LP), Finetune (FT), and Fine-
tune with Contrastive Regularization (Ours) on CIFAR-10 under different percentages of labeled
data as in Appendix C.2. LP follows the training protocol in Section 3.1. FT and Ours learn a linear
predictor and update the representation, and use the same data augmentation for a fair comparison.
FT follows the training in MAE (He et al., 2022) mostly, using SGD for 200 epochs with a cosine
learning-rate scheduler, the base learning rate of 0.06, weight decay 5e-4, momentum 0.9 and batch
size 256. Moreover, Ours uses the contrastive loss from MoCo v2 and regularization coefficient
λ = 0.1.

Results. In Table 7, the trade-off phenomenon also exists for FT evaluation, where the FT test accu-
racy drops when the pre-training dataset contains more diverse data points. Table 7 shows that Ours
can achieve better performance than the other baselines. In particular, it outperforms the typical fine-
tuning method consistently, even when the latter also uses the same amount of data augmentation.
This confirms the benefit of contrastive regularization. Fig. 13 visualizes the features of different
methods by t-SNE. It shows that contrastive regularization can down-weight the downstream task-
irrelevant invariant feature, so it can improve the model generalization ability, which is consistent
with the discussion in Section 2.2.

Target data Method Aug 1% label data 5% label data 10% label data 20% label data 100% label data

ImageNet

LP 1 66.04±0.26 76.28±0.05 78.06±0.02 78.73±0.03 77.84±0.02

FT 1 71.09±0.05 75.32±0.11 76.38±0.01 76.92±0.10 82.97±0.02

FT 10 73.28±0.01 76.43±0.14 78.69±0.04 81.56±0.10 83.65±0.01

FT 100 71.83±0.05 77.55±0.07 80.16±0.09 82.23±0.01 83.58±0.05

Ours 10 74.36±0.09 78.60±0.03 80.02±0.08 81.28±0.07 84.94±0.09

Ours 100 73.03±0.04 78.41±0.04 80.48±0.05 82.42±0.03 85.34±0.07

SVHN

LP 1 59.24±0.02 57.25±0.08 56.32±0.17 58.35±0.08 63.44±0.01

FT 1 55.20±0.16 61.73±0.32 64.91±0.12 64.70±0.64 65.76±0.10

FT 10 61.24±0.08 65.89±0.54 68.61±0.52 70.89±0.07 78.22±0.18

FT 100 65.23±0.03 72.34±0.07 75.13±0.11 77.20±0.03 80.13±0.14

Ours 10 62.87±0.42 67.56±0.23 70.16±0.02 72.23±0.09 78.72±0.37

Ours 100 65.30±0.43 72.61±0.07 75.34±0.12 77.64±0.05 82.50±0.01

GTSRB

LP 1 71.20±0.61 83.97±0.08 85.31±0.02 86.34±0.06 86.56±0.01

FT 1 77.18±0.40 87.65±0.18 88.56±0.75 88.76±0.01 89.83±0.39

FT 10 84.55±0.30 88.74±0.32 89.11±0.11 89.52±0.12 90.74±0.06

FT 100 86.28±0.26 90.50±0.29 90.83±0.08 91.15±0.01 91.89±0.12

Ours 10 84.84±0.33 89.53±0.13 89.44±0.01 91.35±0.12 92.01±0.28

Ours 100 87.24±0.51 90.86±0.05 91.29±0.26 92.11±0.15 92.65±0.10

Table 8: Test accuracy for different evaluation methods on different datasets using foundation model
CLIP (backbone ViT-L). We do not use data augmentation for LP. We evaluate FT without data
augmentation, with 10 augmentation and with 100 augmentation to each training images. For Ours,
we use 10, 100 augmentation.
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Target data Method Aug 1% label data 5% label data 10% label data 20% label data 100% label data

CIFAR-10

LP 1 91.44±0.01 93.51±0.01 94.11±0.01 94.22±0.01 95.82±0.01

FT 1 89.93±0.38 94.21±0.35 95.15±0.06 95.80±0.06 96.12±0.11

FT 10 90.82±0.19 93.24±0.08 94.59±0.08 95.48±0.01 96.17±0.12

FT 100 90.84±0.03 93.05±0.02 94.23±0.08 95.37±0.01 97.01±0.07

Ours 10 90.73±0.18 94.28±0.03 95.43±0.15 95.83±0.14 96.71±0.10

Ours 100 91.04±0.06 94.00±0.06 95.29±0.01 95.72±0.05 96.86±0.06

SVHN

LP 1 39.40±0.02 50.50±0.02 54.61±0.02 57.66±0.01 61.92±0.01

FT 1 38.82±0.10 48.15±0.37 51.03±0.14 52.07±0.09 56.19±0.33

FT 10 45.00±0.34 52.61±0.24 54.45±0.12 57.05±0.11 65.36±0.33

FT 100 45.70±0.13 54.51±0.23 57.76±0.01 61.13±0.39 69.10±0.39

Ours 10 46.53±0.23 55.59±0.03 57.32±0.05 59.20±0.09 66.29±0.20

Ours 100 46.27±0.09 55.70±0.07 59.45±0.04 61.97±0.13 70.22±0.01

GTSRB

LP 1 48.52±0.03 66.68±0.02 71.69±0.01 72.27±0.02 75.37±0.01

FT 1 52.54±0.67 72.19±0.33 73.75±0.71 73.30±0.46 75.16±0.01

FT 10 58.68±0.01 75.21±0.23 75.87±0.06 76.75±0.28 76.45±0.29

FT 100 61.65±0.16 75.22±0.77 76.49±0.31 77.67±0.63 78.05±0.30

Ours 10 59.28±0.04 75.35±0.31 77.38±0.09 80.52±0.12 81.28±0.10

Ours 100 63.61±0.92 76.70±0.17 77.85±0.23 80.13±0.01 80.92±0.19

Table 9: Test accuracy for different evaluation methods on different datasets using foundation model
MoCo v3 (backbone ViT-B). We do not use data augmentation for LP. We evaluate FT without data
augmentation, with 10 augmentations and with 100 augmentations to each training image. For Ours,
we use 10, 100 augmentation.

Target data Method 1% label data 5% label data 10% label data 20% label data 100% label data

IMDB
LP 79.72±0.06 83.08±0.20 81.48±0.89 84.87±0.03 86.49±0.16

FT 82.54±2.88 87.78±0.42 87.96±1.27 89.49±1.02 92.31±0.26

Ours 84.48±1.62 90.12±0.41 90.41±0.49 90.79±1.58 92.85±0.03

AGNews
LP 85.52±0.31 86.78±0.62 86.75±0.66 87.62±0.24 87.76±0.66

FT 88.74±0.34 90.76±0.70 91.22±0.07 92.36±0.14 93.57±0.23

Ours 89.20±0.72 91.22±0.06 91.33±1.33 92.45±0.01 93.94±0.02

Table 10: Test accuracy for different evaluation methods on different datasets using foundation
model SimCSE (backbone BERT). We do not use data augmentation for LP. We evaluate FT and
Ours with the same data augmentation as SimCSE.

C.4.1 LARGER FOUNDATION MODELS

We verify our method’s effectiveness in real-world scenarios. When users use foundation models,
they cannot access the model and can only call the official API, (e.g. GPT-3, DALL·E (Ramesh
et al., 2022)). The pricing for GPT-3 to get feature embedding is $0.20 / 1k tokens. If users would
like to use a foundation model on their downstream task, the most efficient way is to get feature
embedding of their data from the API and train a small model, called adapter (Hu et al., 2021; Sung
et al., 2022), on these embedding rather than on raw input data.

We evaluate CLIP (with ViT-L as the representation backbone), MoCo v3 (ViT-B backbone), and
SimCSE (Gao et al., 2021) (BERT backbone). They are trained on (image, text), (image, image),
and (text, text) contrastive pairs, respectively, so cover a good spectrum of methods.

For CLIP and MoCo v3, we fix the backbone for all evaluation methods. For LP, we add a linear FC
layer on top of the backbone. For FT and Ours, we insert a two-layer ReLU neural network (1024
dimensions for the hidden layer) as an adapter between the backbone and the linear classification
layer. For Ours, we apply SimCLR contrastive loss on the adapted feature (output of adapter) and
set λ = 1.0. We use the same training strategy as Section 3.1 for LP and as Table 7 for FT and
Ours. In line with the actual situation, we control the number of augmentation number used in FT
and Ours (more data augmentation leads to higher prices in practice).

We conduct experiments on NLP tasks as well. SimCSE proposes a contrastive learning method for
sentence embeddings, which uses the dropout feature from BERT as data augmentation. The max
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sequence embedding length is 512. For SimCSE, all three evaluation methods use a linear classifier.
For all evaluation methods, we use AdamW (Loshchilov & Hutter, 2018) with weight decay = 0.01
and train 3 epochs with batch size 16. For LP, we fix the backbone and set the learning rate as
5e-3. For FT and Ours, we train the backbone and linear classification layer simultaneously using
unique data augmentation in each training step and set the learning rate as 5e-5. For Ours, we apply
SimCSE contrastive loss on the feature (output of the backbone) and set λ = 1.0.

As in Appendix C.2, we report LP, FT, and Ours on 1%, 5%, 10%, 20%, 100% of the labeled data
from the downstream task in Table 8, Table 9 and Table 10 for CLIP, MoCo v3, and SimCSE
respectively. For CLIP and MoCo v3 in Table 8 and Table 9, we consider different data augmentation
numbers, e.g. 10, 100. For SimCSE, we use the standard data augmentation, i.e. generating unique
augmentation for each gradient step.

These tables again show our method can consistently improve the downstream prediction perfor-
mance in all three real-world scenarios, and quite significantly in some cases (e.g., MoCo v3 on
GTSRB). This shows that the method is also useful for large foundation models, including the case
when the foundation models cannot be fine-tuned and only the extracted embeddings can be adapted.

C.4.2 THE EFFECT OF CONTRASTIVE REGULARIZATION ON LINEAR PROBING

We show that contrastive regularization can also improve over linear probing. Note that the con-
trastive regularization loss term is only relevant to the backbone; see the definition in Equation (9).
While linear probing fixes the backbone. Thus, we cannot do contrastive regularization and linear
probing at the same time. To show its effect, we first apply contrastive regularization to update the
backbone, and after that use linear probing.

The results in Table 11 show that contrastive regularization leads to better prediction accuracy. Fur-
thermore, the improvement is more significant on diverse pre-training data, consistent with our anal-
ysis.

Pre-training dataset
Method CINIC-10 +SVHN +GTSRB +ImageNet32

LP 88.41 85.18 82.07 75.64
Contrastive regularization then Linear probing 88.38 86.91 85.95 82.43

Table 11: Test accuracy on CIFAR-10 with different evaluation methods on MoCo v2 with ResNet18
backbone. From left to right: incrementally add datasets for pre-training.

C.4.3 THE EFFECT OF CONTRASTIVE REGULARIZATION ON CLOSING THE GAP

We show that contrastive regularization can reduce the target task performance gap between pre-
training on the specific dataset (the same or similar as the target task) and that on diverse datasets.

We pre-train with MoCo v3 (backbone ViT-S) on ImageNet-Bird or the whole ImageNet and then
perform linear probing (LP) on the target task of ImageNet-Bird with 1k labeled samples. The
results in Table 12 show that pre-training on the diverse data leads to worse performance. Then we
pre-train on ImageNet followed by contrastive regularization on ImageNet-Bird and then perform
linear probing (LP) on the target task. This leads to improved performance than without contrastive
regularization, closing the gap between pre-training on diverse and specific data. Similar results are
observed in Table 13 when ImageNet-Vehicles are used. This confirms the benefits of contrastive
regularization for highlighting task-specific features.

LP Accuracy Pre-training dataset
Target dataset ImageNet-Bird ImageNet ImageNet then Contrastive Reguarlization on ImageNet-Bird

ImageNet-Bird (1k label) 81.42 69.39 73.25

Table 12: LP test accuracy on ImageNet-Bird and ImageNet with MoCo v3 (ViT-S) pre-trained on
ImageNet-Bird and ImageNet.
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LP Accuracy Pre-training dataset
Target dataset ImageNet-Vehicle ImageNet ImageNet then Contrastive Reguarlization on ImageNet-Vehicle

ImageNet-Vehicle (1k label) 70.93 67.90 71.34

Table 13: LP test accuracy on ImageNet-Vehicle and ImageNet with MoCo v3 (ViT-S) pre-trained
on ImageNet-Vehicle and ImageNet.

C.5 ADDITIONAL RESULTS VERIFYING EXISTENCE OF THE TRADE-OFF
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105

Number of unlabeled data

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

F FC FCS FCSI

(g) MoCo v2; Fer2013
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(h) NNCLR; Fer2013
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Figure 14: Trade-off of universality and label efficiency for MoCo v2, NNCLR, SimSiam on down-
stream tasks CIFAR-10, MNIST, Fer2013. x-axis: incrementally add datasets for pre-training. Pre-
training data: (a)(b)(c) CINIC-10 (C), SVHN (S), GTSRB (G), and ImageNet32 (I). For example,
“CS” on the x-axis means CINIC-10+SVHN. Target task: CIFAR-10. Red line: average test ac-
curacy of Linear Probing on all 4 datasets. Blue line: test accuracy on the target task. (d)(e)(f)
EMNIST-Digits&Letters (E), Fashon-MNIST (F), GTSRB (G), ImageNet32 (I). Target: MNIST.
(g)(h)(i) FaceScrub (F), CIFAR-10 (C), SVHN (S), ImageNet32 (I). Target: Fer2013. All evalua-
tions are trained with 1% labeled data.
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(g) MoCo v2; Fer2013
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(h) NNCLR; Fer2013
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Figure 15: Trade-off of universality and label efficiency for MoCo v2, NNCLR, SimSiam on down-
stream tasks CIFAR-10, MNIST, Fer2013. x-axis: incrementally add datasets for pre-training. Pre-
training data: (a)(b)(c) CINIC-10 (C), SVHN (S), GTSRB (G), and ImageNet32 (I). For example,
“CS” on the x-axis means CINIC-10+SVHN. Target task: CIFAR-10. Red line: average test ac-
curacy of Linear Probing on all 4 datasets. Blue line: test accuracy on the target task. (d)(e)(f)
EMNIST-Digits&Letters (E), Fashon-MNIST (F), GTSRB (G), ImageNet32 (I). Target: MNIST.
(g)(h)(i) FaceScrub (F), CIFAR-10 (C), SVHN (S), ImageNet32 (I). Target: Fer2013. All evalua-
tions are trained with 5% labeled data.
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(d) MoCo v2; MNIST
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(g) MoCo v2; Fer2013
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(h) NNCLR; Fer2013
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Figure 16: Trade-off of universality and label efficiency for MoCo v2, NNCLR, SimSiam on down-
stream tasks CIFAR-10, MNIST, Fer2013. x-axis: incrementally add datasets for pre-training. Pre-
training data: (a)(b)(c) CINIC-10 (C), SVHN (S), GTSRB (G), and ImageNet32 (I). For example,
“CS” on the x-axis means CINIC-10+SVHN. Target task: CIFAR-10. Red line: average test ac-
curacy of Linear Probing on all 4 datasets. Blue line: test accuracy on the target task. (d)(e)(f)
EMNIST-Digits&Letters (E), Fashon-MNIST (F), GTSRB (G), ImageNet32 (I). Target: MNIST.
(g)(h)(i) FaceScrub (F), CIFAR-10 (C), SVHN (S), ImageNet32 (I). Target: Fer2013. All evalua-
tions are trained with 10% labeled data.
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(d) MoCo v2; MNIST
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(f) SimSiam; MNIST
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(g) MoCo v2; Fer2013
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(h) NNCLR; Fer2013
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(i) SimSiam; Fer2013

Figure 17: Trade-off of universality and label efficiency for MoCo v2, NNCLR, SimSiam on down-
stream tasks CIFAR-10, MNIST, Fer2013. x-axis: incrementally add datasets for pre-training. Pre-
training data: (a)(b)(c) CINIC-10 (C), SVHN (S), GTSRB (G), and ImageNet32 (I). For example,
“CS” on the x-axis means CINIC-10+SVHN. Target task: CIFAR-10. Red line: average test ac-
curacy of Linear Probing on all 4 datasets. Blue line: test accuracy on the target task. (d)(e)(f)
EMNIST-Digits&Letters (E), Fashon-MNIST (F), GTSRB (G), ImageNet32 (I). Target: MNIST.
(g)(h)(i) FaceScrub (F), CIFAR-10 (C), SVHN (S), ImageNet32 (I). Target: Fer2013. All evalua-
tions are trained with 20% labeled data.
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(a) MoCo v2; CIFAR-10
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(b) NNCLR; CIFAR-10
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(c) SimSiam; CIFAR-10
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(d) MoCo v2; MNIST
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(e) NNCLR; MNIST
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(f) SimSiam; MNIST
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(g) MoCo v2; Fer2013
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(h) NNCLR; Fer2013
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(i) SimSiam; Fer2013

Figure 18: Trade-off of universality and label efficiency for MoCo v2, NNCLR, SimSiam on down-
stream tasks CIFAR-10, MNIST, Fer2013. x-axis: incrementally add datasets for pre-training. Pre-
training data: (a)(b)(c) CINIC-10 (C), SVHN (S), GTSRB (G), and ImageNet32 (I). For example,
“CS” on the x-axis means CINIC-10+SVHN. Target task: CIFAR-10. Red line: average test ac-
curacy of Linear Probing on all 4 datasets. Blue line: test accuracy on the target task. (d)(e)(f)
EMNIST-Digits&Letters (E), Fashon-MNIST (F), GTSRB (G), ImageNet32 (I). Target: MNIST.
(g)(h)(i) FaceScrub (F), CIFAR-10 (C), SVHN (S), ImageNet32 (I). Target: Fer2013. All evalua-
tions are trained with 100% labeled data.
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