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ABSTRACT
Malicious traffic detection has been a focal point in the field of
network security, and deep learning-based approaches are emerg-
ing as a new paradigm. However, most of them are supervised
methods, which highly depend on well-labeled data, and fail to
handle unknown or continuously evolving attacks. Unsupervised
methods alleviate the need for labeled data, but existing methods
are often limited to detecting anomalies either in vertical perspec-
tive through historical comparisons or in horizontal perspective by
comparing with concurrent entities. Relying on data from a single
perspective is unreliable, and it limits the model’s accuracy and gen-
eralizability. In this paper, we propose a novel method ContraMTD
based on contrastive learning, which comprehensively considers
both vertical and horizontal perspectives. ContraMTD extracts lo-
cal behavior features and global interaction features from normal
network traffic by proposed SEC and DE-GAT respectively, then
employs contrastive learning to learn the relationship, especially
consistency between them, and finally detects malicious traffic
through a multi-round scoring approach. We conduct extensive
experiments on three datasets, including a self-collected dataset,
and the results demonstrate that our method outperforms many
state-of-the-art methods in the domain of unsupervised malicious
traffic detection.
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1 INTRODUCTION
Over the past few decades, malicious network traffic, encompassing
Distributed Denial-of-Service (DDoS) attacks, network scanning,
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and data exfiltration, has posed a severe threat to the cybersecurity
of individuals, enterprises, and even nations. Accurate detection of
malicious traffic always receives widespread attention from both
academic and industrial communities. Traditional rule based meth-
ods [19, 22, 29] and deep packet inspection (DPI) based methods
[17, 21] have become ineffective due to the continually evolving
attacks and the wide use of encryption techniques.

In order to detect the increasingly sophisticated attacks, ma-
chine learning (like Support Vector Machine, Decision Tree) based
methods [12, 16, 23] and deep learning (like Convolutional Neu-
ral Network, Transformer, Graph Neural Network) based methods
[9, 11, 14] have been proposed. The detection accuracy of some of
them can be as high as 99%. They can automatically learn the latent
features fromhigh-dimensional data on large-scale datasets, thereby
enhancing their detection performance, especially for those based
on deep learning. However, most of them are supervised, and their
remarkable performance highly depends on well-labeled datasets,
which will encounter many challenges in real-world scenarios. (1)
High cost of high-quality dataset labeling. A qualified network traf-
fic dataset requires millions of packets for reliability [28], and the
process of cleaning and labeling is laborious, time-consuming, and
demands specialized expertise. (2) Continuing evolution of attacker
behaviors. Attackers continually update and refine their techniques,
introducing attack variants and even 0-day exploits [4]. Supervised
methods are unable to detect these previously unseen malicious
traffic patterns.

Unsupervised malicious network traffic detection approaches
address the above challenges to some extent. These methods usu-
ally focus on either vertical analysis, where an entity’s behavior
is evaluated against historical data to identify anomalies that do
not conform to normal patterns, or horizontal analysis, wherein an
entity’s behavior is compared with that of other entities in the same
time frame and environment to pinpoint anomalies that deviate
significantly from the majority. However, relying on data from a
single perspective is unreliable. Specifically, normal network traffic
evolves over time, rendering past data unrepresentative of the cur-
rent situation. Additionally, concurrent data can be unstable due
to various influencing factors and may be constrained by a limited
number of samples involved. This leads to limited generalization
ability and accuracy of the model. Therefore, a detection method
that comprehensively considers both horizontal and vertical per-
spectives is needed.

We introduce contrastive learning [6] to solve the above prob-
lem. Contrastive learning is a powerful self-supervised technique
that thrives on comparing different samples to learn useful fea-
ture representations and the matching of pairs without the need of
manual labels. To the best of our knowledge, this is the first time
contrastive learning has been applied to unsupervised malicious
traffic detection. We observe that normal behaviors in a network
not only exhibit a certain level of stability themselves but also show
inherent correlations with other behaviors they interact with. All
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of these are closely tied to specific objectives or tasks, leading to the
consistency between local behavior features and global interaction
features. However, attack behaviors often break the consistency.
Based on this, we propose a novel method called ContraMTD. We
elaborately construct sample pairs utilizing local and global fea-
tures, employing contrastive learning to learn the consistency from
historical data, thereby enabling us to effectively identify anomalies
that deviate from pre-learned patterns in the vertical perspective.
During the detection phase, we measure the similarity between fea-
tures in both positive and negative sample pairs in multiple round,
achieving detecting in the horizontal perspective.

Specifically, we divide network traffic into channels, and con-
struct positive sample pairs using local behavior features and global
interaction features that belong to the same channel, while con-
struct negative sample pairs using features from different channels.
For the local behavior feature, we introduce a SEC strategy, coupled
with CNN, to capture robust and fine-grained features, including
the sequence and density of behaviors. For the global interaction
feature, we propose a Graph Double Edge Attention Network (DE-
GAT) to extract features from the topology and attributes of host
interaction multigraph. Besides, we mitigate the issue of false neg-
ative sample pairs during the contrastive learning process through
K-means clustering. For the detection phase, we also introduce a
multi-round scoring approach to enhance the stability of the results.

In conclusion, the main contributions of this paper are as follows:
• We apply contrastive learning to unsupervised malicious
traffic detection for the first time, and leverage the consis-
tency between local behavior features and global interaction
features of network traffic for model training, which suggests
a potential avenue for future exploration.

• We propose ContraMTD, which learns the consistency be-
tween two types of features of normal traffic as well as the
relationships among normal traffic, and employs a multi-
round scoring approach for anomaly detection, enabling a
comprehensive approach for identifying malicious traffic
across both vertical and horizontal perspectives.

• We introduce the SEC strategy, coupled with CNN, to learn
fine-grained and robust local behavior features, and propose
DE-GAT to learn global interaction features.We alsomitigate
the issue of false negative samples in contrastive learning
by incorporating clustering techniques.

• We validate the effectiveness of ContraMTD through exten-
sive experiments on three datasets with different scales and
application scenarios, including a self-collected dataset, and
the results demonstrate that our ContraMTD outperforms
other methods.

2 METHODOLOGY
2.1 Overall Framework
Figure 1 illustrates the overall framework of ContraMTD, and it
consists of five modules. Network Traffic Aggregation module first
divides traffic into channels as processing units. Local Behavior Fea-
ture Extraction module and Global Interaction Feature Extraction
module are employed to learn local features and global features of
channels, respectively. Following feature extraction, Contrastive
Learning module constructs positive and negative sample pairs,

learns the consistency from them and train the model. Finally,
Anomaly Detection module constructs sample pairs for each sam-
ple to be tested and determine whether it is malicious through
multi-round scoring.

2.2 Network Traffic Aggregation
Network traffic is a mixture of packets generated by hosts within a
network. It is usually processed on the basis of a single packet[25]
or divided into flows, sessions[14], or channels[7]. We partition net-
work traffic into channels for processing in this paper. Packets with
the same 5-tuples (source IP, destination IP, source port, destination
port, protocol) constitute a flow, and a session 𝑆 = [𝑃𝑡1 , 𝑃𝑡2 , ..., 𝑃𝑡𝑛𝑠 ]
is composed of bidirectional flows, 𝑃𝑡𝑖 is the packet at time 𝑡𝑖 , and
𝑛𝑠 is the number of packets in a session. Furthermore, The sessions
between two hosts form a channel 𝐶 = [𝑆1, 𝑆2, ..., 𝑆𝑛𝑐 ], and 𝑛𝑐 is
the number of sessions in a channel.

A channel represents the interactions between two hosts over
a period of time, which contains more comprehensive behavior
information than flow.We thoroughly investigate its characteristics:
(1) Content. The fundamental difference between channels is the
content they transmit. It influences attributes such as packet length
and the number of packets in a session. (2) Temporal pattern. The
temporal pattern includes the sequence of sessions in a channel and
their distribution across the time dimension. For example, individual
web browsing is steady over time, while flood attack traffic is bursty
and short-lived. (3) Coherence. The session in a channel inherently
connects with its context, driven by a shared objective. For instance,
a user’s activities like logging in, uploading files, and database
access on a server are coherent due to common objectives.

2.3 Local Behavior Feature Extraction
2.3.1 Channel feature extraction. To better explore the above char-
acteristics of channels, we divide channels into segments, extract
features from each segment, and then compress these segment
features to get channel features. We refer to this process as SEC
(segmentation, extraction, and compression) for convenience.

Time-slot based channel segmentation. We extend the con-
cept of channel to segment to refine the feature of channels. A
segment includes parts of sessions within a channel, and a channel
can also be composed of several segments. Let the segment as 𝑆𝐺 ,
𝑡𝑠 and 𝑡𝑒 are the start time and end time of 𝑆𝐺 respectively, 𝑆𝐺 is
defined as:

𝑆𝐺 = [𝑆1, 𝑆2, ..., 𝑆𝑛𝑠𝑔 ], 𝑡1𝑛𝑠 < 𝑡𝑠 and 𝑡
𝑛𝑠𝑔
1 < 𝑡𝑒 (1)

where 𝑡1𝑛𝑠 is the timestamp of last packet in 𝑆1, 𝑡
𝑛𝑠𝑔
1 is the timestamp

of the first packet in 𝑆𝑛𝑠𝑔 , and 𝑛𝑠𝑔 is the number of sessions in 𝑆𝐺 .
Note that a session can belong to multiple segments in a channel,
and the size of 𝑆𝐺 can be 0.

We split the duration of a channel 𝑇 into 𝑁𝑠𝑙 time slots of equal
size 𝑡𝑠𝑙 = 𝑇 /𝑁𝑠𝑙 , and then group the sessions into the correspond-
ing time slots to form segments. Therefore, a channel can also be
represented as:

𝐶 = [𝑆𝐺1, 𝑆𝐺2, ..., 𝑆𝐺𝑛𝑐𝑠 ] (2)

where 𝑛𝑐𝑠 = 𝑁𝑠𝑙 is the number of segments in a channel.
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Figure 1: Overview of ContraMTD Framework

By segmenting channels into sessions, we can not only capture
the inherent characteristics of individual sessions, but also gain
insights into their temporal distribution such as the sequence of
sessions and varying density of session occurrences.

Segment feature extraction. For each segment, we first extract
the statistical features from each session, including the duration,
and the count of forward and backward packets, and then derive
segment features based on these statistical features. The segment
feature 𝑓𝑠𝑔 is a one-dimensional vector, and it contains the averages
of forward and backward packet counts, the average of forward
and backward packet byte sizes, the average and maximum session
duration, and the average time intervals between packets. If the
size of a segment is zero, all values within 𝑓𝑠𝑔 will be set to 0.

Segment feature compression. In each channel, the features
of all sessions together define the channel’s features. The most
straightforward method is to concatenate all segment features into
a vector as behavior feature, but this approach has several problems.
First, the new features are sparse because the interaction between
hosts does not occur continuously, potentially increasing compu-
tational complexity. Second, the new features are not robust and
are highly sensitive to time. Factors such as network latency or the
randomness in the selection of channel start times can shift the po-
sitions of sessions within a channel, then the same behaviors might
be represented by different features, even if the relative positions
of sessions remain unchanged.

We address these issues by aligning and compressing segment
features. Segment features that are entirely zeros are first removed.
For the remaining, we retain the first 𝑁𝑐𝑝 segment features and
concatenate them into a sequence, noted as 𝑓𝑠𝑞 . If the length is less
than 𝑁𝑐𝑝 , a zero vector is used for padding. The meta feature 𝑓𝑚𝑡
of these segment features is appended to the end of the sequence to
form the final channel feature 𝑓𝑐 = [𝑓𝑠𝑞, 𝑓𝑚𝑡 ]. 𝑓𝑚𝑡 includes source
port count, destination port count, and the number of segments
with non-zero values.

2.3.2 Behavior feature extraction. To consider the correlation of
features in 𝑓𝑐 and obtain more representative local behavior feature
𝑓𝐵 , we reshape 𝑓𝑐 into a two-dimensional matrix as the input for a
Convolutional Neural Network (CNN). CNN can capture the rela-
tionships between different elements at various levels of abstraction
in a matrix through multiple kernels. The process is formalized as:

𝑓𝐵 = 𝐹𝐶𝑁𝑁 (𝐹𝑅 (𝑓𝑐 )) (3)
where 𝐹𝐶𝑁𝑁 represents the CNN, containing two convolutional
neural layers, two pooling layers, and three fully connected layers.
𝐹𝑅 is the reshape operation.

2.4 Global Interaction Feature Extraction
2.4.1 Graph construction. In addition to its attribute information,
each channel also has significant global semantic information through
its interrelationships with other hosts or channels.

To capture the global interaction feature, we first construct a
host interactive graph based on network traffic. We handle each
session separately here to gain more complete information. 𝐺𝑀 =

{𝑉 , 𝐸𝑀 , 𝐴𝑀 } is the host interaction graph, and it is a multigraph.
𝑉 is the vertex set, each node represents a host, identified by its IP
address. 𝐸𝑀 = {𝑒𝑚 |𝑒𝑚 = {𝑒𝑠 |𝑒𝑠 = (𝑢, 𝑣)} , 𝑢 ∈ 𝑉 , 𝑣 ∈ 𝑉 } is the edge
set. 𝑒𝑚 denotes the multiple parallel edges between node𝑢 and node
𝑣 , and is a set of single edge 𝑒𝑠 . Multiple parallel edges between a
single pair of nodes correspond to multiple sessions from the same
channel. 𝐴𝑀 =

{
𝑓𝑑𝑒𝑚 |𝑒𝑚 ∈ 𝐸𝑀

}
denotes the feature set of edges,

in which 𝑓𝑑𝑒𝑚 =
{
𝑓𝑑𝑒𝑠 |𝑒𝑠 ∈ 𝑒𝑚

}
is the set of features of the simple

edge 𝑒𝑠 between the host pair, and 𝑓𝑑𝑒𝑠 is the feature of each simple
edge as described below.

For each edge, we extract the packet length distribution and time
interval distribution between packets of the corresponding session
and concatenate them as the edge feature 𝑓𝑑𝑒𝑠 . The packet length
reflectsmany information such as the content of network traffic, and
the time interval involves the temporal characteristics of sessions.
The distribution of these two features provides a more fine-grained
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representation. Besides, to prevent the introduction of noise or
information leakage for the contrastive learning process, the edge
feature and channel feature need to be different. Specifically, we
bin packet lengths into uniform intervals with a bucket size of 50,
and divide time intervals into bins with logarithmically increasing
sizes based on a base of 10.

2.4.2 Global feature extraction. To capture the unique characteris-
tics of network traffic and host interaction graphs, and address the
limitations of existing methods that are primarily tailored for sim-
ple graphs, we introduce a novel graph neural network, termed the
Graph Double Edge Attention Network (DE-GAT), for extracting
richer global interaction features.

DE-GAT. We first learn the interdependencies within sessions
in each channel before capturing the interaction features between
channels. To precisely capture these dependencies and make the
model more focused on the sessions that play a key role in the
channel, we employ the self-attention mechanism [30]. Through
this mechanism, we calculate attention scores for the parallel edges
between each pair of nodes and aggregate them using a weighted
sum. Consequently, we merge these multiple parallel edges into a
new edge, transforming the multigraph into a simple graph. The
new edge representation is calculated as:

𝑓𝑒 =
1
𝑛𝑐

𝑛𝑐∑︁
𝑜=1

𝐴𝑡𝑡𝑜 (4)

𝐴𝑡𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇√︁
𝑑𝑘

)𝑉 (5)

where 𝐴𝑡𝑡 is the representation of every single edge in the multi-
graph after the self-attentionmechanism. TheQuery, Key, and Value
are calculated as 𝑄 = 𝑓𝑑𝑒𝑚𝑊

𝑄 , 𝐾 = 𝑓𝑑𝑒𝑚𝑊
𝐾 and 𝑉 = 𝑓𝑑𝑒𝑚𝑊

𝑉 ,
and𝑊𝑄 ,𝑊𝐾 , and𝑊𝑉 are learnable weights, and 𝑑𝑘 is the dimen-
sion of single edge feature 𝑓𝑑𝑒𝑠 , 𝑛𝑐 is the number of edges between
a pair of nodes and the number of sessions in a channel.

After that, the multigraph 𝐺𝑀 is converted into a simple graph
𝐺 = {𝑉 , 𝐸,𝐴}, and 𝐸 = {𝑒 |𝑒 = (𝑢, 𝑣), 𝑢 ∈ 𝑉 , 𝑣 ∈ 𝑉 } is the edge set,
and 𝐴 = {𝑓𝑒 |𝑒 ∈ 𝐸} is the feature set of new edges.

Then, DE-GAT learns the global features for each edge by stack-
ing multiple our newly proposed graph edge attention (GEAT)
layers. The output of the final GEAT layer is the global interaction
features 𝑓𝐼 of the channel.

GEAT layer. The global interaction feature 𝑓𝐼 is jointly deter-
mined by channel attributes, graph typology, and interdependent
relationships between channels. To capture these information and
focus on edge features, we elaborately design the GEAT layer in-
spired by graph attention neural network [31].

For each edge in graph 𝐺 , GEAT layer assigns different weights
to its neighboring edges and aggregates information from these
neighbors. We also use the multi-head attention mechanism to learn
multi-scale features. The process can be formally described as:

𝑓
(𝑚+1)
𝑒 = ∥𝐾

𝑘=1𝜎 (
∑︁

𝑞∈N(𝑒 )
𝛼𝑘𝑒,𝑞𝑊

𝑘 𝑓
(𝑚)
𝑞 ) (6)

𝛼𝑒,𝑞 =
𝑒𝑥𝑝 (𝜙 (𝑊 𝑒𝑒𝑒 ∥𝑊 𝑒𝑒𝑞))∑

𝑝∈N(𝑒 ) 𝑒𝑥𝑝 (𝜙 (𝑊 𝑒𝑒𝑒 ∥𝑊 𝑒𝑒𝑝 ))
(7)

where𝑑 (𝑚+1)
𝑒 is the edge feature output by the𝑚𝑡ℎ GEAT layer, and

𝑑
(0)
𝑒 equals to 𝑓𝑒 . N(·) denotes the neighboring edges of an edge,
and two edges are considered neighbors if they share a common
node. 𝐾 is the number of heads in the multi-head attention mecha-
nism. 𝛼𝑘𝑒,𝑞 is the attention value computed by the 𝑘𝑡ℎ head. 𝜙 (·) is
the activation function, which is Leaky ReLU here. ∥ represents the
concatenation operation.𝑊 𝑘 and𝑊 𝑒 are learnable weights.

2.5 Contrastive Learning
For each normal channel in the network, its local behavior feature
and global interaction feature are consistent because of the common
motivation. We use contrastive learning technique to capture these
pattern. In contrastive learning, positive and negative pairs are
firstly formed, with positive pairs being similar and negative pairs
being dissimilar, then the model is optimized using a contrastive
loss function to minimize intra-pair distances for positive samples
and maximize them for negative samples.

2.5.1 Sample pairs construction. We construct sample pairs based
on local behavior feature 𝑓𝐵 and global interaction feature 𝑓𝐼 . If 𝑓𝐵
and 𝑓𝐼 come from the same channel, the sample pair is positive, oth-
erwise, the sample pair is negative. A sample pair 𝑃 is represented
as:

𝑃 = (𝑓𝐵𝑒1 , 𝑓𝐼 𝑒2 , 𝑦), 𝑦 =

{0, 𝑒1 = 𝑒2
1, 𝑒1 ≠ 𝑒2

(8)

where 𝑦 is the label indicating whether the sample pair is positive
or negative, with 0 for positive and 1 for negative.

Mitigation of false negative samples. During the construc-
tion of sample pairs, it is possible to encounter channels from dif-
ferent host pairs that exhibit similar behavior, thereby resulting in
same or very similar global or local features. When negative sample
pairs are formed based on these two channels, false negatives are
generated. Such false negative samples will negatively affect the
training process and cause poor performance[36].

We propose a clustering-based strategy to mitigate this issue.
To be specific, we first use the K-means algorithm to divide the
local behavior features of the channels into 𝑁𝑐𝑙 clusters and then
construct negative sample pairs only among channels belonging to
different clusters.

2.5.2 Loss function. To train the model, we first calculate the dis-
tance𝑦𝑑 between 𝑓𝐵 and 𝑓𝐼 using a bilinear function. Then, we scale
this distance to a range between 0 and 1 using a sigmoid function
𝜎 , and employ a cross-entropy loss function 𝐹𝐵𝐶𝐸 to calculate the
training loss L based on the sample pair labels. The process is
formulated as:

𝑦𝑑 = 𝑓𝐵𝑊
𝑑 𝑓𝐼 (9)

L = 𝐹𝐵𝐶𝐸 (𝑦, 𝜎 (𝑦𝑠 )) (10)
where𝑊 𝑑 is a learnable parameter.

2.6 Anomaly Detection
After training, the distance between local behavior feature and
global interaction feature is small for a positive sample pair but big
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for a negative pair. The anomalies in malicious channels manifest
either in local or global features, or result from inconsistencies
between these two types of features due to the malicious intent. Our
well-trained ContraMTD model can map these anomalous features
or intents onto a feature space distinct from that of previous normal
behaviors, resulting in a shift in the distance distribution between
the two types of features within either the positive or negative
sample pairs, compared to the normal situation.

We determine whether a channel is malicious by holistically
considering the distance between the two types of features in both
the positive and negative sample pairs associated with that channel.
If either the positive or negative sample pairs show an anomaly,
the channel is labeled as malicious. By adopting this approach, we
not only account for anomalies relative to past normal behavior in
vertical perspective but also consider anomalies in comparison to
other concurrent channels in horizontal perspective. The decision
process is formalized as:

𝑟 = 𝜓 (𝑦𝑑𝑝 ) |𝜓 (
1
𝑁𝑟

𝑁𝑟∑︁
𝑖=1

𝑦𝑑𝑛
(𝑖 ) ) (11)

𝜓 (𝑠) =
{0, 𝜇𝑦𝑑 − 𝛾𝜎𝑦𝑑 < 𝑦𝑑 < 𝜇𝑦𝑑 + 𝛾𝜎𝑦𝑑
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(12)

where | denotes the ’or’ operation, 𝑦𝑑𝑝 and 𝑦𝑑𝑛 are the distance of
two features of positive and negative sample pairs respectively.𝜓 (·)
is the function that determines whether a sample pair is anomalous.
𝜇𝑦𝑑 and 𝜎𝑦𝑑 are the mean and the standard deviation of positive or
negative sample pairs used to train the contrastive model. 𝛾 is the
threshold that can be adjusted manually.

The selection of negative sample pairs is random and can affect
the final outcome. Therefore, we design a multi-round scoring ap-
proach that constructs multiple negative sample pairs for a channel
and then averages the distances. 𝑁𝑟 is the number of rounds.

3 EXPERIMENTS
3.1 Setup
3.1.1 Dataset. To comprehensively evaluate the performance of
the model, we conduct experiments on three datasets with different
scales and application scenarios, including a self-collected dataset.

Dataset description. (1) 𝐶𝐼𝐶𝐼𝐷𝑆2018 [27]. The CICIDS2018
dataset contains network traffic from a simulated enterprise envi-
ronment, featuring attacks like botnet and DoS, with around 500
machines involved. (2) Real-MTU. The Real-MTU dataset is self-
made and focuses on encrypted malware traffic. It includes benign
traffic from enterprise switches and malicious traffic from the Mal-
ware Capture Facility Project[2]. The malware types are adware,
botware, miner, ransomware, and spyware. We replay this traffic
to create the dataset. (3) 𝐶𝐼𝐶𝐼𝑜𝑇 2023 [26]. The CICIoT2023 dataset
features realistic IoT traffic with attacks like spoofing, and Mirai,
collected from a topology composed of over 100 real IoT devices.

Ethical concerns. We obtain permissions from both the en-
terprise and individual users involved in the Real-MTU dataset
collection process. Moreover, our work is limited to using general
attributes such as packet length and does not involve parsing the
packets in a way that would compromise user privacy.

3.1.2 Metrics. Our ContraMTD classifies network traffic into nor-
mal and malicious. Due to the inherent class imbalance between
malicious and normal traffic, we use Precision (PR), Recall (RC), F1,
and AUC as evaluation metrics in order to comprehensively and
accurately assess the model’s performance.

3.1.3 Baseline. To measure the improvements of our method, we
use 7 state-of-art methods in 3 classes as baselines:

Unsupervisedmalicious trafficdetectionmethod (US-MTD).
(1) CIC-GMM leverages the Gaussian Mixture Model for anomaly
detection, taking CIC features[27] as its input. (2) Rosetta[34] trains
a feature extractor based on packet length sequences. Rosetta-IF
uses isolation forest to detect anomalies on these extracted features.
(3) Kitsune [25] is an ensemble of autoencoders and it learns the pat-
tern of a normal packet from multiple perspectives. (4) CPS-Guard
[5] is an outlier-aware autoencoder. It calculates reconstruction
losses and sets adaptive thresholds for outlier detection.

Supervised malicious traffic detection method (S-MTD).
Automated Machine Learning [15] automates tasks like model and
feature selection, and its accuracy can reach nearly 100% in super-
vised tasks. We implementAutoML-MD based on the AutoGluon [1]
library to classify normal and malicious traffic using CIC features.
For training, we use traffic that is either different from the malicious
traffic in the test set or partially belongs to the same category.

Attributed graph anomaly detection method (AGAD). (1)
Dominant [8] uses Graph Convolutional Networks GCNs for node
embeddings and autoencoders for anomaly detection, consider-
ing both node attributes and graph structure. (2) ANEMONE [18]
uses two GNN-based contrastive networks to learn the patch and
context-level agreement, and then detects anomalies by statistical
estimation.

3.2 Comparison with Baselines
3.2.1 Overall performance. Table 1 summarises the comparison
results of ContraMTD and baseline methods on the three datasets. It
can be observed that ContraMTD achieves the best performance on
all metrics on the CICIDS2018 dataset, with F1 and AUC reaching
94.82% and 96.48%, respectively. On the other two datasets, Con-
traMTD ranks as the best or second-best across various metrics.
The results on the three datasets with varying scales and applica-
tion scenarios comprehensively demonstrate the effectiveness of
our ContraMTD.

In terms of unsupervised malicious traffic detection methods,
Rosetta-IF shows the most stable and best performance. This can
be attributed to its feature extractor having been trained on large-
scale network traffic, allowing it to adapt to various environmental
changes. Similar to Rosetta-IF, ContraMTD also utilizes packet
length sequences as input and compares them with other samples
during the detection process. However, due to ContraMTD’s learn-
ing of global features based on the topology of host interactive
graphs, it outperforms Rosetta-IF with an AUC improvement rang-
ing from 3.74% to 13.12%. Kitsune and CPS-Guard use autoencoder-
based detection, but our method’s AUC is at least 9.79% higher.
Kitsune focuses on individual packets and ignores their correla-
tion. CPS-Guard uses just one autoencoder, making it less effective.
These limitations lead to their lower performance.
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Table 1: Overall comparison results with baseline methods (%)

Dataset CICIDS2018 Real-MTU CICIoT2023

Method PR RC F1 AUC PR RC F1 AUC PR RC F1 AUC

US-MTD

CIC-GMM 53.38 47.81 50.44 63.05 82.81 30.72 44.82 64.68 37.54 64.72 47.51 64.71
Rosetta-IF 80.42 86.82 83.49 83.36 69.18 87.66 77.33 81.27 89.90 74.88 81.71 84.45
Kitsune 74.91 91.62 82.42 86.69 80.84 71.28 75.75 79.96 17.63 85.72 29.24 56.62

CPS-Guard 63.98 61.23 62.57 69.41 71.15 84.84 77.39 82.83 59.18 62.32 60.71 63.47

S-MTD AutoML-MD / / / / 87.65 71.45 78.73 86.68 96.65 83.16 89.41 91.35

AGAD
Dominant 63.88 71.73 67.57 67.42 34.21 95.91 50.43 57.38 35.42 36.66 36.03 53.93
ANEMONE 67.85 72.48 70.08 68.31 81.20 51.18 62.78 61.16 88.83 33.19 48.32 66.01

Ours ContraMTD 96.09 93.56 94.82 96.48 70.02 95.69 80.64 94.14 83.69 86.35 84.99 88.19

* Bold denotes the best results, and 𝑢𝑛𝑑𝑒𝑟𝑙𝑖𝑛𝑒 denotes the second-best results.
* "/" indicates that the AUC is 50%, means that the result is a random guess.

For the supervised method AutoML-MD, it can be observed that
it performs well in supervised scenarios. However, it fails on the
CICIDS2018 dataset by labeling all samples as normal, essentially
making random guesses. It performs better on other two datasets
because it was trained on similar attack types. This suggests that
supervised methods are sensitive to the variability between train
data and test data, and are unstable when dealing with samples not
seen in train data.

Compared to the two attributed graph anomaly detection meth-
ods, the performance of ContraMTD has shown a significant im-
provement. The AUC is 33.36% higher than Dominant and 27.77%
higher than ANEMONE. Dominant and ANEMONE mainly tar-
get anomalies in citation networks or social networks, where the
information spans a long time and the attributes and structures
of nodes or edges are relatively stable. In contrast, host interac-
tive graphs have more variable user behavior, more participants,
and complex features. This makes detection harder and reduces
Dominant’s effectiveness. Both ANEMONE and our ContraMTD
use contrastive learning, but ANEMONE ignores the relativity of
anomalies at the time of detection and lacks horizontal contrast.
ContraMTD improves on this by using horizontal and vertical com-
parisons, adapting to diverse and changing behaviors. Additionally,
DE-GAT enhances ContraMTD’s learning from host interaction
graphs, boosting performance.

Moreover, we observe that the performance of nearly all meth-
ods on the CICIoT2023 dataset is the poorest among these datasets.
This is due to that IoT traffic is different from standard enterprise
network traffic. In IoT environments, there are a variety of non-
standard communication protocols, coupled with diverse applica-
tion scenarios and long activity cycles, making attack detection
harder. Nonetheless, ContraMTD performs well by using special-
ized local and global features and a contrastive learning approach.

3.2.2 Detailed performance. To better understand the performance
of ContraMTD, we further look into the AUC of ContraMTD and
baselines for each category of malicious traffic on the three datasets,
and the heatmaps are shown in Figure 2.

As shown in Figure 2(a), ContraMTD can detect most types of
malicious traffic in the CICIDS2018 dataset, except for Infiltration.

One reason behind the poor AUC may be attributed to that infiltra-
tion attacks are quite stealthy and occur occasionally. In addition,
as illustrated in Figure 2(b), ContraMTD is capable of identifying
the malicious traffic generated by each type of malware. The lowest
performance is observed in detecting ransomware, where the AUC
is 91.86%. As shown in Figure 3, our model effectively separates nor-
mal and malicious channels based on the distances of their global
and local features within both positive and negative sample pairs,
thereby achieving excellent detection performance.

Besides, it can be observed that ContraMTD has a high AUC on
flood-type traffic, like BruteForce, DoS in the CICIDS2018 dataset,
as well as Spoofing in the CICIoT2023 dataset. This is because we
use channels as detection objects, and the aggregation nature of
flood-type attacks amplifies their anomalous behaviors. The reason
for the relatively low AUC of ContraMTD in detecting DDoS in
CICIoT2023 is primarily due to the main type being Slowloris[26],
which occupies resources by slowly sending data or intentionally
leaving transmissions incomplete and need to monitor the state of
connection for effective detection.

3.3 Complexity Analysis
To fully evaluate the trade-off between performance and complexity,
we present the number of model parameters, the number of floating
point operations (FLOPs), and time overhead in Table 2. For fair
comparisons, we standardize the evaluation metric to the time
required to process each session when assessing time overhead.
Besides, the batch size is 1 when calculating FLOPs, and the FLOPs
are averaged over each node or edge for graph based methods.

We can find that the time overhead of ContraMTD is lower than
that of Kitsune and Rosetta-IF, two models with marginally bet-
ter performance, and slightly higher than that of CPS-Guard. In
general, the computational complexity and time consumption of
ContraMTD are slightly higher, but it achieves considerable perfor-
mance improvements with only a modest increase in complexity.

3.4 Ablation Experiment
To verify the contributions of each component in ContraMTD, we
conduct ablation studies on the CICIDS2018 dataset, and the results
are shown in Table 3.
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(a) (b) (c)

Figure 2: The heatmaps of AUC for each category of malicious traffic on (a) CICIDS2018,
(b) Real-MTU and (c) CICIoT2023.

Figure 3: Distribution of the
distance between local and
global features of sample
pairs on Real-MTU.

Table 2: Model parameters, FLOPs and time overhead

Method Parameters FLOPs Times (ms)

CIC-GMM / / 1.33e-02
Rosetta-IF 1.12e+07 1.42e+07 8.53e-01
Kitsune / / 7.19e+00

CPS-Guard 6.06e+03 1.09e+04 1.74e-01
AutoML-MD / / 1.13e-02
Dominant 8.14e+03 / 9.67e-02
ANEMONE 1.81e+04 3.14e+04 1.38e-01

ContraMTD 1.12e+05 1.22e+05 4.76e-01

* "/" indicates that the number is either non-existent or inaccessible.

We can find that the utilization of SEC significantly enhance
the precision, subsequently leading to great improvement in F1
score. Besides, it is worth noting that when CNN is removed, the
performance declines significantly. This can be attributed to the
role of CNNs in high-dimensional feature extraction and scaling,
functionalities that the subsequent portions of the model are unable
to fulfill. Replacing CNN with LSTM did not restore the original
performance, mainly because the low number of sessions in each
channel limits the advantages that LSTMs usually offer. Moreover,
the use of DE-GAT also notably improves both F1 score and AUC.
Substituting DE-GAT with GraphSAGE[13] and GCN[20] leads to
reduced performance, largely due to DE-GAT’s attention mecha-
nism effectively focusing on pivotal sessions and channels.

Additionally, the usage of the cluster strategy results in a 1.02%
improvement in AUC for ContraMTD, implying that our approach
can effectively mitigate the issue of false negatives samples in con-
trastive learning.

In detection stage, negative samples are more influential, but
positive sample pairs also make substantial contributions. The AUC
still reaches 91.84% when only positive sample pairs are involved
in decision.

3.5 Sensitivity Analysis
To investigate the impact of hyper-parameters on performance, as
well as the relationship between network scale and performance, we
conduct experiments on the CICIDS2018 dataset and the Real-MTU
dataset. These datasets represent enterprise networks at different

Figure 4: The distribu-
tion of the number of
sessions in a channel.

Figure 5: F1 and AUC
with different cluster
number.

Figure 6: F1 and AUC
with different com-
press dimension.

Figure 7: F1 and AUC
with different round
number.

scales, with Figure 4 illustrating the distribution of session counts
per channel.

Cluster number. Figure 5 shows that the number of clusters
𝑁𝑐𝑙 in constructing sample pairs doesn’t greatly affect performance.
This is because clustering mainly separates samples from different
classes. However, too many clusters can lead to many clusters
with only one sample, which may reduce performance by causing
repetition in negative sample pairs for clusters with many samples.

Compress dimension. Figure 6 illustrates that as the compres-
sion dimension 𝑁𝑐𝑝 goes from 1 to 5, both F1 and AUC improve.
However, performance declines when dimensions increase beyond
that. This is because while more dimensions capture more informa-
tion, they also add noise and slow down detection. Most channels
have 5 or fewer sessions, making up over 90% of the cases.

Round number. Figure 7 shows that F1 and AUC improve
quickly as the number of scoring rounds 𝑁𝑟 goes from 1 to 5. After
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Table 3: Ablation Study of Key Components in ContraMTD on CICIDS2018 (%).

Method SEC CNN DE-GAT cluster P N PR RC F1 AUC

w/o SEC × ✓ ✓ ✓ ✓ ✓ 53.73 ↓42.36 99.98 ↑6.42 69.90 ↓24.92 93.15 ↓3.33

w/o CNN ✓ × ✓ ✓ ✓ ✓ 72.93 ↓23.12 49.67 ↓43.89 59.09 ↓35.73 73.37 ↓23.11
w/ LSTM ✓ ◦ ✓ ✓ ✓ ✓ 66.20 ↓29.89 97.94 ↑4.38 79.00 ↓15.82 94.99 ↓1.49

w/o DE-GAT ✓ ✓ × ✓ ✓ ✓ 79.15 ↓16.94 92.24 ↓1.32 85.19 ↓9.63 92.94 ↓3.54
w/ GCN ✓ ✓ ◦ ✓ ✓ ✓ 75.65 ↓20.44 97.31 ↑3.75 85.13 ↓9.69 96.17 ↓0.31

w/ GraphSAGE ✓ ✓ ◦ ✓ ✓ ✓ 68.01 ↓28.08 99.96 ↑6.40 80.95 ↓13.87 96.24 ↓0.24

w/o cluster ✓ ✓ ✓ × ✓ ✓ 82.46 ↓13.63 92.81 ↓0.75 87.33 ↓7.49 94.84 ↓1.64

w/o P ✓ ✓ ✓ ✓ × ✓ 92.78 ↓3.31 90.58 ↓2.98 91.67 ↓3.15 94.73 ↓1.75
w/o N ✓ ✓ ✓ ✓ ✓ × 78.46 ↓17.63 87.51 ↓6.05 82.74 ↓12.08 91.84 ↓4.64

ContraMTD (default) ✓ ✓ ✓ ✓ ✓ ✓ 96.09 93.56 94.82 96.48

* "N" and "P" respectively refer to the participation of negative and positive sample pairs in the anomaly detection process.
* "◦" indicates that the corresponding component in ContraMTD is replaced.

that, the growth slows and stabilizes when more than 100 negative
samples are used. Due to the randomness in the selection of negative
samples, fewer samples are more error-prone, but as more are added,
the model becomes more fault-tolerant and performance nears its
peak.

4 DISCUSSION
In this section, we discuss some potential limitations and challenges
of our ContraMTD.

Anti-Evasibility. Attackers could potentially evade our secu-
rity method by mimicking normal network traffic. Achieving this
would require complex tasks such as extensive data collection to
understand the learned contrastive model and manipulating traffic
from multiple hosts, which are difficult to execute. However, if at-
tackers are already inside the system before we deploy our method,
detection becomes infeasible.

Scalability.We conduct experiments across enterprise networks
of varying scales and demonstrate the algorithm’s feasibility. How-
ever, scaling to networks with tens of thousands of devices poses
challenges in computation, storage, and optimization due to the
graph models used. Future work could address these by breaking
down large graphs into smaller ones for separate learning, and
possibly using federated learning methods.

5 RELATEDWORK
Malicious network traffic detection. In supervised approaches,
the primary workflow involves extracting statistical features or
utilizing deep learning models to capture the latent feature of traf-
fic, and then train a classifier for categorization. Jordan et al. [16]
leverages AutoML for fully automated traffic analysis. Han et al.
[14] employs n-gram and Transformer to extract structural and
temporal of traffic. Besides, Wang et al. [33] combine contrastive
learning and federated learning to boost detection capability in a
supervised way.

Unsupervised approaches can be divided into vertical compari-
son based and horizontal comparison based. In vertical comparison,
one approach is to create a baseline model using statistical fea-
tures to identify abnormal data. Wang et al. [32] analyzes the byte

distribution of payloads on specific ports. Another approach uses
autoencoders to reconstruct normal traffic, and large reconstruction
errors are considered malicious. Mirsky et al. [25] and Catillo et al.
[5] develop autoencoders targeting packets and flows, respectively.
Horizontal comparison based methods process multiple samples
at the same time, and identify anomalous data that significantly
deviate from the majority. Zhang et al. [35] propose a on-demand
evolving isolation forest to detect malicious traffic.

Graph anomaly detection. Anomaly detection on attributed
graphs aims to identify anomalous nodes from graph data. Sam-
baran et al. [3] employs an autoencoder to detect attribute anom-
alies, and Ding et al. [8] also utilizes an autoencoder, simultaneously
reconstructing the graph’s attribute and structural information.
Contrastive learning has also been frequently adopted in this do-
main. Liu et al. [24] detects anomalies by calculating the relationship
between nodes and their neighborhoods, and Jin et al. [18] lever-
ages patch and context-level agreement of nodes. Duan et al. [10]
proposes a multi-view multi-scale contrastive learning framework,
introducing subgraph-subgraph contrast.

6 CONCLUSION
In this paper, we apply contrastive learning to unsupervised mali-
cious traffic detection for the first time, and propose a novel method
called ContraMTD. ContraMTD learns the local behavior feature
and the global interaction feature of channels, and employs con-
trastive learning to learn normal patterns by leveraging the purpose
consistency between them, then detects anomalies through multi-
round scoring. By doing these, ContraMTD can detect malicious
traffic from both horizontal and vertical perspectives. We evaluate
the performance of ContraMTD on three datasets, demonstrating
that ContraMTD can effectively detect malicious traffic without
label. In the future, we will further investigate the anti-evasibility
and scalability of ContraMTD and work to improve its efficiency.
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