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Abstract

The evaluation of large language models001
(LLMs) has attracted increasing attention. Ex-002
isting approaches, including human, static003
dataset-based, and LLM-based evaluation,004
might face limitations such as data contami-005
nation, constrained generalizability, and high006
cost coupled with limited scalability. In this007
paper, we introduce the Knowledge-grounded008
Interactive Evaluation (KIEval), a novel ap-009
proach to assessing instruction-tuned LLMs.010
Starting with a question in a conventional LLM011
benchmark involving domain-specific knowl-012
edge, KIEval exploits dynamically generated013
and knowledge-centric multi-round dialogues014
to mitigate data contamination and enhance the015
reliability of evaluations. The framework of016
KIEval is generalizable across various domains017
and tasks, yielding a scalable and cost-effective018
approach that can efficiently yet robustly as-019
sess knowledge generalization and generation020
capabilities of LLMs. With KIEval, we hope021
to bring new insights into evaluating LLMs022
effectively in conversation scenarios and how023
data contamination impacts LLMs’ real-world024
performance.025

1 Introduction026

The landscape of artificial intelligence has been sig-027

nificantly reshaped by the emergence of Large Lan-028

guage Models (LLMs) as they have been pivotal in029

various natural language understanding and gener-030

ation tasks (Brown et al., 2020; OpenAI, 2023;031

Bubeck et al., 2023). As LLMs become more032

ingrained in our technological fabric, their com-033

prehensive evaluation becomes increasingly essen-034

tial (Chang et al., 2023).035

Existing evaluation approaches can be classi-036

fied into three types: human evaluation, static037

dataset-based evaluation, and LLM-based evalu-038

ation. Static dataset-based evaluation (Clark et al.,039

2018; Zellers et al., 2019; Hendrycks et al., 2020;040

Huang et al., 2023) require LLMs to generate a041

short span of text containing answer choices to pre- 042

defined questions (Gao et al., 2021) to challenge 043

model’s knowledge. LLM-based automatic evalua- 044

tion evaluations (Chiang and Lee, 2023) typically 045

depend on LLM evaluators to evaluate model’s out- 046

put given predetermined, human-curated question 047

templates (Zheng et al., 2023; Lin and Chen, 2023; 048

Fu et al., 2023) or instructions (Wang et al., 2023b). 049

However, the evaluation of LLMs still faces sev- 050

eral challenges. First, Data Contamination Com- 051

promises the Evaluation Integrity: the evalua- 052

tion based on static datasets is recently challenged 053

due to its possible susceptibility to data contam- 054

ination (Schaeffer, 2023; Wei et al., 2023; Oren 055

et al., 2023; Sainz et al., 2023), where models 056

trained on test sets can artificially inflate bench- 057

mark performance, failing to reflect real-world 058

performance (Zhou et al., 2023). Despite the in- 059

creasing number of high-quality datasets, data con- 060

tamination remains a significant challenge. Sec- 061

ond, Limited Generality: The LLM-based eval- 062

uation relies on human-curated inputs, which are 063

resource-intensive to gather, limiting their appli- 064

cability across diverse domains and tasks. Fur- 065

thermore, they also face contamination since static 066

testing inputs are publicly accessible and easily 067

compiled (Daniele and Suphavadeeprasit, 2023). 068

These methods lack the capacity to dynamically 069

test a model’s generative ability to maintain coher- 070

ent and contextually relevant conversations. Third, 071

Cost and Scalability: Human evaluations, though 072

insightful (Novikova et al., 2017), often lack con- 073

sistency (Peng et al., 1997) and are resource- 074

intensive (Karpinska et al., 2021). Similarly, cre- 075

ating and maintaining high-quality benchmark 076

datasets is not only time-consuming but also hard 077

to scale, posing significant resource challenges. 078

These challenges underscore the need for a more 079

dynamic, generalizable, scalable evaluation frame- 080

work that can more accurately reflect the gener- 081

ative capabilities of LLMs in practical scenarios. 082
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In this paper, we introduce KIEval, a Knowledge-083

grounded Interactive Evaluation framework. The084

KIEval evaluation process initiates with a ques-085

tion derived from an existing benchmark dataset086

that requires domain-specific knowledge. Diverg-087

ing from traditional methods, which primarily con-088

centrate on choosing candidate answers, KIEval089

places greater emphasis on generative capabilities.090

It achieves this through structured and dynamically091

generated multi-round dialogues specifically tai-092

lored to explore knowledge related to the question.093

KIEval exhibits the following three advantages over094

existing evaluation approaches:095

• Avoiding Contamination: By leveraging dy-096

namically generated, multi-round dialogues fo-097

cused on domain-specific topics with LLMs,098

KIEval reduces the risk of data contamination099

since all interactions are dynamic, providing a100

more grounded evaluation.101

• Task-agnostic: By design, KIEval supports eval-102

uation on various domains, languages, and tasks.103

It does not require extra human effort in writing104

templates or comparison pairs for evaluation.105

• Cost-effectiveness and Scalability: Utilizing106

existing high-quality benchmark datasets for107

evaluations, KIEval offers a cost-effective solu-108

tion to the challenges of traditional human eval-109

uations and dataset maintenance. Its scalable110

design, avoiding quadratic complexity typical of111

pairwise model comparisons (Wang et al., 2023b;112

Zheng et al., 2023), significantly reduces com-113

putational demands, particularly advantageous114

for evaluations involving numerous models.115

Crucially, we validate KIEval’s alignment with116

humans and compare the results with existing117

benchmarks. Human annotation is used in the meta-118

evaluation of KIEval to prove its alignment to hu-119

man preference. The high level of concordance120

with human judgments attests to KIEval’s effective-121

ness in mirroring human preference.122

Our core contributions are three-fold:123

• A new dynamic evaluation protocol: We provide124

KIEval to evaluate LLMs through dynamically125

generated multi-turn dialogues to mitigate the126

issues of data contamination, limited generaliza-127

tion, and high cost.128

• Extensive experiments: We conduct thorough129

experiments and analysis with 7 leading LLMs130

across 5 datasets with KIEval, assessing gen- 131

erative abilities and domain knowledge. Our 132

findings also reveal the susceptibility of static 133

dataset-based and LLM-based evaluations to 134

data contamination, a challenge KIEval effec- 135

tively mitigates. 136

• New insights on data contamination: We further 137

discuss how data contamination affects model’s 138

generative performance, and test whether such 139

contamination leads to mere memorization of 140

answers or contributes to genuine understanding 141

and generalization abilities. 142

2 Related Work 143

2.1 Evaluating LLMs 144

Human evaluation approaches manually design ex- 145

periments and tests (Novikova et al., 2017; Bom- 146

masani et al., 2023). While it provides insights 147

into human-model interaction, it faces challenges 148

due to the subjectivity and inconsistency of hu- 149

man judgments (Chang et al., 2023). Moreover, 150

it is resource-intensive in terms of time and cost, 151

limiting its feasibility for large-scale assessments 152

(Karpinska et al., 2021). 153

Static dataset-based approaches assess LLMs fo- 154

cused on domain-specific questions or tasks using 155

pre-defined static datasets. Typical evaluation tasks 156

include solving single or multiple-choice prob- 157

lems (Clark et al., 2018; Hendrycks et al., 2020; 158

Huang et al., 2023) and question answering (Lin 159

et al., 2021; Cobbe et al., 2021), these tasks require 160

LLMs to generate short spans of text containing 161

answers to the questions (Gao et al., 2021). The 162

performance of LLMs is measured by their ability 163

to correctly answer or perform these tasks. 164

LLM-based evaluation, utilizing one strong 165

LLM (Brown et al., 2020; OpenAI, 2023) to as- 166

sess others, is a recent approach that often employs 167

pairwise comparisons to identify nuanced differ- 168

ences in model outputs, addressing the challenge 169

of determining clear model superiority (Wang et al., 170

2023b; Zheng et al., 2023). This method bridges 171

the gap between human and dataset-based evalua- 172

tions by focusing on generative abilities. However, 173

this approach has limitations, including reliance 174

on fixed templates (Zheng et al., 2023), instruc- 175

tions (Wang et al., 2023b; Li et al., 2023), or multi- 176

round chat datasets (Fu et al., 2023; Lin and Chen, 177

2023), limiting its scope in capturing diverse do- 178

main knowledge and real-world applicability. It 179

also faces contamination risks, as training on out- 180
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Question: Snow, rain, hail, and fog are all forms of?
Choices: A. gas. B. water. C. wind. D. clouds.

Candidate’s Answer: B. water.

Accuracy(4): The candidate's explanation is factually correct ...
...

Interactor

What led you to choose water as the 
commonality among snow, rain, hail, and fog? All of these weather phenomena are formed 

from water in its various states...
Candidate

Accuracy(1): The candidate's revised answer is incorrect; selenium has 6 valence electrons.
Reasoning(1): ...

How do you reconcile the fact that fog is 
made up of tiny water droplets, which ... Snow, rain, and hail are all forms of water in 

its solid state ...

Accuracy(2): Contains a factual error. Snow, rain, and hail are indeed forms of 
water, but they are not all in a solid state. 
Logic(2): Logic is flawed because it incorrectly categorizes…
Relevance(3): The response is relevant to the interactor's question but ...
Coherence(2): The candidate's response is coherent in structure but ...
Conciseness(4): The candidate's response is concise in addressing ...
Overall Comment: The candidate attempted to reconcile ...

Overall Score: 2               Stop Conversation: FalseEvaluator

...Evaluator

Candidate

Interactor

Benchmark
Datasets

ARC, MMLU, ...

Validated
Samples

Interactive
Evaluation

KIEval
Score

Which of the 
following ... ?

Sampling & Validation

Multi-turn Automatic Interaction

Previous Work

Our Work

Previous LLM-based Evaluation

Static Dataset-based Evaluation

Question: Snow, rain, hail, and fog are all forms of?
Choices: A. gas. B. water. C. wind. D. clouds.
Candidate’s Answer: B. water.

Benchmark 
datasets Accuracy

Instruction: Explain the concept of 'opportunity cost' in simple terms.

Response 2 is better because it clearly explains the concept ...
Evaluator LLM

Model A:
Opportunity cost is like when you 
choose to spend your money ...

Model B:
Opportunity cost refers to the 
benefits you miss out ... Predefined

Instructions Win Rate

Figure 1: The pipeline of KIEval compared to previous static dataset-based and LLM-based evaluation methods.

puts from a strong LLM can inflate results, as noted181

in work from Daniele and Suphavadeeprasit (2023)182

collect data from MT-Bench (Zheng et al., 2023) as183

training data while AlpacaEval (Li et al., 2023) con-184

tains evaluation set from various instruction-tuning185

dataset. Additionally, studies indicate potential bi-186

ases in these evaluations, such as positional bias187

(Zeng et al., 2023; Wang et al., 2023a,b).188

2.2 Addressing Data Contamination of LLMs189

Recently, the AI community has become increas-190

ingly concerned (Schaeffer, 2023; Zhou et al.,191

2023; Oren et al., 2023) about data contamination192

in LLMs. Wei et al. (2023); Shi et al. (2023) lever-193

aged loss values or token probabilities to detect194

whether certain text appears in the training data195

of models. Zhu et al. (2023) leveraged DAG to196

dynamically generate evaluation data in reasoning197

tasks, while Liu et al. (2023) dynamically gener-198

ated out-of-distribution evaluation sets using ex-199

isting datasets. In comparison, KIEval only re- 200

quires access to output text of evaluated models 201

and detects data contamination through evaluating 202

its ability to generalize and utilize knowledge as 203

well as generative ability, which requires a deeper 204

understanding of knowledge instead of mere mem- 205

orization of the answers. 206

3 Methodology 207

3.1 Overview of the KIEval Framework 208

KIEval involves a series of iterative interactions, 209

as depicted in Figure 1. KIEval is engineered to 210

dynamically evaluate the conversational abilities 211

of LLMs through interactive dialogues focusing on 212

domain-specific topics that challenge LLMs’ gener- 213

ative ability and in-depth generalization of knowl- 214

edge. It simulates realistic conversation flows, of- 215

fering a dynamic alternative to the static question- 216

answer format of traditional benchmarks. 217
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KIEval orchestrates an evaluation where an218

LLM, referred to as the candidate (the model un-219

der evaluation), must understand and respond to220

an evolving series of questions. These question221

prompts are generated by an interactor model, de-222

signed to challenge the candidate with contextually223

rich scenarios. The responses from the candidate224

are then assessed by an evaluator model, which225

scrutinizes the output for factual accuracy, rele-226

vance, and coherence. The interactor and evalu-227

ator are both strong LLMs (e.g., GPT-4, Gemini,228

Claude 2, LLaMA2-70B-chat, etc.) as the standard229

practice of LLM-based evaluation protocols.230

The design of KIEval emphasizes the importance231

of reproducibility and consistency in LLM evalu-232

ations. By employing separate models for the in-233

teractor and evaluator roles, KIEval ensures that234

the dialogue context remains consistent across dif-235

ferent evaluations, as it is fair for the same con-236

versation to be assessed by various evaluators or237

the same evaluator with different seeds, facilitating238

a voting strategy to ensure consistent evaluation239

results. To achieve reproducibility, KIEval utilizes240

deterministic outputs from LLMs, such as the latest241

gpt-4-1106-preview model with temperature sam-242

pling disabled and a fixed seed or deploying local243

models as evaluators. This guarantees identical re-244

sponses in every run. Due to space limits, we show245

the complete system prompts in Appendix F.246

3.2 Interactive Evaluation Procedure247

The interactive evaluation procedure can be de-248

scribed by Algorithm 1. In LLM-based bench-249

marks, we hypothesize that the evaluator (ME)250

models, given their advanced capabilities, can reli-251

ably evaluate the performance of less sophisticated252

candidate models (MC) (Zheng et al., 2023; Zeng253

et al., 2023). Nevertheless, their applicability as254

definitive standards is not without limitations, espe-255

cially when confronting arduous benchmarks. To256

counteract this, a methodical sampling and verifi-257

cation strategy is employed to ensure the validity258

of their evaluative judgments.259

This strategy commences by sampling a subset260

QS from the original benchmark dataset Q, to en-261

compass a wide range of difficulty levels. Both262

ME and MI are then independently tested against263

QS . The aim is to discern a ‘confident set’ of264

problems that both models can solve with high con-265

fidence. The ‘confident set’ QV is defined as:266

QV = {q ∈ QS |Conf(ME , q) > θ ∧ Conf(MI , q) > θ},267

Algorithm 1 KIEval Interactive Evaluation Procedure

Require: Benchmark datasetQ, Interactor modelMI , Can-
didate modelMC , Evaluator modelME , seed r.

1: Seed everything with r, disable temperature sampling for
MI ,MC ,ME to ensure deterministic outputs.

2: QS ← Sample subset fromQ with random seed r.
3: QV ← Verify, filter samples fromQS withMI ,ME .
4: for each question q : (qinput, qans) inQV do
5: Initialize interaction history S ← ∅ and evaluation

history E ← ∅.
6: qpred ← Predict withMC given question qinput.
7: OI ← Generate initial question prompt from MI

using question q and candidate’s answer qpred.
8: S ← S ∪ {OI}
9: while not end of dialogue do

10: OC ← Generate response fromMC using S.
11: S ← S ∪ {OC}.
12: OE ← Evaluate response usingME with S, E.
13: E ← E ∪ {OE}.
14: if Early stopping criteria met for OC then
15: break
16: end if
17: OI ← Generate next question fromMI using S.
18: S ← S ∪ {OI}
19: end while
20: Parse and store results from E.
21: end for
22: K ← Calculate KIEval scores with E.
23: return K

where Conf(M, q) calculates the confidence of 268

model M in providing the correct answer to prob- 269

lem q, and θ represents the confidence threshold. 270

3.3 Evaluation Metrics 271

KIEval implements a scoring system to quantita- 272

tively grade the performance of candidate LLMs in 273

different aspects. Responses are rated on a defini- 274

tive scale from 1 to 4 for each aspect, where 1 275

and 4 denote ‘Poor’ and ‘Strong’ performance, re- 276

spectively, as detailed in Table 1. These scores 277

are intended to be definitive to encourage decisive 278

evaluations and are accompanied by comments for 279

interpretability and insights into each score. 280

After the last round of interaction, we calculate 281

the KIEval score, which quantitatively measures 282

the results given by the evaluator model, emphasiz- 283

ing sustained and high-quality long conversations. 284

Formally, we propose a decaying weighted scor- 285

ing mechanism to compute the KIEval score for 286

normalized scores s0, s1, . . . , sn in n rounds: 287

KIEvalScore =

∑n
i=1 siwi∑n
i=1wi

, 288

where the weight for the i-th round is computed as 289

wi = exp(− i
n). This ensures the scores for early 290

rounds have greater influence, encouraging mod- 291

els to maintain consistent performance through- 292
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Table 1: Evaluation Metrics and Scoring Guide for KIEval. We compute KIEval Score for each metric and a overall
KIEval Score as described in 3.3.

Evaluation Metrics Scoring Guide
Metric Description Score Criteria

Accuracy Truthfulness and factual correctness of the candidate’s response. 1 Poor Significant deficiencies or inaccuracies.
Logic Logical structure and soundness of reasoning, including the support and validity of conclusions. 2 Below Avg. Noticeable weaknesses, lacking in several areas.
Relevance The extent to which the response stays on topic and within the scope of the assistant role. 3 Above Avg. Mostly on target with a few minor shortcomings.
Coherence Integration into the context, consistency with previous statements and conversational flow. 4 Strong Strong performance, often surpasses expectations.
Conciseness Brevity and clarity of the response, avoiding unnecessary elaboration or repetition.

out the conversation. The normalization ensures a293

bounded KIEval score, with 1.0 indicating perfect294

performance across all rounds.295

In addition to these metrics, KIEval incorporates296

an early stopping mechanism within the evaluative297

process. The evaluator model (ME) possesses the298

discretion to prematurely end the conversation if299

the candidate’s response is egregiously inadequate.300

Criteria for early termination include significant301

deviations from the topic, empty responses, unper-302

mitted role shifts, and hallucinatory content. We303

adopt this strategy to measure how well the candi-304

dates maintain a meaningful conversation.305

4 Experiments306

In this section, we conduct experiments designed307

to rigorously test the KIEval framework. Our ob-308

jectives are threefold: (1) to evaluate the generative309

performance and generalizable knowledge of popu-310

lar large language models on KIEval using existing311

benchmark datasets; (2) to assess the impact of312

data contamination on model performance, specifi-313

cally examining whether such contamination leads314

to mere memorization or contributes to genuine315

understanding and generalization; and (3) to de-316

termine the alignment with human, reliability, and317

effectiveness of KIEval.318

For setup, we select GPT-4 (OpenAI, 2023) to be319

both the evaluator and interactor model by feeding320

it corresponding prompts with a fixed seed to en-321

sure deterministic outputs. The candidate models322

are engaged in KIEval conversations, starting with323

selected problems from the aforementioned bench-324

mark datasets. We apply the aforementioned sam-325

pling and verification strategy to select 200 samples326

for each dataset, allowing a maximum of 5 rounds327

of conversation. The candidates’ performance are328

assessed using the KIEval framework, which evalu-329

ates responses based on accuracy, logic, relevance,330

coherence, and conciseness. In Table 2, we also re-331

port dataset-based benchmark accuracies in 5-shot332

settings and LLM-based benchmark scores from333

AlpacaEval (Li et al., 2023) and MT-Bench (Zheng334

et al., 2023) in comparison. 335

4.1 Evaluation of Popular LLMs by KIEval 336

In this experiment, we utilized five popular 337

LLM benchmark datasets: ARC-Easy and ARC- 338

Challenge (Clark et al., 2018), HellaSwag (Zellers 339

et al., 2019), MMLU (Hendrycks et al., 2020), and 340

C-Eval (Huang et al., 2023). For candidate models, 341

we selected a diverse set of 7 LLMs: including 342

proprietary model GPT-3.5 (Brown et al., 2020) 343

with API access and open-access foundation mod- 344

els: Llama 2 (Touvron et al., 2023b) 7B, 13B, 70B; 345

Mistral-7B (Jiang et al., 2023); Yi-6B-chat (01.AI, 346

2023); MPT-7B (MosaicML, 2023).1 Detailed in- 347

troduction of these datasets and models can be 348

found in Appendix A. 349

Referencing Table 2, we observe the following 350

trends: GPT-3.5 demonstrated consistently high 351

performance across all datasets, particularly ex- 352

celling in KIEval scores, which indicates strong 353

contextual understanding and response generation. 354

LLaMA2 70B showed competitive results, achiev- 355

ing only a marginal gap from GPT-3.5 on ARC-E, 356

ARC-C, HSwag and even surpasses GPT in MMLU 357

when measured by dataset accuracies, but we can 358

significantly observe a larger gap between these 359

two models with KIEval metrics in all datasets 360

which is also observed by MT-Bench results as re- 361

ported in Table 2. This suggests that traditional 362

benchmarks may sketch the difference in perfor- 363

mance between LLMs as these benchmarks only 364

let models generate a short span of text to evaluate 365

which focus on testing understanding ability. Thus 366

it is hard for these benchmarks to accurately reflect 367

performance gaps in generative tasks. 368

From the results of different aspects visualized 369

in Figure 2, we observe that most models we test 370

here exhibit relatively strong performance in terms 371

of relevance and could generate coherent responses. 372

Larger models generally perform better in bench- 373

marks, but it is notable that LLaMA2 70B does 374

1By default, we use the ‘chat’ versions of Llama2, Yi, and
MPT models and the ‘Instruct’ version of Mistral model.
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Table 2: Comparative Evaluation of LLMs using KIEval, AlpacaEval, MT-Bench and human evaluation win-rates.
We report AlpacaEval win-rates and MT-Bench scores with GPT-4 as evaluator from the official leaderboards except
for missing models; ‘Acc.’ denotes 5-shot accuracy setting on each dataset or average accuracies in ‘Overall’;
‘KIEval’ and ‘Rnds’ denote the KIEval score and average rounds of valid conversation rounds.

ARC-Easy ARC-Challenge MMLU HellaSwag C-Eval Overall
Acc. KIEval Rnds. Acc. KIEval Rnds. Acc. KIEval Rnds. Acc. KIEval Rnds. Acc. KIEval Rnds. Acc. AlpacaEval MT-Bench KIEval Human

GPT-3.5 92.7 97.6 4.97 82.3 95.5 4.94 58.2 96.2 4.95 76.6 88.2 4.82 50.8 83.3 4.72 72.1 81.7 8.39 92.1 69.8
LLaMA2 70B 92.3 90.7 4.85 80.4 84.1 4.66 61.8 89.6 4.80 74.4 80.1 4.41 42.0 61.0 3.94 70.2 92.7 6.86 81.1 63.6
LLaMA2 13B 81.9 86.2 4.70 65.7 78.6 4.56 52.1 87.4 4.76 59.3 78.5 4.66 37.8 54.4 3.74 59.4 81.1 6.65 77.0 62.5
LLaMA2 7B 73.6 78.9 4.49 55.7 74.4 4.44 44.5 83.0 4.61 39.8 76.4 4.54 33.4 49.3 3.62 49.4 71.4 6.27 72.4 35.4
Mistral 7B 83.5 80.8 4.64 67.5 78.5 4.46 52.7 83.0 4.62 54.4 70.3 4.34 39.3 52.2 3.61 59.5 65.5 6.84 73.0 58.2
Yi 6B 90.7 83.8 4.58 79.0 76.8 4.33 61.9 86.5 4.58 73.7 68.7 4.20 71.5 55.6 3.66 75.4 54.5 4.86 74.3 46.2
MPT 7B 53.3 68.4 4.34 43.4 65.5 4.33 33.9 74.7 4.46 27.3 57.3 4.10 26.2 44.9 3.52 36.8 43.4 5.42 62.2 24.1

5-shot
Acc.

KIEval
Acc.

KIEval
Log.

KIEval
Rel.

KIEval
Coh.

KIEval
Con.

KIEval
Overall

30
40
50
60
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80
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100
ARC-Challenge

5-shot
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KIEval
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KIEval
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KIEval
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KIEval
Coh.

KIEval
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KIEval
Overall

HellaSwag

5-shot
Acc.

KIEval
Acc.

KIEval
Log.

KIEval
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KIEval
Coh.

KIEval
Con.

KIEval
Overall

C-Eval
GPT-3.5 LLaMA2 70B LLaMA2 13B LLaMA2 7B Mistral 7B Yi 6B MPT 7B

Figure 2: Detailed evaluation result using KIEval, including the overall KIEval score, and KIEval scores for aspects:
Accuracy, Logic, Relevance, Coherence and Conciseness. In comparison, we also provide dataset accuracies
(5-shot). Due to page limits and the large volume of experimental data, the complete results are put in Appendix E.

not perform well in generating concise responses,375

compared to its smaller counterparts. Although376

MPT performs weakly in accuracy, its ability to377

generate concise responses deserves a closer look378

at its instruction-tuning data.379

One interesting finding is that Yi-6B performs380

unexpectedly well in all benchmark dataset accu-381

racies, especially with it surpasses GPT-3.5 and382

all other models by a large margin of over 20%383

in the C-Eval dataset while exhibiting a similar384

performance of LLaMA2 70B in other datasets.385

However, Yi-6B’s KIEval score is very similar to386

LLaMA2 7B and in the range of other 7B models,387

while it only performs marginally better in the Chi-388

nese dataset C-Eval. This raises our concern over389

potential data contamination in Yi-6B.390

4.2 Resilience to Data Contamination391

In this subsection, we show that existing static392

dataset-based and LLM-based evaluation ap-393

proaches are prone to data contamination while394

KIEval is resilient to data contamination.395

Contamination on static dataset-based eval-396

uation. We train two models on the test sets397

to introduce contamination in the pre-training398

(‘PT-Cheater’) and supervised fine-tuning (‘SFT-399

Cheater’) phases using un-tuned LLaMA-2 7B as400

the backbone. For PT-Cheater, test set contents401

are integrated into the pre-training set. Subse- 402

quently, the model undergoes fine-tuning with the 403

ShareGPT (Eccleston, 2023), a commonly used 404

instruction-tuning dataset, to develop chat function- 405

alities. Conversely, the SFT-Cheater replicates this 406

process but adapts the test data to the SFT format. 407

As a control, we also train the backbone solely 408

with ShareGPT (‘Normal’), devoid of contamina- 409

tion, ensuring uniform training conditions across 410

all models. From results in Table 3, it is clear 411

that the accuracies for benchmarks are significantly 412

boosted, by a large margin of over 60%, suggest- 413

ing a susceptibility to data contamination. How- 414

ever, when faced with KIEval, the cheater models 415

perform slightly worse than ‘Normal’ model, not 416

positively affected by data contamination. The av- 417

erage rounds of valid conversation is lower in the 418

cheater models, from the reasons specified by Fig- 419

ure 4, contaminated models tend to go off-topic of 420

the conversation, repetitively stick to the incorrect 421

knowledge making the conversation meaningless to 422

continue. We can infer from this result that training 423

models on test sets does not bring generalizable 424

domain knowledge, instead, only contributing to 425

mere memorization of knowledge from test sets. 426

Contamination on LLM-based evaluation. 427

We also find existing LLM-based evaluations vul- 428

nerable to data contamination, due to their reliance 429
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Table 3: Comparison on different data contamination
scenarios on ARC-C and MMLU datasets, measured
with 5-shot accuracy, KIEval score, and average rounds
of valid conversation in KIEval.

Dataset ARC-Challenge MMLU
Model Acc. KIEval Rounds Acc. KIEval Rounds
PT-Cheater 86.54 52.13 3.46 72.52 51.82 3.40
SFT-Cheater 77.65 58.46 3.97 61.60 72.74 4.36
Normal 52.35 62.60 4.16 42.69 76.02 4.57
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Figure 3: Scatter plots of KIEval scores and traditional
benchmark scores by model and dataset. Each point
represents the performance of a model on a specific
dataset, measured by the KIEval score and accuracy
score (5-shot). Regression lines are plotted for each
dataset. Points significantly above the regression line in-
dicate the performance gap not captured by traditional
benchmark but captured by KIEval, while points signifi-
cantly below the regression line indicate potential data
contamination in traditional benchmarks.

on static templates. We train the fine-tuned model430

(‘Normal’) with MT-Bench input templates and431

GPT-4 outputs using only 80 samples and test it432

against MT-Bench and KIEval. Table 4 reveals433

that contamination training notably inflates the434

MT-Bench score by 1.79, a surge over 45% com-435

pared to the baseline. This contrasts with the stable436

ARC-Challenge accuracy and the slight decrease437

in KIEval scores, reinforcing our conclusion."438

Correlation analysis. To further investigate the439

correlation between dataset-based benchmarks and440

KIEval, we use regression analysis as shown in441

Figure 3. We also leverage the Pearson correlation442

coefficient to provide quantitive analysis in Table 5.443

The results revealed a significant positive corre-444
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Figure 4: Statistics on reasons to stop conversation given
by the evaluator model.

Table 4: Contamination in MT-Bench (Zheng et al.,
2023) scores. We report 5-shot accuracy on ARC-
Challenge and KIEval results in comparison.

Model Acc. MT-Bench KIEval

Normal 52.35 3.96 62.60
+MT-Bench 52.25 5.75 57.46

lation between KIEval scores and dataset-based 445

benchmark accuracies. This correlation under- 446

scores KIEval’s alignment with traditional evalua- 447

tion methods. However, we also bring new insights 448

that traditional benchmarks do not offer: while 449

dataset-based benchmarks effectively assess LLM 450

knowledge under contamination-free conditions, 451

their results are easily inflated in the presence of 452

data contamination. In contrast, KIEval exhibits 453

a lower susceptibility to these issues. Visual anal- 454

ysis offers additional perspective by contrasting 455

model performances as per benchmark accuracies 456

and KIEval scores. Models significantly above the 457

regression line suggest capabilities beyond those 458

captured by traditional benchmarks. In this sce- 459

nario, traditional benchmarks are not sufficiently 460

challenging to effectively differentiate the stronger 461

models from others, nor do they accurately repre- 462

sent the generative capabilities of these models. It 463

is evident that GPT-3.5 is included in this category. 464

Conversely, models falling below the regression 465

line, exhibiting high benchmark accuracy but low 466

conversation quality, suggest limited real-world ap- 467

plicability, potentially indicative of data contami- 468

nation. Interestingly, the visualization shows that 469

not only does our simulated SFT Cheater model 470

fall into the outlier category below the regression 471

line, but Yi-6B also exhibits similar behavior. 472

4.3 Meta Evaluation of KIEval 473

Meta evaluation serves as a critical layer of assess- 474

ment, ensuring that KIEval not only performs the- 475

oretically but also aligns practically with broader 476
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Table 5: Pearson correlation coefficient of KIEval scores
and dataset accuracy scores. Due to suspected data
contamination in Yi-6B, we report two sets of results
with and without Yi.

PCC r p r
Excl. Yi

p
Excl. Yi

Overall 0.664 1.37E-05 0.765 8.67E-07
ARC-E 0.892 6.97E-03 0.934 6.45E-03
ARC-C 0.839 1.83E-02 0.940 5.29E-03
MMLU 0.814 2.57E-02 0.876 2.21E-02

HellaSwag 0.686 8.85E-02 0.862 2.74E-02
C-Eval 0.427 3.40E-01 0.924 8.42E-03

evaluation standards. Building upon the correla-477

tion analysis provided earlier, we further validate478

KIEval’s efficacy by analyzing its alignment with479

human preference. We also provide a cost analysis480

of our method in terms of compute resources and481

API usage.482

Human evaluation. To validate KIEval’s align-483

ment to human preference, we randomly sample 60484

unique conversation pairs from 3 datasets, where485

each pair contains the conversations between two486

candidate models and interactor models in the same487

topic. We ensure the two conversations within the488

same pair with difference in KIEval score. De-489

tailed rules for human annotation are shown in490

Appendix C. For each dataset, we ask 2 human491

annotators to independently decide which model492

performs better throughout the conversation and an493

additional annotator to resolve the conflicts. This494

process allowed us to measure the Inter Annota-495

tor Agreement (IAA) and compare the agreement496

rate between human judgments and KIEval scores,497

thereby validating the human-like evaluative capa-498

bilities of KIEval. The high level of agreement,499

shown in Table 6, between human annotators and500

KIEval scores reinforced KIEval’s validity. The501

strong Inter Annotator Agreement (IAA) further at-502

tested to the robustness of KIEval as a human-like503

evaluation method.504

Cost and scalability. Assessing KIEval’s scal-505

ability requires a thorough evaluation of overall506

costs. Our method employs a strong LLM accessed507

via API, with expenses based on input and out-508

put token lengths. Table 14 details the average509

token count per model evaluation across diverse510

datasets. Additionally, the average GPU expen-511

diture for single model evaluations on NVIDIA512

A100 GPUs is provided in Table 13. Financially,513

deploying GPT-4 in both interactor and evaluator514

roles within KIEval incurs a cost of around 27 USD515

for each model evaluation, comprising 1000 inter-516

Table 6: Inter-Annotator Agreement (IAA) measured by
Cohen’s Kappa, and the agreement rate between human
annotators and KIEval results.

Avg. ARC-E ARC-C C-Eval

κ 0.700 0.699 0.734 0.667
po 0.833 0.850 0.817 0.833

action rounds. Importantly, due to our adoption 517

of single-answer grading over pairwise compari- 518

son (Wang et al., 2023b; Zheng et al., 2023), costs 519

increase linearly rather than quadratically with the 520

number of models evaluated. For a comprehensive 521

understanding of the cost implications at scale, we 522

present a detailed estimation in Table 15. 523

5 Limitations 524

Our method, while insightful, relies on the hypoth- 525

esis that the LLM evaluator can reliably assess the 526

performance of less sophisticated models, but their 527

applicability as definitive standards is not without 528

limitations, especially when confronting arduous 529

benchmarks or evaluating a stronger model. This 530

limitation is also applicable to any LLM-based eval- 531

uation method. To mitigate this, future research 532

could explore a hybrid approach, combining LLM 533

evaluators with other evaluation methodologies or 534

explore leveraging a broader range of language 535

models as evaluator models for a more comprehen- 536

sive assessment. 537

6 Conclusion 538

KIEval provides a dynamic evaluation and analy- 539

sis of LLMs across various domains, evaluating 540

generative abilities and domain knowledge through 541

structured conversations instead of relying on fixed 542

templates or instructions, reducing the risk of data 543

contamination and enhancing the reliability of eval- 544

uations, while preserving alignment with human 545

preference. The primary limitation of static dataset- 546

based benchmarks lies in their reliance on brief 547

text generation, which inadequately captures the 548

full spectrum of LLMs’ generative abilities and 549

is susceptible to data contamination. Our study 550

shifts the focus from merely detecting exposure 551

to specific training texts to a more comprehensive 552

evaluation of models’ generalizable knowledge and 553

real-world applicability. We believe that KIEval 554

will serve as a valuable tool for researchers and 555

practitioners alike, aiding in the development of 556

more robust, versatile, and ethical AI systems. 557
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A Datasets934

We use the following datasets in our experiments,935

for statistics and used splits, please refer to Table 7.936

ARC-Easy and ARC-Challenge (Clark et al.,937

2018): Both are subsets of the AI2 Reasoning938

Challenge, a benchmark for assessing a model’s939

reasoning and understanding in science questions.940

ARC-Easy contains simpler questions, while ARC-941

Challenge includes more complex ones.942

HellaSwag (Zellers et al., 2019): challenges943

models to complete realistic scenarios in text, test-944

ing common sense and predictive abilities.945

MMLU (Hendrycks et al., 2020): A compre-946

hensive English examination composed of multiple-947

choice questions encompassing a wide array of dis-948

ciplines. This extensive test includes subjects rang-949

ing from humanities and social sciences to hard950

sciences, alongside other essential areas of knowl-951

edge. It encompasses 57 distinct tasks, covering952

fields such as elementary mathematics, US history,953

computer science, law, and beyond.954

C-Eval (Huang et al., 2023): A comprehen-955

sive Chinese evaluation composed of 13948 multi-956

choice questions spanning 52 diverse disciplines957

and four difficulty levels.958

B Potential Risks959

While KIEval advances the evaluation of Large960

Language Models (LLMs), it is not without poten-961

tial risks. Primarily, reliance on strong LLMs as962

evaluators could inadvertently propagate existing963

biases or limitations inherent in these models. The964

computational and financial costs associated with965

using high-performance LLMs for continuous eval-966

uations could be a barrier for widespread adoption,967

particularly for researchers with limited resources.968

C Use of Human Annotation969

For human annotation in our work, all annotators970

are authors of this paper who previously have not971

accessed the outputs of models in our experiments972

and volunteer to contribute. All annotators agree973

on how the data would be used. Since the data974

to be annotated come from open-source datasets975

and popular LLMs, ethical concern is not appli-976

cable. We provide guides for each annotator and977

for each annotator, we give them a unique URL to978

our annotation platform built with Gradio as shown979

in 5: ‘Everyone is given some conversations be-980

tween candidate model and interactor model. Each981

instance to be labeled as a pair of conversations 982

from different LLMs given the same context, and 983

we need to judge which conversation is better over- 984

all, considering the conversation’s factual accuracy, 985

logical structure, language conciseness and coher- 986

ence.’ 987

D Use of AI Assistants 988

In this work, we use GitHub Copilot to assist cod- 989

ing, and GPT-4 to correct grammatical errors. 990

E Complete Experiment Results 991

We share the complete experiment results from all 992

5 datasets with 7 models, evaluated with KIEval 993

and benchmark accuracies in Table 8, 9, 10, 11, 12. 994

F Complete Prompt 995

The system prompts for interactor, candidate and 996

evaluator models are given in Figure 6. 997
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Table 7: Details of datasets in our experiments. We report 5-shot accuracy metric of ‘Used Splits’ split for each
dataset.

Datasets Splits Used Splits Split Size Language

ARC-Challenge train, validation, test test 1.17k English
ARC-Easy train, validation, test test 2.38k English
Hellaswag train, validation,test validation 10k English
MMLU auxiliary_train, test, validation, dev test 14k English
C-Eval val, test, dev val 1.35k Chinese

Table 8: KIEval Results on ARC-Easy.

ARC-E Accuracy Logic Relevance Coherence Conciseness Overall Rounds Acc. (5-shot)

GPT-3.5 97.1 97.4 99.3 97.9 97.9 97.6 4.97 92.7
LLaMA2 70B 90.3 90.3 94.6 91.3 79.6 90.7 4.85 92.3
LLaMA2 13B 84.5 84.3 93.2 87.7 85.8 86.2 4.70 81.9
LLaMA2 7B 77.1 77.4 89.7 82.2 73.6 78.9 4.49 73.6
Mistral 7B 78.5 78.2 91.4 83.5 79.9 80.8 4.64 83.5
Yi 6B 83.4 83.6 90.9 85.8 76.4 83.8 4.58 90.7
MPT 7B 63.9 64.1 84.9 71.5 81.8 68.4 4.34 53.3

Table 9: KIEval Results on ARC-Challenge.

ARC-C Accuracy Logic Relevance Coherence Conciseness Overall Rounds Acc. (5-shot)

GPT-3.5 94.6 94.7 98.5 96.1 97.3 95.5 4.94 82.3
LLaMA2 70B 81.9 82.8 92.2 85.3 75.6 84.1 4.66 80.4
LLaMA2 13B 75.4 75.9 91.3 82.3 82.6 78.6 4.56 65.7
LLaMA2 7B 70.6 71.6 90.4 77.9 71.7 74.4 4.44 55.7
Mistral 7B 75.9 75.8 90.0 81.4 79.1 78.5 4.46 67.5
Yi 6B 75.6 76.1 85.0 79.6 71.2 76.8 4.33 79.0
MPT 7B 60.2 61.4 83.6 69.5 81.1 65.5 4.33 43.4

Table 10: Summary of KIEval Results on MMLU

MMLU Accuracy Logic Relevance Coherence Conciseness Overall Rounds Acc(5-shot)

GPT-3.5 95.5 95.8 98.3 96.7 97.4 96.2 4.95 58.2
LLaMA2 70B 89.0 90.3 93.7 90.3 76.0 89.6 4.80 61.8
LLaMA2 13B 85.8 87.0 93.9 88.6 81.4 87.4 4.76 52.1
LLaMA2 7B 82.2 83.6 91.9 84.7 70.4 83.0 4.61 44.5
Mistral 7B 81.6 82.8 90.5 85.3 77.5 83.0 4.62 52.7
Yi 6B 84.7 86.5 91.8 87.4 76.5 86.5 4.58 61.9
MPT 7B 70.6 72.0 86.6 77.9 83.0 74.7 4.46 33.9

Table 11: KIEval Results on HellaSwag.

HellaSwag Accuracy Logic Relevance Coherence Conciseness Overall Rounds Acc. (5-shot)

GPT-3.5 85.6 85.6 93.9 90.1 93.1 88.2 4.82 76.6
LLaMA2 70B 76.6 79.5 88.2 82.0 78.9 80.1 4.41 74.4
LLaMA2 13B 72.6 75.9 88.7 83.0 85.2 78.5 4.66 59.3
LLaMA2 7B 70.8 73.3 87.3 79.9 80.2 76.4 4.54 39.8
Mistral 7B 65.6 67.1 83.8 75.6 75.2 70.3 4.34 54.4
Yi 6B 64.4 67.0 79.9 74.3 72.4 68.7 4.20 73.7
MPT 7B 50.0 51.7 74.3 62.5 74.4 57.3 4.10 27.3
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Figure 5: We leverage Gradio to build annotation UI for human annotators. Each annotator is given a unique URL.

Table 12: KIEval Results on C-Eval

C-Eval Accuracy Logic Relevance Coherence Conciseness Overall Rounds Acc. (5-shot)

GPT-3.5 79.8 80.6 94.7 87.3 92.0 83.3 4.72 50.8
LLaMA2 70B 57.6 58.3 80.1 66.5 64.1 61.0 3.94 42.0
LLaMA2 13B 48.4 49.8 79.3 61.5 62.9 54.4 3.74 37.8
LLaMA2 7B 44.9 45.1 73.8 55.8 55.9 49.3 3.62 33.4
Mistral 7B 47.3 47.8 73.3 58.0 59.5 52.2 3.61 39.3
Yi 6B 53.1 54.1 73.0 59.3 55.9 55.6 3.66 71.5
MPT 7B 39.5 40.2 72.7 51.5 64.0 44.9 3.52 26.2

Table 13: Average GPU budget for a single model eval-
uated on one dataset with KIEval. We report results for
LLaMA2 models with varying parameter sizes.

7B 13B 70B

GPU Hours 0.74 0.99 9.38

Table 14: Average number of tokens consumed of eval-
uation on a single model across various datasets, over
200 samples with 5 rounds of interaction.

Interactor Evaluator

Prompt Completion Prompt Completion

Avg. 557k 28k 1546k 203k
ARC-E 554k 28k 1592k 208k
ARC-C 540k 27k 1553k 205k
MMLU 656k 30k 1731k 213k
HellaSwag 527k 29k 1488k 198k
C-Eval 505k 26k 1365k 189k
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Candidate:
You are a helpful assistant that follows the instructions of the user. You must output in less than 200 words and your 
responses should be concise and accurate. 

Interactor:
As an expert interviewer, initiate a reflective dialogue by asking the user to describe the rationale behind their answer to 
the multiple-choice question. You must output in less than 200 words. Encourage them to be succinct and precise. Guide 
the conversation to uncover and address any misconceptions, prompting the user to critically evaluate their thinking 
process. Their answer is likely to be incorrect. Avoid prompting the user to merely explain their choice, this is very 
important. Instead, focus on probing questions that challenge their assumptions and lead them to a deeper 
understanding of the topic. The outputs from the user is very likely to be wrong, do not validate misinformation or 
incorrect logic; instead, use it as a point of assessment. Remember, you are not educating the user, be neutral and do 
not give comments since you are the interviewer instead of the evaluator, this is very important. Do not ask too many 
questions before the user responds. Always skip the greetings, or any other prompting words, ask questions directly. DO 
NOT say anything else.

Evaluator:
You are an objective evaluator in an interview. Your task is to evaluate a candidate's performance during a series of 
interactions with an interactor, both parties are AI models. The candidate is asked to solve a problem, and the interactor 
will ask questions accordingly. The conversation alternates between the interactor (marked with [BEGIN INTERACTOR]) 
and the candidate (marked with [BEGIN CANDIDATE]). After each candidate response, evaluate the candidate's 
performance in that round of interaction as well as in context, based on the following aspects independently, rating each 
on a scale from 1 (Poor) to 4 (Good):
Accuracy: Truthfulness and factual correctness of the candidate's response.
Logic: Logical structure and soundness of reasoning. Whether conclusions are well-supported and arguments are free 
from logical fallacies.
Relevance: How the response relates to the topic. Ensure responses are within the scope of the "assistant" role, 
avoiding unpermitted role shifts.
Coherence: How well the response integrates into the context. Consistency with previous statements and overall 
conversational flow.
Conciseness: Brevity and clarity of the response. Clear, to-the-point communication, free from extraneous elaboration or 
repetitive words.

Scoring Guide:
1 (Poor): Significant deficiencies or inaccuracies in the aspect.
2 (Below Average): Noticeable weaknesses, partially on target but lacking in several areas.
3 (Above Average): Solid and competent, mostly on target with only a few minor shortcomings.
4 (Good): Strong performance, fully meets and often surpasses expectations.

Evaluation Rules:
1. Evaluate each response consistently and objectively without bias, strictly adhering to scoring guide.
2. Score from 1 to 4 for each aspect independently, using only integers. Low score in one aspect should not influence 
another aspect. Write a brief comment before scoring in the JSON output structure. 
3. Write a overall comment and then give an overall score (same scoring guide). The overall comment should be brief 
and clear. Consider the performance throughout the interaction, not just in the latest round.
4. Use of `stop_conversation` Flag: Set this flag to true for early conversation termination in cases listed below. If 
`stop_conversation` is true, choose a `stop_reason` from ["off_topic", "empty_response", "rule_violation", "repetition", 
"unpermitted_role_shift"], otherwise `stop_reason` is `none`.
5. Format of Evaluation: Output in JSON format strictly following the template:{"accuracy": {"comment": "", "score": 0}, 
"logic": {"comment": "", "score": 0}, "relevance": {"comment": "", "score": 0}, "coherence": {"comment": "", "score": 0}, 
"conciseness": {"comment": "", "score": 0}, "overall_comment": "", "overall_score": 0, "stop_conversation": false, 
"stop_reason": "none"}

Figure 6: The full system prompt for interactor, candidate and evaluator models.

Table 15: API usage estimation for KIEval and pairwise-
comparison based evaluation methods. Priced in USD,
according to openai’s GPT-4 pricing policy.

Method 1 Model 10 Models 100 Models

KIEval 27 279 2,796
Pairwise 16 720 79,200
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