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Abstract

The evaluation of large language models
(LLMs) has attracted increasing attention. Ex-
isting approaches, including human, static
dataset-based, and LLM-based evaluation,
might face limitations such as data contami-
nation, constrained generalizability, and high
cost coupled with limited scalability. In this
paper, we introduce the Knowledge-grounded
Interactive Evaluation (KIEval), a novel ap-
proach to assessing instruction-tuned LLMs.
Starting with a question in a conventional LLM
benchmark involving domain-specific knowl-
edge, KIEval exploits dynamically generated
and knowledge-centric multi-round dialogues
to mitigate data contamination and enhance the
reliability of evaluations. The framework of
KIEval is generalizable across various domains
and tasks, yielding a scalable and cost-effective
approach that can efficiently yet robustly as-
sess knowledge generalization and generation
capabilities of LLMs. With KIEval, we hope
to bring new insights into evaluating LLMs
effectively in conversation scenarios and how
data contamination impacts LLMs’ real-world
performance.

1 Introduction

The landscape of artificial intelligence has been sig-
nificantly reshaped by the emergence of Large Lan-
guage Models (LLMs) as they have been pivotal in
various natural language understanding and gener-
ation tasks (Brown et al., 2020; OpenAl, 2023;
Bubeck et al., 2023). As LLMs become more
ingrained in our technological fabric, their com-
prehensive evaluation becomes increasingly essen-
tial (Chang et al., 2023).

Existing evaluation approaches can be classi-
fied into three types: human evaluation, static
dataset-based evaluation, and LLM-based evalu-
ation. Static dataset-based evaluation (Clark et al.,
2018; Zellers et al., 2019; Hendrycks et al., 2020;
Huang et al., 2023) require LLMs to generate a

short span of text containing answer choices to pre-
defined questions (Gao et al., 2021) to challenge
model’s knowledge. LLM-based automatic evalua-
tion evaluations (Chiang and Lee, 2023) typically
depend on LLM evaluators to evaluate model’s out-
put given predetermined, human-curated question
templates (Zheng et al., 2023; Lin and Chen, 2023;
Fu et al., 2023) or instructions (Wang et al., 2023b).

However, the evaluation of LLMs still faces sev-
eral challenges. First, Data Contamination Com-
promises the Evaluation Integrity: the evalua-
tion based on static datasets is recently challenged
due to its possible susceptibility to data contam-
ination (Schaeffer, 2023; Wei et al., 2023; Oren
et al., 2023; Sainz et al., 2023), where models
trained on test sets can artificially inflate bench-
mark performance, failing to reflect real-world
performance (Zhou et al., 2023). Despite the in-
creasing number of high-quality datasets, data con-
tamination remains a significant challenge. Sec-
ond, Limited Generality: The LLM-based eval-
uation relies on human-curated inputs, which are
resource-intensive to gather, limiting their appli-
cability across diverse domains and tasks. Fur-
thermore, they also face contamination since static
testing inputs are publicly accessible and easily
compiled (Daniele and Suphavadeeprasit, 2023).
These methods lack the capacity to dynamically
test a model’s generative ability to maintain coher-
ent and contextually relevant conversations. Third,
Cost and Scalability: Human evaluations, though
insightful (Novikova et al., 2017), often lack con-
sistency (Peng et al., 1997) and are resource-
intensive (Karpinska et al., 2021). Similarly, cre-
ating and maintaining high-quality benchmark
datasets is not only time-consuming but also hard
to scale, posing significant resource challenges.

These challenges underscore the need for a more
dynamic, generalizable, scalable evaluation frame-
work that can more accurately reflect the gener-
ative capabilities of LLMs in practical scenarios.



In this paper, we introduce KIEval, a Knowledge-
grounded Interactive Evaluation framework. The
KIEval evaluation process initiates with a ques-
tion derived from an existing benchmark dataset
that requires domain-specific knowledge. Diverg-
ing from traditional methods, which primarily con-
centrate on choosing candidate answers, KIEval
places greater emphasis on generative capabilities.
It achieves this through structured and dynamically
generated multi-round dialogues specifically tai-
lored to explore knowledge related to the question.
KIEval exhibits the following three advantages over
existing evaluation approaches:

* Avoiding Contamination: By leveraging dy-
namically generated, multi-round dialogues fo-
cused on domain-specific topics with LLMs,
KIEval reduces the risk of data contamination
since all interactions are dynamic, providing a
more grounded evaluation.

» Task-agnostic: By design, KIEval supports eval-
uation on various domains, languages, and tasks.
It does not require extra human effort in writing
templates or comparison pairs for evaluation.

* Cost-effectiveness and Scalability: Utilizing
existing high-quality benchmark datasets for
evaluations, KIEval offers a cost-effective solu-
tion to the challenges of traditional human eval-
uations and dataset maintenance. Its scalable
design, avoiding quadratic complexity typical of
pairwise model comparisons (Wang et al., 2023b;
Zheng et al., 2023), significantly reduces com-
putational demands, particularly advantageous
for evaluations involving numerous models.

Crucially, we validate KIEval’s alignment with
humans and compare the results with existing
benchmarks. Human annotation is used in the meta-
evaluation of KIEval to prove its alignment to hu-
man preference. The high level of concordance
with human judgments attests to KIEval’s effective-
ness in mirroring human preference.

Our core contributions are three-fold:

* A new dynamic evaluation protocol: We provide
KIEval to evaluate LLMs through dynamically
generated multi-turn dialogues to mitigate the
issues of data contamination, limited generaliza-
tion, and high cost.

» Extensive experiments: We conduct thorough
experiments and analysis with 7 leading LLMs

across 5 datasets with KIEval, assessing gen-
erative abilities and domain knowledge. Our
findings also reveal the susceptibility of static
dataset-based and LLM-based evaluations to
data contamination, a challenge KIEval effec-
tively mitigates.

* New insights on data contamination: We further
discuss how data contamination affects model’s
generative performance, and test whether such
contamination leads to mere memorization of
answers or contributes to genuine understanding
and generalization abilities.

2 Related Work
2.1 Evaluating LLMs

Human evaluation approaches manually design ex-
periments and tests (Novikova et al., 2017; Bom-
masani et al., 2023). While it provides insights
into human-model interaction, it faces challenges
due to the subjectivity and inconsistency of hu-
man judgments (Chang et al., 2023). Moreover,
it is resource-intensive in terms of time and cost,
limiting its feasibility for large-scale assessments
(Karpinska et al., 2021).

Static dataset-based approaches assess LLMs fo-
cused on domain-specific questions or tasks using
pre-defined static datasets. Typical evaluation tasks
include solving single or multiple-choice prob-
lems (Clark et al., 2018; Hendrycks et al., 2020;
Huang et al., 2023) and question answering (Lin
et al., 2021; Cobbe et al., 2021), these tasks require
LLMs to generate short spans of text containing
answers to the questions (Gao et al., 2021). The
performance of LLMs is measured by their ability
to correctly answer or perform these tasks.

LLM-based evaluation, utilizing one strong
LLM (Brown et al., 2020; OpenAl, 2023) to as-
sess others, is a recent approach that often employs
pairwise comparisons to identify nuanced differ-
ences in model outputs, addressing the challenge
of determining clear model superiority (Wang et al.,
2023b; Zheng et al., 2023). This method bridges
the gap between human and dataset-based evalua-
tions by focusing on generative abilities. However,
this approach has limitations, including reliance
on fixed templates (Zheng et al., 2023), instruc-
tions (Wang et al., 2023b; Li et al., 2023), or multi-
round chat datasets (Fu et al., 2023; Lin and Chen,
2023), limiting its scope in capturing diverse do-
main knowledge and real-world applicability. It
also faces contamination risks, as training on out-
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Figure 1: The pipeline of KIEval compared to previous static dataset-based and LLM-based evaluation methods.

puts from a strong LLM can inflate results, as noted
in work from Daniele and Suphavadeeprasit (2023)
collect data from MT-Bench (Zheng et al., 2023) as
training data while AlpacaEval (Li et al., 2023) con-
tains evaluation set from various instruction-tuning
dataset. Additionally, studies indicate potential bi-
ases in these evaluations, such as positional bias
(Zeng et al., 2023; Wang et al., 2023a,b).

2.2 Addressing Data Contamination of LLMs

Recently, the Al community has become increas-
ingly concerned (Schaeffer, 2023; Zhou et al.,
2023; Oren et al., 2023) about data contamination
in LLMs. Wei et al. (2023); Shi et al. (2023) lever-
aged loss values or token probabilities to detect
whether certain text appears in the training data
of models. Zhu et al. (2023) leveraged DAG to
dynamically generate evaluation data in reasoning
tasks, while Liu et al. (2023) dynamically gener-
ated out-of-distribution evaluation sets using ex-

isting datasets. In comparison, KIEval only re-
quires access to output text of evaluated models
and detects data contamination through evaluating
its ability to generalize and utilize knowledge as
well as generative ability, which requires a deeper
understanding of knowledge instead of mere mem-
orization of the answers.

3 Methodology

3.1 Overview of the KIEval Framework

KIEval involves a series of iterative interactions,
as depicted in Figure 1. KIEval is engineered to
dynamically evaluate the conversational abilities
of LLMs through interactive dialogues focusing on
domain-specific topics that challenge LLMs’ gener-
ative ability and in-depth generalization of knowl-
edge. It simulates realistic conversation flows, of-
fering a dynamic alternative to the static question-
answer format of traditional benchmarks.



KIEval orchestrates an evaluation where an
LLM, referred to as the candidate (the model un-
der evaluation), must understand and respond to
an evolving series of questions. These question
prompts are generated by an interactor model, de-
signed to challenge the candidate with contextually
rich scenarios. The responses from the candidate
are then assessed by an evaluator model, which
scrutinizes the output for factual accuracy, rele-
vance, and coherence. The interactor and evalu-
ator are both strong LLMs (e.g., GPT-4, Gemini,
Claude 2, LLaMA2-70B-chat, etc.) as the standard
practice of LLM-based evaluation protocols.

The design of KIEval emphasizes the importance
of reproducibility and consistency in LLM evalu-
ations. By employing separate models for the in-
teractor and evaluator roles, KIEval ensures that
the dialogue context remains consistent across dif-
ferent evaluations, as it is fair for the same con-
versation to be assessed by various evaluators or
the same evaluator with different seeds, facilitating
a voting strategy to ensure consistent evaluation
results. To achieve reproducibility, KIEval utilizes
deterministic outputs from LLMs, such as the latest
gpt-4-1106-preview model with temperature sam-
pling disabled and a fixed seed or deploying local
models as evaluators. This guarantees identical re-
sponses in every run. Due to space limits, we show
the complete system prompts in Appendix F.

3.2 Interactive Evaluation Procedure

The interactive evaluation procedure can be de-
scribed by Algorithm 1. In LLM-based bench-
marks, we hypothesize that the evaluator (M g)
models, given their advanced capabilities, can reli-
ably evaluate the performance of less sophisticated
candidate models (M) (Zheng et al., 2023; Zeng
et al., 2023). Nevertheless, their applicability as
definitive standards is not without limitations, espe-
cially when confronting arduous benchmarks. To
counteract this, a methodical sampling and verifi-
cation strategy is employed to ensure the validity
of their evaluative judgments.

This strategy commences by sampling a subset
Qg from the original benchmark dataset Q, to en-
compass a wide range of difficulty levels. Both
Mg and M are then independently tested against
Qg. The aim is to discern a ‘confident set’ of
problems that both models can solve with high con-
fidence. The ‘confident set’ Qy is defined as:

Qv = {q € Qs|Conf(ME,q) > 6 A Conf(My,q) > 6},

Algorithm 1 KIEval Interactive Evaluation Procedure

Require: Benchmark dataset Q, Interactor model M, Can-
didate model M ¢, Evaluator model M g, seed r.

1: Seed everything with r, disable temperature sampling for
M, Mc, MEg to ensure deterministic outputs.

: Qg <+ Sample subset from Q with random seed 7.

1 Qv « Verify, filter samples from Qg with M, Mg.

: for each question q : (Ginput; Gans) in Qv do

Initialize interaction history S < () and evaluation

history E < (.

Qpred < Predict with M given question ginput-

Or < Generate initial question prompt from M;

using question g and candidate’s answer gpred.

8: S+ Su{Or}

9:  while not end of dialogue do

DR W

2

10: Oc¢ < Generate response from M ¢ using S.
11: S+ SU{Oc¢}.

12: Of < Evaluate response using Mg with S, E.
13: E +— FEU{0Og}.

14: if Early stopping criteria met for Oc then

15: break

16: end if

17: Or < Generate next question from M using S.
18: S+ Su{0Or}

19: end while

20: Parse and store results from E.

21: end for

22: K < Calculate KIEval scores with E.

23: return K

where Conf(M, q) calculates the confidence of
model M in providing the correct answer to prob-
lem g, and 6 represents the confidence threshold.

3.3 Evaluation Metrics

KIEval implements a scoring system to quantita-
tively grade the performance of candidate LLMs in
different aspects. Responses are rated on a defini-
tive scale from 1 to 4 for each aspect, where 1
and 4 denote ‘Poor’ and ‘Strong’ performance, re-
spectively, as detailed in Table 1. These scores
are intended to be definitive to encourage decisive
evaluations and are accompanied by comments for
interpretability and insights into each score.

After the last round of interaction, we calculate
the KIEval score, which quantitatively measures
the results given by the evaluator model, emphasiz-
ing sustained and high-quality long conversations.
Formally, we propose a decaying weighted scor-
ing mechanism to compute the KIEval score for
normalized scores sq, S1, . . . , S, in 7 rounds:

KIEvalScore =

where the weight for the i-th round is computed as
w; = exp(—~1). This ensures the scores for early
rounds have greater influence, encouraging mod-
els to maintain consistent performance through-



Table 1: Evaluation Metrics and Scoring Guide for KIEval. We compute KIEval Score for each metric and a overall

KIEval Score as described in 3.3.

Evaluation Metrics

Metric Description

Scoring Guide

Accuracy  Truthfulness and factual correctness of the candidate’s response.

Logic Logical structure and soundness of reasoning, including the support and validity of conclusions.
The extent to which the response stays on topic and within the scope of the assistant role.
Coherence Integration into the context, consistency with previous statements and conversational flow.

Relevance

Score Criteria
1 Poor Significant deficiencies or inaccuracies.
2 Below Avg. Noticeable weaknesses, lacking in several areas.

Mostly on target with a few minor shortcomings.
Strong performance, often surpasses expectations.

3 Above Avg.
4 Strong

Conciseness Brevity and clarity of the response, avoiding unnecessary elaboration or repetition.

out the conversation. The normalization ensures a
bounded KIEval score, with 1.0 indicating perfect
performance across all rounds.

In addition to these metrics, KIEval incorporates
an early stopping mechanism within the evaluative
process. The evaluator model (M g) possesses the
discretion to prematurely end the conversation if
the candidate’s response is egregiously inadequate.
Criteria for early termination include significant
deviations from the topic, empty responses, unper-
mitted role shifts, and hallucinatory content. We
adopt this strategy to measure how well the candi-
dates maintain a meaningful conversation.

4 [Experiments

In this section, we conduct experiments designed
to rigorously test the KIEval framework. Our ob-
jectives are threefold: (1) to evaluate the generative
performance and generalizable knowledge of popu-
lar large language models on KIEval using existing
benchmark datasets; (2) to assess the impact of
data contamination on model performance, specifi-
cally examining whether such contamination leads
to mere memorization or contributes to genuine
understanding and generalization; and (3) to de-
termine the alignment with human, reliability, and
effectiveness of KIEval.

For setup, we select GPT-4 (OpenAl, 2023) to be
both the evaluator and interactor model by feeding
it corresponding prompts with a fixed seed to en-
sure deterministic outputs. The candidate models
are engaged in KIEval conversations, starting with
selected problems from the aforementioned bench-
mark datasets. We apply the aforementioned sam-
pling and verification strategy to select 200 samples
for each dataset, allowing a maximum of 5 rounds
of conversation. The candidates’ performance are
assessed using the KIEval framework, which evalu-
ates responses based on accuracy, logic, relevance,
coherence, and conciseness. In Table 2, we also re-
port dataset-based benchmark accuracies in 5-shot
settings and LLLM-based benchmark scores from
AlpacaEval (Li et al., 2023) and MT-Bench (Zheng

et al., 2023) in comparison.

4.1 Evaluation of Popular LLMs by KIEval

In this experiment, we utilized five popular
LLM benchmark datasets: ARC-Easy and ARC-
Challenge (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), MMLU (Hendrycks et al., 2020), and
C-Eval (Huang et al., 2023). For candidate models,
we selected a diverse set of 7 LLMs: including
proprietary model GPT-3.5 (Brown et al., 2020)
with API access and open-access foundation mod-
els: Llama 2 (Touvron et al., 2023b) 7B, 13B, 70B;
Mistral-7B (Jiang et al., 2023); Yi-6B-chat (01.Al,
2023); MPT-7B (MosaicML, 2023).! Detailed in-
troduction of these datasets and models can be
found in Appendix A.

Referencing Table 2, we observe the following
trends: GPT-3.5 demonstrated consistently high
performance across all datasets, particularly ex-
celling in KIEval scores, which indicates strong
contextual understanding and response generation.
LLaMA?2 70B showed competitive results, achiev-
ing only a marginal gap from GPT-3.5 on ARC-E,
ARC-C, HSwag and even surpasses GPT in MMLU
when measured by dataset accuracies, but we can
significantly observe a larger gap between these
two models with KIEval metrics in all datasets
which is also observed by MT-Bench results as re-
ported in Table 2. This suggests that traditional
benchmarks may sketch the difference in perfor-
mance between LLMs as these benchmarks only
let models generate a short span of text to evaluate
which focus on testing understanding ability. Thus
it is hard for these benchmarks to accurately reflect
performance gaps in generative tasks.

From the results of different aspects visualized
in Figure 2, we observe that most models we test
here exhibit relatively strong performance in terms
of relevance and could generate coherent responses.
Larger models generally perform better in bench-
marks, but it is notable that LLaMA2 70B does

]By default, we use the ‘chat’ versions of Llama2, Yi, and
MPT models and the ‘Instruct’ version of Mistral model.



Table 2: Comparative Evaluation of LLMs using KIEval, AlpacaEval, MT-Bench and human evaluation win-rates.
We report AlpacaEval win-rates and MT-Bench scores with GPT-4 as evaluator from the official leaderboards except
for missing models; ‘Acc.” denotes 5-shot accuracy setting on each dataset or average accuracies in ‘Overall’;
‘KIEval’ and ‘Rnds’ denote the KIEval score and average rounds of valid conversation rounds.

ARC-Easy ARC-Challenge MMLU HellaSwag C-Eval Overall
Acc. KIEval Rnds.| Acc. KIEval Rnds.| Acc. KIEval Rnds.| Acc. KIEval Rnds.| Acc. KIEval Rnds.| Acc. AlpacaBval MT-Bench KIEval Human

GPT-3.5 92.7 97.6 497|823 955 494|582 96.2 4.95|76.6 88.2 4.82|50.8 83.3 4.72|72.1 81.7 839 92.1 69.8
LLaMA2 70B|92.3 90.7 4.85|80.4 84.1 4.66/61.8 89.6 4.80(74.4 80.1 4.41|42.0 61.0 3.94(70.2 927 6.86 8l.1 63.6
LLaMA2 13B|81.9 86.2 4.70|65.7 78.6 4.56|52.1 87.4 4.76(59.3 78.5 4.66|37.8 54.4 3.74|59.4 8l.1 6.65 77.0 625
LLaMA27B |73.6 78.9 4.49|55.7 74.4 4.44|44.5 83.0 4.61|39.8 764 4.54|33.4 493 3.62|494 714 627 724 354
Mistral 7B 83.5 80.8 4.64|67.5 785 4.46|52.7 83.0 4.62|54.4 703 4.34|39.3 522 3.61|59.5 655 6.84 73.0 582
Yi 6B 90.7 83.8 4.58|79.0 76.8 4.33|61.9 86.5 4.58|73.7 68.7 4.20|71.5 55.6 3.66|754 545 486 743 46.2
MPT 7B 533 684 434|434 655 433|339 747 446|273 573 4.10|126.2 449 352|368 434 542 622 241
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Figure 2: Detailed evaluation result using KIEval, including the overall KIEval score, and KIEval scores for aspects:
Accuracy, Logic, Relevance, Coherence and Conciseness. In comparison, we also provide dataset accuracies
(5-shot). Due to page limits and the large volume of experimental data, the complete results are put in Appendix E.

not perform well in generating concise responses,
compared to its smaller counterparts. Although
MPT performs weakly in accuracy, its ability to
generate concise responses deserves a closer look
at its instruction-tuning data.

One interesting finding is that Yi-6B performs
unexpectedly well in all benchmark dataset accu-
racies, especially with it surpasses GPT-3.5 and
all other models by a large margin of over 20%
in the C-Eval dataset while exhibiting a similar
performance of LLaMA2 70B in other datasets.
However, Yi-6B’s KIEval score is very similar to
LLaMA?2 7B and in the range of other 7B models,
while it only performs marginally better in the Chi-
nese dataset C-Eval. This raises our concern over
potential data contamination in Yi-6B.

4.2 Resilience to Data Contamination

In this subsection, we show that existing static
dataset-based and LLM-based evaluation ap-
proaches are prone to data contamination while
KIEval is resilient to data contamination.
Contamination on static dataset-based eval-
uation. We train two models on the test sets
to introduce contamination in the pre-training
(‘PT-Cheater’) and supervised fine-tuning (‘SFT-
Cheater’) phases using un-tuned LLaMA-2 7B as
the backbone. For PT-Cheater, test set contents

are integrated into the pre-training set. Subse-
quently, the model undergoes fine-tuning with the
ShareGPT (Eccleston, 2023), a commonly used
instruction-tuning dataset, to develop chat function-
alities. Conversely, the SFT-Cheater replicates this
process but adapts the test data to the SFT format.
As a control, we also train the backbone solely
with ShareGPT (‘Normal’), devoid of contamina-
tion, ensuring uniform training conditions across
all models. From results in Table 3, it is clear
that the accuracies for benchmarks are significantly
boosted, by a large margin of over 60%, suggest-
ing a susceptibility to data contamination. How-
ever, when faced with KIEval, the cheater models
perform slightly worse than ‘Normal’ model, not
positively affected by data contamination. The av-
erage rounds of valid conversation is lower in the
cheater models, from the reasons specified by Fig-
ure 4, contaminated models tend to go off-topic of
the conversation, repetitively stick to the incorrect
knowledge making the conversation meaningless to
continue. We can infer from this result that training
models on test sets does not bring generalizable
domain knowledge, instead, only contributing to
mere memorization of knowledge from test sets.
Contamination on LLM-based evaluation.
We also find existing LLM-based evaluations vul-
nerable to data contamination, due to their reliance



Table 3: Comparison on different data contamination
scenarios on ARC-C and MMLU datasets, measured
with 5-shot accuracy, KIEval score, and average rounds
of valid conversation in KIEval.

Dataset ARC-Challenge MMLU

Model Acc. KIEval Rounds Acc. KIEval Rounds
PT-Cheater 86.54 52.13 3.46 72.52 51.82 3.40
SFT-Cheater 77.65 58.46 397 61.60 72.74 4.36
Normal 52.35 62.60 4.16 42.69 76.02 4.57
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Figure 3: Scatter plots of KIEval scores and traditional
benchmark scores by model and dataset. Each point
represents the performance of a model on a specific
dataset, measured by the KIEval score and accuracy
score (5-shot). Regression lines are plotted for each
dataset. Points significantly above the regression line in-
dicate the performance gap not captured by traditional
benchmark but captured by KIEval, while points signifi-
cantly below the regression line indicate potential data
contamination in traditional benchmarks.

on static templates. We train the fine-tuned model
(‘Normal’) with MT-Bench input templates and
GPT-4 outputs using only 80 samples and test it
against MT-Bench and KIEval. Table 4 reveals
that contamination training notably inflates the
MT-Bench score by 1.79, a surge over 45% com-
pared to the baseline. This contrasts with the stable
ARC-Challenge accuracy and the slight decrease
in KIEval scores, reinforcing our conclusion."

Correlation analysis. To further investigate the
correlation between dataset-based benchmarks and
KIEval, we use regression analysis as shown in
Figure 3. We also leverage the Pearson correlation
coefficient to provide quantitive analysis in Table 5.
The results revealed a significant positive corre-

0301 s Normal
0.25 SFT-Cheater
0.20 W PT-Cheater

Frequency %

role shift

repetition off rule empty
topic violation response

Figure 4: Statistics on reasons to stop conversation given
by the evaluator model.

Table 4: Contamination in MT-Bench (Zheng et al.,
2023) scores. We report 5-shot accuracy on ARC-
Challenge and KIEval results in comparison.

Model Acc. MT-Bench KIEval
Normal 5235 3.96 62.60
+MT-Bench 52.25 5.75 57.46

lation between KIEval scores and dataset-based
benchmark accuracies. This correlation under-
scores KIEval’s alignment with traditional evalua-
tion methods. However, we also bring new insights
that traditional benchmarks do not offer: while
dataset-based benchmarks effectively assess LLM
knowledge under contamination-free conditions,
their results are easily inflated in the presence of
data contamination. In contrast, KIEval exhibits
a lower susceptibility to these issues. Visual anal-
ysis offers additional perspective by contrasting
model performances as per benchmark accuracies
and KIEval scores. Models significantly above the
regression line suggest capabilities beyond those
captured by traditional benchmarks. In this sce-
nario, traditional benchmarks are not sufficiently
challenging to effectively differentiate the stronger
models from others, nor do they accurately repre-
sent the generative capabilities of these models. It
is evident that GPT-3.5 is included in this category.
Conversely, models falling below the regression
line, exhibiting high benchmark accuracy but low
conversation quality, suggest limited real-world ap-
plicability, potentially indicative of data contami-
nation. Interestingly, the visualization shows that
not only does our simulated SFT Cheater model
fall into the outlier category below the regression
line, but Yi-6B also exhibits similar behavior.

4.3 Meta Evaluation of KIEval

Meta evaluation serves as a critical layer of assess-
ment, ensuring that KIEval not only performs the-
oretically but also aligns practically with broader



Table 5: Pearson correlation coefficient of KIEval scores
and dataset accuracy scores. Due to suspected data
contamination in Yi-6B, we report two sets of results
with and without Yi.

r P
pcc r p Excl Yi Excl. Yi

Overall
ARC-E

0.664 1.37E-05 0.765 8.67E-07
0.892 6.97E-03 0.934 6.45E-03
ARC-C  0.839 1.83E-02 0.940 5.29E-03
MMLU 0.814 2.57E-02 0.876 2.21E-02
HellaSwag 0.686 8.85E-02 0.862 2.74E-02
C-Eval  0.427 3.40E-01 0.924 8.42E-03

evaluation standards. Building upon the correla-
tion analysis provided earlier, we further validate
KIEval’s efficacy by analyzing its alignment with
human preference. We also provide a cost analysis
of our method in terms of compute resources and
API usage.

Human evaluation. To validate KIEval’s align-
ment to human preference, we randomly sample 60
unique conversation pairs from 3 datasets, where
each pair contains the conversations between two
candidate models and interactor models in the same
topic. We ensure the two conversations within the
same pair with difference in KIEval score. De-
tailed rules for human annotation are shown in
Appendix C. For each dataset, we ask 2 human
annotators to independently decide which model
performs better throughout the conversation and an
additional annotator to resolve the conflicts. This
process allowed us to measure the Inter Annota-
tor Agreement (IAA) and compare the agreement
rate between human judgments and KIEval scores,
thereby validating the human-like evaluative capa-
bilities of KIEval. The high level of agreement,
shown in Table 6, between human annotators and
KIEval scores reinforced KIEval’s validity. The
strong Inter Annotator Agreement (IAA) further at-
tested to the robustness of KIEval as a human-like
evaluation method.

Cost and scalability. Assessing KIEval’s scal-
ability requires a thorough evaluation of overall
costs. Our method employs a strong LLM accessed
via API, with expenses based on input and out-
put token lengths. Table 14 details the average
token count per model evaluation across diverse
datasets. Additionally, the average GPU expen-
diture for single model evaluations on NVIDIA
A100 GPUs is provided in Table 13. Financially,
deploying GPT-4 in both interactor and evaluator
roles within KIEval incurs a cost of around 27 USD
for each model evaluation, comprising 1000 inter-

Table 6: Inter-Annotator Agreement (IAA) measured by
Cohen’s Kappa, and the agreement rate between human
annotators and KIEval results.

Avg. ARC-E ARC-C C-Eval

k 0.700  0.699 0.734  0.667
po 0.833  0.850 0.817  0.833

action rounds. Importantly, due to our adoption
of single-answer grading over pairwise compari-
son (Wang et al., 2023b; Zheng et al., 2023), costs
increase linearly rather than quadratically with the
number of models evaluated. For a comprehensive
understanding of the cost implications at scale, we
present a detailed estimation in Table 15.

5 Limitations

Our method, while insightful, relies on the hypoth-
esis that the LLLM evaluator can reliably assess the
performance of less sophisticated models, but their
applicability as definitive standards is not without
limitations, especially when confronting arduous
benchmarks or evaluating a stronger model. This
limitation is also applicable to any LL.M-based eval-
uation method. To mitigate this, future research
could explore a hybrid approach, combining LLM
evaluators with other evaluation methodologies or
explore leveraging a broader range of language
models as evaluator models for a more comprehen-
sive assessment.

6 Conclusion

KIEval provides a dynamic evaluation and analy-
sis of LLMs across various domains, evaluating
generative abilities and domain knowledge through
structured conversations instead of relying on fixed
templates or instructions, reducing the risk of data
contamination and enhancing the reliability of eval-
uations, while preserving alignment with human
preference. The primary limitation of static dataset-
based benchmarks lies in their reliance on brief
text generation, which inadequately captures the
full spectrum of LLMs’ generative abilities and
is susceptible to data contamination. Our study
shifts the focus from merely detecting exposure
to specific training texts to a more comprehensive
evaluation of models’ generalizable knowledge and
real-world applicability. We believe that KIEval
will serve as a valuable tool for researchers and
practitioners alike, aiding in the development of
more robust, versatile, and ethical Al systems.
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A Datasets

We use the following datasets in our experiments,
for statistics and used splits, please refer to Table 7.
ARC-Easy and ARC-Challenge (Clark et al.,
2018): Both are subsets of the AI2 Reasoning
Challenge, a benchmark for assessing a model’s
reasoning and understanding in science questions.
ARC-Easy contains simpler questions, while ARC-
Challenge includes more complex ones.

HellaSwag (Zellers et al., 2019): challenges
models to complete realistic scenarios in text, test-
ing common sense and predictive abilities.

MMLU (Hendrycks et al., 2020): A compre-
hensive English examination composed of multiple-
choice questions encompassing a wide array of dis-
ciplines. This extensive test includes subjects rang-
ing from humanities and social sciences to hard
sciences, alongside other essential areas of knowl-
edge. It encompasses 57 distinct tasks, covering
fields such as elementary mathematics, US history,
computer science, law, and beyond.

C-Eval (Huang et al., 2023): A comprehen-
sive Chinese evaluation composed of 13948 multi-
choice questions spanning 52 diverse disciplines
and four difficulty levels.

B Potential Risks

While KIEval advances the evaluation of Large
Language Models (LLMs), it is not without poten-
tial risks. Primarily, reliance on strong LLMs as
evaluators could inadvertently propagate existing
biases or limitations inherent in these models. The
computational and financial costs associated with
using high-performance LLMs for continuous eval-
uations could be a barrier for widespread adoption,
particularly for researchers with limited resources.

C Use of Human Annotation

For human annotation in our work, all annotators
are authors of this paper who previously have not
accessed the outputs of models in our experiments
and volunteer to contribute. All annotators agree
on how the data would be used. Since the data
to be annotated come from open-source datasets
and popular LLMs, ethical concern is not appli-
cable. We provide guides for each annotator and
for each annotator, we give them a unique URL to
our annotation platform built with Gradio as shown
in 5: ‘Everyone is given some conversations be-
tween candidate model and interactor model. Each
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instance to be labeled as a pair of conversations
from different LLMs given the same context, and
we need to judge which conversation is better over-
all, considering the conversation’s factual accuracy,
logical structure, language conciseness and coher-
ence.’

D Use of AI Assistants

In this work, we use GitHub Copilot to assist cod-
ing, and GPT-4 to correct grammatical errors.

E Complete Experiment Results

We share the complete experiment results from all
5 datasets with 7 models, evaluated with KIEval
and benchmark accuracies in Table 8, 9, 10, 11, 12.

F Complete Prompt

The system prompts for interactor, candidate and
evaluator models are given in Figure 6.



Table 7: Details of datasets in our experiments. We report 5-shot accuracy metric of ‘Used Splits’ split for each
dataset.

Datasets Splits Used Splits  Split Size Language
ARC-Challenge train, validation, test test 1.17k English
ARC-Easy train, validation, test test 2.38k English
Hellaswag train, validation,test validation 10k English
MMLU auxiliary_train, test, validation, dev  test 14k English
C-Eval val, test, dev val 1.35k Chinese

Table 8: KIEval Results on ARC-Easy.

ARC-E ‘Accuraoy Logic Relevance Coherence Conciseness Overall Rounds ‘ Acc. (5-shot)

GPT-3.5 97.1 974 993 97.9 97.9 97.6 497 92.7
LLaMA270B| 90.3 90.3 94.6 91.3 79.6 90.7 4.85 92.3
LLaMA2 13B| 84.5 843 932 87.7 85.8 86.2 4.70 81.9
LLaMA2 7B 771 774 89.7 82.2 73.6 789 449 73.6
Mistral 7B 785 782 914 83.5 79.9 80.8 4.64 83.5
Yi 6B 834 836 909 85.8 76.4 83.8 458 90.7
MPT 7B 639 64.1 849 71.5 81.8 68.4 434 533

Table 9: KIEval Results on ARC-Challenge.

ARC-C ‘Accuracy Logic Relevance Coherence Conciseness Overall Rounds ‘ Acc. (5-shot)

GPT-3.5 94.6 947 985 96.1 97.3 955 4.94 82.3
LLaMA270B| 819 828 922 85.3 75.6 84.1 4.66 80.4
LLaMA2 13B| 754 759 913 82.3 82.6 78.6 4.56 65.7
LLaMA2 7B 70.6  71.6  90.4 719 71.7 744 444 55.7

Mistral 7B 759 75.8 90.0 81.4 79.1 78.5 4.46 67.5
Yi 6B 75.6  76.1 85.0 79.6 71.2 76.8 4.33 79.0
MPT 7B 60.2 614 83.6 69.5 81.1 65.5 4.33 43.4

Table 10: Summary of KIEval Results on MMLU

MMLU ‘Accuracy Logic Relevance Coherence Conciseness Overall Rounds ‘ Acc(5-shot)

GPT-3.5 95.5 958 983 96.7 97.4 96.2 4.95 58.2
LLaMA270B| 89.0 903 937 90.3 76.0 89.6 4.80 61.8
LLaMA2 13B| 85.8 87.0 93.9 88.6 81.4 874 476 52.1
LLaMA2 7B 822 836 919 84.7 70.4 83.0 4.61 44.5

Mistral 7B 81.6 828 905 85.3 71.5 83.0 4.62 52.7
Yi 6B 84.7 865 918 87.4 76.5 86.5 4.8 61.9
MPT 7B 70.6  72.0 86.6 719 83.0 74.7 4.46 339

Table 11: KIEval Results on HellaSwag.

HellaSwag ‘Accuracy Logic Relevance Coherence Conciseness Overall Rounds ‘ Acc. (5-shot)

GPT-3.5 85.6 856 939 90.1 93.1 88.2 4.82 76.6
LLaMA270B| 76.6 79.5 88.2 82.0 78.9 80.1 441 74.4
LLaMA2 13B| 72.6 759 88.7 83.0 85.2 78.5 4.66 59.3
LLaMA2 7B 70.8 733 873 79.9 80.2 764  4.54 39.8
Mistral 7B 65.6 67.1 83.8 75.6 75.2 703 434 54.4
Yi 6B 644 670 799 74.3 72.4 68.7 4.20 73.7
MPT 7B 50.0 51.7 743 62.5 74.4 573 4.10 27.3
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KIEval Conversation Visualizer(60 conversations)
Model A better

Select JSON File

Visualize Conversation

10 -

Model A

Which best describes the structure of an atom?

A. a lightweight core surrounded by neutral particles

B. a massive core surrounded by negatively-charged particles
C. a network of interacting positive and negative particles

D. overlapping layers of neutral, positive, and negative particles

(not visible to candidate) ### Correct Answer: B. a massive core surrounded by negatively-charged
particles

D. overlapping layers of neutral, positive, and negative particles

Interactor(Round 0)

What aspects of atomic structure led you to choose option D over the other choices?

Candidate(Round 0)

Option D best describes the structure of an atom because it states that there are overlapping layers
of neutral, positive, and negative particles. The atomic nucleus, which is the center of the atom, is
made up of positively charged protons and neutral neutrons. Surrounding the nucleus are
negatively charged electrons, which are located in different energy levels or shells. These electron
shells are known as electron clouds because they appear as fuzzy areas around the nucleus and are
separated by the space between the layers of the atom. The structure described in Option D
accurately reflects the three-dimensional arrangement of particles in an atom, which is the defining
characteristic of its structure.

Model B better

Next Conversation

Model B

Which best describes the structure of an atom?

A. a lightweight core surrounded by neutral particles

B. a massive core surrounded by negatively-charged particles
C. anetwork of interacting positive and negative particles

D. overlapping layers of neutral, positive, and negative particles

(not visible to candidate) ### Correct Answer: B. a massive core surrounded by negatively-charged
particles

B. a massive core surrounded by negatively-charged particles

Interactor(Round 0)

What factors influenced your decision to choose option B?

Candidate(Round 0)

| chose option B because it accurately describes the structure of an atom. An atom consists of a
massive core, called the nucleus, which is surrounded by negatively-charged particles called
electrons. This structure is consistent with the current understanding of atomic theory.

Interactor(Round 1)

How do you think the concept of atomic mass relates to the characterization of the atomic core as

Figure 5: We leverage Gradio to build annotation UI for human annotators. Each annotator is given a unique URL.

Table 12: KIEval Results on C-Eval

C-Eval ‘ Accuracy Logic Relevance Coherence Conciseness Overall Rounds ‘ Acc. (5-shot)
GPT-3.5 79.8 80.6 94.7 87.3 92.0 833 4.72 50.8
LLaMA270B| 57.6 58.3 80.1 66.5 64.1 61.0 3.94 42.0
LLaMA2 13B| 484 498 793 61.5 62.9 544 3.74 37.8
LLaMA2 7B 449 451 738 55.8 559 493 3.62 334
Mistral 7B 473 478 733 58.0 59.5 522 3.61 39.3
Yi 6B 53.1 541 730 59.3 559 55.6 3.66 71.5
MPT 7B 39.5 402 727 51.5 64.0 449 352 26.2

Table 13: Average GPU budget for a single model eval-
uated on one dataset with KIEval. We report results for
LLaMA?2 models with varying parameter sizes.

7B 13B 70B

GPU Hours 0.74 099 9.38
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Table 14: Average number of tokens consumed of eval-
uation on a single model across various datasets, over
200 samples with 5 rounds of interaction.

Interactor Evaluator
Prompt ~ Completion Prompt Completion
Avg. 557k 28k 1546k 203k
ARC-E 554k 28k 1592k 208k
ARC-C 540k 27k 1553k 205k
MMLU 656k 30k 1731k 213k
HellaSwag | 527k 29k 1488k 198k
C-Eval 505k 26k 1365k 189k




Candidate:
You are a helpful assistant that follows the instructions of the user. You must output in less than 200 words and your
responses should be concise and accurate.

Interactor:

As an expert interviewer, initiate a reflective dialogue by asking the user to describe the rationale behind their answer to
the multiple-choice question. You must output in less than 200 words. Encourage them to be succinct and precise. Guide
the conversation to uncover and address any misconceptions, prompting the user to critically evaluate their thinking
process. Their answer is likely to be incorrect. Avoid prompting the user to merely explain their choice, this is very
important. Instead, focus on probing questions that challenge their assumptions and lead them to a deeper
understanding of the topic. The outputs from the user is very likely to be wrong, do not validate misinformation or
incorrect logic; instead, use it as a point of assessment. Remember, you are not educating the user, be neutral and do
not give comments since you are the interviewer instead of the evaluator, this is very important. Do not ask too many
questions before the user responds. Always skip the greetings, or any other prompting words, ask questions directly. DO
NOT say anything else.

Evaluator:

You are an objective evaluator in an interview. Your task is to evaluate a candidate's performance during a series of
interactions with an interactor, both parties are Al models. The candidate is asked to solve a problem, and the interactor
will ask questions accordingly. The conversation alternates between the interactor (marked with [BEGIN INTERACTORY])
and the candidate (marked with [BEGIN CANDIDATE]). After each candidate response, evaluate the candidate's
performance in that round of interaction as well as in context, based on the following aspects independently, rating each
on a scale from 1 (Poor) to 4 (Good):

Accuracy: Truthfulness and factual correctness of the candidate's response.

Logic: Logical structure and soundness of reasoning. Whether conclusions are well-supported and arguments are free
from logical fallacies.

Relevance: How the response relates to the topic. Ensure responses are within the scope of the "assistant" role,
avoiding unpermitted role shifts.

Coherence: How well the response integrates into the context. Consistency with previous statements and overall
conversational flow.

Conciseness: Brevity and clarity of the response. Clear, to-the-point communication, free from extraneous elaboration or
repetitive words.

Scoring Guide:

1 (Poor): Significant deficiencies or inaccuracies in the aspect.

2 (Below Average): Noticeable weaknesses, partially on target but lacking in several areas.

3 (Above Average): Solid and competent, mostly on target with only a few minor shortcomings.
4 (Good): Strong performance, fully meets and often surpasses expectations.

Evaluation Rules:

1. Evaluate each response consistently and objectively without bias, strictly adhering to scoring guide.

2. Score from 1 to 4 for each aspect independently, using only integers. Low score in one aspect should not influence
another aspect. Write a brief comment before scoring in the JSON output structure.

3. Write a overall comment and then give an overall score (same scoring guide). The overall comment should be brief
and clear. Consider the performance throughout the interaction, not just in the latest round.

4. Use of "stop_conversation® Flag: Set this flag to true for early conversation termination in cases listed below. If
“stop_conversation® is true, choose a “stop_reason” from ["off_topic", "empty_response", "rule_violation", "repetition”,
"unpermitted_role_shift"], otherwise ‘stop_reason’ is ‘none’.

5. Format of Evaluation: Output in JSON format strictly following the template:{"accuracy": {"comment": ", "score": 0},
"logic": {"comment": ", "score": 0}, "relevance": {"comment": ", "score": 0}, "coherence": {"comment": "", "score": 0},
"conciseness": {"comment": ", "score": 0}, "overall_comment": "", "overall_score": 0, "stop_conversation": false,

"stop_reason": "none"}

Figure 6: The full system prompt for interactor, candidate and evaluator models.

Table 15: API usage estimation for KIEval and pairwise-
comparison based evaluation methods. Priced in USD,
according to openai’s GPT-4 pricing policy.

Method 1 Model 10 Models 100 Models

KIEval 27 279 2,796
Pairwise 16 720 79,200
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