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ABSTRACT

The framework of Pearl’s Causal Hierarchy (PCH) formalizes three types of reason-
ing: probabilistic (i.e. purely observational), interventional, and counterfactual, that
reflect the progressive sophistication of human thought regarding causation. We
investigate the computational complexity aspects of reasoning in this framework
focusing mainly on satisfiability problems expressed in probabilistic and causal
languages across the PCH. That is, given a system of formulas in the standard
probabilistic and causal languages, does there exist a model satisfying the formulas?
Our main contribution is to prove the exact computational complexities showing
that languages allowing addition and marginalization (via the summation operator)
yield NPPP-, PSPACE-, and NEXP-complete satisfiability problems, depending
on the level of the PCH. These are the first results to demonstrate a strictly increas-
ing complexity across the PCH: from probabilistic to causal and counterfactual
reasoning. On the other hand, in the case of full languages, i.e. allowing addition,
marginalization, and multiplication, we show that the satisfiability for the counter-
factual level remains the same as for the probabilistic and causal levels, solving an
open problem in the field.

1 INTRODUCTION

The development of the modern causal theory in AI and empirical sciences has greatly benefited from
an influential structured approach to inference about causal phenomena, which is based on a reasoning
hierarchy named “Ladder of Causation”, also often referred to as the “Pearl’s Causal Hierarchy”
(PCH) ((Shpitser & Pearl, 2008; Pearl, 2009; Bareinboim et al., 2022), see also (Pearl & Mackenzie,
2018) for a gentle introduction to the topic). This three-level framework formalizes various types
of reasoning that reflect the progressive sophistication of human thought regarding causation. It
arises from a collection of causal mechanisms that model the “ground truth” of unobserved nature
formalized within a Structural Causal Model (SCM). These mechanisms are then combined with
three patterns of reasoning concerning observed phenomena expressed at the corresponding layers of
the hierarchy, known as probabilistic (also called associational in the AI literature), interventional,
and counterfactual (for formal definitions of these concepts, see Sec. 2).

A basic term at the probabilistic/associational layer is expressed as a common probability, such as1

P(x, y). This may represent queries like “How likely does a patient have both diabetes (X = x)

∗Contributing equally first authors.
†Contributing equally last authors.
1In our paper, we consider random variables over discrete, finite domains. By an event we mean a proposi-

tional formula over atomic events of the form X=x, such as (X=x ∧ Y=y) or (X=x ∨ Y ̸=y). Moreover, by
P(Y=y,X=x), etc., we mean, as usually, P(X=x∧Y=y). Finally by P(x, y), we abbreviate P(Y=y,X=x).

1



Published as a conference paper at ICLR 2025

and high blood pressure (Y = y)?” From basic terms, we can build more complex terms by using
additions (linear terms) or even arbitrary polynomials (polynomial terms). This can be combined
with the use of a unary summation operator, which allows to express marginalization in a compact
way. Formulas at this layer consist of Boolean combinations of (in)equalities of basic, linear, or,
in the general case, polynomial terms. The interventional patterns extend the basic probability
terms by allowing the use of Pearl’s do-operator (Pearl, 2009) which models an experiment like a
Randomized Controlled Trial (Fisher, 1936). For instance, P([x]y) which2, in general differs from
P(y|x), allows to ask hypothetical questions such as, e.g., “How likely is it that a patient’s headache
will be cured (Y = y) if he or she takes aspirin (X = x)?”. An example formula at this layer
is P([x]y) =

∑
z P(y|x, z)P(z) which estimates the causal effect of the intervention do(X = x)

(all patients take aspirin) on outcome variable Y = y (headache cure). It illustrates the use of the
prominent back-door adjustment to eliminate the confounding effect of a factor represented by the
variable Z (Pearl, 2009). The basic terms at the highest level of the hierarchy enable us to formulate
queries related to counterfactual situations. For example, P([X=x]Y=y|(X=x′, Y=y′)) expresses
the probability that, for instance, a patient who did not receive a vaccine (X = x′) and died (Y = y′)
would have lived (Y = y) if he or she had been vaccinated (X = x).

The computational complexity aspects of reasoning about uncertainty in this framework have been
the subject of intensive studies in the past decades, especially in the case of probabilistic inference
with the input probability distributions encoded by Bayesian networks (see, e.g., (Pearl, 1988; Cooper,
1990; Dagum & Luby, 1993; Roth, 1996; Park & Darwiche, 2004)). The main focus of our work
is on the computational complexity of satisfiability problems and their validity counterparts which
enable formulating precise assumptions on data and implications of causal explanations.

The problems take as input a Boolean combination of (in)equalities of terms at the PCH-layer of
interest with the task to decide if there exists a satisfying SCM for the input formula or if the formula
is valid for all SCMs, respectively. For example, for binary random variables X and Y , the formula
consisting of the single equality

∑
x

∑
y P((X=x) ∧ (X=/ x ∨ Y=y) ∧ (X=/ x ∨ Y=/ y)) = 0 in the

language of the probabilistic layer is satisfied since there exists an SCM in which it is true (in fact,
the formula holds in any SCM)3. An SCM for inputs at this layer can be identified with the standard
joint probability distribution, in our case, with P (X=x, Y=y), for x, y ∈ {0, 1}.

The complexity of the studied satisfiability problems depends on the combination of two factors:
(1) the PCH-layer to which the basic terms belong and (2) the operators which can be used to specify
the (in)equalities of the input formula. The most basic operators are “+” and “·” (leading to linear,
resp., polynomial terms) and, meaningful in causality, the unary summation operator Σ used to
express marginalization. Of interest is also conditioning, which will be discussed in our paper, as
well. The main interest of our research is focused on the precise characterization of the computational
complexity of satisfiability problems (and their validity counterparts) for languages of all PCH layers,
combined with increasing the expressiveness of (in)equalities by enabling the use of more complex
operators.

Related Work to our Study. In their seminal paper, Fagin, Halpern, and Megiddo (1990) explore
the language of the lowest probabilistic layer of the PCH consisting of Boolean combinations of
(in)equalities of basic and linear terms. Besides the complete axiomatization for the used logic,
they show that the problem of deciding satisfiability is NP-complete indicating that the complexity
is surprisingly no worse than that of propositional logic. The authors subsequently extend the
language to include (in)equalities of polynomial terms, aiming to facilitate reasoning about conditional
probabilities. While they establish the existence of a PSPACE algorithm for deciding whether such
a formula is satisfiable, they leave the exact complexity open. Recently, Mossé, Ibeling, and Icard
(2022) resolved this issue by demonstrating that deciding satisfiability is ∃R-complete, where ∃R
represents the well-studied class defined as the closure of the Existential Theory of the Reals (ETR)
under polynomial-time many-one reductions. Furthermore, for the higher, more expressive PCH
layers Mossé et al. prove that for (in)equalities of polynomial terms both at the interventional and the

2A common and popular notation for the post-interventional probability is P(Y=y|do(X=x)). In this paper,
however, we use the notation P([X=x]Y=y) since it is more convenient for the analysis of counterfactuals.

3Interestingly, the instance can be seen as a result of reduction from the not-satisfiable Boolean formula
a ∧ (a ∨ b) ∧ (a ∨ b).
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counterfactual layer the decision problems still remain ∃R-complete (we recall the definitions of the
complexity classes in Sec. 2.2).

The languages used in these studies, and also in other works as, e.g., (Nilsson, 1986; Georgakopoulos
et al., 1988; Ibeling & Icard, 2020), are able to fully express probabilistic reasoning, resp., inferring
interventional and counterfactual predictions. In particular, they allow one to express marginalization
which is a common paradigm in this field. However, since the languages do not include the unary
summation operator Σ, the abilities of expressing marginalization are relatively limited. Thus, for
instance, to express the marginal distribution of a random variable Y over a subset of (binary) variables
{Z1, . . . , Zm} ⊆ {X1, . . . , Xn} as

∑
z1,...,zm

P(y, z1, . . . , zm), an encoding without summation
requires an expansion P(y, Z1=0, . . . , Zm=0) + . . .+ P(y, Z1=1, . . . , Zm=1) of exponential size
in m. Consequently, to analyze the complexity aspects of the problems under study, languages
allowing the standard notation for encoding marginalization using the Σ operator are needed. In
(van der Zander et al., 2023), the authors present a first systematic study in this setting. They introduce
a new natural complexity class, named succ-∃R, which can be viewed as a succinct variant of ∃R,
and show that the satisfiability for the (in)equalities of polynomial terms, both at the probabilistic
and interventional layer, are complete for succ-∃R. They leave open the exact complexity for the
counterfactual case. Moreover, the remaining variants (basic and linear terms) remain unexplored for
all PCH layers.

Our Contribution. The previous research establishes that, from a computational perspective, many
problems for interventional and counterfactual reasoning are not harder than for pure probabilistic
reasoning. In our work, we show that the situation changes significantly if, to express marginalization,
the common summation operator is used. Below we highlight our main contributions, partially
summarized also in Table 1 which involve complexity classes related to each other as follows4:

NP
⊆
⊆

∃R

NPPP

⊆

⊆
PSPACE ⊆ NEXP ⊆ succ-∃R ⊆ EXPSPACE (1)

• For combinations of (in)equalities
of basic and linear terms, unlike pre-
vious results, the compact summation
for marginalization increases the com-
plexity, depending on the level of the
PCH: from NPPP-, through PSPACE-,
to NEXP-completeness.
• The counterfactual satisfiability for
(in)equalities of polynomial terms is
succ-∃R-complete, which solves the
open problem in (van der Zander et al.,
2023).
• Accordingly, the validity problems for
the languages above are complete for
the corresponding complement com-

Terms L1 (prob.) L2 (interv.) L3 (count.)

basic
NP (a)lin

poly ∃R (b)

basic & marg.
NPPP (1) PSPACE (2) NEXP (3)lin & marg.

poly & marg. succ-∃R (c, 4)

Table 1: Completeness results for the satisfiability problems (a)
for L1 (Fagin et al., 1990), for L2 and L3 (Mossé et al., 2022),
(b) (Mossé et al., 2022), (c) for L1 and L2 (van der Zander et al.,
2023). Our results (1)-(4): Theorem 4, 8, 9, resp. Theorem 10.

plexity classes. Interestingly, both satisfiability and validity for basic and linear languages with
marginalization are PSPACE-complete at the interventional layer.

Our results demonstrate, for the first time, a strictly increasing complexity of reasoning across the PCH
– from probabilistic to causal to counterfactual reasoning – under the widely accepted assumption
that the inclusions NPPP ⊆ PSPACE ⊆ NEXP in Eq. (1) above are proper. This relation, in the
case of basic and linear languages with marginalization, aligns with the strength of their expressive
power: From previous research, we know that the probabilistic languages are less expressive than
the causal languages, and the causal languages, in turn, are less expressive than the corresponding
counterfactual languages (for more discussion on this, see Sec. 3).

In addition, the impact of establishing exact completeness results for probabilistic, causal, and
counterfactual reasoning, as stated in our work, lies in their implications for algorithmic approaches

4The relationship between ∃R and NPPP is unknown.
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to solve these problems. Under widely accepted complexity assumptions like, e.g., NP ̸= PSPACE,
the completeness of a problem highlights inherent limitations in applying algorithmic techniques,
such as dynamic programming, divide-and-conquer, SAT- or ILP-solvers, which are only effective
for NP-complete problems. This, in turn, justifies the use of heuristics or algorithms of exponential
worst-case complexity. Moreover, using the succ-∃R-completeness as a yardstick for measuring
computational complexity of problems, we show that the complexity of counterfactual reasoning (for
the most general queries) remains the same as for common probabilistic reasoning. This is quite a
surprising result, as the difference between the expressive power of both settings is huge.

Structure of the Paper. In Sec. 2, we provide the main concepts of causation and define formally
the problems considered in this work. We derive the complexity of satisfiability for basic and linear
languages in Sec. 3 and for polynomial languages in Sec. 4. Due to space constraints, some proofs are
omitted from the main text, and only proof outlines are provided. The complete proofs can be found
in Sec. A in the appendix. Furthermore, Sec. B in the appendix, provides an example illustrating the
three types of reasoning in the framework of the PCH and in Sec. C we give formal definitions for the
syntax and semantics of the languages of the hierarchy.

2 PRELIMINARIES

In this section, we give definitions of the main concepts of the theory of causation, including the
Structural Causal Model (SCM), provide syntax and semantics for the languages of the PCH, and
discuss the complexity classes used in the paper. To help understand the formal definitions, we
encourage readers unfamiliar with the theory of causation to refer to Section B in the appendix, where
we provide an example that, we hope, will make it easier to understand the formal definitions and the
intuitions behind them.

2.1 THE LANGUAGES OF CAUSAL HIERARCHY

We give here an informal but reasonably precise description of the syntax and semantics of the
languages studied in this paper. For formal definitions, see Section C in the appendix.

We always consider discrete distributions and represent the values of the random variables as
Val = {0, 1,..., c− 1}. We denote by X the set of variables used in a system and by capital letters
X1, X2,..., we denote the individual variables. We assume that Val is fixed and of cardinality at least
two, and that all variables Xi share the same domain Val . A value of Xi is often denoted by xi or a
natural number. By an atomic event, we mean an event of the form X = x, where X is a random
variable and x is a value in the domain of X . The language Eprop of propositional formulas δ over
atomic events is defined as the closure of such events under the Boolean operators ∧ and ¬. The
atomic intervention is either empty ⊥ or of the form X = x. An intervention formula is a conjunction
of atomic interventions. The language of post-interventional events, denoted as Epost-int, consists the
formulas of the form [α]δ where α is an intervention and δ is in Eprop. The language of counterfactual
events, Ecounterfact, is the set Epost-int closed under ∧ and ¬.

The PCH consists of languages on three layers each of which is based on terms of the form P(δi),
with i = 1, 2, 3. For the observational (associational) language (Layer 1), we have δ1 ∈ Eprop, for
the interventional language (Layer 2), we have δ2 ∈ Epost-int, and, for the counterfactual language
(Layer 3), δ3 ∈ Ecounterfact. The expressive power and computational complexity properties of the
languages depend largely on the operations that are allowed to apply on terms P(δi). Allowing
gradually more complex operators, we define the languages which are the subject of our studies.
The terms for levels i = 1, 2, 3 are described as follows. The basic terms, denoted as T base

i , are
probabilities P(δi) as, e.g., P(X1=x1 ∨ X2=x2) in T base

1 or P([X1=x1]X2=x2) in T base
2 . From

basic terms, we build more complex linear terms T lin
i by using additions and polynomial terms T poly

i

by using arbitrary polynomials. By T base⟨Σ⟩
i , T lin⟨Σ⟩

i , and T poly⟨Σ⟩
i , we denote the corresponding

sets of terms when including a unary marginalization operator of the form
∑
x t for a term t. In

the summation, we have a dummy variable x which ranges over all values 0, 1, . . . , c − 1. The
summation

∑
x t is a purely syntactical concept which represents the sum t[0/x] + t[1/x] + ... +

t[c− 1/x], where by t[v/x], we mean the expression in which all occurrences of x are replaced with
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value v. For example, for Val = {0, 1}, the expression
∑
x P(Y=1, X=x) semantically represents

P(Y=1, X=0) + P(Y=1, X=1).

Now, let Lab = {base, base⟨Σ⟩, lin, lin⟨Σ⟩, poly, poly⟨Σ⟩} denote the labels of all variants of lan-
guages. Then for each ∗ ∈ Lab and i = 1, 2, 3, we define the languages L∗

i of Boolean combinations
of inequalities in a standard way by the grammars: f ::= t ≤ t′ | ¬f | f ∧ f where t, t′ are terms in
T ∗
i . Although the languages and their operations can appear rather restricted, all the usual elements

of probabilistic and causal formulas can be encoded in a natural way (see Section C in the appendix
for more discussion).

To define the semantics, we use SCMs as in (Pearl, 2009, Sec. 3.2). An SCM is a tuple M =
(F , P, U,X), with exogenous variables U and endogenous variables X = {X1, . . . , Xn}. F =
{F1,..., Fn} consists of functions such that Fi calculates the value of variable Xi from the values
(x,u) as Fi(pai,ui), where5, Pai ⊆ X and Ui ⊆ U. Pai are all endogenous variables that
directly influence Xi and pai are their values6. P specifies a probability distribution of all exogenous
variables U. Without loss of generality, we assume that the domains of exogenous variables are also
discrete and finite. The functions Fi are deterministic, i.e., the value of every endogenous variable
is uniquely determined given the values of the exogenous variables. Since the exogenous variables
follow a probability distribution, this implies a probability distribution over the endogenous variables.

For any basic intervention formula [Xi=xi] (which is our notation for Pearl’s do-operator
do(Xi=xi)), we denote by FXi=xi

the functions obtained from F by replacing Fi with the constant
function Fi(pai,ui) := xi. We generalize this definition for any intervention α in a natural way and
denote as Fα the resulting functions. For any φ ∈ Eprop, we write F ,u |= φ if φ is satisfied for the
values of X calculated from the values u. For any intervention α, we write F ,u |= [α]φ if Fα,u |= φ.
And for all ψ,ψ1, ψ2 ∈ Ecounterfact, we write (i) F ,u |= ¬ψ if F ,u ̸|= ψ and (ii) F ,u |= ψ1 ∧ ψ2

if F ,u |= ψ1 and F ,u |= ψ2. Finally, for ψ ∈ Ecounterfact, let SM(ψ) = {u | F ,u |= ψ} be
the set of values of U satisfying ψ. For some expression e, we define the value JeKM of the ex-
pression e given a model M, recursively in a natural way, starting with basic terms as follows
JP(ψ)KM =

∑
u∈SM(ψ) P (u) and, for δ ∈ Eprop, JP(ψ|δ)KM = JP(ψ ∧ δ)KM/JP(δ)KM, assum-

ing that the expression is undefined if JP(δ)KM = 0. We will sometimes write PM(ψ) instead of
JP(ψ)KM, for short. For two expressions e1 and e2, we define M |= e1 ≤ e2, iff, Je1KM ≤ Je2KM.
The semantics for negation and conjunction are defined in the usual way, giving the semantics for
M |= φ for any formula φ in L∗

3.

2.2 SATISFIABILITY FOR PCH LANGUAGES AND RELEVANT COMPLEXITY CLASSES

The (decision) satisfiability problems for languages of the PCH, denoted by SAT∗
Li

, with i = 1, 2, 3
and ∗ ∈ Lab, take as input a formula φ in L∗

i and ask whether there exists a model M such that
M |= φ. Analogously, the validity problems for L∗

i consist in deciding whether, for a given φ,
M |= φ holds for all models M. From the definitions, it is obvious that variants of the problems for
the level i are at least as hard as their counterparts at a lower level.

We note, that the satisfiability problem (and its complement, the validity problem) does not assume
anything about SCMs, including their structure. However, our languages allow queries of the form
ψ ⇒ φ, which enable us to verify satisfiability, resp., the validity, for the formula φ in SCMs which
satisfy properties expressed by the formula ψ, whereby, e.g., ψ can encode a graph structure of the
model. Thus, the formalism used in our work allows for the formulation of a wide range of queries.

To measure the computational complexity of SAT∗
Li

, a central role play the following, well-known
Boolean complexity classes NP,PSPACE,NEXP, and EXPSPACE (for formal definitions see, e.g.,
Arora & Barak (2009)). Recent research has shown that the precise complexity of several natural
satisfiability problems can be expressed in terms of the classes over the real numbers ∃R and succ-∃R.
For a comprehensive compendium on ∃R, see Schaefer et al. (2024). Recall, that the existential
theory of the reals (ETR) is the set of true sentences of the form

∃x1 . . . ∃xnφ(x1, . . . , xn), (2)

5We consider recursive models, that is, we assume the endogenous variables are ordered such that variable
Xi (i.e. function Fi) is not affected by any Xj with j > i.

6SCMs are often represented as graphs, in which case the variables Pai can be represented as the parents of
variable Xi. However, the definition using functions does not refer to any graphs.
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where φ is a quantifier-free Boolean formula over the basis {∨,∧,¬} and a signature consisting
of the constants 0 and 1, the functional symbols + and ·, and the relational symbols <, ≤, and
=. The sentence is interpreted over the real numbers in the standard way. The theory forms its
own complexity class ∃R which is defined as the closure of ETR under polynomial time many-one
reductions (Grigoriev & Vorobjov, 1988; Canny, 1988; Schaefer, 2009; Schaefer et al., 2024). The
significance of this class lies in the exceptional expressiveness of the ETR, enabling the representation
of numerous natural problems across computational geometry (Abrahamsen et al., 2018; McDiarmid
& Müller, 2013; Cardinal, 2015), Machine Learning and Artificial Intelligence (Abrahamsen et al.,
2021; Mossé et al., 2022; van der Zander et al., 2023; Dörfler et al., 2024), game theory (Bilò &
Mavronicolas, 2017; Garg et al., 2018), and various other domains.

A succinct variant of ETR, denoted as succ-ETR, and the corresponding class succ-∃R, have been
introduced by van der Zander et al. (2023). succ-ETR is the set of all Boolean circuits C that encode
a true sentence as in (2) as follows. Assume that C computes a function {0, 1}N → {0, 1}M . Then
{0, 1}N represents the node set of the tree underlying φ and C(i) is an encoding of the description of
node i, consisting of the label of i, its parent, and its two children. The variables in φ are x1, . . . , x2N .
As in the case of ∃R, to succ-∃R belong all languages which are polynomial time many-one reducible
to succ-ETR.

For two computational problems A,B, we will write A ≤P B if A can be reduced to B in polynomial
time, which means A is not harder to solve than B. A problem A is complete for a complexity class
C, if A ∈ C and, for every other problem B ∈ C, it holds B ≤P A. By co-C, we denote the class of
all problems A such that their complements A belong to C.

3 THE INCREASING COMPLEXITY OF SATISFIABILITY IN THE PCH FOR
LINEAR LANGUAGES WITH MARGINALIZATION

The expressive power of the languages L∗
i , with ∗ ∈ {base, lin, poly} and the layers i = 1, 2, 3 has

been the subject of intensive research. It is well known, see e.g. (Pearl, 2009; Bareinboim et al., 2022;
Mossé et al., 2022; Suppes & Zanotti, 1981), that they form strict hierarchies along two dimensions:
First, on each layer i, the languages Lbase

i ,Llin
i , and Lpoly

i have increasing expressiveness; Second, for
every ∗ ∈ {base, lin, poly}

L∗
1 ⊊ L∗

2 ⊊ L∗
3 (3)

where the proper inclusion means that the language L∗
i is less expressive than L∗

i+1. Note that since
adding marginalization does not change the expressiveness of the language L∗

i , the strict inclusions
in (3) hold also for ∗ ∈ {base⟨Σ⟩, lin⟨Σ⟩, poly⟨Σ⟩}.

To prove such a proper inclusion, it suffices to show two SCMs that are indistinguishable in the
less expressive language, but that can be distinguished by some formula in the more expressive
language. E.g., the SCMs: M = (F , P,U,X) and M′ = (F ′, P,U,X), with binary variables
U = {U1, U2},X = {X1, X2}, probabilities P (Ui = 0) = 1/2, and mechanism F : Xi := Ui,
resp. F ′: X1 := U1U2 +(1−U1)(1−U2), X2 := U1 +X1(1−U1)U2, have the same distributions
PM(X1, X2) = PM′(X1, X2). Thus, M and M′ are indistinguishable in any language of the
probabilistic layer. On the other hand, after the intervention X1 = 1, we get PM([X1=1]X2=1) =
1/2 and PM′([X1=1]X2=1) = 3/4. Then, e.g., for the Lbase

2 formula φ : P([X1=1]X2=1) =
P([X1=1]X2=0), we have M |= φ, but M′ ̸|= φ which means that φ distinguishes M from M′.

This section focuses on the basic and linear languages across the PCH (the case of polynomial
languages will be discussed in Sec. 4 separately). As mentioned in the introduction, a comparison
of these languages from the perspective of computational complexity reveals surprisingly different
properties than the ones described above. For basic and linear languages disallowing marginalization,
the satisfiability for the counterfactual level remains the same as for the probabilistic and causal
levels: problems SATbase

Li
and SATlin

Li
for all i = 1, 2, 3 are NP-complete, i.e., as hard as reasoning

about propositional logic formulas ((Fagin et al., 1990; Mossé et al., 2022), cf. also Table 1). In this
section, we show that the situation changes drastically when marginalization is allowed: satisfiability
problems SAT

base⟨Σ⟩
Li

and SAT
lin⟨Σ⟩
Li

become NPPP-, PSPACE-, resp. NEXP-complete depending on
the level i. This demonstrates the first strictly increasing complexity of reasoning across the PCH,
assuming the widely accepted assumption that the inclusions NPPP ⊆ PSPACE ⊆ NEXP are proper.
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3.1 THE PROBABILISTIC (OBSERVATIONAL) LEVEL

Marginalization via the summation operator, combined with the language expressing events δ on a
specific level of the PCH, increases the complexity of reasoning to varying degrees, depending on the
level. In the probabilistic case, it jumps from NP- to NPPP-completeness since the atomic terms P(δ)
can contain Boolean formulas δ, which, combined with the summation operator, allows to count the
number of all satisfying assignments of a Boolean formula by summing over all possible values for
the random variables in the formula. Determining this count is the canonical PP-complete problem,
so evaluating the equations given a model is PP-hard. From this, together with the need of finding a
model, we will conclude in this section that SAT

base⟨Σ⟩
L1

and SAT
lin⟨Σ⟩
L1

are NPPP-complete.

We start with a technical but useful fact that a sum in the probabilistic language can be partitioned
into a sum over probabilities and a sum over purely logical terms. This generalizes the property
shown by Fagin et al. (1990) in Lemma 2.3 for languages without the summation operator.

Fact 2. Let δ ∈ Eprop be a propositional formula over variables Xi1 , . . . , Xil . A sum∑
xi1

. . .
∑
xil

P(δ) is equal to
∑
x̂1
. . .

∑
x̂n
px̂1...x̂n

∑
xi1

. . .
∑
xil
δx̂1...x̂n

(xi1 , . . . , xil) where the
range of the sums is the entire domain, px̂1...x̂n

is the probability of P(X1=x̂1 ∧ . . . ∧ Xn=x̂n)
and δx̂1...x̂n(xi1 , . . . , xil) a function that returns 1 if the implication (X1=x̂1 ∧ . . . ∧Xn=x̂n) →
δ(xi1 , . . . , xil) is a tautology and 0 otherwise.

The canonical satisfiability problem SAT, where instances consist of Boolean formulas in propositional
logic, plays a key role in a broad range of research fields, since all problems in NP, including many
real-world tasks can be naturally reduced to it. As discussed earlier, SATbase

L1
and SATlin

L1
do not

provide greater modeling power than SAT. Enabling the use of summation significantly changes this
situation: below we demonstrate the expressiveness of SAT

base⟨Σ⟩
L1

, showing that any problem in NPPP

can be reduced to it in polynomial time.

Lemma 3. SAT
base⟨Σ⟩
L1

is NPPP-hard.

Proof. The canonical NPPP-complete problem E-MajSat is deciding the satisfiability of a formula
ψ : ∃x1 . . . xn : #y1 . . . ynϕ ≥ 2n−1, i.e. deciding whether the Boolean formula ϕ has a majority
of satisfying assignments to Boolean variables yi after choosing Boolean variables xi existen-
tially (Littman et al., 1998). We will reduce this to SAT

base⟨Σ⟩
L1

. Let there be 2n random variables
X1, . . . , Xn, Y1, . . . , Yn associated with the Boolean variables. Assume w.l.o.g. that these random
variables have domain {0, 1}. Let ϕ′ be the formula ϕ after replacing Boolean variable xi with
Xi = 0 and yi with Yi = yi.

Consider the probabilistic inequality φ :
∑
y1
. . .

∑
yn

P(ϕ′) ≥ 2n−1 whereby 2n−1 is encoded as∑
x1
. . .

∑
xn−1

P(⊤). The left hand side equals∑
x̂1
. . .

∑
x̂n

∑
ŷ1
. . .

∑
ŷn
px̂1...x̂n,ŷ1...ŷn

∑
y1
. . .

∑
yn
δx̂1...x̂n,ŷ1...ŷn(y1, . . . , yn)

according to Fact 2. Since the last sum ranges over all values of yi, it counts the number of
satisfying assignments to ϕ given x̂i. Writing this count as #y(ϕ(x̂1 . . . x̂n)), the expression becomes:∑
x̂1
. . .

∑
x̂n

∑
ŷ1
. . .

∑
ŷn
px̂1...x̂n,ŷ1...ŷn#y(ϕ(x̂1 . . . x̂n)).

Since #y(ϕ(x̂1 . . . x̂n)) does not depend on ŷ, we can write the expression as∑
x̂1
. . .

∑
x̂n
px̂1...x̂n

#y(ϕ(x̂1 . . . x̂n)) whereby px̂1...x̂n
=

∑
ŷ1
. . .

∑
ŷn
px̂1...x̂n,ŷ1...ŷn .

If ψ is satisfiable, there is an assignment x̂1, . . . , x̂n with #y(ϕ(x̂1 . . . x̂n)) ≥ 2n−1. If we set
px̂1...x̂n

= 1 and every other probability px̂′
1...x̂

′
n
= 0, φ is satisfied.

If φ is satisfiable, let xmax1 , . . . , xmaxn be the assignment that maximizes
#y(ϕ(x

max
1 . . . xmaxn )). Then 2n−1 ≤

∑
x̂1
. . .

∑
x̂n
px̂1...x̂n

#y(ϕ(x̂1 . . . x̂n)) ≤∑
x̂1
. . .

∑
x̂n
px̂1...x̂n

#y(ϕ(x
max
1 . . . xmaxn )) =

(∑
x̂1
. . .

∑
x̂n
px̂1...x̂n

)
#y(ϕ(x

max
1 . . . xmaxn )) =

#y(ϕ(x
max
1 . . . xmaxn )). Hence ψ is satisfied for xmax1 . . . xmaxn .

Theorem 4. For probabilistic reasoning, the satisfiability problems SAT
base⟨Σ⟩
L1

and SAT
lin⟨Σ⟩
L1

, for the
basic and linear languages respectively, are NPPP-complete.
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Proof idea: Having Lemma 3, it remains to prove that the problem is in NPPP. To this aim,
we show that any satisfiable instance has a solution of polynomial size: we rewrite the sums∑

xi1
. . .

∑
xil

P(δ) in the expressions according to Fact 2 which allows to encode the instance as a
system of m linear equations with unknown coefficients px̂1...x̂n , where m is bounded by the instance
size. Such a system has a non-negative solution with at most m entries positive of polynomial size.
Then, we guess non-deterministically such solutions and verify its correctness estimating the values∑

xi1
...
∑
xil
δx̂1x̂n

(xi1 , .., xil) using the PP oracle. A full proof, as for all further proof ideas, can
be found in the appendix.

Remark 5. NPPP is the class describing the complexity of another, relevant primitive of the proba-
bilistic reasoning which consists in finding the Maximum a Posteriori Hypothesis (MAP). To study its
computational complexity, the corresponding decision problem is defined which asks if for a given
Bayesian network B = (G, PB), where probability PB factorizes according to the structure of network
G, a rational number τ , evidence e, and some subset of variables Q, there is an instantiation q to
Q such that PB(q, e) =

∑
y PB(q,y, e) > τ . It is well known that the problem is NPPP-complete

(Roth, 1996; Park & Darwiche, 2004).

Finally, we draw our attention to the impact of negation on the complexity of reasoning for such
languages of the probabilistic layer. The hardness of SAT

lin⟨Σ⟩
L1

depends on negations in the Boolean
formulas δ of basic terms P(δ), which make it difficult to count all satisfying assignments. Without
negations, marginalization just removes variables, e.g.

∑
x P(X=x∧ Y=y) becomes P(Y=y). This

observation leads to the following:

Proposition 6. SAT
base⟨Σ⟩
L1

and SAT
lin⟨Σ⟩
L1

are NP-complete if the primitives in Epost-int are restricted to
not contain negations.

3.2 THE INTERVENTIONAL (CAUSAL) LEVEL

In causal formulas, one can perform interventions to set the value of a variable, which can recursively
affect the value of all endogenous variables that depend on the intervened variable. This naturally
corresponds to the choice of a variable value by an existential or universal quantifier in a Boolean
formula, since in a Boolean formula with multiple quantifiers, the value chosen by each quantifier
can depend on the values chosen by earlier quantifiers. Thus, an interventional equation can encode a
quantified Boolean formula. This makes SAT

lin⟨Σ⟩
L2

PSPACE-hard. As we will show below, it is even
PSPACE-complete.

Lemma 7. SAT
base⟨Σ⟩
L2

is PSPACE hard.

Proof. We reduce from the canonical PSPACE-complete problem QBF. Let Q1x1Q2x2 · · · Qnxnψ
be a quantified Boolean formula with arbitrary quantifiers Q1, . . . , Qn ∈ {∃,∀}. We introduce
Boolean random variables X = {X1, . . . , Xn} to represent the values of the variables and denote
by Y = {Y1, . . . Yk} ⊆ X the universally quantified variables. In L2 one can enforce an ordering
X1 ≺ X2 ≺ . . . ≺ Xn of variables, i.e. variable Xi can only depend on variables Xj with j < i.
The proof of this property, formulated in Lemma 13, can be found in the appendix. Our only further
constraint is ∑

y P([y]ψ′) = 2k (4)

where ψ′ is obtained from ψ by replacing positive literals xi by Xi = 1 and negative literals xi by
Xi = 0.

Suppose the constructed SAT
lin⟨Σ⟩
L2

formula is satisfied by a model M. We show that
Q1x1Q2x2 · · · Qnxnψ is satisfiable. Each probability implicitly sums over all possible values u of
the exogenous variables. Fix one such u with positive probability. Combined with X1 ≺ . . . ≺ Xn

this implies all random variables now deterministically depend only on any of the previous variables.
Equation (4) enforces P([y]ψ′) = 1 for every choice of y and thus simulates the Y being universally
quantified. As the existential variables xi, we then choose the value xi of Xi which can only depend
on Xj with j < i. The formula ψ′ and thus ψ is then satisfied due to P([y]ψ′) = 1.

On the other hand, suppose Q1x1Q2x2 · · · Qnxnψ is satisfiable, We create a deterministic model
M as follows: The value of existentially quantified variables Xi is then computed by the function

8
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Fi(x1, . . . , xi−1) defined as the existentially chosen value when the previous variables are set to
x1, . . . , xi−1. The values of the universally quantified variables do not matter since we intervene on
them before every occurrence. This satisfies the required order of variables and, since ψ is satisfied,
we have P([y]ψ′) = 1, for every choice of the universally quantified variables y, thus satisfying
equation (4).

Theorem 8. For causal reasoning, the satisfiability problems SAT
base⟨Σ⟩
L2

and SAT
lin⟨Σ⟩
L2

, for the basic
and linear languages respectively, are PSPACE-complete.

Proof idea: After Lemma 7, we only have to show that SAT
lin⟨Σ⟩
L2

is in PSPACE. For the proof details,
see the appendix. The basic idea is to evaluate interventions one at a time without storing the entire
model because each primitive can only contain one intervention. For each sum, we only need to store
the total probability of all its primitives, and increment this probability, if a new intervention satisfies
some of the primitives.

As with SAT
lin⟨Σ⟩
L1

, there can only be polynomially many exogenous variable assignments u with non-
zero probability pu, which are independent of each other and can be guessed non-deterministically.
We can also guess a causal order of the endogenous variables, such that variables can only depend on
the variables preceding them in the causal order. This causal order allows one to guess the variables
affected by any intervention in a sound way.

We enumerate all exogenous variable assignments u, each having probability pu. Recursively, we
can enumerate all possible interventions α, which yield the values x of the endogenous variables,
which—given the exogenous variables—also have probability pu. Then we count for each sum how
many of its primitives are satisfied by α and x, and increment the accumulated value of the sum by
pu for each.

After this enumeration, we know the numeric value of every sum, and can verify the resulting equation
system.

3.3 THE COUNTERFACTUAL LEVEL

On the counterfactual level, one can perform multiple interventions, and thus compare different
functions of the model to each other. Hence, the formulas can only be evaluated if the entire,
exponential-sized model is known. Thus deciding the satisfiability requires exponential time and
non-determinism to find the model, making SAT

lin⟨Σ⟩
L3

NEXP-complete.

Theorem 9. For counterfactual reasoning, the satisfiability problems SAT
base⟨Σ⟩
L3

and SAT
lin⟨Σ⟩
L3

, for
the basic and linear languages respectively, are NEXP-complete.

Proof idea: This NEXP-hardness follows from a reduction from the NEXP-complete problem of
checking satisfiability of a Schönfinkel-Bernays sentence to the satisfiability of SAT

base⟨Σ⟩
L3

. These are
first-order logic formulas of the form ∃x∀yψ where ψ cannot contain any quantifiers or functions.
The x and y are encoded as Boolean random variables, where the existentially quantified x are
encoded into the existence of a satisfying SCM, while the universally quantified y are encoded
by marginalization, i.e. a condition

∑
y P([y]ψ′) = 2n for some formula ψ′ derived from ψ and

where n denotes the number of variables y. The counterfactuals now allow us to ensure that the
random variables Ri representing the relations within ψ deterministically depend on their respective
inputs by comparing whether Ri changes between an intervention on all variables (except Ri)
versus an intervention on only its dependencies. Marginalization finally allows us to combine these
exponentially many checks for all possible values of all variables into a single equation.

The containment in NEXP follows from expanding the formulas with sums to exponentially larger
formulas without sums.

4 THE COMPLEXITY OF SATISFIABILITY FOR POLYNOMIAL LANGUAGES
WITH MARGINALIZATION

Van der Zander et al. (2023) prove that SAT
poly⟨Σ⟩
L1

and SAT
poly⟨Σ⟩
L2

are complete for succ-∃R whenever
the basic terms are allowed to also contain conditional probabilities. They, however, leave open the
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exact complexity status of SAT
poly⟨Σ⟩
L3

. Here we show that the problem is in succ-∃R, with and without
conditional probabilities, which proves its succ-∃R-completeness.

Theorem 10. SAT
poly⟨Σ⟩
L3

∈ succ-∃R. This also holds true if we allow the basic terms to contain
conditional probabilities.

Proof idea: Bläser et al. (2024) introduced the NEXPreal machine model, where succ-∃R is precisely
the set of all languages decidable by exponential-time non-deterministic real RAMs. Combined with
the algorithm proving SAT

poly
L3

∈ ∃R (however without subtractions or conditional probabilities) from
Mossé et al. (2022) and the classification ∃R = NPreal from Erickson et al. (2022), i.e. ∃R being
the set of all languages decidable by polynomial-time non-deterministic real RAMs, we can expand
the unary sums explicitly and then run the non-deterministic real RAM algorithm for the resulting
SAT

poly
L3

instance. Special care has to be taken in dealing with subtractions or conditional probabilities,
here we use a trick by Tseitin, the details of which can be found in Lemma 15 in the appendix.

We note that Ibeling et al. (2024, Theorem 3) independently obtained a variant of the above result,
also using the machine characterization of succ-∃R given by Bläser et al. (2024).

Remark 11. It can be shown that the hardness proofs for SAT
poly⟨Σ⟩
L1

, SAT
poly⟨Σ⟩
L2

, and SAT
poly⟨Σ⟩
L3

do
not need conditional probabilities in the basic terms.

5 DISCUSSION

This work studies the computational complexities of satisfiability problems for languages at all levels
of the PCH. Our new completeness results nicely extend and complement the previous achievements
by Fagin et al. (1990), Mossé et al. (2022), van der Zander et al. (2023), and Bläser et al. (2024). The
main focus of our research was on languages allowing the use of marginalization which is expressed
in the languages by a summation operator Σ over the domain of the random variables. This captures
the standard notation commonly used in probabilistic and causal inference.

A very interesting feature of the satisfiability problems for the full, polynomial languages is the
following property. For both variants, with and without summation operators, while the expressive
powers of the corresponding languages differ, the complexities of the corresponding satisfiability
problems at all three levels of the PCH are the same. Interestingly, the same holds for linear languages
without marginalization, too (cf. Table 1.). We find that the situation changes drastically in the case
of linear languages allowing the summation operator Σ. One of our main results characterizes the
complexities of SAT

lin⟨Σ⟩
L1

, SAT
lin⟨Σ⟩
L2

, and SAT
lin⟨Σ⟩
L3

problems as NPPP, PSPACE, and NEXP-complete,

respectively. The analogous completeness results hold for SAT
base⟨Σ⟩
Li

.

Another interesting feature is that the completeness results for linear languages are expressed in
terms of standard Boolean classes while the completeness of satisfiability for languages involving
polynomials over the probabilities requires classes over the reals.

As mentioned in Section 2.2, the formulas can also encode graph structures. One might ask whether
the computational complexity changes if the graph is not encoded in the formulas but is given directly
as a graph in the input, which is a common setting in causal reasoning. Also to show the complexity
upper-bound on the probabilistic and interventional linear languages, we used a fact that it is sufficient
to only consider models of polynomial size for these languages (cf. Footnote 8 in the appendix). Here
one might wonder what is the complexity of restricting oneself to polynomially-sized models for the
other languages? We answer both questions in a follow-up paper (Bläser et al., 2025).
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A TECHNICAL DETAILS AND PROOFS

In this section we complete proofs of our main results (announced in Table 1 in the Introduction):
Theorem 4, 8, 9, and Theorem 10, which were partially presented or outlined in the main part of the
paper. More precisely, Theorem 4 will follow from Lemma 3 and 12, Theorem 8 from Lemma 7 and
14, Theorem 9 will be proved in Sec. A.3, and the proof of Theorem 10 will be presented in Sec. A.4.
We also show the proof of Fact 2 and of Proposition 6.

A.1 PROOFS OF SECTION 3.1

We first prove Fact 2. Theorem 4 will follow from Lemma 3 and Lemma 12 presented below.

Proof of Fact 2.
∑
xi1

. . .
∑
xil

P(δ) is equivalent to∑
xi1

. . .
∑
xil

∑
x̂1

. . .
∑
x̂n

P((X1=x̂1 ∧ . . . ∧Xn=x̂n) ∧ δ)

=
∑
x̂1

. . .
∑
x̂n

∑
xi1

. . .
∑
xil

P((X1=x̂1 ∧ . . . ∧Xn=x̂n) ∧ δ)

=
∑
x̂1

. . .
∑
x̂n

∑
xi1

. . .
∑
xil

px̂1...x̂n
δx̂1...x̂n

(xi1 , . . . , xil)

=
∑
x̂1

. . .
∑
x̂n

px̂1...x̂n

∑
xi1

. . .
∑
xil

δx̂1...x̂n
(xi1 , . . . , xil), (5)

which completes the proof.

Since the second sums in (5) only depend on x̂1 . . . x̂n and not on px̂1...x̂n , they can be calculated
without knowing the probability distribution. Due to the dependency on x̂1 . . . x̂n the expression
cannot be simplified further in general. However, if event δ in P(δ) contains no constant events like
Xij = 0 but only events Xij = xij depending on the summation variables xij , the sum always
includes one iteration where the event occurs and c − 1 iterations where it does not. Thus the
sum

∑
xi1

. . .
∑
xil
δx̂1...x̂n

(xi1 , . . . , xil) is constant and effectively counts the number of satisfying
assignments to the formula δ. Since the sum

∑
x̂1
. . .

∑
x̂n
px̂1...x̂n

is always 1, the original sum∑
xi1

. . .
∑
xil

P(δ) also counts the number of satisfying assignments.

Lemma 12. SAT
lin⟨Σ⟩
L1

is in NPPP.

Proof. First we need to show that satisfiable instances have solutions of polynomial size.

We write each (sum of a) primitive in the arithmetic expressions as∑
x̂1

. . .
∑
x̂n

px̂1...x̂n

∑
xi1

. . .
∑
xil

δx̂1...x̂n
(xi1 , . . . , xil)

according to Fact 2.

The value of all px̂1...x̂n
can be encoded as a vector p⃗ ∈ Rcn . For each x̂1, . . . , x̂n, the sum∑

xi1
. . .

∑
xil
δx̂1...x̂n

(xi1 , . . . , xil) is a constant integer ≤ cl. Suppose there are m such sums or

primitives in the instance, whose values can be encoded as a matrix A ∈ Rm×cn .

Then the value of every sum in the instance is given by the vector Ap⃗ ∈ Rm.

There exists a non-negative vector q⃗ ∈ Qcn containing at most m non-zero entries with Aq⃗ = Ap⃗
(Lemma 2.5 in Fagin et al. (1990)). By including a constraint

∑
x̂1
. . .

∑
x̂n
px̂1...x̂n = 1 when

constructing the matrix A, we can ensure that all values in q⃗ are valid probabilities. q⃗ is a polynomial
sized solution and can be guessed non-deterministically.

For this solution, the sum
∑
x̂1
. . .

∑
x̂n
px̂1...x̂n

can then be evaluated (over all non-zero entries
px̂1...x̂n ) in polynomial time. Each sum

∑
xi1

. . .
∑
xil
δx̂1...x̂n(xi1 , . . . , xil) can be evaluated using
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the PP oracle because a PP oracle is equivalent to a #P oracle which can count the number of
satisfying assignments of δ.

Finally, we give the proof of Proposition 6.

Proof of Proposition 6. In the proof of Lemma 12, we require a PP-oracle to evaluate the sum∑
xi1

. . .
∑
xil
δx̂1...x̂n

(xi1 , . . . , xil), which counts the number of assignments xi1 , . . . , xil that make
(X1 = x̂1 ∧ . . . ∧Xn = x̂n) → δ(xi1 , . . . , xil) a tautology for given x̂i.

Without negations, there are also no disjunctions, so δ consists of a conjunction of terms that compare
some variable to some constant, Xi = j, or to some variable Xi = xij used in the summation. For
any constant Xi = j, we check whether x̂i = j. If that is false, the number of satisfying assignments
to δ is zero. From any condition Xi = xij , we learn that xij has to be equal to x̂i. If there is any
contradiction, i.e., Xi = xij ∧Xk = xij and x̂i ̸= x̂k, the number of assignments is also zero. This
determines the value of each xij occurring in δ and makes δ a tautology.

It leaves the value of xij not occurring in δ undefined, but those do not affect δ, and can be chosen
arbitrarily, so the number of assignments is just multiplied by the size of the domain c for each
not-occurring variable.

This can be evaluated in polynomial time, so the complexity is reduced to NPP = NP.

The problems remain NP-hard since a Boolean formula can be encoded in the language Lbase
1 of

combinations of Boolean inequalities. Each Boolean variable x is replaced by P (X) > 0 for a
corresponding random variable X . For example, a 3-SAT instance like (xi1,1 ∨ ¬xi1,2 ∨ xi1,3) ∧
(xi2,1 ∨ ¬xi2,2 ∨ ¬xi2,3) ∧ . . . can be encoded as (P (Xi1,1) > 0 ∨ ¬P (Xi1,2) > 0 ∨ P (Xi1,3) >
0) ∧ (P (Xi2,1) > 0 ∨ ¬P (Xi2,2) > 0 ∨ ¬P (Xi2,3) > 0) ∧ . . ., which clearly has the same
satisfiability.

A.2 PROOFS OF SECTION 3.2

We first prove the property stated in lemma below.

Lemma 13. In L2 one can encode a causal ordering.

Proof. Given (in-)equalities in L2, we add a new variableC and add to each primitive the intervention
[C = 0]. This does not change the satisfiability of (in-)equalities.

Given a causal order Vi1 ≺ Vi2 ≺ . . ., we add c equations for each variable Vij , j > 1:

P([C=1, Vij−1
=k]Vij=k) = 1 for k = 1, . . . , c.

The equations ensure, that if one variable is changed, and C = 1 is set, the next variable in the causal
ordering has the same value, thus fixing an order from the first to the last variable.

Theorem 8 follows from Lemma 7 and from:

Lemma 14. SAT
lin⟨Σ⟩
L2

is in PSPACE.

Proof. We need to show that Algorithm 1 is correct and in PSPACE. The basic idea of the algorithm
is that rather than guessing a model and evaluating each sum with its interventions7, we enumerate all
possible interventions (and resulting values) and increment each sum that includes the intervention.
Thereby, rather than storing the functions and interventions, we only need to store and update the
value of the sums.

By definition, each sum
∑

yi
P([αi]δi) in the input can be written as

∑
u pu

∑
yi:F,u|=[αi]δi

1, where
the second sum does not depend on pu. As in Lemma 12, one can write the probabilities as a single
vector p⃗u, each sum

∑
yi:F,u|=[αi]δi

1 as row in a matrix A, such that an entry of the row is 1 if
F ,u |= [αi]δi holds and 0 otherwise. Then one obtains the value of all sums as product Ap⃗u. A

7For example, a sum like
∑

x P([X=x]Y=y) performs multiple interventions on X , which is difficult to
evaluate. Sums containing only a single intervention could be evaluated trivially.
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Input: SAT
lin⟨Σ⟩
L2

instance
Output: Is the instance satisfiable?

1 Guess small model probabilities pu;
2 Guess a causal order X1, . . . , Xn;
3 Rewrite each sum

∑
yi

P([αi]δi) in the input as
∑

u pu
∑

yi:F,u|=[αi]δi
1;

4 Initialize a counter ci to zero for each such sum
5 for pu > 0 do
6 Guess values x1, .., xn;
7 Simulate-Interventions(1, {}, x1, ..., xn)
8 end
9 Replace the sums by ci and verify whether the (in-)equalities are satisfied;

10 Function Simulate-Interventions(i,α, x1, . . . , xn)
Input: Current variable Xi; set of interventions α; values x1, . . . , xn

11 if i > n then
12 for each sum counter cj do
13 for all possible values yj of the sum do
14 if αj (after inserting yi) is [{Xi = xi for i ∈ α}] and x1, .., xn satisfy δj (after

inserting yi) then
15 increment cj by pu
16 end
17 end
18 end
19 else
20 Simulate-Interventions(i+ 1,α, x1, ..., xn) ;
21 for value v do
22 Let x′1, ..., x

′
n := x1, ..., xn;

23 x′i := v;
24 if v ̸= xi then
25 guess new values x′i+1, ..., x

′
n

26 end
27 Simulate-Interventions(i+ 1,α ∪ {i}, x′1, ..., x′n) ;
28 end
29 end

Algorithm 1: Solving SAT
lin⟨Σ⟩
L2

small model property8 follows that there are only polynomial many, rational probabilities pu. These
can be guessed non-deterministically9.

Next, we combine the terms
∑

u pu of all sums (implicitly). For example, two sums
∑

yi
P([αi]δi) +∑

yj
P([αj ]δj) can be rewritten as

∑
yi

P([αi]δi) +
∑
yj

P([αj ]δj) =
∑
u

pu
∑

yi:F,u|=[αi]δi

1 +
∑
u

pu
∑

yj :F,u|=[αj ]δj

1

=
∑
u

pu

 ∑
yi:F,u|=[αi]δi

1 +
∑

yj :F,u|=[αj ]δj

1

 .

8Small model property means that whenever there is a satisfying probability distribution, then there is also
one with only polynomially many positive elementary probabilities. Note that, e.g., the probability distribution
on n binary random variables has 2n entries. Some of the previous results we refer to, e.g., Fagin et al. (1990);
Ibeling & Icard (2020), are based on this small property.

9The algorithm just guesses them without doing any rewriting of the equations. This paragraph just explains
why this guessing is possible.
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The algorithm performs this sum over u in line 5 and calculates the next sums in the subfunction. We
can and will ignore the actual values u. Relevant is only that the value of the sums is multiplied by
pu and that the functions F might change in each iteration.

Recall that the functions F = (F1, . . . , Fn) determine the values of the endogenous variables, that is
the value of variable Xi is given by xi = Fi(u, x1, . . . , xi−1). Thereby the functions (i.e. variables)
have a causal order X1 ≺ . . . ≺ Xn, such that the value xi only depends on variables Xj with j < i.
In reverse, this means that each intervention on a variable Xi can only change variables Xj with
j > i.

Rather than storing the functions F = (F1, . . . , Fn), the algorithm only stores the values xi =
Fi(u, x1, . . . , xi−1), i.e. the values of the endogenous variables. The algorithm knows these values
as well as the causal order, since they can be guessed non-deterministically.

The subfunction Simulate-Interventions then performs all possible interventions recursively, interven-
ing first on variable X1, then X2, . . ., until Xn. The parameter i means an intervention on variable
Xi, α is the set of all previous interventions, and x1, . . . , xn the current values.

In line 20, it proceeds to the next variable, without changing the current variable Xi (simulating all
possible interventions includes intervening on only a subset of variables). In line 21, it enumerates
all values x′i for variable Xi. If xi = x′i, then the intervention does nothing. If xi ̸= x′i, then the
intervention might change all variables Xj with j > i (because the function Fj might depend on Xi

and change its value). This is simulated by guessing the new values x′j . Thereby, we get the new
values without considering the functions.

In the last call, line 27, it has completed a set of interventions α. The function then searches every
occurrence of the interventions α in the (implicitly expanded) input formula. That is, for each sum∑

yj :F,u|=[αj ]δj
1, it counts how often αj = α occurs in the sum while the values xi satisfy δj . 10

Since each intervention is enumerated only once, in the end, it obtains for all sums their exact value.
It can then verify whether the values satisfy the (in-)equalities of the input.

If a satisfying model exists, the algorithm confirms it, since it can guess the probabilities and the
values of the functions. In reverse, if the algorithm returns true, a satisfying model can be constructed.
The probabilities directly give a probability distribution P (u). The functions Fi can be constructed
because, for each set of values u, x1, . . . , xi−1, only a single value for xi is guessed, which becomes
the value of the function.

Algorithm 1 runs in non-deterministic polynomial space and thus in PSPACE.

A.3 PROOFS OF SECTION 3.3

Proof of Theorem 9. The problem can be solved in NEXP because expanding all sums of a SAT
lin⟨Σ⟩
L3

instance creates a SATlin
L3

instance of exponential size, which can be solved non-deterministically in a
time polynomial to the expanded size as shown by Mossé et al. (2022).

To prove hardness, we will reduce the satisfiability of a Schönfinkel-Bernays sentence to the satisfiabil-
ity of SAT

base⟨Σ⟩
L3

. The class of Schönfinkel–Bernays sentences (also called Effectively Propositional
Logic, EPR) is a fragment of first-order logic formulas where satisfiability is decidable. Each sentence
in the class is of the form ∃x∀yψ whereby ψ can contain logical operations ∧,∨,¬, variables x
and y, equalities, and relations Ri(x,y) which depend on a set of variables, but ψ cannot contain
any quantifier or functions. Determining whether a Schönfinkel-Bernays sentence is satisfiable is an
NEXP-complete problem Lewis (1980) even if all variables are restricted to binary values Achilleos
(2015).

We will represent Boolean values as the value of the random variables, with 0 meaning FALSE and 1
meaning TRUE. We will assume that c = 2, so that all random variables are binary, i.e. Val = {0, 1}.

In the proof, we will write (in)equalities between random variables as = and ̸=. In the binary setting,
X = Y is an abbreviation for (X = 0 ∧ Y = 0) ∨ (X = 1 ∧ Y = 1), and X ̸= Y an abbreviation

10Rather than incrementing the counter cj by 1 and then multiplying the final result by pu, we increment it
directly by pu.
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for ¬(X = Y ). To abbreviate interventions, we will write [w] for [W = w], [w] for interventions on
multiple variables [W = w], and [v \w] for interventions on all endogenous variables except W.

We use random variables X = {X1, . . . Xn} and Y = {Y1, . . . Yn} for the quantified Boolean
variables x,y in the sentence ∃x∀yψ. For each distinct k-ary relation Ri(z1, . . . , zk) in the formula,
we define a random variable Ri and variables Z1

i , . . . , Z
k
i for the arguments. For the j-th occurrence

of that relation Ri(t
1
ij , . . . , t

k
ij) with tlij ∈ {x1, . . . , xn, y1, . . . , yn}, we define another random

variable Rji .

We use the following constraint to ensure that Ri only depends on its arguments:∑
v

P([z1i , . . . , zki ]Ri ̸= [v \ ri]Ri) = 0 (6)

Thereby
∑

v refers to summing over all values of all endogenous variables11 in the model and the
constraint says that an intervention on Z1

i , . . . , Z
k
i gives the same result for Ri as an intervention on

Z1
i , . . . , Z

k
i and the remaining variables, excluding Ri.

We use the following constraint to ensure that Rji only depends on its arguments:

∑
v

P([t1ij , . . . , tkij ]R
j
i ̸= [v \ rji ]R

j
i ) = 0 (7)

and that Rji and Ri have an equal value for equal arguments:

∑
t1ij ,...,t

k
ij

P([T 1
ij=t

1
ij , . . . , T

k
ij=t

k
ij ]R

j
i ̸= [Z1

i =t
1
ij , . . . , Z

k
i =t

k
ij ]Ri) = 0. (8)

We add the following constraint for each Xi to ensure that the values of X are not affected by the
values of Y: ∑

v

∑
y′

P([v \ xi]Xi ̸= [v \ (xi,y),Y=y′]Xi) = 0 (9)

Here the first sum sums over all values v of all endogenous variables V (includingXi and Y), and the
second sums sums over values for variables Y. The intervention [v \ xi] intervenes on all variables
except Xi and sets the values y to the values of the first sum. The intervention [v \ (xi,y),Y = y′]
intervenes on all variables except Xi and sets the values y to the values y′ of the second sum. The
constraint thus ensures that the value of Xi does not change when changing Y from y to y′.

Let ψ′ be obtained from ψ by replacing equality and relations on the Boolean values with the
corresponding definitions for the random variables:∑

y

P([y]ψ′) = 2n (10)

Suppose the SAT
base⟨Σ⟩
L3

instance is satisfied by a model M. We need to show ∃x∀yψ is satisfiable.
Each probability P(. . .) implicitly sums over all possible values u of the exogenous variables. The
values x of the variables X might change together with the values u, however, any values x that are
taken at least once can be used to satisfy ∃x∀yψ: If there was any x that would not satisfy ψ for
all values of y, P([y]ψ′) would be less than 1 for these values of x (determined by u) and y, and
equation (10) would not be satisfied.
For each relation Ri, we choose the values given by the random variable Ri. Each occurrence
Rji (t

1
ij , . . . , t

k
ij) has a value that is given by [Z1

i = t1ij , . . . , Z
k
i = tkij ]Ri in the model M. Due to

equations (8) and equations (7), that is the same value as [T 1
i = t1ij , . . . , T

k
ij = tkij ]R

j
i , which is the

value used in [y]ψ′ . Since [y]ψ′ is satisfied, so is ψ and ∃x∀yψ.

11All variables include variables Z1
i , . . . , Z

k
i .
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Suppose ∃x∀yψ is satisfiable. We create a deterministic model M as follows: The value of random
variables X is set to the values chosen by ∃x. The relation random variables Ri are functions depend-
ing on random variables Z1

i , . . . , Z
k
i that return the value of the relation Ri(z1, . . . , zk). The relation

random variables Rji on arguments T 1
ij , . . . , T

k
ij return the value of the relation Ri(t1ij , . . . , t

k
ij). This

satisfies Equation 6 and 7 because the functions only depend on their arguments, and Equation 8
because the functions result from the same relation (so the functions are dependent, but causally
independent, which yields a non-faithful model. But the equations do not test for faithfulness or
dependences). All other random variables can be kept constant, which satisfies Equation 9 (despite be-
ing constant in the model, the causal interventions can still change their values). Finally, Equation 10
holds, because ψ is satisfied for all Y.

A.4 PROOFS OF SECTION 4

Mossé et al. (2022) already prove SAT
poly
L3

∈ ∃R when the Lpoly
3 -formula is allowed to neither contain

subtractions nor conditional probabilities. We slightly strengthen this result to allow both of them.

Lemma 15. SAT
poly
L3

∈ ∃R. This also holds true if we allow the basic terms to contain conditional
probabilities.

Proof. (Mossé et al., 2022) show that SAT
poly
L3

without subtraction or conditional probabilities is in
∃R. Their algorithm is given in the form of a NP-reduction from SAT

poly
L3

to ETR and using the
closure of ∃R under NP-reductions. In particular given a Lpoly

3 -formula φ, they replace each event
P(ϵ) by the sum

∑
δ∈∆+:δ|=ϵ P(δ) where ∆+ ⊆ Ecounterfact is a subset of size at most |φ|. They add

the constraint
∑
δ∈∆+ P(δ) = 1 and then replace each of the P(δ) by a variable constrained to be

between 0 and 1 to obtain a ETR-formula. Note that the final ETR-formula allows for subtraction, so
φ is allowed to have subtractions as well. Remains to show how to deal with conditional probabilities.
We define conditional probabilities P(δ|δ′) to be undefined if P(δ′) = 0 (this proof works similarly
for other definitions). In φ replace P(δ|δ′) by P(δ,δ′)

P(δ′) . The resulting ETR-formula then contains some
divisions. To remove some division α

β , we use Tseitin’s trick and replace α
β by a fresh variable z. We

then add the constraints α = z · β and β ̸= 0 to the formula.

Now we are ready to show that SAT
poly⟨Σ⟩
L3

can be solved in NEXP over the Reals.

Proof of Theorem 10. By Lemma 15 we know that SAT
poly
L3

is in ∃R. Thus, by (Erickson et al., 2022),
there exists an NPreal algorithm, call it A, which for a given Lpoly

3 -formula decides if is satisfiable.

To solve the SAT
poly⟨Σ⟩
L3

problem, a NEXPreal algorithm expands firstly all sums of a given instance
and creates an equivalent SAT

poly
L3

instance of size bounded exponentially in the size of the initial
input formula. Next, the algorithm A is used to decide if the expanded instance is satisfiable.
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B LEVELS OF PEARL’S CAUSAL HIERARCHY: AN EXAMPLE

To illustrate the main ideas behind the causality notions, we present in this section an example that,
we hope, will make it easier to understand the formal definitions. In the example, we consider a
(hypothetical) scenario involving three attributes represented by binary random variables: pneumonia
modeled by Z = 1, drug treatment (e.g., with antibiotics) represented by X = 1, and recovery, with
Y = 1 (and Y = 0 meaning mortality). Below we describe an SCM which models an unobserved
true mechanism behind this setting and the canonical patterns of reasoning that can be expressed at
appropriate layers of the hierarchy.

Structural Causal Model An SCM is defined as a tuple
(F , P,U,X) which is of unobserved nature from the perspective
of a researcher who studies the scenario. The SCM models the
ground truth for the distribution P (U) of the population and the
mechanism F . In our example, the model assumes three indepen-
dent binary random variables U = {U1, U2, U3}, with probabilities:
P (U1=1) = 0.75, P (U2=1) = 0.8, P (U3=1) = 0.4, and specifies
the mechanism F = {F1, F2, F3} for the evaluation of the three
endogenous (observed) random variables Z,X, Y as follows:

U1 U2 U3 P (u) Z X Y

0 0 0 0.03 1 0 0
0 0 1 0.02 1 0 1
0 1 0 0.12 1 0 0
0 1 1 0.08 1 0 1
1 0 0 0.09 0 0 0
1 0 1 0.06 0 0 1
1 1 0 0.36 0 1 0
1 1 1 0.24 0 1 1

Z := F1(U1) = 1−U1;X := F2(Z,U2) = (1−Z)U2; Y := F3(X,U1, U3) = X(1−U1)(1−U3)+
(1−X)(1−U1)U3+U1U3. Thus, our model determines the distribution P (u), for u = (u1, u2, u3),
and the values for the observed variables, as can be seen above.

The unobserved random variable U1 models all circumstances that lead to pneumonia and Z is
a function of U1 (which may be more complex in real scenarios). Getting a treatment depends
on having pneumonia but also on other circumstances, like having similar symptoms due to other
diseases, and this is modeled by U2. So X is a function of Z and U2. Finally, mortality depends on all
circumstances that lead to pneumonia, getting the treatment, and on further circumstances like having
other diseases, which are modeled by U3. So Y is a function of U1, X , and U3. We always assume
that the dependency graph of the SCM is acyclic. This property is also called semi-Markovian.

Layer 1 Empirical sciences rely heavily on the use of observed data, which
are typically represented as probability distributions over observed (measur-
able) variables. In our example, this is the distribution P over Z,X, and
Y . The remaining variables U1, U2, U3, as well as the mechanism F , are of
unobserved nature. Thus, in our scenario, a researcher gets the probabilities
(shown to the right) P (z, x, y) =

∑
u δF,u(z, x, y) · P (u), where vectors

u = (u1, u2, u3) ∈ {0, 1}3 and δF,u(z, x, y) = 1 if

Z X Y P (z, x, y)

0 0 0 0.09
0 0 1 0.06
0 1 0 0.36
0 1 1 0.24
1 0 0 0.15
1 0 1 0.10

F1(u1)=z, F2(z, u2)=x, and F3(x, u1, u2)=y; otherwise δF,u(z, x, y) = 0. The relevant query in
our scenario P (Y=1|X=1) can be evaluated as P (Y=1|X=1) = P (Y=1, X=1)/P (X=1) =
0.24/0.6 = 0.4 which says that the probability for recovery (Y=1) is only 40% given that the patient
took the drug (X=1). On the other hand, the query for X=0 can be evaluated as P (Y=1|X=0) =
P (Y=1, X=0)/P (X=0) = 0.16/0.4 = 0.4 which may lead to the (wrong, see the next layer)
opinion that the drug is irrelevant to recovery.

Layer 2 Consider a randomized drug
trial in which each patient receives treat-
ment, denoted as do(X=1), regardless
of pneumonia (Z) and other conditions
(U2). We model this by performing a
hypothetical intervention in which we re-
place in F the mechanism F2(Z,U2) by
the constant function 1 and leaving the
remaining functions unchanged.

U1 U2 U3 P (u) Z X=1 Y

0 0 0 0.03 1 1 1
0 0 1 0.02 1 1 0
0 1 0 0.12 1 1 1
0 1 1 0.08 1 1 0
1 0 0 0.09 0 1 0
1 0 1 0.06 0 1 1
1 1 0 0.36 0 1 0
1 1 1 0.24 0 1 1

Z Y P ([X=1]z, y)

0 0 0.45
0 1 0.30
1 0 0.10
1 1 0.15

If FX=1 = {F ′
1=F1, F

′
2=1, F ′

3=F3} denotes the new mechanism, then the post-interventional dis-
tribution P ([X=1]Z, Y ) is specified as P ([X=1]z, y) =

∑
u δFX=1,u(z, y) · P (u), where δFX=1,u

denotes function δ as above, but for the new mechanism FX=1 (the distribution is shown on
the right-hand side). A common and popular notation for the post-interventional probability is
P (Z, Y |do(X=1)). In this paper, we use the notation P ([X=1]Z, Y ) since it is more convenient
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for analyses involving counterfactuals. To determine the causal effect of the drug on recovery, we
compute, in an analogous way, the distribution P ([X=0]Z, Y ) after the intervention do(X=0),
which means that all patients receive placebo. Then, comparing the value P ([X=1]Y=1) = 0.45
with P ([X=0]Y=1) = 0.40, we can conclude that P ([X=1]Y=1)−P ([X=0]Y=1) > 0. This can
be interpreted as a positive (average) effect of the drug in the population which is in opposite to what
has been inferred using the purely probabilistic reasoning of Layer 1. Note that it is not obvious how
to compute the post-interventional distributions from the observed probability P (Z,X, Y ); Indeed,
this is a challenging task in the field of causality.

Layer 3 The key phenomena that can be modeled and analyzed at this level are counterfactual
situations. Imagine, e.g., in our scenario there is a group of patients who did not receive the treatment
and died (X=0, Y=0). One may ask, what would be the outcome Y had they been given the treatment
(X=1). In particular, one can ask what is the probability of recovery if we had given the treatment to
the patients of this group. Using the formalism of Layer 3, we can express this as a counterfactual
query: P ([X=1]Y=1|X=0, Y=0) = P ([X=1](Y=1)∧(X=0, Y=0))/P (X=0, Y=0).Note that
the event [X=1](Y=1)∧ (X=0, Y=0) incorporates simultaneously two counterfactual mechanisms:
FX=1 and F . This is the key difference to Layer 2, where we can only have one. We define the
probability in this situation as follows:

P ([X=x](Z=z, Y=y) ∧ (Z=z′, X=x′, Y=y′)) =
∑

u δFX=x,u(z, y) · δF,u(z′, x′, y′) · P (u).

X=0, Y=0 is satisfied only for (U1, U2, U3) ∈ {(0, 0, 0), (0, 1, 0), (1, 0, 0)} (first table), and of
them only {(0, 0, 0), (0, 1, 0)} satisfies [X=1]Y=1 (third table). Thus, by marginalizing Z, we get
P ([X=1]Y=1|X=0, Y=0) = 0.15/0.24 = 0.625 which may be interpreted that more than 62%
of patients who did not receive treatment and died would have survived with treatment. Finally,
we would like to note that, in general, the events of Layer 3 can be quite involved and incorporate
simultaneously many counterfactual worlds.

Graph Structure of an SCM Below we remind, how an SCM can be represented in the form of a
Directed Acyclic Graph (DAG) and show such a DAG for the model discussed above.

Let M = (F = {F1, . . . , Fn}, P,U,X = {X1, . . . , Xn}) be an SCM. We assume that the model is
Markovian, i.e. that the exogenous arguments Ui, Uj of Fi, resp. Fj are independent whenever i ̸= j.
These exogenous arguments are not shown in the DAG. We note that a general model as discussed
above, called semi-Markovian, which allows for the sharing of exogenous arguments and allows
for arbitrary dependencies among the exogenous variables, can be reduced in a standard way to the
Markovian model by introducing auxiliary “unobserved” variables. Thus, in our example, to get a
Markovian model, we can assume, X = {X,Y, Z, U1}, where X,Y, Z remain observed variables
but U1 is of unobserved nature.

We define that a DAG G = (X, E) represents the graph structure of M if, for every Xj appearing
as an argument of Fi, Xj → Xi is an edge in E. DAG G is called the causal diagram of the
model M Pearl (2009); Bareinboim et al. (2022). The DAG for the discussed SCM therefore has the
following form (here, as is usually done in Markovian models, variables U2 and U3 that only affect
X , respectively Y , are omitted):

X

Z

Y

U1

Moreover, the DAG of the intervention model discussed in subsection Layer 2, with functional
mechanism FX=1 has the following form, meaning that all in-going edges to X are removed from
the pre-interventional model:

X

Z

Y

U1
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C SYNTAX AND SEMANTICS OF THE LANGUAGES OF THE PCH: FORMAL
DEFINITIONS

We always consider discrete distributions in the probabilistic and causal languages studied in this
paper. We represent the values of the random variables as Val = {0, 1,..., c− 1} and denote by X
the set of random variables used in a system. By capital letters X1, X2,..., we denote the individual
variables and assume, w.l.o.g., that they all share the same domain Val . A value of Xi is often
denoted by xi or a natural number. In this section, we describe syntax and semantics of the languages
starting with probabilistic ones and then we provide extensions to the causal systems.

By an atomic event, we mean an event of the form X = x, where X is a random variable and x
is a value in the domain of X . The language Eprop of propositional formulas over atomic events is
defined as the closure of such events under the Boolean operators ∧ and ¬. To specify the syntax of
interventional and counterfactual events we define the intervention and extend the syntax of Eprop to
Epost-int and Ecounterfact, respectively, using the following grammars:

Eprop is defined by p ::= X = x | ¬p | p ∧ p

Eint is defined by i ::= ⊤ | X = x | i ∧ i

Epost-int is defined by pi ::= [ i ]p

Ecounterfact is defined by c ::= pi | ¬c | c ∧ c.

Note that since ⊤ means that no intervention has been applied, we can assume that Eprop ⊆ Epost-int.

The PCH consists of three languages L1,L2,L3, each of which is based on terms of the form P(δ).
For the (observational or associational) language L1, we have δ ∈ Eprop, for the (interventional)
language L2, we have δ ∈ Epost-int and for the (counterfactual) language L3, δ ∈ Ecounterfact. The
expressive power and computational complexity properties of the languages depend largely on the
operations that we are allowed to apply to the basic terms. Allowing gradually more complex
operators, we describe the languages which are the subject of our studies below. We start with the
description of the languages T ∗

i of terms, with i = 1, 2, 3, using the following grammars12

T base
i t ::= P(δi) T base⟨Σ⟩

i
t ::= P(δi) |

∑
x t

T lin
i t ::= P(δi) | t+ t T lin⟨Σ⟩

i t ::= P(δi) | t+ t |
∑
x t

T poly
i t ::= P(δi) | t+ t | −t | t · t T poly⟨Σ⟩

i t ::= P(δi) | t+ t | −t | t · t |
∑
x t

where δ1 are formulas in Eprop, δ2 ∈ Epost-int, δ3 ∈ Ecounterfact.

The probabilities of the form P(δi) are called primitives or basic terms. In the summation operator
∑
x,

we have a dummy variable x which ranges over all values 0, 1, . . . , c− 1. The summation
∑
x t is a

purely syntactical concept which represents the sum t[0/x]+t[1/x]+...+t[c− 1/x], where by t[v/x], we
mean the expression in which all occurrences of x are replaced with value v. For example, for Val =
{0, 1}, the expression

∑
x P(Y=1, X=x) semantically represents P(Y=1, X=0) + P(Y=1, X=1).

We note that the dummy variable x is not a (random) variable in the usual sense and that its scope is
defined in the standard way.

In the table above, the terms in T base
i are just basic probabilities with the events given by the

corresponding languages Eprop, Epost-int, or Ecounterfact. Next, we extend terms by being able to compute
sums of probabilities and by adding the same term several times, we also allow for weighted sums
with weights given in unary. Note that this is enough to state all our hardness results. All matching
upper bounds also work when we allow for explicit weights given in binary. In the case of T poly

i , we
are allowed to build polynomial terms in the primitives. On the right-hand side of the table, we have
the same three kinds of terms, but to each of them, we add a marginalization operator as a building
block.

The polynomial calculus T poly
i was originally introduced by Fagin, Halpern, and Megiddo (Fagin

et al., 1990) (for i = 1) to be able to express conditional probabilities by clearing denominators.
While this works for T poly

i , this does not work in the case of T poly⟨Σ⟩
i , since clearing denominators

12In the given grammars we omit the brackets for readability, but we assume that they can be used in a standard
way.
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with exponential sums creates expressions that are too large. But we could introduce basic terms
of the form P(δi|δ) with δ ∈ Eprop explicitly. All our hardness proofs work without conditional
probabilities but all our matching upper bounds are still true with explicit conditional probabilities.
Expression as P(X=1)+P(Y=2) ·P(Y=3) is a valid term in T poly

1 and
∑
z P([X=0](Y=1, Z=z))

and
∑
z P(([X=0]Y=1), Z=z) are valid terms in the language T poly⟨Σ⟩

3 , for example.

Now, let Lab = {base, base⟨Σ⟩, lin, lin⟨Σ⟩, poly, poly⟨Σ⟩} denote the labels of all variants of lan-
guages. Then for each ∗ ∈ Lab and i = 1, 2, 3 we define the languages L∗

i of Boolean combinations
of inequalities in a standard way:

L∗
i is defined by f ::= t ≤ t′ | ¬f | f ∧ f , where t, t′ are terms in T ∗

i .

Although the language and its operations can appear rather restricted, all the usual elements of
probabilistic and causal formulas can be encoded. Namely, equality is encoded as greater-or-
equal in both directions, e.g. P(x) = P(y) means P(x) ≥ P(y) ∧ P(y) ≥ P(x). The number 0
can be encoded as an inconsistent probability, i.e., P(X=1 ∧ X=2). In a language allowing
addition and multiplication, any positive integer can be easily encoded from the fact P(⊤) ≡ 1, e.g.
4 ≡ (1 + 1)(1 + 1) ≡ (P(⊤) + P(⊤))(P(⊤) + P(⊤)). If a language does not allow multiplication,
one can show that the encoding is still possible. Note that these encodings barely change the size of
the expressions, so allowing or disallowing these additional operators does not affect any complexity
results involving these expressions.

To define the semantics of the languages, we use a structural causal model (SCM) as in (Pearl, 2009,
Sec. 3.2). An SCM is a tuple M = (F , P,U,X), such that V = U∪X is a set of variables partitioned
into exogenous (unobserved) variables U = {U1, U2,...} and endogenous variables X. The tuple
F = {F1,..., Fn} consists of functions such that function Fi calculates the value of variable Xi from
the values (x,u) of other variables in V as Fi(pai,ui)

13, where Pai ⊆ X and Ui ⊆ U. P specifies
a probability distribution of all exogenous variables U. Since variables X depend deterministically on
the exogenous variables via functions Fi, F and P obviously define the joint probability distribution
of X. Throughout this paper, we assume that domains of endogenous variables X are discrete and
finite. In this setting, exogenous variables U could take values in any domains, including infinite and
continuous ones. A recent paper (Zhang et al., 2022) shows, however, that any SCM over discrete
endogenous variables is equivalent for evaluating post-interventional probabilities to an SCM where
all exogenous variables are discrete with finite domains. As a consequence, throughout this paper, we
assume that domains of exogenous variables U are discrete and finite, too.

For any basic Eint-formula Xi=xi (which, in our notation, means do(Xi=xi)), we denote by FXi=xi

the function obtained from F by replacing Fi with the constant function Fi(v) := xi. We generalize
this definition for any interventions specified by α ∈ Eint in a natural way and denote as Fα
the resulting functions. For any φ ∈ Eprop, we write F ,u |= φ if φ is satisfied for values of
X calculated from the values u. For α ∈ Eint, we write F ,u |= [α]φ if Fα,u |= φ. And for
all ψ,ψ1, ψ2 ∈ Ecounterfact, we write (i) F ,u |= ¬ψ if F ,u ̸|= ψ and (ii) F ,u |= ψ1 ∧ ψ2 if
F ,u |= ψ1 and F ,u |= ψ2. Finally, for ψ ∈ Ecounterfact, let SM = {u | F ,u |= ψ}. We
define JeKM, for some expression e, recursively in a natural way, starting with basic terms as
follows JP(ψ)KM =

∑
u∈SM(ψ) P (u) and, for δ ∈ Eprop, JP(ψ|δ)KM = JP(ψ ∧ δ)KM/JP(δ)KM,

assuming that the expression is undefined if JP(δ)KM = 0. For two expressions e1 and e2, we define
M |= e1 ≤ e2, if and only if, Je1KM ≤ Je2KM. The semantics for negation and conjunction are
defined in the usual way, giving the semantics for M |= φ for any formula φ in L∗

3.

13We consider recursive models, that is, we assume the endogenous variables are ordered such that variable
Xi (i.e. function Fi) is not affected by any Xj with j > i.
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