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ABSTRACT

Estimating the state of an environment from high-dimensional, noisy observations
is a fundamental challenge in reinforcement learning (RL). Traditional approaches
rely on probabilistic models to account for the uncertainty, but often require ex-
plicit noise assumptions, in turn limiting generalization. In this work, we propose
a novel method to learn a structured latent representation, in which distances be-
tween states directly correlate with the minimum number of actions required to
transition between them. The proposed metric space formulation provides a ge-
ometric interpretation of uncertainty without the need for explicit probabilistic
modeling. To achieve this, we introduce a multimodal latent transition model
and a sensor fusion mechanism based on inverse distance weighting, allowing for
the adaptive integration of multiple sensor modalities without prior knowledge of
noise distributions. We empirically validate the approach on a range of RL tasks,
demonstrating improved robustness to sensor noise and superior state estimation
compared to baseline methods. Our experiments show enhanced performance of
an RL agent via the learned representation, eliminating the need of explicit noise
augmentation. The presented results suggest that leveraging transition-aware met-
ric spaces provides a principled and scalable solution for robust state estimation
in sequential decision-making.

1 INTRODUCTION

Estimating the state of the environment from high-dimensional observations is a key challenge in
Reinforcement Learning (RL). Compact low-dimensional representations of the sensory informa-
tion have been shown to dramatically improve the performances of data-driven agents in synthetic
(Anand et al., 2019) and real-world (Finn et al., 2016; Florensa et al., 2019) settings. In realistic
scenarios, sensory information can be unreliable due to external noises or failures. In such cases,
estimating the state of the system along with a measure of uncertainty allows for robust control,
(Ackermann et al., 1993). When having access to multiple sensors, state estimation can become
more precise as these can compensate for one another. This, however, requires a more complex
design of a multimodal robust state estimation model.

Optimal solutions can be found by applying a Bayesian formulation to the problem. Bayesian filter-
ing techniques allow for the maximum a-posteriori estimate of the state space even in case of uncer-
tainties. These, however, require restrictions in terms of modeling the state distributions (Kalman,
1960) or using expensive Monte Carlo approaches (Gordon et al., 1993). Moreover, they gen-
erally require an observation model and prior knowledge of the functional form of the uncertainty
(Thrun, 2002). In this regard, deep learning solutions have shown promising results on the determin-
istic representation of high-dimensional observations (Bengio et al., 2013) and complex dynamics
(Hochreiter, 1997). Regarding uncertainty estimation, approaches included either training under
noisy conditions by using variational methods (Krishnan et al., 2015) or using a reformulation of
Gaussian processes (Garnelo et al., 2018). Reliable state estimation under uncertainty remains,
however, an open challenge.

We address the problem of state representation from multi-sensory observations for RL. We pro-
pose to learn a representation that aligns the sensory modalities and correlates temporal distances
with Euclidean distances. The key idea of this work is to recast the problem of uncertainty estima-
tion geometrically in a metric space. This, in turn, allows to significantly simplify the problem of
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Figure 1: We propose METRICMM, a novel state estimation model from noisy multimodal obser-
vations. Each observation (o1, o2 on the left) is mapped into a joint metric space (Z on the right)
where distances from the latent dynamics prediction (ẑt = φT (zt−1, at−1)) are correlated with their
uncertainty.

state estimation, Figure 1. The proposed model, Metric Learning for Multimodal State Estimation
(METRICMM), consists of an encoder for each modality and a latent transition model trained with
simple contrastive learning and prediction losses. We empirically show that the proposed represen-
tation can be used to train an RL agent on a variety of tasks. Moreover, we demonstrate how the
proposed state estimate is robust to sensor noise of arbitrary nature without being trained on any of
these.

Our work makes the following contributions:

1. Metric-consistent multimodal state space. We introduce METRICMM, which aligns sen-
sory modalities in a shared latent space where temporal proximity corresponds to Euclidean
distance, enabling simple geometric reasoning for control.

2. Robustness under unseen corruptions. We empirically demonstrate how METRICMM
maintains high returns under seven corruption families (unseen during training), including
settings where two of three modalities are corrupted, consistently outperforming fusion and
representation baselines.

2 RELATED WORK

Representation learning describes the problem of extracting a meaningful representation from high-
dimensional observations (LeCun et al., 2015). This is of particular interest in reinforcement learn-
ing, where the dimensionality of the observations scales exponentially with the data needed for
learning (Kober et al., 2013). State representation learning, (Lesort et al., 2018), refers to those
representations that describe the underlying state of a sequential decision-making problem. Early
work in this direction has focused on estimating a latent representation that is low dimensional and
invariant to distractors by using a reconstruction loss Munk et al. (2016); Mnih (2016) or contrastive
methods Laskin et al. (2020). These approaches, however, lose the original structure of the state
space and can’t be generalized to other kinds of disturbances in the observation space.

In the case of reinforcement learning, data has a temporal structure due to the sequential nature of
the problem. Model-based approaches make use of this structure to guide the learning of the repre-
sentation and the policy. This can be done in the form of learning a transition model concurrently
with the representation to either facilitate the learning of a policy (Lillicrap, 2015; Haarnoja et al.,
2018) or planning (Ha & Schmidhuber, 2018; Hafner et al., 2019b; Janner et al., 2021). Moreover,
this temporal bias has been used explicitly to guide the structure of the latent space of the learned
representation to simplify the control problem (Watter et al., 2015; Zhang et al., 2019; Eysenbach
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et al., 2022). While these methods use additional biases to simplify the learning problem or to
recover additional properties, they do not offer a viable solution to the problem of noise robustness.

Bayesian filtering offers a solution to the problem of noise robustness in state estimation (Haykin,
2004). Classic methods of filtering offer provably optimal solutions in this direction but tend to be
quite restrictive on the assumptions needed and the class of problem they can be applied to. Some of
these assumptions have been successfully addressed by merging these models with modern versions
of deep representation learning (Krishnan et al., 2015; Karl et al., 2016). These models, however,
assume a noisy dataset to learn the uncertainty of the transition model and the observation model
and restrict the model of the state estimate to be in a known form like a Gaussian distribution.
Moreover, two major limitations are the need to learn a generative model for the update step and
the inability to handle multimodal observations. In Haarnoja et al. (2016), they propose the use
of a discriminative encoder for the observations to avoid learning the generative model. In Liu
et al. (2023), they overcome the multimodality problem by substituting the Kalman Gain with a
Transformer’s attention module on the learned encoding of the different modalities. Contrary to
these methods, our proposed model doesn’t need to estimate the uncertainty explicitly allowing us
to be agnostic to the kind of noise. Moreover, multimodality is easily addressed by aligning the
representation with an invariant loss.

A generalization of these methods is described with the term State Space Models (SSM) where
transitions and observations as well as noise are relaxed to arbitrary functions (Billings, 2013).
Recurrent State Space Models (RSSM) learn explicitly the temporal relation of data using autore-
gressive models (Hafner et al., 2019a), or sequence-to-sequence models (Becker et al., 2024).
Uncertainty can be taken into account using a probabilistic version of this (Doerr et al., 2018). This
has been done using variational methods and imposing a known form of the probability estimate in
the latent space using Variational AutoEncoders (VAE) (Kingma, 2013). Alternative solutions to
avoid the reconstruction loss include the use of Prototypes (Deng et al., 2022) or contrastive meth-
ods (Becker et al., 2023). Similar to Bayesian filtering methods, uncertainty estimation remains a
key challenge for these algorithms. Other forms of uncertainty estimation include Neural Processes
(Garnelo et al., 2018; Jung et al., 2024), and Energy functions (Zhang et al., 2023). These have,
however, been applied only to supervised learning settings.

3 BACKGROUND

Throughout the rest of the paper, we assume a Partially Observable Markov Decision Process
(POMDP) defined by the tuple (S,O1:N , A, T, r, γ). Here, S denotes the true underlying Marko-
vian state space of the environment, O1:N denotes the N available observation modalities, and A
the action space. The transition function T : S × A → S is assumed to be deterministic. The
objective is to maximize the cumulative reward given by the function r : S ×A → R, scaled by the
discount factor γ. Each observation oi provides a potentially noisy measurement of the true state s.
We assume that each observation is sampled from an unknown stochastic process, with independent
noise affecting each modality, i.e. oit ∼ pi(o

i
t | st).

The overall goal of RL is to estimate a policy that maximizes the expected cumulative reward.
When s is not directly accessible, the policy is generally conditioned on the available obser-
vations, i.e., O1:N . Representation learning for RL can be defined as finding a suitable latent
representation z for the sensory observations, such that the policy, π : Z → A, achieves the
maximum possible expected cumulative reward. That is, preserving the information necessary
for optimal decision-making while discarding task-irrelevant noise. Stochasticity in the observa-
tions requires modeling the representation as an estimation process which can be formulated as a
Bayesian filtering problem. Via the Markov assumption, we can write the estimation process re-
cursively through Bayes, i.e. p(zt | zt−1, at−1, o

1:N
t ) = p(o1:Nt | zt)p(zt | zt−1, at−1)/p(o

1:N
t ).

This is generally intractable when assumptions on the functional form of these probabilities can-
not be made. Here, we simplify the estimation process and consider a deterministic representa-
tion of the state, as such we consider the maximum a-posteriori (MAP) estimate of the state, i.e.
zt = argmaxzt p(zt | zt−1, at−1, o

1:N
t ) = argmaxzt p(o

1:N
t | zt)p(zt | zt−1, at−1). In literature,

the second term (p(zt | zt−1, at−1)) is generally referred to as the prediction step while the first one
(p(o1:Nt | zt)) as the update.
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4 METHOD

We propose a novel approach to learn a latent representation of multi-sensory observations, along
with a latent transition model, that enables robust state estimation independently of the nature of ob-
servation noise. Our method learns a metric space in which distances between latent states correlate
with the minimum number of actions needed to transition between them in the environment. This
provides a geometric interpretation of uncertainty, simplifying state estimation.

4.1 LATENT STATE REPRESENTATION

In an ideal scenario, having access to a perfect representation of the environment’s dynamics would
be sufficient to track the current state. However, in practice, approximation errors in the learned
transition model and potential stochasticity in the POMDP dynamics must be accounted for. In
sequential decision-making problems, these errors can compound over time, leading to divergence
in the state estimate (Ross et al., 2011). To mitigate this issue, we incorporate information from
multiple sensor modalities to refine the state estimate at each step, akin to the Bayesian filtering
formulation. However, traditional filtering approaches require explicit uncertainty modeling, which
may not generalize well across varying noise conditions.

Instead, we propose to structure the latent space such that state transitions and sensory observations
can be integrated without explicit probabilistic modeling. The key idea behind this work is that
the uncertainty induced by transition model errors is generally local to its predictions, not in the raw
observation space but in a space where distances are induced by the system’s dynamics. Specifically,
we argue that the transition model’s uncertainty should be interpreted in a space where distances
correspond to the minimum number of actions required to transition between states. This motivates
the construction of a metric space that aligns with the dynamics of the environment.

To formalize this, we define a metric space M = (Z, ∥·∥2) induced by an ideal injective map
φ : S → Z, where Z ⊆ Rm is a vector space, and distances are given by the Euclidean norm.
We can define Z such that distances in this space are correlated with the minimum number of ac-
tions needed to transition between their corresponding environment states, i.e. temporal distances
(Eysenbach et al., 2022; Wang et al., 2023; Park et al., 2023). Injectivity between the two spaces
allows us to use the formalism of MDP Homomorphisms (Ravindran & Barto, 2001; Van der Pol
et al., 2020). In the case of POMDPs, we do not have direct access to the state of the system and
thus have to rely on sensory observations and dynamics predictions. As such, we can define an
approximation of the dynamics of the environment in this new latent space, i.e. φT : Z × A → Z.
Given this structure, we make the following assumption:

Transition Error Assumption: The transition error at time t is constrained such that the predicted
latent state φT (zt−1, at−1) lies within a small ball of states that are close in terms of action-based
distance. That is, there exists an ϵ-radius region in the latent space such that:

zt ∈ B(φT (zt−1, at−1), ϵ), (1)

where B(z, ϵ) = {z′ ∈ Z | d(z, z′) ≤ ϵ}.

Intuitively, while the transition model may introduce small prediction errors, these errors generally
remain within a neighborhood of states that require similar sequences of actions to transition be-
tween. Nevertheless, the learned transition model accumulates errors over time. This requires the
integration of sensory information to correct the latent state estimate. Each modality Oi provides
an independent estimate of the state. In this regard, we define a deterministic mapping from each
observation space to the above-defined metric space Z:

φi : O
i → Z, ∀i ∈ [1, N ] (2)

where N represents the number of sensor modalities. We seek to learn these mappings such that
the latent representation is aligned between them and respects the notion of metric space previously
defined.

4.2 SENSOR FUSION VIA INVERSE DISTANCE WEIGHTING

The information from the sensors can be used to correct the prediction of the latent transition model
on the state of the environment. However, due to noise, different modalities might be more or less
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reliable at any given time. We can make use of the geometry induced by the metric space to approx-
imately model this uncertainty. Since we do not assume prior knowledge of noise distributions, we
propose an adaptive weighting scheme based on the notion of distance induced by the metric space.
The key intuitions are:

• If an observation’s latent encoding φi(o
i
t) is close to the latent transition prediction

φT (zt−1, at−1), then it is more likely to be an accurate state estimate.

• Conversely, if an observation encoding is far from the prediction, it is likely corrupted by
noise or uninformative.

Thus, we weigh each modality’s contribution using the inverse of its latent space distance to the
transition model estimate. The final estimated state is:

zt =

(∑
i

1

∥zit − ẑt∥2

)−1∑
i

zit
∥zit − ẑt∥2

, (3)

where ẑt = φT (zt−1, at−1)) and zit = φi(o
i
t). This formulation follows a MAP principle, where

more confident estimates (i.e., those that agree with the transition model) receive higher weights.
This enables robustness without requiring explicit noise modeling.

4.3 LEARNING THE LATENT REPRESENTATION

We introduce three loss functions to enforce the desired metric structure of the latent space. We
do not require noisy observations during training as we do not need an explicit estimate of the
uncertainty. Whenever we refer to z̄t or z̄t+1 in the loss functions, we mean the average of the
sensor encodings:

z̄t =
1

N

N∑
i=1

φi(o
i
t), (4)

Assuming no noise in the sensory observations, the mean is equivalent to the state estimate in Equa-
tion 3.

Contrastive Temporal Distance Loss We enforce temporal consistency by structuring the latent
space such that successive states remain close, while randomly sampled states are further apart:

L+ = E[(∥z̄t+1 − z̄t∥2 − 1)2] (5)
L− = E[− log(∥z̄r − z̄t∥2)] (6)

where zr is a randomly sampled state. A similar formulation for different applications was proposed
in Wang et al. (2023); Park et al. (2023). The term L− ensures that the latent representation does not
collapse into a trivial solution where all states are mapped to the same point. By encouraging larger
distances between random state pairs, we preserve meaningful geometry in the representation space.
This term, however, is bounded by the triangular inequality given the positive term of the loss, i.e.
L+.

Latent Transition Loss To ensure consistency between the learned transition model and observed
transitions, we minimize:

LT = E[(φT (z̄t, at)− z̄t+1)
2] (7)

This enforces that the transition model accurately captures environment dynamics.

Multimodal Invariance Loss To align representations across sensor modalities, we introduce an
invariance loss:

Linv = E[(φi(o
i
t)− φj(o

j
t ))

2] ∀i, j ∈ [1, N ] (8)

This ensures that each modality is mapped to the same learned latent metric space.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: Mean and standard deviation over 5 seeds of the training return for a SAC agent on
the Hopper-v5 environment. The policies are trained with different state estimation modules (Lin-
earComb, ConCat, CURL, GMC) and different amounts of Gaussian noise on the observations. With
an increase in noise, the expected average return sensibly decreases for all the estimators. Epochs
are in thousands.

4.4 INTEGRATION WITH REINFORCEMENT LEARNING

By structuring the latent space around transition dynamics and sensor alignment, the representation
provides a stable input for policy learning. This allows reinforcement learning agents to operate in a
structured feature space where distances reflect control-relevant properties, reducing the complexity
of decision-making. The proposed representation model can, thus, be integrated into standard rein-
forcement learning algorithms. Unlike traditional methods that require training with explicit noise
augmentation, our approach naturally accounts for observation uncertainty. The final objective func-
tion is:

L = LT + λ1L+ + λ2L− + λ3Linv (9)
where λ1, λ2, λ3 are hyperparameters.

5 EXPERIMENTS

Scope and setup. We study whether multimodal representations can sustain control perfor-
mance under severe observation perturbations and cross–modal mismatch. Our evaluation spans
two suites. (i) MuJoCo: Hopper-v5, HalfCheetah-v5, Ant-v5, Walker2d-v5, Humanoid-v5, and
InvertedPendulum-v5 with synchronized RGB and depth streams. (ii) Fetch: 7-DoF manipula-
tion (FetchPickAndPlace-v4, FetchSlide-v4) with RGB, depth, and point clouds. Unless otherwise
stated, we train Soft Actor–Critic (SAC) end-to-end on top of the representation module and re-
port mean return ± standard deviation over 5 seeds. All architectural and optimization details are
deferred to the Appendix.

Corruptions and evaluation protocol. To probe robustness, we inject seven families of pertur-
bations at test time (unseen during training): Gaussian, Salt-and-Pepper, Patches, Puzzle, Texture,
Failure, and Hallucination. These are applied with different probabilities to study how fast per-
formances deteriorate. For MuJoCo, we corrupt one modality at a time to isolate; for Fetch we
additionally consider settings where two of the three modalities are simultaneously corrupted. For
each (task, corruption) tuple, we evaluate 50 episodes per seed and aggregate across seeds to obtain
performance–severity curves (Fig. 3).
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Figure 3: Mean and standard deviation over 5 seeds and 50 trajectories of the testing return for a
SAC agent on the Mujoco suite. The policies are trained with different state estimation modules
and different amounts of noise (perturbations of one modality at a time). METRICMMis the only
estimator that allows for a consistent return with high-frequency perturbations.

Table 1: Fetch - Pick And Place — Patches noise — 2 noisy modalities.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb -0.89 ± 0.02 -1.99 ± 1.14 -1.76 ± 1.35 -2.57 ± 2.11 -2.67 ± 1.56 -2.17 ± 1.28
Concat -0.04 ± 1.63 -1.13 ± 0.9 -2.84 ± 0.76 -2.06 ± 0.43 -2.53 ± 0.63 -2.43 ± 0.24
CURL 1.43 ± 0.32 -1.55 ± 0.93 -3.76 ± 1.94 -3.51 ± 0.59 -3.4 ± 0.46 -2.58 ± 0.38
GMC -0.01 ± 1.16 -0.91 ± 0.27 -2.04 ± 0.38 -1.95 ± 0.67 -1.88 ± 0.89 -2.41 ± 1.24
AMDF 2.2 ± 1.32 0.93 ± 0.62 -1.04 ± 0.54 -1.75 ± 0.59 -2.16 ± 0.35 -2.34 ± 0.31
CORAL -0.36 ± 0.43 -0.86 ± 0.23 -1.51 ± 0.99 -1.23 ± 0.64 -1.38 ± 0.86 -1.47 ± 0.94

MetricMM 1.91 ± 1.09 1.87 ± 0.93 1.43 ± 1.14 0.92 ± 0.79 -0.91 ± 0.26 -1.47 ± 0.1

Baselines. We compare against six representative fusion/representation methods, matching en-
coder capacity and tuning budget:

• Linear Combination (LinearComb): a learned linear map that combines per-modality
latent features.

• Concatenation (ConCat): feature concatenation followed by a shared projection.

• CURL (Laskin et al., 2020): contrastive learning on augmented views at each timestep,
without explicit cross-modal fusion.

• GMC (Poklukar et al., 2022): cross-modal contrastive alignment to learn a shared embed-
ding.

• α-MDF (Liu et al., 2023): an attention-weighted differentiable Bayesian filter that fuses
modality-specific encoders into a latent state.

• CORAL (Becker et al., 2023): joint latent space learned via per-modality reconstruction
and temporal contrastive alignment.

All models are trained jointly with SAC under identical data budgets, replay settings, and evaluation
schedules. Additional implementation details, architectures and hyperparameters are deferred to the
Appendix.

Results on MuJoCo: robustness to single-modality corruption. Figure 3 summarizes perfor-
mance as the perturbation probability increases for six tasks and diverse corruptions. We observe
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Table 2: Fetch - Slide — Failure noise — 2 noisy modalities.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb 5.64 ± 0.92 3.31 ± 0.98 1.41 ± 2.14 -1.21 ± 1.74 -3.58 ± 1.17 -3.36 ± 0.35
ConCat 7.01 ± 1.64 5.5 ± 1.4 4.01 ± 0.48 0.06 ± 1.54 -1.61 ± 1.73 -1.49 ± 1.2
CURL 7.43 ± 0.43 5.34 ± 0.83 1.89 ± 2.35 -1.36 ± 3.33 -2.24 ± 1.87 -3.69 ± 3.21
GMC 5.17 ± 0.4 1.24 ± 3.33 0.12 ± 1.78 -1.77 ± 0.63 -2.72 ± 1.02 -3.11 ± 1.59
AMDF 3.05 ± 1.62 2.76 ± 1.61 -0.48 ± 1.0 -0.67 ± 1.93 -1.98 ± 1.65 -2.41 ± 2.25
CORAL 4.7 ± 2.92 2.28 ± 0.63 -1.16 ± 0.71 -1.39 ± 0.8 -1.87 ± 1.8 -1.79 ± 0.97

MetricMM 9.26 ± 0.21 7.77 ± 2.02 5.95 ± 2.36 4.55 ± 2.96 1.33 ± 2.49 -0.23 ± 3.58

three consistent trends. (i) Robustness slope. Our method (METRICMM) exhibits the flattest degra-
dation, preserving a large fraction of the clean performance up to mid/high severities across tasks;
in contrast, simple fusion baselines (LinearComb/Concat) degrade steeply even for low frequency
of corruptions, indicating that naive aggregation does not resolve cross-modal disagreements. (ii)
Method ordering is stable across corruptions. Across failure, hallucination, texture, puzzle,
patches, and salt-and-pepper, METRICMM maintains the top curve while CURL and GMC are
competitive at low frequencies but drop sharply once the corrupted modality dominates the fused
signal. (iii) High-DoF tasks are particularly sensitive. On Humanoid-v5 and HalfCheetah-v5, the
gap between METRICMM and the best baseline widens with an increased perturbation’s frequency,
suggesting that principled cross-modal consistency becomes increasingly important as control com-
plexity grows.

Results on Fetch: robustness under multi-modality corruption. We next corrupt two of the
three modalities on manipulation tasks. Tables 1 and 2 report returns for patches and failure corrup-
tions, respectively, as the probability of corruption per time step increases. Two effects stand out.
(i) Majority corruptions. Even when the majority of sensory channels are degraded, METRICMM
retains substantially higher returns, e.g., on Fetch Slide with failure noise, it remains above zero
reward until very high severities, while all baselines collapse much earlier (Table 2). (ii) Graceful
decay vs. collapse. On Fetch Pick-and-Place with patches, baseline returns turn negative quickly as
the probability increases, while METRICMM degrades gradually and remains competitive at inter-
mediate frequencies (Table 1). These results indicate that METRICMM can prioritize and re-weight
the remaining reliable modality when others fail.

Training with noisy observations is not required (and can be harmful). Figure 2 shows learn-
ing curves on Hopper-v5 when injecting noise during training for four of the baselines. While
moderate noise can induce invariances, it consistently slows exploration and lowers asymptotic re-
turns across preprocessors; severe noise significantly delays the onset of learning. Practically, this
requires knowing the corruption family a priori and increases computation, whereas METRICMM
attains robustness without any noisy training.

Every modality provides useful information. Not all observations are equally easy to exploit,
and without explicit cross-modal alignment a policy often latches onto the cheapest signal. In
Fetch, the point-cloud stream is the most informative for precise geometry but also the most de-
manding to encode, making it especially vulnerable to perturbations. To quantify reliance, Table 3
reports performance when we corrupt only one modality at a high probability (0.99). When point
clouds are the sole corrupted stream, most baselines exhibit little to no degradation, revealing a sys-
tematic over-reliance on RGB/depth and under-utilization of 3D structure. In contrast, our aligned
representation distributes credit across modalities and shows a more uniform sensitivity profile, in-
dicating that each sensor contributes meaningfully to the learned state.

Takeaway. Across locomotion and manipulation, METRICMM maintains strong control perfor-
mance under severe and diverse corruptions, including cases where two of three modalities are
degraded. The method remains robust without noise-aware training, offering a practical way to
resilient multimodal RL.
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Table 3: Fetch - Slide — Failure noise — 1 noisy modality with probability 1. Noise applied to
one type of modality only

Model all modalities image only depth only point cloud only

Linear Comb -1.14 ± 2.41 -2.94 ± 1.26 -1.96 ± 2.14 9.27 ± 0.17
ConCat 1.53 ± 2.91 0.28 ± 6.19 -2.38 ± 0.67 7.37 ± 2.11
CURL 0.16 ± 3.09 -2.17 ± 1.51 -0.06 ± 8.26 8.15 ± 0.94
GMC -1.76 ± 1.31 -1.13 ± 1.10 -4.52 ± 4.01 7.67 ± 0.53
AMDF 0.1 ± 1.53 -2.62 ± 2.87 -1.63 ± 2.91 3.80 ± 2.28
CORAL -1.32 ± 0.67 -3.87 ± 4.63 -2.53 ± 1.15 7.56 ± 2.03

MetricMM 8.46 ± 0.92 7.29 ± 1.39 8.90 ± 0.96 7.87 ± 0.65

6 CONCLUSION

We introduced a novel approach for robust state estimation in reinforcement learning by learning a
structured latent space where distances reflect the minimum number of actions required to transi-
tion between states. This metric space formulation enables a geometric interpretation of uncertainty,
eliminating the need for explicit probabilistic noise modeling. Our method integrates multi-sensory
observations via inverse distance weighting, ensuring adaptive sensor fusion without prior knowl-
edge of noise distributions. Additionally, contrastive and transition-consistency losses enforce tem-
poral structure, while an invariance loss aligns representations across modalities. We empirically
demonstrated the effectiveness of our approach on a diverse set of tasks, showing that it improves
state estimation robustness in the presence of sensor noise and significantly enhances RL agent per-
formance. Results confirm that the learned representation generalizes across different environments
without requiring explicit noise augmentation. By leveraging the environment’s dynamics within the
latent space, our approach provides a scalable and principled solution for robust state estimation. Fu-
ture directions include adapting the method to non-stationary environments, evaluating adversarial
robustness, and extending it to real-world robotics.
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Jelle Munk, Jens Kober, and Robert Babuška. Learning state representation for deep actor-critic
control. In 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 4667–4673. IEEE,
2016.

Seohong Park, Oleh Rybkin, and Sergey Levine. Metra: Scalable unsupervised rl with metric-aware
abstraction. arXiv preprint arXiv:2310.08887, 2023.

Petra Poklukar, Miguel Vasco, Hang Yin, Francisco S Melo, Ana Paiva, and Danica Kragic. Geo-
metric multimodal contrastive representation learning. In International Conference on Machine
Learning, pp. 17782–17800. PMLR, 2022.

Balaraman Ravindran and Andrew G Barto. Symmetries and model minimization in markov deci-
sion processes, 2001.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

Here, we provide the necessary details on the conducted experiments. For the MuJoCosuite, we
augmented the observations to include both RGB images and depth images. For both, we used a
resolution of 84×84. To ensure Markovianity in the observations, we stack 3 consecutive frames
together for both the RGB images and the depth images. We do not use proprioceptive information.
We keep the reward function to be the default one of the different environments. For the Fetchsuite,
we augmented the observations to include RGB images, depth images and point clouds. Both RGB
and depth images have a resolution of 128×128. We generate the point cloud observations by
projecting rays from the camera position, given the depth of the environment. This results in a
variable number of points, each consisting of a 3D position and an RGB value. Again, for all the
modalities, we stack 3 consecutive frames together. For these environments, we changed the reward
function to be a linear combination of the negative Euclidean distance between the end-effector of
the arm and the object and the negative Euclidean distance between the object and the goal (the latter
scaled by the initial distance and multiplied by a factor of 10).

For each model and each environment, we learn a Soft Actor-Critic agent to maximize the reward
of the environment. The list of relevant hyperparameters is described in Table 4, these are the same
for every experiment.

Table 4: SAC hyperparameters.
Hyperparameter Value

γ 0.99
τ 0.005
Learning rate actor 0.0003
Learning rate critic 0.001
Replay buffer size 100000
Batch size 256
Initial α 0.1
Number of critics 2
Number of simulations between updates 1
Number of workers 2
Target entropy - dim of actions

Number of hidden layers critic 3
Number of neurons per layer critic 256
Non-linear activation critic ReLU
Number of hidden layers actor 3
Number of neurons per layer actor 256
Non-linear activation actor ReLU

For every experiment, we train the SAC agent together with its representation module end-to-end by
minimizing the linear combination of all its losses. We train the agent until convergence, around 200
thousand steps for the MuJoCoenvironments and 400 thousand for the Fetchenvironments. After
convergence, we test the best-performing models for 50 trajectories. Noise is applied at random to
any modality at every step (except the initial observation) with a different probability.

For every state estimation method we use a Convolutional Neural Network (CNN) architecture for
the RGB and the depth images and a SetTransformer for the point cloud. The CNN consists of 3
convolutional layers with 32 filters each and a kernel size and stride respectively of [4, 2], [4, 2], [3,
1] with a fully connected output layer. Each layer is followed by a ReLU non-linear activation func-
tion. We encode each point cloud frame with a compact SetTransformer: 6-D points (XYZ+RGB)
are linearly projected to width dmodel=64, processed by two self-attention blocks (4 heads, Layer-
Norm+residuals, feed-forward width 2×), and pooled via multihead attention with a single learned
seed (k=1). Over a sequence of T=3 frames, the pooled 64-D summaries are concatenated and
mapped with a linear layer to a latent z of size dz=64, then refined by a small MLP (64→64→dz)
to produce the final embedding.

Below is the list of hyperparameters used for METRICMM and the baselines:
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• METRICMM: latent size dz = 64. Per-modality encoders (CNN for images, Set Trans-
former for point clouds). The loss hyperparameters are all 1, i.e., λT = λ1 = λ2 = λinv =
1.

• LinearComb: per-modality encoders (CNN/Set Transformer) projecting to dz , learned lin-
ear fusion over modality latents, capacity matched to ours (same dz , same encoder widths).

• ConCat: same per-modality encoders to dz; fusion by feature concatenation (final latent
dimension scales with number of modalities).

• CURL: per-modality encoders to dz with a contrastive head, InfoNCE temperature τ = 0.2,
momentum target encoder with EMA m=0.99; standard cropping as image augmentations
and gaussian noise as point cloud augmentations.

• GMC: per-modality encoders to a shared embedding with cross-modal contrastive align-
ment; InfoNCE temperature τ=0.3; same dz and encoder widths as ours for fairness.

• AMDF: attention-weighted differentiable filter over modality encoders with recurrent latent
state; latent size dz and filter MLP widths matched to ours; attention temperature/weights
from the implementation defaults.

• CORAL: per-modality encoders with joint latent space trained via reconstruction + con-
trastive objectives; InfoNCE temperature τ=0.1; same dz and encoder capacity as ours.

A.2 NOISES

For all the environments we experiment with the following families of corruptions as noise. Figure
4 shows an example of the different noises for the MuJoCoAnt-v5 environment.

• Gaussian: linear combination with samples from a Gaussian distribution. For RGB and
depth images: N (0, 25), for point clouds: N (0, 0.03). Can be applied to all the modalities.

• Salt-and-pepper: with probability 0.3 for MuJoCoand 0.8, each dimension of the observa-
tion is transformed to either the minimum or maximum possible value. Can be applied to
all the modalities.

• Patches: a portion at random of the image is masked, 30% for MuJoCoobservations and
50% for Fetch. Can be applied to RGB and depth images only.

• Puzzle: the image is divided into a 3 by 3 grid and reshuffled. Can be applied to RGB and
depth images only.

• Texture: the background of the image is segmented and replaced with another image. Can
be applied to RGB images only.

• Failure: the entire observation is set to 0. Can be applied to all modalities.
• Hallucination: the entire observation is substituted with another in-distribution observation

from another trajectory. Can be applied to all modalities.

A.3 ADDITIONAL MUJOCO RESULTS

In Figures 5 and 6, we provide additional results on the MuJoCoenvironment. They illustrate the
average reward and the standard deviation for every combination of noise for all the environments
in the suite. Noise is applied to 1 modality at a time. Results are obtained from 50 evaluation
trajectories after the models have fully trained.

A.4 ADDITIONAL FETCH RESULTS

Below, we provide additional results on the Fetchenvironment. The tables describe the average
reward and the standard deviation for every combination of noise for the Pick and Place and the
Slide environments. Noise is applied to either 1 or 2 modalities at a time. Results are obtained from
50 evaluation trajectories after the models have fully trained.
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Figure 4: Examples of noises on the RGB images for the MuJoCoAnt-v5 environment.

Table 5: Fetch - Pick And Place — Failure noise — 1 noisy modality.
Model 0.1 0.25 0.5 0.75 0.9 0.99

Linear Comb -0.82 ± 0.16 -1.2 ± 1.38 -1.65 ± 2.14 -1.53 ± 1.68 -1.68 ± 0.62 -1.37 ± 0.76
ConCat 0.8 ± 1.14 0.95 ± 1.59 0.44 ± 0.84 -0.49 ± 0.5 -0.17 ± 0.37 -0.92 ± 0.47
CURL 1.58 ± 1.0 1.08 ± 1.11 -1.56 ± 1.0 -2.08 ± 0.2 -2.29 ± 0.46 -2.56 ± 1.36
GMC -0.01 ± 1.15 -1.34 ± 0.87 -1.51 ± 0.77 -1.62 ± 0.63 -1.63 ± 0.54 -1.6 ± 0.57
AMDF 2.73 ± 1.11 2.09 ± 1.08 1.02 ± 0.93 -0.3 ± 0.56 -0.83 ± 1.98 -1.52 ± 1.55
CORAL -0.81 ± 0.14 -0.84 ± 0.12 -0.85 ± 0.1 -0.87 ± 0.26 -1.04 ± 0.38 -1.11 ± 0.56

MetricMM 2.31 ± 1.34 2.35 ± 1.08 2.03 ± 0.68 2.35 ± 1.18 2.21 ± 1.2 1.89 ± 1.2
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Figure 5: Mean and standard deviation over 5 seeds and 50 trajectories of the testing return for a
SAC agent on the Mujoco suite. The policies are trained with different state estimation modules and
different amounts of noise (perturbations of one modality at a time).
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Figure 6: Mean and standard deviation over 5 seeds and 50 trajectories of the testing return for a
SAC agent on the Mujoco suite. The policies are trained with different state estimation modules and
different amounts of noise (perturbations of one modality at a time).
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Table 6: Fetch - Pick And Place — Gaussian noise — 1 noisy modality.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb -0.84 ± 0.54 -1.02 ± 0.32 -0.78 ± 0.64 -1.37 ± 0.8 -1.42 ± 0.85 -1.36 ± 1.07
ConCat 1.36 ± 1.06 0.28 ± 0.36 -0.39 ± 0.92 -1.89 ± 0.44 -1.68 ± 1.11 -1.51 ± 0.66
CURL 2.97 ± 1.32 1.33 ± 1.23 0.13 ± 0.99 -0.75 ± 0.41 -1.11 ± 0.41 -1.43 ± 0.16
GMC -0.24 ± 1.86 -0.15 ± 0.78 -0.55 ± 0.71 -1.42 ± 0.9 -1.94 ± 1.77 -0.85 ± 0.4
AMDF 2.57 ± 1.69 1.97 ± 0.94 1.07 ± 1.41 -0.04 ± 1.08 -0.24 ± 0.35 -0.56 ± 0.28
CORAL -0.36 ± 0.59 -0.58 ± 0.23 -0.57 ± 0.24 -0.78 ± 0.13 -0.61 ± 0.19 -0.5 ± 0.38

MetricMM 2.29 ± 1.3 2.52 ± 1.67 2.28 ± 0.87 1.97 ± 1.33 1.95 ± 1.17 2.19 ± 1.2

Table 7: Fetch - Pick And Place — Hallucination noise — 1 noisy modality.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb -0.95 ± 0.21 -1.44 ± 0.58 -1.28 ± 0.33 -1.57 ± 0.53 -1.82 ± 0.7 -1.93 ± 0.81
ConCat -0.08 ± 0.93 -0.77 ± 0.47 -1.84 ± 0.99 -2.38 ± 0.46 -2.67 ± 0.6 -2.44 ± 1.27
CURL 2.26 ± 0.81 2.44 ± 0.65 0.69 ± 0.3 0.32 ± 0.26 -0.48 ± 0.84 -0.83 ± 0.48
GMC 0.28 ± 1.29 0.12 ± 0.81 -1.72 ± 1.39 -1.42 ± 1.17 -1.37 ± 0.82 -1.15 ± 0.64
AMDF 2.43 ± 1.19 1.03 ± 0.78 0.25 ± 0.34 -0.41 ± 0.7 -1.36 ± 0.55 -1.21 ± 0.16
CORAL -0.43 ± 0.52 -0.58 ± 0.3 -0.59 ± 0.33 -1.02 ± 0.21 -1.24 ± 0.35 -0.96 ± 0.13

MetricMM 2.17 ± 0.73 1.99 ± 1.23 1.85 ± 1.09 1.85 ± 0.96 2.11 ± 0.84 2.08 ± 1.05

Table 8: Fetch - Pick And Place — Patches noise — 1 noisy modality.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb -0.75 ± 0.57 -1.07 ± 0.87 -1.42 ± 1.13 -1.36 ± 0.94 -2.13 ± 0.97 -2.59 ± 1.68
ConCat 0.14 ± 0.18 -0.55 ± 0.29 -1.73 ± 1.0 -1.62 ± 0.64 -1.47 ± 1.11 -1.97 ± 0.58
CURL 1.52 ± 0.83 -0.56 ± 1.15 -2.43 ± 0.93 -2.8 ± 1.53 -3.14 ± 1.16 -2.67 ± 0.32
GMC -0.1 ± 0.43 -1.78 ± 0.78 -1.8 ± 0.94 -1.37 ± 0.7 -1.92 ± 0.92 -1.28 ± 0.41
AMDF 2.76 ± 1.44 1.28 ± 1.03 0.56 ± 0.89 -1.3 ± 0.61 -1.09 ± 0.37 -1.98 ± 1.28
CORAL -0.59 ± 0.19 -1.22 ± 0.73 -1.26 ± 0.77 -1.23 ± 0.75 -1.5 ± 1.18 -1.13 ± 0.62

MetricMM 2.33 ± 1.16 2.13 ± 1.32 1.89 ± 1.21 2.22 ± 1.51 2.13 ± 1.39 2.23 ± 1.56

Table 9: Fetch - Pick And Place — Puzzle noise — 1 noisy modality.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb -0.29 ± 0.4 -0.5 ± 0.58 -1.39 ± 0.47 -1.23 ± 0.74 -1.03 ± 0.22 -1.66 ± 0.78
ConCat 0.64 ± 1.05 -0.25 ± 1.48 -0.97 ± 0.21 -1.18 ± 0.52 -2.62 ± 1.45 -1.71 ± 0.31
CURL 2.79 ± 1.14 2.79 ± 1.7 1.02 ± 0.19 -0.83 ± 0.47 -1.69 ± 0.63 -2.26 ± 0.32
GMC -0.87 ± 1.02 -0.97 ± 0.55 -1.54 ± 0.61 -2.23 ± 1.3 -1.31 ± 0.42 -1.4 ± 0.49
AMDF 2.4 ± 1.67 1.69 ± 1.14 -0.67 ± 1.79 -2.02 ± 0.47 -2.61 ± 0.6 -3.89 ± 1.4
CORAL -0.55 ± 0.32 -0.64 ± 0.11 -1.36 ± 0.93 -1.38 ± 0.65 -1.53 ± 0.99 -1.39 ± 0.62

MetricMM 2.24 ± 0.89 2.26 ± 0.7 1.71 ± 1.27 2.37 ± 1.33 1.85 ± 1.4 1.98 ± 1.39

Table 10: Fetch - Pick And Place — Salt and pepper noise — 1 noisy modality.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb -0.33 ± 0.56 -0.68 ± 0.19 -0.68 ± 0.1 -0.83 ± 0.02 -1.08 ± 0.22 -0.72 ± 0.1
ConCat 0.56 ± 1.5 1.08 ± 0.95 0.62 ± 0.67 -0.76 ± 1.26 -0.79 ± 0.56 -0.89 ± 0.43
CURL 3.56 ± 0.93 2.33 ± 0.88 1.64 ± 0.85 0.49 ± 0.97 0.15 ± 1.29 -0.66 ± 0.85
GMC -0.15 ± 0.96 -0.92 ± 1.3 -1.64 ± 1.06 -1.24 ± 0.98 -1.9 ± 1.1 -1.43 ± 0.57
AMDF 2.54 ± 1.07 1.83 ± 0.7 1.68 ± 0.55 -0.12 ± 0.23 0.01 ± 0.09 -0.83 ± 0.43
CORAL -0.39 ± 0.48 -0.53 ± 0.3 -0.62 ± 0.16 -0.83 ± 0.1 -0.88 ± 0.12 -0.83 ± 0.1

MetricMM 2.43 ± 1.61 1.83 ± 1.22 1.67 ± 0.51 2.21 ± 1.24 1.89 ± 0.58 2.26 ± 1.04
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Table 11: Fetch - Pick And Place — Texture noise — 1 noisy modality.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb -0.22 ± 0.97 -0.63 ± 0.76 -0.42 ± 1.38 -0.55 ± 0.5 -0.36 ± 0.41 -0.02 ± 0.69
ConCat 1.56 ± 0.78 0.89 ± 0.96 0.71 ± 1.69 -0.14 ± 1.36 -0.62 ± 2.25 0.86 ± 1.91
CURL 2.39 ± 1.46 0.09 ± 1.02 -1.97 ± 0.38 -2.9 ± 0.35 -2.89 ± 0.2 -3.2 ± 0.31
GMC -0.1 ± 0.71 -1.12 ± 0.86 -1.41 ± 1.45 -2.02 ± 1.33 -1.6 ± 1.01 -1.65 ± 0.97
AMDF 3.21 ± 2.03 2.36 ± 1.66 1.26 ± 1.34 0.1 ± 0.67 -0.79 ± 0.19 0.09 ± 0.22
CORAL -0.35 ± 0.54 -0.67 ± 0.14 -0.99 ± 0.3 -1.8 ± 1.38 -1.54 ± 1.08 -1.09 ± 0.41

MetricMM 1.84 ± 0.94 2.1 ± 1.09 2.52 ± 1.36 2.19 ± 1.01 2.27 ± 1.22 1.95 ± 1.31

Table 12: Fetch - Pick And Place — Failure noise — 2 noisy modalities.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb -1.32 ± 1.36 -1.54 ± 0.82 -1.36 ± 0.54 -2.28 ± 1.32 -2.04 ± 1.22 -2.37 ± 1.16
ConCat 0.17 ± 1.29 -0.25 ± 0.1 -1.17 ± 0.79 -2.37 ± 1.99 -2.1 ± 0.19 -2.78 ± 0.99
CURL 1.32 ± 0.43 -0.15 ± 1.5 -2.39 ± 0.83 -2.27 ± 0.77 -2.55 ± 0.65 -2.64 ± 0.72
GMC 0.05 ± 1.06 -1.64 ± 0.63 -1.68 ± 0.59 -2.18 ± 0.38 -2.15 ± 0.47 -2.28 ± 0.45
AMDF 2.76 ± 1.39 1.93 ± 1.72 -0.18 ± 1.06 -1.27 ± 0.87 -2.39 ± 1.21 -1.77 ± 0.59
CORAL -0.6 ± 0.14 -1.09 ± 0.43 -1.1 ± 0.53 -1.34 ± 0.82 -1.35 ± 0.81 -1.83 ± 1.51

MetricMM 2.22 ± 1.74 2.44 ± 1.48 1.65 ± 0.64 -0.47 ± 1.2 -1.51 ± 1.25 -3.0 ± 2.27

Table 13: Fetch - Pick And Place — Gaussian noise — 2 noisy modalities.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb -0.54 ± 0.67 -0.99 ± 0.54 -1.64 ± 0.8 -1.21 ± 0.31 -1.91 ± 0.78 -1.38 ± 0.36
ConCat -0.05 ± 0.58 -1.05 ± 0.66 -1.96 ± 1.91 -2.63 ± 0.47 -3.09 ± 0.98 -3.27 ± 0.23
CURL 1.89 ± 0.74 0.29 ± 0.6 -1.5 ± 0.81 -1.94 ± 0.24 -2.11 ± 0.47 -2.04 ± 0.54
GMC -0.1 ± 1.09 -0.88 ± 0.91 -1.59 ± 1.1 -1.57 ± 1.08 -1.22 ± 0.44 -1.4 ± 0.52
AMDF 2.21 ± 1.56 1.56 ± 1.24 -0.27 ± 0.45 -2.15 ± 0.69 -2.65 ± 0.96 -2.64 ± 0.5
CORAL -0.48 ± 0.38 -0.59 ± 0.25 -0.92 ± 0.25 -0.81 ± 0.03 -1.1 ± 0.44 -0.88 ± 0.12

MetricMM 2.1 ± 1.49 2.46 ± 1.23 1.76 ± 1.5 0.46 ± 0.63 -0.83 ± 0.39 -2.4 ± 0.5

Table 14: Fetch - Pick And Place — Hallucination noise — 2 noisy modalities.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb -0.24 ± 0.61 -1.4 ± 0.88 -1.73 ± 0.65 -1.48 ± 0.48 -1.92 ± 1.1 -1.81 ± 0.74
ConCat -0.13 ± 0.7 -0.92 ± 1.23 -2.55 ± 0.79 -2.69 ± 0.62 -3.52 ± 0.62 -3.95 ± 0.83
CURL 2.19 ± 0.59 0.43 ± 0.66 -0.76 ± 0.36 -2.22 ± 0.1 -2.24 ± 0.24 -2.83 ± 0.32
GMC -0.12 ± 0.58 -1.31 ± 0.68 -1.36 ± 0.73 -2.01 ± 1.02 -2.26 ± 1.15 -2.88 ± 1.63
AMDF 1.43 ± 0.91 -0.2 ± 0.53 -0.87 ± 0.69 -1.79 ± 0.38 -2.85 ± 0.23 -2.75 ± 0.23
CORAL -0.6 ± 0.23 -0.92 ± 0.38 -1.32 ± 0.46 -1.46 ± 0.54 -1.72 ± 0.8 -2.25 ± 1.28

MetricMM 2.36 ± 1.18 2.13 ± 1.33 1.86 ± 1.07 0.71 ± 0.46 -0.87 ± 0.54 -3.46 ± 1.15

Table 15: Fetch - Pick And Place — Puzzle noise — 2 noisy modalities.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb -0.77 ± 0.81 -1.09 ± 0.35 -1.07 ± 0.32 -1.97 ± 0.9 -1.74 ± 0.72 -1.63 ± 0.61
ConCat 0.09 ± 2.02 -1.83 ± 1.13 -2.94 ± 1.32 -2.6 ± 0.65 -1.92 ± 0.51 -2.01 ± 0.67
CURL 2.61 ± 1.13 1.34 ± 0.86 -1.41 ± 0.47 -1.8 ± 0.77 -1.77 ± 0.03 -1.35 ± 0.0
GMC -1.15 ± 1.29 -1.27 ± 0.52 -2.43 ± 1.63 -1.37 ± 0.4 -1.53 ± 0.52 -2.22 ± 1.2
AMDF 1.94 ± 1.22 -0.04 ± 0.64 -1.9 ± 1.32 -2.4 ± 0.6 -2.38 ± 0.78 -2.31 ± 0.74
CORAL -0.34 ± 0.56 -1.12 ± 0.51 -1.22 ± 0.52 -1.49 ± 0.67 -1.26 ± 0.3 -1.36 ± 0.39

MetricMM 1.94 ± 0.51 2.18 ± 1.01 1.79 ± 1.64 0.38 ± 0.69 -1.05 ± 0.49 -1.86 ± 0.71
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Table 16: Fetch - Pick And Place — Salt and pepper noise — 2 noisy modalities.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb -0.55 ± 0.37 -0.57 ± 0.2 -1.03 ± 0.36 -1.21 ± 0.46 -0.99 ± 0.2 -0.96 ± 0.16
ConCat -0.02 ± 1.22 0.25 ± 1.43 -0.91 ± 0.99 -2.06 ± 1.24 -1.94 ± 0.51 -1.38 ± 1.37
CURL 2.53 ± 0.66 2.08 ± 0.79 0.12 ± 1.15 -0.7 ± 0.28 -1.17 ± 0.58 -1.26 ± 0.7
GMC -0.45 ± 0.34 -1.34 ± 0.76 -1.34 ± 0.4 -1.27 ± 0.53 -1.42 ± 0.48 -1.72 ± 0.92
AMDF 2.22 ± 1.1 0.46 ± 0.21 0.17 ± 0.26 -0.73 ± 0.34 -1.31 ± 0.36 -1.38 ± 0.26
CORAL -0.56 ± 0.26 -0.56 ± 0.19 -0.66 ± 0.08 -0.83 ± 0.1 -1.25 ± 0.61 -0.83 ± 0.12

MetricMM 2.24 ± 0.62 1.78 ± 1.07 1.59 ± 0.88 0.27 ± 0.6 -0.8 ± 0.83 -1.54 ± 0.26

Table 17: Fetch - Slide — Failure noise — 1 noisy modality.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb 6.36 ± 0.71 4.79 ± 2.13 4.58 ± 0.47 1.15 ± 1.23 0.5 ± 1.76 -1.14 ± 2.41
ConCat 6.5 ± 0.17 5.49 ± 0.12 3.49 ± 1.86 2.8 ± 0.96 2.48 ± 2.0 1.53 ± 2.91
CURL 6.95 ± 0.95 7.41 ± 0.82 5.68 ± 0.92 2.72 ± 1.97 1.27 ± 1.93 0.16 ± 3.09
GMC 5.65 ± 1.48 4.39 ± 1.92 1.6 ± 2.39 -0.42 ± 1.81 -1.53 ± 2.62 -1.76 ± 1.31
AMDF 4.03 ± 1.96 2.67 ± 1.64 2.1 ± 1.47 -0.21 ± 0.58 0.17 ± 0.51 0.1 ± 1.53
CORAL 4.97 ± 3.43 4.63 ± 2.64 0.79 ± 0.66 -0.35 ± 1.21 -1.47 ± 0.48 -1.32 ± 0.67

MetricMM 8.98 ± 1.49 9.31 ± 0.84 9.12 ± 0.51 8.25 ± 1.1 7.92 ± 1.29 8.46 ± 0.92

Table 18: Fetch - Slide — Gaussian noise — 1 noisy modality.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb 6.96 ± 1.16 6.55 ± 1.46 4.02 ± 0.4 3.64 ± 1.64 3.6 ± 1.24 2.17 ± 2.3
ConCat 6.33 ± 0.36 6.74 ± 1.48 4.79 ± 1.24 4.76 ± 1.49 4.41 ± 2.19 4.35 ± 2.38
CURL 9.11 ± 0.72 6.46 ± 0.86 4.92 ± 1.53 3.29 ± 0.45 2.57 ± 1.91 1.77 ± 0.86
GMC 6.88 ± 0.92 4.33 ± 0.25 2.41 ± 0.78 0.97 ± 0.71 -1.24 ± 1.5 -0.81 ± 0.99
AMDF 4.56 ± 2.47 2.7 ± 1.05 1.65 ± 0.82 0.32 ± 0.43 0.26 ± 1.18 -1.02 ± 0.69
CORAL 5.25 ± 3.29 4.04 ± 2.01 2.88 ± 2.27 1.59 ± 0.32 -0.16 ± 1.25 -0.24 ± 0.74

MetricMM 9.34 ± 0.61 9.54 ± 1.26 9.7 ± 0.38 8.14 ± 1.14 8.99 ± 1.35 8.28 ± 1.01

Table 19: Fetch - Slide — Hallucination noise — 1 noisy modality.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb 6.76 ± 0.67 6.27 ± 0.91 5.78 ± 0.72 5.62 ± 0.71 4.21 ± 0.44 4.16 ± 1.37
ConCat 7.14 ± 0.05 6.61 ± 1.72 5.57 ± 1.23 5.21 ± 1.12 4.04 ± 0.99 2.57 ± 1.11
CURL 8.96 ± 0.8 7.99 ± 1.5 7.58 ± 0.9 5.96 ± 0.64 4.87 ± 0.87 4.72 ± 0.75
GMC 7.07 ± 1.01 6.53 ± 0.72 3.9 ± 1.0 2.95 ± 0.82 3.53 ± 0.83 2.71 ± 0.09
AMDF 3.62 ± 1.73 3.75 ± 1.69 4.06 ± 1.92 2.28 ± 1.17 2.25 ± 0.99 1.62 ± 1.18
CORAL 5.72 ± 3.19 5.13 ± 2.82 4.02 ± 3.01 3.54 ± 2.7 2.62 ± 1.68 2.28 ± 2.19

MetricMM 9.2 ± 1.15 8.31 ± 0.56 8.58 ± 0.57 9.27 ± 0.88 9.18 ± 0.45 8.48 ± 0.34

Table 20: Fetch - Slide — Patches noise — 1 noisy modality.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb 5.56 ± 0.6 4.16 ± 0.98 2.81 ± 1.12 1.96 ± 2.34 0.35 ± 1.86 -0.36 ± 1.16
ConCat 7.5 ± 0.94 4.7 ± 0.56 3.54 ± 0.9 2.75 ± 1.69 1.3 ± 2.3 1.3 ± 2.44
CURL 8.42 ± 1.34 5.95 ± 1.43 4.53 ± 1.76 1.41 ± 4.01 -0.01 ± 3.13 -0.68 ± 4.36
GMC 5.39 ± 0.65 3.49 ± 1.84 -0.25 ± 2.09 -2.62 ± 2.24 -1.57 ± 1.11 -3.09 ± 1.44
AMDF 3.82 ± 2.01 3.29 ± 1.49 0.87 ± 0.41 -0.06 ± 1.41 -0.62 ± 1.0 -0.4 ± 1.7
CORAL 3.94 ± 2.84 2.08 ± 1.11 -0.88 ± 0.42 -0.92 ± 1.4 -2.23 ± 1.46 -1.85 ± 0.41

MetricMM 8.75 ± 0.7 9.19 ± 1.06 9.37 ± 0.95 8.13 ± 0.09 7.26 ± 1.01 8.51 ± 0.79

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 21: Fetch - Slide — Puzzle noise — 1 noisy modality.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb 6.83 ± 1.01 5.47 ± 0.87 4.65 ± 1.06 0.7 ± 0.69 -0.18 ± 0.6 -1.47 ± 1.56
ConCat 6.35 ± 1.87 5.95 ± 1.73 4.38 ± 1.99 2.26 ± 2.15 1.56 ± 2.42 -0.05 ± 2.35
CURL 8.44 ± 0.25 6.84 ± 0.53 5.42 ± 1.47 3.55 ± 2.58 1.13 ± 2.33 0.59 ± 3.19
GMC 5.55 ± 1.65 4.7 ± 1.86 1.29 ± 1.77 -1.75 ± 1.02 -3.12 ± 1.66 -2.94 ± 1.66
AMDF 3.88 ± 1.79 3.11 ± 1.55 2.32 ± 1.47 0.51 ± 0.97 -0.85 ± 1.75 -0.89 ± 1.61
CORAL 4.95 ± 2.95 3.87 ± 2.33 0.56 ± 1.75 -1.41 ± 1.09 -2.0 ± 0.96 -1.81 ± 0.57

MetricMM 8.69 ± 0.62 9.44 ± 0.44 9.19 ± 1.29 7.97 ± 0.3 8.55 ± 0.82 7.9 ± 1.44

Table 22: Fetch - Slide — Salt and pepper noise — 1 noisy modality.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb 6.48 ± 0.14 5.76 ± 0.24 5.64 ± 1.01 5.34 ± 0.81 4.82 ± 1.31 3.37 ± 1.21
ConCat 6.41 ± 1.52 6.05 ± 1.48 6.48 ± 1.03 5.18 ± 1.59 3.49 ± 2.32 3.6 ± 2.02
CURL 8.55 ± 1.54 7.14 ± 0.76 6.51 ± 0.27 5.73 ± 1.55 3.95 ± 0.79 3.15 ± 0.85
GMC 7.34 ± 1.55 6.36 ± 0.85 4.87 ± 1.99 4.21 ± 2.5 2.46 ± 1.51 1.16 ± 2.65
AMDF 4.13 ± 2.24 3.01 ± 1.32 2.85 ± 1.1 1.65 ± 1.31 0.91 ± 0.47 0.2 ± 0.44
CORAL 5.04 ± 3.53 4.3 ± 2.26 5.29 ± 2.91 4.61 ± 2.6 2.46 ± 1.97 2.33 ± 1.59

MetricMM 9.57 ± 0.9 8.69 ± 0.79 9.64 ± 0.65 8.54 ± 1.41 8.03 ± 0.86 8.71 ± 0.7

Table 23: Fetch - Slide — Texture noise — 1 noisy modality.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb 6.54 ± 0.73 7.09 ± 0.08 4.63 ± 1.19 2.07 ± 1.11 2.69 ± 2.55 1.02 ± 1.74
ConCat 7.32 ± 1.39 5.64 ± 1.38 5.32 ± 2.07 4.93 ± 2.86 4.59 ± 2.54 3.52 ± 3.85
CURL 8.01 ± 0.92 5.71 ± 0.92 2.85 ± 1.27 -0.52 ± 0.52 -2.22 ± 0.22 -2.48 ± 0.37
GMC 6.36 ± 0.8 4.43 ± 0.41 1.9 ± 1.58 -1.27 ± 1.59 -2.15 ± 2.31 -2.65 ± 0.57
AMDF 3.28 ± 1.83 2.69 ± 1.71 1.03 ± 0.35 -0.65 ± 0.52 -1.5 ± 0.77 -1.83 ± 0.68
CORAL 4.49 ± 2.76 3.16 ± 2.03 1.71 ± 1.34 -1.02 ± 0.28 -1.75 ± 0.79 -2.43 ± 0.86

MetricMM 9.45 ± 0.49 9.01 ± 0.97 9.4 ± 0.65 7.54 ± 0.18 9.02 ± 1.12 7.6 ± 0.47

Table 24: Fetch - Slide — Gaussian noise — 2 noisy modalities.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb 6.65 ± 1.03 4.15 ± 0.62 3.28 ± 0.66 -0.25 ± 1.3 -0.15 ± 1.23 -1.22 ± 1.08
ConCat 6.05 ± 0.65 5.69 ± 0.73 4.63 ± 1.14 2.64 ± 1.41 0.87 ± 1.13 0.31 ± 1.46
CURL 7.06 ± 0.71 6.68 ± 0.11 3.93 ± 0.39 -0.08 ± 1.13 -1.12 ± 1.51 -1.46 ± 0.77
GMC 5.28 ± 0.58 3.67 ± 1.57 1.05 ± 1.06 -2.04 ± 1.34 -2.45 ± 1.56 -3.75 ± 2.28
AMDF 4.02 ± 1.71 2.14 ± 0.89 -0.11 ± 0.61 -1.1 ± 1.56 -2.45 ± 2.66 -2.81 ± 1.7
CORAL 4.45 ± 2.76 3.0 ± 1.74 1.14 ± 0.57 -2.03 ± 1.51 -1.61 ± 0.74 -2.37 ± 0.57

MetricMM 10.1 ± 0.61 8.71 ± 0.56 7.15 ± 0.76 6.13 ± 1.63 4.38 ± 2.15 2.47 ± 1.89

Table 25: Fetch - Slide — Hallucination noise — 2 noisy modalities.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb 6.64 ± 1.36 5.88 ± 0.37 2.73 ± 0.68 1.51 ± 0.36 -0.01 ± 0.3 -0.71 ± 0.4
ConCat 6.68 ± 1.49 5.88 ± 0.4 3.37 ± 1.53 0.77 ± 0.64 -1.2 ± 1.42 -0.46 ± 0.6
CURL 8.23 ± 0.94 7.85 ± 0.65 4.08 ± 0.57 1.48 ± 1.29 -0.15 ± 0.69 0.21 ± 0.68
GMC 6.62 ± 0.29 4.99 ± 1.0 1.82 ± 1.34 0.03 ± 0.39 -1.02 ± 1.24 -1.86 ± 0.47
AMDF 3.74 ± 1.24 3.19 ± 1.4 1.71 ± 0.48 0.07 ± 0.8 -0.29 ± 0.2 -0.51 ± 1.08
CORAL 5.5 ± 3.2 4.39 ± 2.65 1.96 ± 2.1 -0.03 ± 0.8 -1.66 ± 0.57 -1.36 ± 0.56

MetricMM 8.67 ± 1.48 8.88 ± 0.55 8.15 ± 1.19 6.94 ± 0.87 5.94 ± 0.97 3.32 ± 1.65
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Table 26: Fetch - Slide — Patches noise — 2 noisy modalities.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb 5.31 ± 0.75 5.32 ± 1.59 1.85 ± 2.11 -0.65 ± 1.31 -2.1 ± 0.32 -2.05 ± 0.92
ConCat 6.85 ± 1.73 5.96 ± 1.41 2.14 ± 0.89 -0.66 ± 1.37 -1.77 ± 0.87 -1.93 ± 0.61
CURL 8.31 ± 1.27 5.58 ± 1.18 2.58 ± 2.41 -1.27 ± 0.75 -2.74 ± 1.79 -2.16 ± 1.2
GMC 4.4 ± 1.32 2.45 ± 1.09 -0.65 ± 1.59 -1.02 ± 0.49 -2.23 ± 1.04 -1.97 ± 0.22
AMDF 3.24 ± 1.94 2.33 ± 0.72 0.74 ± 1.77 -1.37 ± 1.86 -2.06 ± 2.96 -2.54 ± 2.7
CORAL 3.69 ± 1.61 1.53 ± 1.32 -0.91 ± 0.71 -2.46 ± 0.85 -2.31 ± 0.81 -2.1 ± 1.27

MetricMM 8.62 ± 0.73 7.81 ± 0.74 4.03 ± 0.74 1.74 ± 1.77 -0.84 ± 1.57 -0.12 ± 1.46

Table 27: Fetch - Slide — Puzzle noise — 2 noisy modalities.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb 5.82 ± 0.77 5.18 ± 0.76 1.76 ± 0.79 -1.67 ± 0.55 -2.74 ± 0.62 -1.96 ± 0.58
ConCat 7.14 ± 0.98 5.31 ± 1.1 2.02 ± 1.54 0.5 ± 2.03 -1.9 ± 1.54 -2.73 ± 1.48
CURL 7.42 ± 0.74 5.5 ± 0.57 2.67 ± 1.25 0.96 ± 0.69 -0.27 ± 0.66 -0.76 ± 0.7
GMC 6.25 ± 0.32 2.82 ± 1.22 0.08 ± 0.94 -1.44 ± 1.25 -2.63 ± 0.91 -2.37 ± 1.9
AMDF 4.09 ± 2.54 3.36 ± 2.0 0.55 ± 2.42 -1.5 ± 2.04 -2.03 ± 1.51 -1.76 ± 1.74
CORAL 5.19 ± 3.33 3.62 ± 1.92 0.71 ± 0.33 -1.01 ± 0.66 -2.71 ± 0.14 -2.28 ± 1.06

MetricMM 9.12 ± 0.87 7.05 ± 1.52 6.17 ± 0.06 3.79 ± 0.77 1.43 ± 0.58 1.21 ± 1.53

Table 28: Fetch - Slide — Salt and pepper noise — 2 noisy modalities.
Model 0.1 0.25 0.5 0.75 0.9 0.99

LinearComb 6.3 ± 0.8 6.5 ± 1.13 5.02 ± 1.15 1.6 ± 1.72 -0.03 ± 1.06 0.79 ± 1.85
ConCat 5.56 ± 1.4 4.1 ± 0.62 3.58 ± 1.86 1.11 ± 2.76 0.29 ± 1.74 -0.23 ± 1.32
CURL 8.33 ± 1.67 6.01 ± 0.28 4.61 ± 1.34 1.83 ± 2.3 -0.12 ± 0.29 -1.18 ± 0.43
GMC 6.29 ± 0.45 5.36 ± 1.72 1.97 ± 1.76 0.75 ± 2.56 -1.74 ± 2.96 -1.08 ± 3.09
AMDF 2.6 ± 1.88 2.74 ± 1.04 1.98 ± 1.55 -1.35 ± 1.55 -1.32 ± 1.97 -2.3 ± 2.12
CORAL 5.22 ± 2.71 4.64 ± 2.74 3.3 ± 2.01 0.77 ± 1.75 -0.14 ± 0.24 0.11 ± 0.52

MetricMM 9.2 ± 0.94 7.18 ± 2.01 6.79 ± 1.56 5.79 ± 1.27 2.97 ± 2.65 3.23 ± 2.2
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