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Abstract

Tool use in stateful environments presents unique challenges for large language
models (LLMs), where existing test-time compute strategies relying on repeated
trials in the environment are impractical. We propose dynamics modelling (DyMo),
a method that augments LLMs with a state prediction capability alongside function
calling during post-training. This enables LLMs to predict the future states of
their actions through an internal environment model. On the Berkeley Function
Calling Leaderboard V2, DyMo improves success rates and significantly reduces
hallucinations. We further integrate the internal environment model into self-
verification sampling (SVS), and show that this substantially improves pass^k over
number of trials k, and allows the model to refuse unreliable outputs. Together,
DyMo and SVS greatly enhance the effectiveness and reliability of LLMs for tool
use. We believe this work charts a path towards scalable planning RL methods for
LLM inference without repeatedly querying the oracle environment.

1 Introduction
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Figure 1: The proposed dynamics modelling (DyMo) that
trains an LLM to predict the resulted states of the environ-
ment after tools execute function calls via either SFT (orange
arrows) on run-logs or over online RL loops (blue arrows).

Large language models (LLMs)
have demonstrated remarkable
performance in a wide range of
applications [1–6]. In addition to
conventional natural language tasks,
recent advances have shown that
LLMs also achieve breakthrough
performance in formal language
tasks, notably code generation [7–9]
and tool use [10–12]. Recent work
has shown that scaling the test-time
compute can further improve the
performance of LLMs on complex
tasks such as mathematical rea-
soning [13–17]. To achieve better
performance by scaling up test-time
compute, existing methods assume
that a verifier, e.g. a process reward model (PRM) or an outcome reward model (ORM), can be
queried multiple times during inference [11, 13, 16, 14].

However, many real-world applications may not rely on a verifier to improve test-time sampling,
especially when the LLM interacts with the world as in Agentic scenarios. One may not execute k
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Figure 2: The proposed self-verification sampling (SVS) strategy for test-time compute scaling. For a
given user prompt x, the model: 1) generates k candidate completions ŷ; 2) predicts the subsequent
states ẑ of the k candidates; 3) selects a completion to output by a specified scoring function score.

payments and be satisfied that one of the payments is correct among the k ones, whereas one may
verify k times if a mathematical solution is correct without ramifications. In this spirit, we consider
tool-use tasks, where the agent must execute a single trajectory. In particular, such constraints are
often inherent to the statefulness of environments, i.e., the environment status states after executing
an action and cannot be easily reverted - the bank account is reduced after a payment!

Inspired by the Generative Verifier [18] (GenRM), which formulates the reward function as a next
token prediction task, as illustrated in Figure 1, we propose dynamics modelling (DyMo) to fine-tune
LLMs to generate not only the functions calls for a given user prompt, but also the subsequent states
of tool engines after executing the generated function calls. This has two advantages: 1) at training
time, this state prediction provides an additional training signal; 2) at test time, this state prediction
can be used in the decision-making process to execute the roll-out, similar to one-step planning
methods.

We first explore the impact of DyMo into both the supervised fine-tuning (SFT) and RL stages in
LLM post-training [3–5], and investigate its effectiveness. Our results on the Berkeley Function
Calling Leaderboard [19] V2 (BFCL-V2) show that DyMo alleviates the hallucination problem of
the SFTed model, and improves the success rate of the RLed models. Incorporating DyMo, our
results suggest that an 8B model, when given access to the environment during training, can match
and occasionally surpass the performance of GPT-4o on BFCL-V2.

Second, we explore the planning capabilities of DyMo through self-verification sampling (SVS)
strategy [20] at test time. Specifically, the models generate k tool calls for a given user prompt, predict
the respective states resulting from those actions, and proceed with the most promising trajectory
based on a ranking mechanism: sample, predict, then proceed. Our experiments demonstrate that
(i) increasing the number of trajectories keeps increasing the LLMs score, (ii) the outcome of the
state prediction can be used to select a successful trajectory without access to the oracle environment,
thereby offering a novel schema for scaling test-time compute in stateful environments. Furthermore,
SVS enables models to effectively “refuse” requests that exceed their capabilities based on their state
prediction, substantially improving the precision of the final output. We interpret this precision as

“reliability”, as it represents the proportion of outputs verified as correct by the oracle environment.

In summary, the proposed DyMo method coupled with the SVS strategy significantly enhances the
success rate and reliability of LLMs in tool use tasks.

2 Background

Tool Use by LLMs: Recent works have demonstrated the capability of LLMs to achieve notable
performance in API usage through supervised fine-tuning (SFT) using demonstrations provided either
by human experts or generated by advanced models such as GPT-4 [21–23]. This capability positions
LLMs as back-ends for agents interacting with environments consisting of various tools [19, 24, 25]
and simulated user interactions [26]. However, existing approaches are mainly based on imitation
learning for training [21–23], while the evaluation relies on interactions between environments

2



and LLMs [26, 19]. Similar to some recent works [27, 28], we focus on learning directly through
interacting with the environments, as detailed in Section 3.2.

Reinforcement Learning for Fine-tuning LLMs: Existing RL methodologies for fine-tuning LLMs
primarily address alignment tasks [29–31] or reasoning-oriented tasks, such as mathematics and
programming challenges [32]. Nonetheless, we posit that RL techniques can effectively extend to tool
use scenarios, especially when scaling the quantity of generated tool interactions, given that LLMs
have already achieved promising performance in real-world tool use tasks [33, 25, 26]. Furthermore,
recent studies indicate a substantial performance gap between online/on-policy RL methods and
their offline/off-policy counterparts [34–37]. Although rigorous online interactions can be traded
for enhancing wall-clock efficiency, strictly online RL methods still represent an optimal Pareto
frontier [37, 38]. Hence, to fully harness the capabilities of RL in tool use contexts, our experiment
setup is strictly online and on-policy in this work. Additionally, our method enables models to do
one-step planning based their internal learnt environment model during inference time, as illustrated
in Section 3.3.

Test-time Compute Scaling: It is well-established that LLMs enhance their performance on logi-
cal reasoning tasks by generating extended responses that include explicit intermediate reasoning
steps [39]. Further research highlights the importance of explicitly learning these intermediate
reasoning stages guided by Policy Reward Models (PRMs) to achieve superior outcomes [14]. While
scaling test-time computes by lengthening generated completions has proven beneficial [40, 16],
environmental interactions remain critical for achieving optimal results in agent-based tasks [11].
Recent advances also investigate multiple self-rewarding [17], or self-verification [20] steps to scale
test-time compute in mathematical reasoning contexts. Unlike these works which query the environ-
ment multiple times during inference, we propose to utilise the internal environment models of LLMs
to increase the number of completions for scaling test-time computes, as introduced in Section 3.3.

3 Methodology

3.1 Formulation
We used pre-trained Transformer [41] models πθ parameterised by θ that predict tokens in an
autoregressive manner. After post-training by SFT and RL and given a user prompt x, the models
can then generate completions/responses y from the distribution y ∼ πθ(·|x). Since we focus on
the tool use scenario in this work, we assume the user prompts x are all about requesting function
calls, whereas the completions y can be either natural languages or formatted formal languages.
For completions that call functions, they will then be passed to the environment E to execute, and
the resulted state is z = E(x,y) whose complete set is Z. Note that using no-tool environment is
sometimes available in some experiments measuring hallucination.

Following RL terminology, we refer to x as the input state, y as the generated action from the model
πθ, and z as the resulted next state. The transition dynamics are specified by the environment E , and
the reward function r : Z 7→ [0, 1] assigns a binary score to a pair (x,y) according to their resultant
state z. From this RL perspective, our model πθ can:

• generate a tool call (action) y given a user prompt (state) x as input state, i.e. y ∼ πθ(·|x);
• predict next-state z given a user prompt x and a tool call y, i.e. z ∼ πθ(·|x,y).

3.2 DyMo: Dynamics Modelling
The learning objective of the proposed DyMo is not only the tool use function but the environment
function E . As illustrated below, we introduce the DyMo into both the SFT and RL stages.

3.2.1 Dynamics Modelling by Supervised Fine-tuning

During the SFT stage, we construct two distinct datasets — one for the tool use function and one for
the environment function — which are described in detail below.

For the tool use function, we train the model πθ on a dataset of function calls represented by function
call (fc) pairs in the form <prompt,completion>, i.e. Dfc = {(xi,yi)}Nfc

i=1. To train the model on
these pairs, we minimise the cross-entropy loss [42] of the model’s completion prediction distribution
πθ(·|x) over them:
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LFC (Dfc; θ) = −
Nfc∑
i=1

Tyi∑
t=1

logπθ

(
yi,t|xi,yi,<t

)
(1)

where yi,t is the t-the element in the target completion yi, yi,<t represents the partial target sequence
preceding yt, and Tyi is the length of yi.

Regarding the environment function, we represent it by a dataset of state prediction (sp) triplets in
the form <prompt,completion,result>, i.e. Dsp = {(xi,yi, zi)}

Nsp

i=1 . Such data can be gathered
and curated from the accumulated run logs of the target environment function E , which we argue is a
under-explored source for data scaling. Similar to the tool use function, we minimise the cross-entropy
loss of the model’s state prediction distribution πθ(·|x,y) over these triplets:

LSP(Dsp; θ) = −
Nsp∑
i=1

Tzi∑
t=1

logπθ

(
zi,t|xi,yi, zi,<t

)
(2)

where the indices i and t follow the same meanings as in Equation 1, and Tzi is the length of zi.

3.2.2 Dynamics Modelling over Online Reinforcement Learning
In addition to the SFT stage, DyMo can also be incorporated into the RL fine-tuning of LLMs.

Starting from a prompt set Drl = {xi}Nrl
i=1, we first sample two completions from the model, i.e.

ŷ1
i , ŷ

2
i ∼ πθ(·|xi). The two completions along with the prompt xi are then passed as inputs to the

environment function to get the next states, i.e. z1
i = E(xi, ŷ

1
i ) and z2

i = E(xi, ŷ
2
i ). Binary scores

are then assigned to the <prompt,completion> pairs by the reward function r, i.e. r1 = r(xi, ŷ
1
i )

and r2 = r(xi, ŷ
2
i ). Subsequently, we sample predicted next states ẑ1

i and ẑ2
i from the model, i.e.

ẑ1
i ∼ πθ(·|xi, ŷ

1
i ) and ẑ2

i ∼ πθ(·|xi, ŷ
2
i ), to track the state prediction performance. Per RL training

step, we update the parameter θ of the model πθ to simultaneously minimise the online two-sample
REINFORCE Leave-One-Out (RLOO) loss [43, 44] given in Equation 3, and the cross-entropy
sample loss given in Equation 4.

LRLOO(Drl; θ) = −
Nrl∑
i=1

[(
rπθ

β/2(xi, ŷ
1
i )− rπθ

β/2(xi, ŷ
2
i )
)
log

(
πθ(ŷ

1
i |xi)

)
+
(
rπθ

β/2(xi, ŷ
2
i )− rπθ

β/2(xi, ŷ
1
i )
)
log

(
πθ(ŷ

2
i |xi)

)] (3)

LDM(Drl; θ) = −
Nrl∑
i=1

2∑
j=1

T
ẑ
j
i∑

t=1

logπθ

(
zji,t|xi, ŷ

j
i , z

j
i,<t

)
(4)

where θ0 is the detached initial parameter in the RL stage, β is a constant hyperparameter, and

rπθ

β/2(yi) is the regularised reward defined as rj − β
2 log

πθ(y
j
i |xi)

πθ0
(yj

i |xi)
for j ∈ {1, 2}.

3.3 Self-Verification Sampling by Internal Environment Model

Algorithm 1: Self-verification sampling (SVS)
Input: x, number of candidate completions k
Output: a completion ŷ
Given :a pre-specified scoring function score
for i← 1 to k do

ŷi ∼ πθ(·|x);
ẑi ∼ πθ(·|x, ŷi);

end
j ← score

(
πθ(ẑ1|x, ŷ1), . . . ,πθ(ẑk|x, ŷk)

)
;

ŷ ← ŷj ;

After undergoing DyMo in both the SFT and
RL phases, our model πθ is capable of both
generating tool calls and predicting the sub-
sequent states after executing them. Leverag-
ing this capability, we propose to query the
internal environment model of πθ multiple
times to do Self-Verification Sampling (SVS),
as illustrated in Algorithm 1. Given multi-
ple completions per prompt, SVS selects a
single output based on a specified scoring
function score and the internal environment
model of πθ. Notably, unlike existing ap-
proaches, SVS scales test-time compute without querying the oracle environment E . This approach is
reminiscent of the Best-of-N search strategy described in [16], but avoids querying the environment
E multiple times, thereby preventing unintended state changes caused by repeated trials. In addition,
SVS aligns with the notion of mental simulation in decision-making, a concept explored in cognitive
science [45], thereby establishing a conceptual bridge between research in RL and cognitive science.
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4 Experiments

4.1 Setup

Environment: We evaluate tool-use performance using the Berkeley Function Calling Leaderboard
V2 (BFCL-V2) [19], which offers comprehensive coverage of function call types, diverse tasks,
programming languages, and executability, and has been widely adopted in recent works [46, 6].
As our work is the first to investigate LLMs’ ability to model environment dynamics, we begin
with single-turn interactions to ensure a clean and tractable problem formulation, in a server-based
BFCL-V2 environment in order to run online RL training. Regarding the base model, considering
the constraints of our computes, we choose Cohere’s R7B, given its leading performance on various
agent benchmarks [6].

SFT Data: During the SFT stage, to constitute the function call (fc) SFT dataset Dfc, inspired
by [47, 48], we synthesised pairs of <prompt,completion> following the distribution of BFCL-V2.
Regarding the state prediction (sp) SFT dataset Dsp, we first split the state space Z into two subsets:
1) pass states Z+ where the completions successfully passed the check of BFCL-V2 and received a
score of 1; 2) error states Z− where the completions failed on the BFCL-V2’s check and received
a score of 0. Given the format of BFCL-V2’s return messages, we denote the shared prefix of pass
states in Z+ as zpass, and similarly zerror. Note that, under this setup, there exhibits a bijection
between the BFCL-V2’s resulted state subspaces {Z+,Z−} and the scores from the reward function
{0, 1}, which we utilise later to truncate the generation when running SVS during inference time.
Following this procedure, we constitute Dsp of <prompt,completion,result> triplets from our
accumulated run-logs of BFCL-V2 tests.

RL Data: In the following RL stage, to maintain the online RL training and validation distributions
as independent and identical, we use 80% from the original BFCL-V2 prompt set as the training set,
and keep the remaining 20% to validate the generalisation performance. Note that we intentionally
keep at least 20 test prompts per category in the final validation set, as certain categories contain
≤ 50 samples, thus 20% of them lacks of statistical significance.

SVS Scoring Function: During the inference time, following GenRM [18], we use a scoring function
score in the following Equation 5 to run SVS illustrated in Algorithm 1:

score
(
πθ(·|x1, ŷ1), . . . ,πθ(·|xk, ŷk)

)
≜ argmax

j

({
πθ(zpass|xj , ŷj)

})
. (5)

Examples of all the above types of data are provided in Appendix A.

4.2 How proficient is the model at dynamics modelling?

Since we partition the state space Z to Z+ and Z−, the state prediction task can be framed as a
binary classification problem. A model πsft SFTed on the combined data Dfc ∪ Dsp, achieves a
precision of 90.00%, recall of 87.71%, F1-score of 88.84%, and accuracy of 93.62%. Detailed
results are provided in Table 3 in Appendix B. Notably, the success rate of this model on BFCL-V2 is
only 72.77%, which is significantly lower than its discriminative performance, highlighting the gap
between accurate state prediction and successful functions calls. Therefore, a foundation is laid for
improving a model’s generative capability by leveraging its discriminative capability [17, 35].

We also track these metrics during online RL training with the DM loss function for πsft. Under
this setting, precision, recall, F1-score, and accuracy further improve to 92.55%, 96.28%, 94.34%,
and 90.36%, respectively. The corresponding curves are presented in Figure 6 in Appendix B. For
comparison, we SFT an additional model, ϕsft, on the function call dataset Dfc only. As a result,
it learns to roll out states solely through the DM loss during online RL training. We observe a
consistent performance gap between this baseline model ϕsft and πsft, highlighting the necessity of
incorporating Dsp in the SFT stage.

4.3 How does dynamics modelling benefit SFT and RL for tool-use?

During the experiments in Section 4.2, we observe that incorporating the additional state prediction
data Dsp also leads to a difference in tool use performance. We compare the the performance of
ϕsft - which can do only tool use - with πsft - which is capable of both using tools and predicting
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Model Method Overall (UW) Overall (W) Rel. Irrel. AST Exec
Baselines # samples (18) (1122) (2501)
GPT-4o [1] – 82.38 82.14 83.33 81.31 82.51 –
Command-A [6] – 80.57 84.14 72.22 86.19 83.30 –
Command-R7B – 70.50 76.70 55.56 81.02 74.92 –
xLAM-2 [48] – 72.36 71.69 77.78 64.34 74.95 –
ToolACE-2 [23] – 81.95 85.49 72.22 90.11 83.51 –
watt-tool [49] – 82.54 81.76 83.33 83.15 81.13 –
BigAgent [50] – 82.27 81.50 83.33 82.38 81.10 –

SFT # samples (18) (1122) (2501)
ϕsft Dfc only 66.35 66.50 70.73 58.05 70.26 76.25
πsft Dfc ∪ Dsp 70.87 73.89 63.41 76.32 72.88 77.53

SFT + RL # samples (20) (206) (457)
ϕrl ϕsft→RLOO 80.31 80.22 75.00 89.81 76.13 96.25
ϕrd ϕsft→RLOO + DyMo 82.13 83.16 75.00 91.75 79.65 97.50
πrl πsft→RLOO 81.23 81.99 75.00 90.00 78.68 96.25
πrd πsft→RLOO + DyMo 83.62 86.68 75.00 90.29 85.56 96.25

SFT + RL + SVS (with k candidates) # samples (20) (206) (457)
πrd πrd→ SVS with k = 1 85.77 84.26 88.20 85.65 83.46 96.33
πrd πrd→ SVS with k = 2 88.20 86.71 91.30 86.86 86.44 96.55
πrd πrd→ SVS with k = 4 88.94 87.67 91.80 87.41 87.61 96.45
πrd πrd→ SVS with k = 8 89.73 88.18 93.10 88.10 88.00 96.25
πrd πrd→ SVS with k = 16 89.90 88.29 93.30 88.38 88.03 96.15
πrd πrd→ SVS with k = 32 90.18 88.26 94.10 88.59 87.86 96.25
πrd πrd→ SVS with k = 64 90.69 88.43 95.00 89.32 87.75 96.25

Table 1: Comprehensive category-wise performance comparison across baselines, SFT, SFT+RL,
and SFT+RL+SVS models, on BFCL-V2. For each section, the number of evaluation examples
per column is shown in the second row. (W) indicates metrics weighted by the number of samples,
whereas UW indicates unweighted. Missing results are marked as ‘–‘. The “Exec” column is provided
to show the improvement from RL training on it, but is never counted for the overall performance.

next states - across all categories of BFCL-V2. The results in the “SFT” section of Table 1 show
that πsft achieves significant improvements on the “Irrelevance” category where the models are not
expected to generate function calls when the available tools cannot satisfy the user request. Since the
“Irrelevance” is specifically designed to evaluate hallucination of models [19], these results suggest
that incorporating the state prediction task helps mitigate hallucination by LLMs [51].

Similarly, we compare the two models — ϕsft and πsft — both fine-tuned by online RL with and
without our DyMo loss, resulting in four variants: πrd, ϕrd (with DyMo), and πrl, ϕrl (without
DyMo). Take πrd for example, the model is first SFTed on Dfc ∪Dsp (thus notated as π), then further
fine-tuned by online RL together with DyMo loss (thus superscripted by “rd”). The “SFT + RL”
section of Table 1 shows the success rates of these models across different BFCL-V2 categories. For
analytical clarity, we preserve the “Exec” category to show the substantial performance gains over it
due to RL training. The results indicate that incorporating the DyMo loss yields a > 5% improvement
in success rate over the AST category, contributing to an overall performance boost.

4.4 How does the RL/SFT models perform when scaling up test-time compute?

Since the results in the “SFT” and “SFT + RL” sections of Table 1 are based on a greedy decoding
strategy, we further examine whether and how the on-policy distribution over completions for a given
prompt, i.e., πθ(·|x), changes under different training pipelines. We begin by analysing the impact
of online RL training, comparing the RL-trained models — πrl and ϕrl — with their corresponding
SFT-only baselines — πsft and ϕsft — using the number of completions per request as the variable.
In Figure 3, we report pass@k and pass^k [26] as the evaluation metrics.

As shown in Figure 3, online RL significantly improves pass@k when k ≤ 8. More importantly,
online RL consistently improves pass^k over all k values, as evidenced by the consistent gap between
the RL-trained models — πrl and ϕrl — over their SFT-only counterparts — πsft and ϕsft. These
results suggest that the on-policy distributions induced by the RL models yields a more consistent
and reliable function calling performance than the distributions induced by the SFT models.

We also note that our pass@k curves align with the findings in mathematical reasoning tasks reported
by Yue et al. [52], who conclude that conclude that “base models can achieve a comparable or even
higher pass@k score compared to their RL counterparts at large k values”. However, in our setup, we

6



found that base model can hardly match pass@k or pass^k of SFT and RL models, which we argue is
due to that correct function calls are sparser to generate.
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4.5 How does dynamics modelling impact the test-time compute scaling of RL models?

Building on the observation that RL models achieve higher success rates over test-time compute
scales, we further investigate the impact of incorporating the DyMo loss during online RL training.
Similarly, we report pass@k and pass^k for RL models trained with the DyMo loss — πrd and ϕrd

— compared to those trained without it — πrl and ϕrl.

As shown in Figure 4, adding the DyMo loss during online RL improves pass@k when k ≤ 8, while
it consistently improves pass^k over all numbers of completions per prompt. Note that SVS is not
utilised in the experiments so far, thus the improvements are solely due to the DyMo loss. More
notably, incorporating the DyMo in both the SFT and RL stages results in πrd, which achieves
the highest pass^k for all values of k. The consistent gap between pass^k curves of πrd/ϕrd and
πrl/ϕrl also indicate the DyMo loss can help to further improve the consistency and reliability of
function calling performance on top of RL. These results demonstrate the effectiveness and benefits
of integrating DyMo into both the SFT and RL phases.

4.6 How does self-verification sampling scale over test-time compute?

So far, we have focused primarily on the benefits of incorporating DyMo during model training.
However, as introduced in Section 3.3, during inference time, self-verification sampling (SVS)
actually unifies the policy (as in model-free RL), the environment model (as in model-based RL), and
the value function (under our specific state-space split) into a single LLM. This paradigm enables the
model to scale test-time compute by generating more candidate completions per user request without
querying the oracle environment function E . To evaluate the effectiveness of SVS, we compare
pass^k with SVS against pass^k without SVS of model πrd. For pass^k with SVS, we sample c
candidates for each trial and k trials per prompt, thus k × c candidate completions in total for each
prompt. Further, per candidate group for each trial, following GenRM [16], we adopt the scoring
function defined in Equation 5 as the metric to select just one output from the c candidates (thus k
outputs in the end).

k 1 2 4 8 16 32

pass^k
with SVS 89.02% 87.97% 87.19% 86.14% 84.05% 78.05%

(c for each trial) (64) (32) (16) (8) (4) (2)
without SVS 87.68% 82.38% 79.14% 75.58% 71.61% 67.11%

Table 2: Pass^k with and without SVS over k trials in the oracle environment. Augmented with SVS,
per prompt, we first generate c candidate completions for each trial, then select just one to output by
the scoring function defined in Equation 5 for all k trials. Therefore, there are k × c candidates in
total for each prompt, by querying the oracle environment also k times as to pass^k without SVS.
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As shown in Table 2, SVS achieves improved pass^k over all k values, demonstrating that self-
verification enables effective scaling with additional computes. More importantly, the consistent
improvement of SVS performance with increasing k highlights our method as a novel test-time
compute scaling strategy — one that leverages the model’s internal environment approximation to
self-verify and select the most reliable candidate completion. In Section 4.7 and Section 5, we provide
further insights about our current SVS setup.

Beyond the above experiment, we also compare pass@k of the “Best-of-N” test-time compute
scaling strategy with the pass@1 performance of πrd using SVS with k candidate completions per
prompt, thus both methods operate under the same inference compute budget. As shown in the results
provided in the “SFT + RL + SVS” section of Table 1, increasing number of candidates k in SVS
consistently improves the pass@1, which demonstrated the effectiveness of the model’s internal
environment model. It is unsurprising to observe that querying the model’s internal environment
model is less efficient than accessing the oracle environment function under the same compute budget,
and should be seen as an upper-bond. However, we also argue that relying on the oracle may be
impractical in many real-world applications involving stateful environments. For example, the model
is not expected to place k parallel orders for a single shopping request or to book k tickets on the
same flights for a travel planning request.

4.7 What if the model is allowed to refuse?

“I’m sorry, Dave. I’m afraid I can’t do that.” – 2001: A Space Odyssey

As may already be observed, a notable limitation of the scoring function defined in Equation 5 is that
the model is still required to output a completion, even in cases where all candidate completions are
self-verified as failed trials. That is, our model might roll-out zerror for all generated candidates. In
such cases, we argue that it is both reasonable and desirable for the model to “refuse” the request
by returning a message that informs the user the query cannot be completed reliably. Formally, we
define the revised scoring function as follow:

score
(
πrd(ẑ1|x1, ŷ1), . . . ,π

rd(ẑk|xk, ŷk)
)
≜ argmax

j

({
πrd(ẑj |ŷj ,xj)

})
s.t. zpass ≺ ẑj and πrd(zpass|ŷj ,xj) > τ

(6)

where zpass ≺ ẑj means that ẑj starts with zpass as the prefix, and τ is the threshold hyperparameter.
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Figure 5: Precision and refuse rate over k for SVS

Using Equation 6 as the scoring function, the
model πrd classifies a completion ŷ as positive
if and only if πrd(zpass|ŷ,x) > τ ; otherwise,
it is classified as negative. By sweeping across a
range of thresholds τ ∈ [0.5, 0.99], we find that
τ = 0.92 offers a favourable trade-off between
precision and refusal. Fixing τ = 0.92, we
then examine how precision and refuse rate vary
with the number of candidate completions k, as
shown in Figure 5.

Surprisingly, the model maintains a precision of
∼ 94.5% across values of k, while the refuse
rate decreases notably from 23.79%(k = 1) to
13.33%(k = 64). Since precision reflects the proportion of correct completions among all non-
refused outputs, we interpret it as a proxy for the reliability of the model’s responses. Under
this view, our results suggest that reliability remains stable as the number of candidates increases,
while the refusal rate drops significantly — indicating improved solution coverage without sacrificing
correctness. These findings highlight the practical value of combining DyMo with SVS: by generating
more candidates, the model achieves higher success rates while maintaining high reliability. We
further discuss the broader implications of this observation in Section 5.

5 Discussion

Internal environment model by DyMo: Recent advances in RL have shown that incorporating
world models can substantially improve performance in complex domains such as board games [53]
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and video games [54]. Building on this line of work, our approach takes a further step by unifying the
world model and the policy into a single LLM through DyMo, and demonstrates the practical benefits
of this unification in tool use scenarios. We also note that similar motivations have emerged in reward
modelling, where LLMs are fine-tuned either into stand-alone reward models [18], or into generative
models capable of self-rewarding by reasoning over multiple steps in a single completion [17].
Our work extends this broader trend by showing how DyMo can enhance function calling beyond
reasoning, particularly in stateful environments.

Low true negative ratio problem of SVS: In our analysis of the results in Section 4.6, we observe
that the model πrd exhibits surprisingly low true negative ratio (< 50% TNR), despite achieving
strong precision and recall. As the model’s success rate increases through online RL training, the
proportion of correct completions steadily rises. This leads to a highly imbalanced distribution
between completions beginning with zpass and zerror, thus introduces a bias toward predicting states
in Z+. Consequently, we observe that the model tends to “over-refuse” its own completions, i.e.
it incorrectly verifies many correct completions as failures via its internal environment model. A
straightforward mitigation strategy would be to incorporate additional negative samples from Dfc,
thereby exposing the model to a more balanced distribution during DyMo in RL training. Due to
time and research scope constraints, we leave this direction for future work. Nonetheless, we argue
that our method significantly enhances the reliability of model outputs: higher precision implies that
completions self-verified by the model are more likely to be correct. This property is particularly
valuable in high-stakes or safety-critical domains, such as healthcare or finance, where even a few
incorrect outputs can lead to undesirable or irreversible outcomes.

Test-time compute scaling via DyMo and SVS: As discussed in previous sections, the proposed
DyMo and SVS provide a novel strategy for test-time compute scaling. Here, we offer additional
reflections from both data-centric and modelling perspectives. First, we highlight that DyMo can
benefit from failed completions, since a complete environment model should be capable of handling
both successful and failed trajectories. Given the vast amount of run logs accumulated from software
systems over decades, we argue that DyMo unlocks a largely under-explored data source: rich,
naturally occurring software run logs. In particular, the ability of DyMo to learn from failed
completions helps improve the fidelity of the internal environment model — a capability, to the best
of our knowledge, not explicitly addressed in prior works from the LLM community. Secondly,
from the perspective of world modelling, we hypothesise that programs are often written with an
implicit and internal world model of the developers who coded upon assumptions about environment
dynamics, constraints, and expected behaviours. These implicit world models are then reflected in the
run logs, which can then be captured and fitted by the proposed DyMo method. Through SVS, this
learned environment model can be exploited at test time, enabling the model to improve its decision
quality without external feedback. While this hypothesis is promising, a deeper exploration of the
relationship between program execution and world modelling lies beyond the scope of this work, and
we leave it for future investigation.

6 Conclusion

In this work, we investigate the challenge of tool use in stateful environments, where existing test-
time compute strategies become impractical due to repeated environment queries. To address this,
we propose DyMo, a method that augments LLM fine-tuning with an additional state prediction
task during both the SFT and RL stages, enabling a next-state prediction capability of the model.
Experiments on the BFCL-V2 benchmark show that incorporating DyMo significantly reduces
hallucinations during SFT and improves the success rate over RL training loops. Notably, we
also observe that RL models consistently outperform SFT models in mitigating hallucinations.
Furthermore, we demonstrate that correct tool calls are retrievable for over 93% of prompts using
a parallel Best-of-N decoding strategy, indicating that both SFT and RL models have learned
sufficiently expressive on-policy distributions. Building on this insight, we introduce a self-verification
sampling (SVS) strategy, which consistently improves pass^k and pass@1 performance by leveraging
the model’s internal environment model. Crucially, by allowing the model to refuse uncertain
completions, our approach produces more reliable outputs in scenarios where correctness is essential.
Overall, our findings highlight a promising direction for extending planning algorithms from the RL
community to LLMs in dynamic and stateful environments.
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A Examples of Data Used for Training LLMs

In this section, we present examples of the datasets curated for supervised fine-tuning (SFT) of large
language models (LLMs) on the tool use and state prediction tasks, as described in Section 3.2.1 and
Section 4.1.

A.1 Example of Function Call Supervised Fine-tuning Dataset Dfc

Below, we provide an example of the function call SFT data. The completion shown in the yellow box
corresponds to the ground-truth output used for supervised training and is guaranteed to be correct.
Importantly, our function call SFT dataset Dfc does not include any data from the original BFCL
benchmark; the following example is provided solely for illustrative purposes.

Example 1: Humidity Forecast Query

System Preamble

You are a large language model AI assistant. Your knowledge cutoff date is ...

...

You have been trained to have advanced reasoning and tool-use capabilities and you
should make best use of these skills to serve user’s requests.

Here is the list of tools that you have available to you. You can ONLY use the tools
listed here. When a tool is not listed below, it is NOT available and you should
NEVER attempt to use it. Each tool is represented as a JSON object with fields like
"name", "description", "parameters" (per JSON Schema), and optionally, "responses"
(per JSON Schema).
[
{"name": "weather.humidity_forecast", "description": "Retrieve
a humidity forecast for a specific location and time frame.",
"parameters": {"type": "object", "properties": {"location":
{"type": "string", "description": "The city that you want to get the
humidity for."}, "days": {"type": "integer", "description": "Number
of days for the forecast."}, "min_humidity": {"type": "integer",
"description": "Minimum level of humidity (in percentage) to filter
the result. Optional parameter. Default is 0."}}, "required":
["location", "days"]}, "responses": null},
{"name": "get_team_score", "description": "Retrieves the latest game
score, individual player stats, and team stats for a specified sports
team.", "parameters": {"type": "object", "properties": {"team_name":
{"type": "string", "description": "The name of the sports team."},
"league": {"type": "string", "description": "The league that the
team is part of."}, "include_player_stats": {"type": "boolean",
"default": false, "description": "Indicates if individual player
statistics should be included in the result. Default is false."}},
"required": ["team_name", "league"]}, "responses": null}
]
...

User Prompt

What is the humidity level in Miami, Florida in the upcoming 7 days?
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Completion

I’ll query the weather.humidity_forecast to give user an answer. The call is
{"weather.humidity_forecast": {"location": ["Miami", "Miami,

Florida", "FL"], "days": [7], "min_humidity": ["", 0]}}

A.2 Examples of State Prediction Supervised Fine-tuning Dataset Dsp

Below, we present an example of the state prediction SFT data. Example 2 corresponds to a previously
successful call to the humidity forecast function.

Example 2: A Successful Call to the Humidity Forecast Query

System Preamble

You are a large language model AI assistant. Your knowledge cutoff date is ...

(Identitcal to exmpale 1 above, thus we skip the following content to save pages.)

User Prompt

What is the humidity level in Miami, Florida in the upcoming 7 days?

Completion

I’ll query the weather.humidity_forecast to give user an answer. The call is
{"weather.humidity_forecast": {"location": ["Miami", "Miami,

Florida", "FL"], "days": [7], "min_humidity": ["", 0]}}

Pass

<|pass|>
{ "status": 1, "forecast": [ { "date": "2025-04-11",

"min_humidity": 62, "max_humidity": 78 }, ... ] }

Example 3 corresponds to a previously failed call to the humidity forecast function and is used as a
negative example in the state prediction task.

Example 3: A Failed Call to the Humidity Forecast Query

System Preamble

You are a large language model AI assistant. Your knowledge cutoff date is ...

(Identitcal to exmpale 1 above, thus we skip the following content to save pages.)

User Prompt

What is the humidity level in Miami, Florida in the upcoming 7 days?
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Completion

I’ll query the weather.humidity_forecast to give user an answer. The call is
{"weather.humidity_forecast": {"location": ["Miami", "Miami,

Florida", "FL"], "days": [-7], "min_humidity": ["", 0]}}

Error

<|error|>
{ "status": 0, "error": "Invalid input to argument ’days’, expected

a positive integer, but got -7...." }

B Results of Binary Classification

In Table 3, we present a detailed breakdown of the model’s performance on the binary classification
task formulated in Section 4.2. The table includes the confusion matrix, with values normalized
to sum to 100 for interpretability, as well as confidence intervals (in brackets) for precision, recall,
F1-score, and accuracy. As previously discussed, there exists a statistically significant gap between
the model’s discriminative performance on the state prediction task and its actual success rate in
generating correct completions. These findings suggest a promising direction for leveraging the
model’s discriminative strength to improve its generative behaviour, which has been explored by Guo
et al. [35].

Actual Predicted Metrics
Positive Negative

Positive 25.40 3.56 Precision: 90.00%(86.02%− 93.78%)
Negative 2.82 68.22 Recall: 87.71%(83.46%− 91.47%)

Accuracy 93.62%(91.90%− 95.21%) F1-score: 88.84%(84.72%− 92.61%)

Table 3: Confusion matrix of predicting next states by the model πsft SFTed on both function call
and state prediction data.

As discussed in Section 4.2, we track precision, recall, F1-score, and accuracy throughout the course
of online RL training. The corresponding curves are shown in Figure 6. The red curves represent
the model πsft, which is initialized from SFT on Dfc ∪ Dsp, while the blue curves correspond to the
baseline model ϕsft, fine-tuned only on Dfc. As shown in the figure, ϕsft, which lacks initial state
prediction capability, consistently underperforms πsft across all metrics throughout training. Even
after 600 steps of RL training, ϕrd fails to match the performance of the SFT-only model πsft, which
indicates the necessary of the state prediction data. These results suggest that the benefits of Dsp

cannot be compensated for by relying solely on the downstream DyMo loss during RL training.
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(c) F1-score
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Figure 6: Performance metrics of results prediction over online RL training with DM loss (Equation 4).
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