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ABSTRACT

Last couple of years have witnessed a tremendous progress in self-supervised
learning (SSL), the success of which can be attributed to the introduction of useful
inductive biases in the learning process to learn meaningful visual representations
while avoiding collapse. These inductive biases and constraints manifest them-
selves in the form of different optimization formulations in the SSL techniques,
e.g. by utilizing negative examples in a contrastive formulation, or exponential
moving average and predictor in BYOL and SimSiam. In this paper, we provide a
framework to explain the stability mechanism of these different SSL techniques: i)
we discuss the working mechanism of contrastive techniques like SimCLR, non-
contrastive techniques like BYOL, SWAV, SimSiam, Barlow Twins, and DINO;
ii) we provide an argument that despite different formulations these methods im-
plicitly optimize a similar objective function, i.e. minimizing the magnitude of
the expected representation over all data samples, or the mean of the data distribu-
tion, while maximizing the magnitude of the expected representation of individual
samples over different data augmentations; iii) we provide mathematical and em-
pirical evidence to support our framework. We formulate different hypotheses and
test them using the Imagenet100 dataset.

1 INTRODUCTION

Recent self-supervised learning (SSL) methods aim for representations invariant to strong perturba-
tions (called augmentations) of the input image. These perturbations are changes made to an input
image that are supposed to preserve the underlying semantics. Examples commonly used in SSL in-
clude random cropping, random rotation, color jittering, flipping and masking. These perturbations
help the model learn to recognize the underlying structure of the image and its features, without
being affected by irrelevant variations. In practice, this is done by training a projector that maps
different augmentations of the same image onto the same point in the feature space, and using the
gradient of the loss (the distance between the representations) to train the projector. These meth-
ods have shown to be highly effective in learning general features that can be transferred to a host
of downstream tasks like classification (Van Gansbeke et al., 2020), segmentation (Van Gansbeke
et al., 2021), depth-estimation (Bachmann et al., 2022), and so on.

The objective of minimizing the distance between two augmentations of the same image can lead to
a trivial solution, where all images are projected onto a single point in the feature space. This phe-
nomenon is known as embedding collapse (Zhang et al., 2022). Different SSL techniques use differ-
ent approaches to solve this problem: contrastive SSL techniques maximize the distance between an
image and other images in the dataset (called negative pairs) while minimizing the distance between
the image and its augmented versions (called positive pairs). They attribute the pulling force of pos-
itive pairs to learning invariance across different augmentations, and the pushing force of negative
examples to collapse avoidance (Chen et al., 2020; He et al., 2019). Non-contrastive methods do not
require negative examples, and can be cluster-based, predictor-based, and redundancy minimiza-
tion based. Cluster-based non-contrastive SSL (Caron et al., 2020) uses equipartitioning of cluster
assignments for the collapse avoidance. Another non-contrastive SSL method SimSiam (Chen &
He, 2020) uses an asymmetric student-teacher network with identical encoder architecture, and an
additional projection layer, called predictor head, over the student to learn the SSL features. They
claim the predictor learns the augmentation invariance. However, the exact collapse avoidance strat-
egy of these methods is still unclear, with an empirical study pointing to a negative center vector
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Figure 1: Overview of our proposed learning hypothesis. Red and blue points represent different
views of two images in feature space. (a) By applying distance minimization loss between two views
of the same image, the magnitude of the expected representation over the data (Ex[z]) increases,
reducing the variance of the data distribution (σ2) in the feature space and thereby reducing their
separability. (b) In order to learn a discriminative feature representation, a negative force (−s)
equal to the expected representation over the data distribution is required. We hypothesize that this
negative term is the collapse avoidance mechanism underlying different SSL methods.

gradient as a possible explanation (Zhang et al., 2022). Finally, redundancy-reduction based non-
contrastive technique, Barlow Twins (Zbontar et al., 2021), uses redundancy-minimization through
orthogonality constraints over the feature dimensions as a way to avoid collapse.

In this work, our goal is to uncover the underlying mechanisms behind these SSL methods. We show
that they are actually instantiations of a common mathematical framework that balances training
stability and augmentation invariance, as illustrated in Figure 1. We show this common framework
motivates different hyperparameter and design choices that previously were set mostly empirically
to obtain the best performance on downstream tasks. Our contributions are:

Major contributions:

1. We propose a single framework/meta-algorithm that explains the underlying collapse avoidance
mechanism behind contrastive and non-contrastive techniques.

• Provide a simple mathematical formulation that can explain embedding collapse for distance
minimization objective (also called invariance loss).

• Reformulating all SSL techniques showing their mathematical conversion to our proposed
framework, explaining that these techniques implicitly optimize our proposed framework to
avoid embedding collapse.

2. We propose a simplistic technique based on our framework, that combines distance minimiza-
tion with center vector magnitude minimization as a constraint optimization problem. This also
provides an empirical justification for our proposed framework.

Minor contributions:

1. We explain peculiar cases of existing SwAV with fixed prototype and Barlow twins without off-
diagonal minimization in the purview of our framework.

2. We show that our proposed algorithm can be used to make predictions about, and understand
rationality behind, some hyper-parameter selection in these SSL techniques which are otherwise
selected purely empirically.

Scope: We define the scope of our work under which we explore self-supervised learning:

1. We explore contrastive and non-contrastive methods of learning representation, and do not dis-
cuss Masked-image-models (Bao et al., 2021) or other methods based on proxy task such as ro-
tation (Gidaris et al., 2018), colorization (Zhang et al., 2016), jigsaw (Noroozi & Favaro, 2016),
relative patch location (Doersch et al., 2015) etc., as they are not optimizing the feature space
directly and unlikely to suffer from collapse as the ones we discuss in this paper.

2. The objective to learn the representation being invariance loss: We do not consider equivariance
objectives as contemporary methods in self-supervised learning use invariance loss to minimize
distance between augmented version of the input.
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Figure 2: All methods covered by our proposed framework. For details please zoom-in.

2 FORMULATION

Despite the differences in the design choices and approaches, there is a unifying principle behind
different SSL methods. This principle can be divided into two objectives: first, learning the aug-
mentation invariance of the images, and second, ensuring stability in the representation space by
avoiding embedding collapse. We propose that the key to stability lies in constraints imposed on the
expected representation over the dataset, or what we call the center vector, a term coequally used
by Zhang et al. (2022). These constraints prevent SSL methods from converging to trivial solutions.
In particular, architectures where the optimization function minimizes the magnitude of the center
vector avoid collapse, while the ones where the optimization function does not constrain it, collapse
to trivial solutions. In this section, we provide a mathematical framework based on augmentation
invariance and center vector constraints that generalizes different SSL approaches. We later redefine
these different approaches in the purview of our framework.

2.1 TWO-STREAM SELF-SUPERVISED LEARNING: THE ROLE OF THE CENTER VECTOR

Let an encoder function f map the RGB image space x ∈ I to the representation space RD which
is then normalized to the unit sphere z ∈ SD, z = g(x) = f(x)/∥f(x)∥2, and ω : I → I be
a stochastic augmentation with distribution Pω . The center vector, s, is defined as the expected
representation over the augmented input distribution:

s := Ex∼Px
[Eω∼Pω

[g(ω(x))]] (1)

For different augmentations, ω ∈ Ω, a two-stream self-supervised objective minimizes the distance,
D, between z and the representation of the augmented version of x:

L(f) = Ex,ω [D(z, zω)] = Ex,ω [D(g(x), g(ω(x)))] . (2)

where zω denotes the representation of the augmented view of the data. Here, we define our frame-
work:

Framework: Optimizing only the augmentation invariance objective defined in equation 2, may
lead to a trivial solution, as the representations, z, collapse. We posit that a non-trivial solution can
be obtained by selecting an objective function that constrains the expected global representation to
zero:

min L(f); s.t. s = 0 (3)

Explanation: The main objective function of distance minimization, D, between the two views of
the data is usually the Euclidean distance squared ∥z − zω∥22, which is equivalent to minimizing the
negative cosine similarity,−⟨z, zω⟩, for L2 normalized vectors. Hence, the loss gradient with respect
to the feature vector z can be written as ∂

∂zL(f) = −Eω[zω]. As the representation vector z will
move in the opposite direction of the gradient to minimize the loss, z will move in the direction of
Eω[zω]. Note that we have not considered yet the constraint s = 0 as s must be estimated from a
(stochastic) finite sample and the constrained optimization is difficult in general.

Let the expected value of z over augmentations ω ∈ Ω, is µz = Eω[zω]. Therefore, each term in the
sum of equation 2, can be rewritten as:
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∂

∂z
L(f) = −Ex[µz]− (Eω[zω]− Ex[µz]) (4)

The first term in the above equation leads z to move in the direction of the batch center, which is
common across all the samples in the batch. The second term leads it to the residual direction which
is different for different samples. As zω is L2 normalized, the magnitude of the sum of these terms
is bounded above by 1, so in expectation the larger the magnitude of the expected representation,
Ex[µz] (first term) is, the smaller the magnitude of the residual representation, Eω[zω] − Ex[µz]
(second term) will be, which is not desirable. As z keeps moving in the direction of the expected
batch representation, its value iteratively increases and the residual vectors become smaller and
smaller. All this can be avoided by minimizing the magnitude of the center vector, or the expected
batch representation, Ex[µz] = 0, resulting in larger residual terms, (Eω[zω]−Ex[µz]). This residual
term is different for different samples, and hence represents the semantic content of the sample. For
a large batch size, the samples are representative of the global distribution of the dataset, hence the
batch center ŝ coincides with the dataset center, Ex[µz]. We define the residual component for a
sample z as rz = (z − Ex[µz]).

For each iteration, explicit computation of the global center vector is non-trivial and expensive.
Instead, different SSL approaches employ different ways to incorporate center vector minimization,
despite being non-explicit about it. Using our framework of center vector minimization, we redefine
the contemporary SSL approaches.

2.2 CONTRASTIVE SSL: ROLE OF NEGATIVE EXAMPLES

Triplet loss: In contrastive SSL approaches, the goal is to bring the representations of the augmented
views of an input sample close while pushing away that of other samples. To study constrastive SSL,
we formulate a triplet objective function (Hoffer & Ailon, 2015). For a standard triplet loss setup, as
shown in Figure 2a, xa, an anchor, and xp = ω(xa), a positive exemplar, constitute the two views
of the same data point xa and are called a positive pair, while xn, a negative exemplar, is another
data point and together with xa constitutes a negative pair. za, zp, and zn are their projections in the
representation space, respectively. Then triplet loss can be written as:

Ltriplet(f) = Exn,xa,ω

[
1

2
max

(
∥za − zp∥22 − ∥za − zn∥22 + α, 0

)]
(5)

In self-supervised learning, typically the two different images are pushed as far apart as possible,
hence the margin α → inf , which is equivalent to Exn,xa,ω

[
1
2

(
∥za − zp∥22 − ∥za − zn∥22

)]
and

Ltriplet(f) =Exn,xa,ω [−⟨za, zp⟩+ ⟨za, zn⟩] , (6)

where the equivalence is due to the L2 normalization and constants have been removed from the
objective. To understand how the representation z evolves, we analyze how anchors move in the
representation space. To check this, we can look at the gradient of the loss w.r.t. the anchor, za. The
anchor then moves in the opposite direction of this gradient.

∂

∂za
Ltriplet(f) = Exn,ω [−zp + zn] = Exn,ω [Ex[µz]− (zp − Ex[µz])− Ex[µz] + (zn − Ex[µz])]

(7)
= Exn,ω [−s− rp + s+ rn] = Exn,ω [−rp + rn]

(8)

−rp + rn is the difference of the residual vectors for the positive and negative exemplars, respec-
tively, and is desirable as it would move za in the direction of rp, the semantic component of the
representation of the positive sample, and away from that of the negative sample rn. If we did not
have a negative sample term, zn, the loss gradient would be exactly what we had in equation 4.
Eventually, the center vector s would become very large compared to rp, as an increase in the center
vector leads to a decrease in the residual as their sum is upper bounded by 1. In this case, all samples
in the dataset will have high similarity to each other, since the s component is present in all of them,
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and the difference between any two samples, xi and xj would be small. This eventually causes
collapse.

InfoNCE: In practice, most contrastive SSL methods use the InfoNCE Loss:

LInfoNCE(f) =− Exn,xa,ω

[
log

(
exp(sim(za, zp)/τ)

exp(sim(za, zp)/τ) +
∑

zn
exp(sim(za, zn)/τ)

)]
(9)

=− Exn,xa,ω [sim(za, zp)/τ − LogSumExp(sim(za, zp)/τ, {sim(za, zn)/τ})] .
(10)

In SimCLR (Chen et al., 2020), a very low temperature (τ ≪ 1) is used. Using the identity,
limτ↘0 τ LogSumExp({sim(za, zi)/τ}) = maxi sim(za, zi), we see that the objective approaches

LInfoNCE(f) ≈ −Exn,xa,ω

[
log

(
exp(sim(za, zp)/τ)

exp(sim(za, znmax)/τ)

)]
(11)

= −Exn,xa,ω [sim(za, zp)/τ − sim(za, znmax)/τ ] . (12)

The similarity function in equation 12 most commonly used in the literature has been cosine simi-
larity, and ignoring the constant τ , the resulting objective is equivalent to:

LInfoNCE(f) ≈ −Exn,xa,ω [⟨za, zp⟩ − ⟨za, znmax⟩] . (13)

In summary, for normalized representation vectors, equation 13 becomes equivalent to equation
6. Hence, for InfoNCE loss as well, the stability of the representation depends on the constraint
over the magnitude of the center vector. Equation 8, and the paragraph following it provide the
role of positive examples for feature invariance maximization and negative examples for collapse
avoidance. Further, equation 12 shows the use of temperature as a measure to sample hard-negatives.

2.3 SIMSIAM: HOW PREDICTOR HELPS AVOID EMBEDDING COLLAPSE

Given the SimSiam setup in Figure 2b: xa = ωa(x) and xb = ωb(x) are two augmentations of x
subjected to augmentations ωa ∼ Pω and ωb ∼ Pω , respectively. fθ : X → SD is an encoder
function, parameterized by θ. hϕ : SD → SD is a predictor function, parameterized by ϕ, such
that za = fθ(xa), zb = fθ(xb) and pa = hϕ(za) = hϕ(fθ(xa)). For any iteration t, these three
equations and the corresponding loss are:

zta = f t
θ(xa); ztb = f t

θ(xb); pta = ht
ϕ(za) = ht

ϕ(f
t
θ(xa)) (14)

Lt
SimSiam(f, h) =

1

2
Ex,ωa,ωb

[
−⟨pta,sg(ztb)⟩ − ⟨ptb,sg(zta)⟩

]
(15)

= Ex,ωa,ωb

[
−⟨pta,sg(ztb)⟩

]
(16)

where sg indicates that backpropagation will not proceed on that variable (?). It holds

2− 2⟨pta,sg(ztb)⟩ = ∥pta − sg(ztb)∥22 = ∥ht
ϕ(z

t
a)− sg(ztb)∥22 (17)

Now let us have a look at the predictor alone, as shown in Figure 2. Since ht
ϕ has been optimized

in the t − 1 backward pass, it minimized the loss term Lt−1
ab := ∥pt−1

a − sg(zt−1
b )∥22. The update

of hϕ at the t − 1 iteration is ϕt = ϕt−1 − λ ∂
∂ϕt−1

Lt−1
ab . SimSiam uses a high learning rate (λ) for

the predictor to update it more frequently. Hence, hϕ learns to project za to zb almost perfectly, and
after the update of ht−1

ϕ to ht
ϕ, we have

ht
ϕ(z

t−1
a ) ≈ zt−1

b (18)

After the t−1st update of fθ, the new updated encoder f t
θ projects xa and xb to zta and ztb respectively.

This causes a shift of distribution from P (z|θt−1, x) to P (z|θt, x), due to change in parameters from
θt−1 to θt, which we denote Ex,ωa

[f t
θ(xa)− f t−1

θ (xa)] = Ex,ωa
[D⃗(zt−1

a , zta)] =: ∆t
dist.

f t
θ(xa) = zta = zt−1

a + D⃗(zt−1
a , zta) (19)

⇒ Lt
ab = ∥ht

ϕ(z
t−1
a + D⃗(zt−1

a , zta))− sg(ztb)∥22 (20)
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Since the predictor is trained to adapt quickly to the encoder, with high learning rate (Chen & He,
2020), we assume that ht

ϕ is invariant to small changes z:

ht
ϕ(z

t−1
a + D⃗(zt−1

a , zta)) ≈ ht
ϕ(z

t−1
a ) (21)

expected loss becomes : Ex,ωa,ωb
[Lt

ab] ≈ Ex,ωa,ωb
[∥ht

ϕ(z
t−1
a )− sg(ztb)∥22] (22)

≈ Ex,ωb
[∥zt−1

b − sg(ztb)∥22] (23)

where the last approximation is from eq. 18 : Lt
SimSiam(f, h) = Ex,ωa,ωb

[Lt
ab] ≈ ∥∆t

dist∥22 (24)

Change in the distribution between zt−1 to zt can be written as the shift in their mean
∥∆dist∥22 ∝ ∥Ex,ω[z

t
ω]− Ex,ω[z

t−1
ω ]∥22 (25)

Equation 25 suggests the expected loss at iteration t, causally depends on the expected representation
in iteration t−1. We can extrapolate this to the t = 0, where for a randomly initialized representation
space, Ex,ω[z

0
ω] ≈ 0. This causal reliance on previous iteration acts as a constraint in limiting the

increase of center vector in iteration t.

2.4 BYOL: ROLE OF EXPONENTIAL MOVING AVERAGE

Similar to SimSiam, BYOL (Grill et al., 2020) is also a two-stream network with predictor on top
of the online stream, Figure 2c. However, unlike SimSiam, the offline network is updated as the
exponential moving average (EMA) of the online stream. Secondly, while SimSiam requires the
expedite learning of the predictor with a high learning rate, BYOL uses a smaller learning rate of
predictor. As a high learning rate is critical for such an architecture to avoid collapse, while BYOL
still manages to avoid it, the EMA should be playing an important role in collapse avoidance.

Let the online network be fθ and the offline network be fθema , with parameter θema updated as θtema =
(1 − ϵ)θt + ϵθt−1

ema , with a typical value of ϵ = 0.99 (Grill et al., 2020). The resulting outputs
of the two views of the data points, xa and xb, are za and zbema . Here, we can rewrite zbema

=
ϵf t−1

θema
(xb) + zbema

− ϵf t−1
θema

(xb) =: ϵf t−1
θema

(xb) + ztbδ .

LBYOL(fθ, fθema) = −Ex,ωa,ωb
[⟨za,sg(zbema)⟩] ;

∂

∂za
LBYOL = −Eωb

[
ϵzt−1

bema
+ ztbδ

]
(26)

= −Eωb

[
ϵ
(
rt−1
zbema

+ Ex[µ
t−1
zbema

]
)
+ rtzbδ

+ Ex

[
µt
zbδ

]]
(27)

≈ −Eωb

[
ϵ
(
rt−1
zbema

+ Ex[µ
t−1
zbema

]
)
+ rtzbδ

]
(28)

We see that ztbδ = zbema − ϵf t−1
θema

(xb) will in general be close to zero, as f t−1
θema

is close to f t
θema

and
ϵ is close to 1. If the initial distribution of the features are randomly distributed across the unit hyper-
sphere, the magnitude of the center vector is 0, which the feature of each sample tries to move closer
to in each subsequent iteration. This also means that no negative center vector is required in terms of
the batch-level normalization etc, although they can improve the overall performance (Richemond
et al., 2020). This momentum component only partially helps in minimizing the magnitude of the
center vector, as discussed in the previous section, in SimSiam, the predictor helps in minimizing
the magnitude of center vector as well, following a similar path of confining to the initial distribution
of the feature space, that is centered to origin. It has also been shown in the literature (Richemond
et al., 2020) that when the network is non-uniformly initialized leading to the non-uniform feature
space, batch normalization becomes necessary to mitigate collapse. This can be explained using
our derivation, that when the initial feature space is non-uniform, the center vector magnitude is
non-zero, hence a negative center vector term is required to nullify the effect of Ex

[
µt−1
zbema

]
.

2.5 DINO

DINO, a two-stream network, uses a student-teacher network similar to BYOL, with teacher param-
eters updated as the exponential moving average of the student, Figure 2e. Architectures of both
streams are symmetric without any predictor on student network. For the output representations
za, zbema corresponding to student and teacher network respectively, we can write the loss as

LDINO(f) = −Ex,ωa,ωb
[⟨sg(τsoftmax((zbema − C)/τ)), τ log(softmax(za/τ))⟩] , (29)
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where C is a momentum term based on the expected value of z (Caron et al., 2021, Equation (4)).
As above, taking the limit as τ goes to zero from above:

lim
τ↘0

LDINO(f) = −Ex,ωa,ωb

[
⟨sg(emax(zbema−C)), za −max(za)⟩

]
(30)

∂

∂za
lim
τ↘0

LDINO(f) = −Eωb

[
emax(zbema−C)

]
+ emax za (31)

since C is the exponential moving average of the batch centers over different iterations, this captures
the notion of center vector the sbema . Hence the above equation becomes ∂

∂za
LDINO ≈ rbema . This

gradient equation has a low center vector magnitude and hence the features do not move towards
any certain direction and collapse is avoided. The importance of centering operation for collapse
avoidance has also been studied in DINO. With this reformulation, we reexamine the centering
operation in the purview of our framework to explain why it helps in collapse avoidance.

Note: We find that the stability of SwAV (Caron et al., 2020) and Barlow Twins (Zbontar et al.,
2021), can also be explained through the center vector framework. Due to space constraint, we
move the corresponding formulation sections to supplementary.

3 EXPERIMENTS

3.1 SIMPLIFIED SSL OBJECTIVE: PENALIZING CENTER VECTOR MAGNITUDE

Based on the constrained optimization problem proposed in Equation 3 we propose a simplified SSL
objective:

LSimple(f) = 0.5(L(f)− λLs) (32)

where λL is the Lagrange multiplier, and act as a penalty term for minimizing the center vector.
We optimize this unconstrained objective, minLSimple(f), through mini-batch SGD. In Figure 3,
we compare the performance of this simplified objective against SimSiam on toy datasets. λL is
a hyperparameter which we set to −1, however a better selection process should be possible, but
is beyond the scope of this paper. We observe that our simplified objective without architectural
complexity of SimSiam, is able to outperform its performance. This provides a possible justification
of the proposed framework in Section 2.1.

B
lo
bs

M
oo
ns

Figure 3: Simplified SSL objective: We show that a simplified objective that minimizes the invari-
ance loss with a center vector penalty (green), can outperform SimSiam. We plot the toy dataset
distribution on left and performance curves on right for Blob and Moons dataset. Plots are averages
of five runs with varying seeds, and variance is shown by shaded regions.

3.2 WHY SIMSIAM COLLAPSES WITHOUT PREDICTOR? UNDERSTANDING COLLAPSE WITH
TOY-DATASETS

Toy datasets provide a controlled abstraction over the complexity of the natural distribution and
hence act as a test-bench for the empirical evaluation of our proposed framework. We incorporate
two toy datasets: blobs, moons. Each of the datasets contains samples in 2 dimensional space
for three classes, as shown in Figure 4. We treat samples of one class as the augmentations of a
single image and train a SimSiam model with and without stop-gradient. Simsiam without predictor,
and stop-gradient collapse for natural distribution (Chen & He, 2020) and acts as a good model to
showcase the behavior of center vector for sub-optimal cases. In both SimSiam without predictor,
and without stop-gradient cases, the formulation defined in equation 18, and 25 do not hold. Hence,
no center vector minimization term is present in the loss, leading to collapse. Analysis on natural
dataset has been provided in supplementary.
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Figure 4: Evaluation on toy datasets: Standard SimSiam, SimSiam without predictor and SimSiam
without stop-gradient have been shown in blue, red and pink respectively. Plots are averages of five
runs with varying seeds, and variance is shown by shaded regions. Center vector is high for both
the cases of collapse, i.e. SimSiam without predictor, and SimSiam without stop-gradient. This
empirically verifies, the role of predictor and stop-gradient for collapse avoidance in SimSiam, based
on our formulation. Input dataset distribution can be viewed in Figure 3

3.3 BARLOW-TWINS CAN WORK WITHOUT ORTHOGONALIZATION

Barlow-twins orthogonalizes cross-correlation matrices between image views. It uses an invariant
loss for diagonal elements and an orthogonalization/decorrelation loss for off-diagonal elements,
multiplied by a weighting factor λ. Zbontar et al. (2021) demonstrate the robustness of Barlow-twins
to different λ values. In our formulation in supplementary Section ??, we show that pushing the off-
diagonal elements to zero, is the same as minimizing the negative pair similiarity in the mini-batch.
Hence, λ should play a similar (however weaker role) as τ , the temperature parameter in InfoNCE.
While in InfoNCE, the τ parameter helps in sampling hard-negatives, there is no such mechanism
to do so here with λ, and as per our section on Contrastive learning, hard-negative sampling is
critical in minimizing the center vector magnitude and therefore in avoiding collapse. Hence, there
must be some mechanism to compensate for the lack of hard-negative sampling in Barlow-twins to
minimize the center vector. We argue, that Batch-normalization (BN) coupled with large batch-size
in Barlow twins, helps in estimating the dataset center vector and its removal through BN. We also
argue this is the reason behind the robustness against the λ parameter in the original Barlow-twins
formulation (Zbontar et al., 2021). To verify our claim, we train a Barlow-twins network without
decorrelation/orthogonalization term, i.e. we only train the invariance term between two views of
the data. Similar to the original implementation, we use BN. As shown in Figure 5, we see that even
without decorrelation-term, or in terms of InfoNCE equivalent, without any negative pairs, Barlow-
twins is able to avoid collapse, due to BN, although with suboptimal performance. This additionally
empirically verifies our proposed framework of center vector minimization for SSL stability.

(a) (b) (c)

Figure 5: Barlow-twins can learn non-collapse features without decorrelation term in the loss for-
mulation: (a) shows the knn accuracy of Barlow-twins with and without the decorrelation terms in
the loss on Imagenet100, (b) and (c) show the norm of the center vector of z before and after BN,
while training Barlow-twins in the two aforementioned settings, respectively. We can see that BN
helps in removing the center vector component from z.

3.4 SWAV WITH FIXED PROTOTYPES

Caron et al. (2020) show that SwAV even with fixed prototypes can learn a rich feature space,
resulting in a downstream performance comparable to learnable prototypes. We analyze this fixed
prototype model to investigate it in the purview of our framework. Figure 6 shows, that when the
prototypes are randomly and uniformly initialized on a unit hypersphere, i.e. the Ez∈prototypes[z] = 0,
the center vector magnitude is zero by design, as an inductive bias, and hence collapse is avoided.
However, the manifold of the random initialized prototype space may not coincide with the natural
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manifold of the data semantics, hence the performance of the learnable prototypes are better than
fixed.

(a) (b)

Figure 6: SwAV with fixed prototype and collapse
avoidance as an inductive bias.

(a) (b)

Figure 7: Analyzing the relation between dif-
ferent values of ϵ in EMA, on the center vec-
tor of BYOL and knn-classification on Ima-
genet100.

3.5 BYOL, IS HIGH MOMENTUM IMPORTANT?

Based on our formulation, high value of momentum ϵ is important in order to confine with the
initial uniform distribution of the data in the feature space, i.e. Ex[z] ≈ 0, see Section 2.4. Here,
we analyze this hypothesis, by examining the center vector and performance for different values
of momentum, ϵ. Figure 7 shows that lower momentum leads to higher center vector magnitudes,
leading to instability and low knn-accuracies, while higher momentum leads to vice-versa, verifying
the relation between center vector and stability thus performance in BYOL.

4 RELATED WORK

Non-contrastive methods like, SwAV (Caron et al., 2020), BYOL (Grill et al., 2020), Barlow-twins
(Zbontar et al., 2021), SimSiam (Chen & He, 2020), and DINO (Caron et al., 2021) eliminate the
need for negative exemplars and use a Siamese-like architecture. An online stream (student-stream)
learns through gradient-based optimization, while an offline stream (teacher-stream) computes pa-
rameters based on the student’s stream without direct gradient involvement.

Some of the earlier work attempting to understand the lack of collapse of non-contrastive SSL in-
cludes Tian et al. (2021), which explains the role of predictor in SimSiam as learning the eigen-space
of the feature vectors. Zhang et al. (2022) introduce negative gradient of center vector as the collapse
avoidance technique, however they explain it only empirically and only for SimSiam. Garrido et al.
(2022) propose a dual relation between SimCLR and ViCReg (Bardes et al., 2021). While these
methods provide insights about the SSL working mechanisms, they are limited to specific methods
or to empirical analysis. In this work we attempt to provide a unified framework that generalizes
over different contrastive and non-contrastive methods. For a detailed literature review, please refer
to the supplementary.

5 CONCLUSION

We propose a framework for collapse avoidance in self-supervised representation learning based
on center vectors. The center vector magnitude needs to be minimized to prevent feature collapse,
making self-supervised feature learning an optimization problem of maximizing invariance and min-
imizing the expected representation. Existing self-supervised techniques can be reformulated in
terms of center vector minimization. Empirical analysis on Imagenet100 and toy dataset shows that
collapsed versions have higher center vector magnitudes but worse knn-classification performance
compared to standard versions. We revisit SwAV with fixed-prototypes and Barlow-twins without
decorrelation loss, known not to collapse, and explain their mechanisms within our framework. We
propose a simplified SSL method based on our framework and our empirical evaluation supports our
framework.
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