
Navigating Hallucinations for Reasoning of Unintentional Activities

Anonymous EMNLP submission

Abstract

In this work we present a novel task of un-001
derstanding unintentional human activities in002
videos. We formalize this problem as a rea-003
soning task under zero-shot scenario, where004
given a video of an unintentional activity we005
want to know why it transitioned from inten-006
tional to unintentional. We first evaluate the007
effectiveness of current state-of-the-art Large008
Multimodal Models on this reasoning task and009
observe that they suffer from hallucination. We010
further propose a novel prompting technique,011
termed as Dream of Thoughts (DoT), which012
allows the model to navigate through halluci-013
nated thoughts to achieve better reasoning. To014
evaluate the performance on this task, we also015
introduce three different specialized metrics016
designed to quantify the models reasoning ca-017
pability. We perform our experiments on three018
datasets, OOPs, UCF-Crimes, and ReUAct, and019
our findings show that DOT prompting tech-020
nique is able to outperform standard prompting,021
while minimizing hallucinations.022

1 Introduction023

Automatic understanding of human activities in024

videos is a challenging problem with a lot of real-025

world applications in domains such as healthcare,026

security, robotics, and elderly assistance. Recently,027

we have seen progress in recognizing intentional028

human activities in videos (Kong and Fu, 2022).029

Recognizing unintentional activities is important030

(Epstein et al., 2020), but, understanding the rea-031

soning behind failure aids in correcting mistakes.032

This work focuses on unintentional activities in033

videos.034

Multimodal foundation models have excelled in035

zero-shot generalization across a variety of scenar-036

ios (Zhu et al., 2023; Alayrac et al., 2022; Li et al.,037

2023a; Liu et al., 2023a; Zhang et al., 2023a; Maaz038

et al., 2023; Li et al., 2023b). We study LMMs’ rea-039

soning on action intentionality. Our analysis shows040

conventional prompts cause hallucinations and fail041

in reasoning transitions to unintentional actions, 042

often giving generic reasons without fully using 043

visual context. Although chain of thoughts (Wei 044

et al., 2022b) prompting provides a framework to 045

obtain specific reasons, it also suffers from hallu- 046

cinations when trying to reason over unintentional 047

activities. 048

To mitigate the effect of hallucinations and im- 049

prove reasoning over unintentional activities, we 050

propose a multi-step solution which relies on two 051

key observations: 1) allowing a model to hallu- 052

cinate multiple times can yield some correct re- 053

sponses, and 2) multiple-choice questions help 054

guide the model to the right answer. Our ap- 055

proach, Dream of Thought (DoT) prompting, uses 056

the model’s hallucinations as multiple choices, en- 057

abling the model to navigate through these options 058

to provide improved reasoning. 059

We experiment with three different datasets, 060

OOPs (Epstein et al., 2020), UCF-Crimes (Sultani 061

et al., 2018), and ReUAct. OOPs focus on uninten- 062

tional activities in daily life and UCF-Crimes focus 063

on anomalous activities. In addition, we propose 064

ReUAct, a new dataset of unintentional activities 065

which supplement these two and also avoids any 066

potential overlap with pretraining datasets. With 067

extensive evaluations we demonstrate the effective- 068

ness of DoT prompting. We make the following 069

contributions in this work, 070

• We present a novel problem that focuses on 071

reasoning about the transition of an activity 072

from intentional to unintentional. 073

• We study the capability of existing LMMs and 074

prompting techniques for this task and also 075

provide a novel Dream of Thoughts (DoT) 076

reasoning-based mechanism which outper- 077

forms existing methods. 078

• We also provide ReUAct, a new dataset to 079

study reasoning of unintentional activities. 080

• We provide three different evaluation proto- 081
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cols, rmMCQ, rmLLM , and rmFIB , for re-082

sponse matching (rm) which quantifies the083

reasoning capability of models for this task.084

2 Related works085

Large generative models Large language mod-086

els (LLMs) have significantly advanced recently087

with GPT-3(Brown et al., 2020), LLaMA (Tou-088

vron et al., 2023), ChatGPT (OpenAI, 2023), and089

BARD (Google, 2023). LLMs excel in task gen-090

eralization;.Emerging Large Multimodal models,091

derived from these LLMs, are now being explored092

for vision tasks. Examples include MiniGPT (Zhu093

et al., 2023), Open Flamingo (Alayrac et al., 2022),094

BLiPv2 (Li et al., 2023a), and LLaVA (Liu et al.,095

2023a) in the image domain, and Video LLaMA096

(Zhang et al., 2023a), Video Chat (Maaz et al.,097

2023), VILA (Lin et al., 2023b) Video-LLaVA (Lin098

et al., 2023a) and Video ChatGPT (Li et al., 2023b)099

in the video domain. We use these thes Large Mul-100

timodal Models in our study.101

Prompting techniques Advancements like Chain102

of Thought (COT) prompting by (Wei et al., 2022a),103

Automatic Chain of Thoughts (Zhang et al., 2022)104

and the Self-Consistent Chain of Thought (Wang105

et al., 2022) have enhanced LLMs’ zero-shot per-106

formance. (Zhang et al., 2023c) further evolved107

this concept into the Multimodal Chain of Thought,108

which incorporates both textual and visual data.109

Wang et al. (Wang et al., 2022) refined the CoT us-110

ing the self-consistency criteria.(Yao et al., 2023b)111

and (Long, 2023) proposed through the Tree of112

Thought. The Graph of Thought (Liu et al., 2023c)113

expanded on these ideas. Incorporating exam-114

ples for few-shot learning scenarios has also been115

shown to improve LLM performance (Touvron116

et al., 2023; Brown et al., 2020) which have been117

further enhanced upon by (Liu et al., 2021; Lewis118

et al., 2020; Paranjape et al., 2023; Zhou et al.,119

2022). We analyze and compare LMM reasoning120

using these techniques with our method.121

Reasoning abilities of LLM’s (Webb et al., 2023)122

showed that models like GPT-3.5 and GPT-4 have123

considerable analogical reasoning abilities, while124

(Liu et al., 2023b) highlighted their limitations with125

out-of-distribution data and complex tasks. (Małk-126

iński and Mańdziuk, 2023) analyzed deep models127

of analytical reasoning on Raven’s Progressive Ma-128

trices (Webb et al., 2023). The Visual Question129

Answering (VQA) field has seen significant con-130

tributions from studies like (Zhang et al., 2023b),131

(Marino et al., 2021), (Kim et al., 2018), and (An- 132

derson et al., 2018), enhancing VQA solutions. 133

(Xue et al., 2023), (Hafner et al., 2019), (Finn and 134

Levine, 2017), (Chang et al., 2016), (Burda et al., 135

2018), (Babaeizadeh et al., 2021), and (Agrawal 136

et al., 2016) has been pivotal in advancing how 137

deep models understand dynamic visuals. Addi- 138

tionally, (Bhattacharyya et al., 2023; Wu et al., 139

2021; Gao et al., 2023; Wu et al., 2020) look to rea- 140

son about objects in videos through grounding.To 141

the best of our knowledge, LMM’s ability to reason 142

over unintentional videos has not been addressed 143

in existing works. 144

Hallucination in LLM’s: Hallucination in founda- 145

tional models refers to the creation of inconsistent 146

responses. (McKenna et al., 2023) investigated the 147

origins of hallucinations in LLMs, while (Yao et al., 148

2023a) drew comparisons between these hallucina- 149

tions and adversarial examples. (Wang et al., 2023) 150

extended this research to LVMs. To address hallu- 151

cination challenges, (Dhuliawala et al., 2023) and 152

(Manakul et al., 2023) introduced self checking and 153

self verification to generate consistent responses. 154

In this work, we use hallucinations to improve the 155

models reasoning capability with the help of multi- 156

step navigation. 157

3 Method 158

Problem statement We focus on understanding 159

the transition from intentional to unintentional ac- 160

tivities in videos under zero-shot setting. Given 161

a model p() which takes a prompt P and a video 162

V with n frames as input, the objective is to iden- 163

tify the reasoning R behind the activity’s transition 164

from intentional to unintentional in the video. 165

3.1 Background and motivation 166

Our preliminary experiments indicate that Large 167

Video Language models face specific challenges 168

due to hallucinations as well as lack of ability to 169

infer relationships between events, which seems to 170

be affecting inference and causal understanding. 171

While studying these issues, we observe that 172

repeated trials substantially provide accurate re- 173

sponses occasionally, approximately achieving one 174

correct response out of every few attempts. More- 175

over, in (Newell et al., 1959, 1972) the authors 176

show that humans also interpret problem-solving 177

in a combinatorial manner, using some heuristics 178

to decide from various possibilities. For humans, 179

prior experience generates problem-solving possi- 180
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Figure 1: Overview of the proposed Dream of Thoughts framework: The left figure shows an overview of the
three-step process with all the possible paths generated by the Large Video Language Model using the video and
provided prompts. The right figure describes the Dream of Paths mechanism for generating thoughts to cover the
most probable options and the Path Selection mechanism for navigating through the best possible options.

bilities and plans. Motivated by this, we introduce181

a multi-step prompting strategy which attempts to182

navigate through those hallucinated responses to183

achieve better reasoning.184

3.2 Proposed approach185

We introduce Dream of Thought (DoT) prompt-186

ing to enhance models’ ability to generate correct187

responses. This multi-step process involves three188

steps to obtain essential cues for reasoning. Our189

main objective is to understand why a certain ac-190

tivity is considered abnormal. This requires the191

reasoning agent to identify the intended goal of the192

activity and then determine how the activity devi-193

ates from this goal. Specifically, we first obtain194

a description of the video, use this as the cue to195

generate the goal of the intentional activity, and196

then reason why the intentional activity is failing.197

An overview of the proposed approach is shown in198

Figure 1.199

At each step, DoT generates a range of possible200

answers (Dreams of Paths) to a given question. We201

then employ a Multiple Choice Question (MCQ)-202

style prompt for effective selection of the most ap-203

propriate response (Path Selection) to the specific204

video. This strategy capitalizes on the models’ gen-205

erative capability to provide diverse options, with206

the MCQ prompt acting as a filter to select the most207

appropriate output. Similar strategy has been ex-208

plored in Tree of Thoughts (ToT) (Yao et al., 2023b)209

mechanism but there are some key differences; 1)210

ToT requires a scoring mechanism to select the best211

possible option in each step, whereas, we pose this212

as MCQ for the model itself, and 2) our proposed213

DoT utilize cues from different steps as a context 214

for next steps, whereas ToT treats each step as a 215

partial path with no such motive. 216

DoT consists of three main steps, 1) generating 217

description, 2) goal derivation, and 3) reasoning, 218

which make use of Dream of Paths (DoP) and Path 219

Selection. We will first describe Dream of Paths 220

and Path Selection, and then explain the three steps 221

involved in DoT prompting. 222

Dream of Paths: At each step, we generate n pos- 223

sible options as a solution to the task in correspond- 224

ing step. The model p() to generate n candidate 225

solutions xi ∼ p(xi|V, . . .). 226

Path selection: After obtaining n possible solu- 227

tions to our problem, we then propose the task 228

as a MCQ form problem where the model has 229

to select one out of n possible solutions: x ∼ 230

p(x|x1, . . . , xi, Ps, V ) using a prompt Ps, “The list 231

of possible descriptions/goals/reasons for the video 232

are given as (descriptions/goals/reasons). Select 233

the most appropriate descriptions/goals/reasons." 234

Generating description (D): In the first step, we 235

generate n concise summaries of the video content 236

using a prompt: di ∼ p(di|Pd, V ),where prompt 237

Pd is “Summarize the video action and infer the 238

list of objects exhaustively, from the relevant visual 239

context to the activity occurring in the video.". Fol- 240

lowing this, we engage in the Path Selection step to 241

derive the most accurate description of the video: 242

d ∼ p(d|d1, d2, . . . , dn, V, Ps). 243

Goal derivation (G): Using the summary, we de- 244

rive n possible intended activity to be executed 245

within the context of this video using a prompt: 246

gi ∼ p(gi|d, V, Pg), where prompt Pg is given 247
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Algorithm 1 Dream of Thoughts (DoT)
Input: Model M, video Vi

Output: Reasoning R

1: P = [Pd, Pg, Pr] ▷ Define prompts for reasoning
2: c = [] ▷ Initialize empty list c for storing context
3: n = N ▷ Set n to number of options to be generated
4: Ps = SelectionPriompt ▷ Set the selection prompt
5: for j in P do
6: ci = [] ▷ Initialize empty list c_i
7: for i = 1 to n do
8: ci += model(c | Pj , V, c) ▷ Update c_i with

model output
9: end for

10: c += model(c | ci, c, V, Ps) ▷ Update c with model
output

11: end for
12: R = c[−1] ▷ Set reason to the last element of c

as “If the summary of the given video is <video248

summary>, logically infer the most probable inten-249

tion of the actions being attempted in this video.".250

We then perform the Path Selection step to ob-251

tain the best possible description for the video:252

g ∼ p(g|g1, g2, gn, Ps, V, d).253

Reasoning step (R): Utilizing the information per-254

taining to the intended activity, we generate a set of255

n probable factors that could have potentially hin-256

dered the successful completion of the aforemen-257

tioned task: ri ∼ p(ri|V, g, Pr), using a prompt Pr,258

“The goal of the intended activity taking place in the259

given video is described as: (goal), provide a visual260

description of the event that leads to the failure to261

perform the activity with the greatest probability."262

This step is again followed by the Path Selection263

step to obtain the best possible description for the264

videor ∼ p(r|r1, r2, rn, Pr, V, g).265

3.3 Evaluation and metrics266

We perform comparison of the responses with the267

ground truth reasons at both high and low level268

context. For high level context analysis, we aim to269

match underlying reasons provided by the model270

with the ground truth reasoning. For this, we intro-271

duce the rmLLM metric. For low level contextual272

analysis we measure how accurately the model can273

predict specific attributes of the reason such as sub-274

ject, verb and object. We propose two metrics for275

this, rmMCQ, and rmFIB . Leveraging keyword-276

based metrics, we can more precisely assess the277

presence of hallucinations in these models. Specif-278

ically, if the keywords are absent, it suggests that279

hallucination may have occurred, where the key-280

words have either been replaced by synonyms or281

include hallucinatory details not originally present.282

1) Low level context evaluation: The ground truth283

encompasses subject, object, and verb components 284

extracted from the ground truth, denoted as si for 285

the ith video. Our evaluation revolves around the 286

identification of these “keywords" within the pre- 287

dicted responses. This evaluation is applied when 288

the reasoning task is framed as either a multiple- 289

choice question (MCQ) task, or a fill-in-the-blanks 290

task. We experimented with existing metrics for 291

generated text evaluation such as BLEU and Sacre 292

BLEU, but these metrics were unable to match the 293

responses providing most of the scores close to 0 294

therefore we do not use these metrics. 295

1.1) MCQ evaluation: For MCQ style task, since 296

we provide the ground truth option as one of the 297

options and rest of the options are unrelated, the 298

presence of keywords in the response provides a 299

reasonable estimate of how correct the answer is 300

and also allows us to judge the accuracy of the 301

output. The rmMCQ accuracy is obtained as, 302

rmMCQ = ΣN
i=11[si ∈ predi] (1) 303

where predi is the prediction given by the model 304

for the ith video in the dataset. Here N is the to- 305

tal number of samples and predi is the prediction 306

provided by the model for the ith video. 307

1.2) Fill-in-blank evaluation: In FIB style task 308

since we are removing one of the possible key- 309

words which has to be completed by the model we 310

evaluate the number for keywords model is able to 311

output correctly. We remove si from the ground 312

truth reason gti. 313

rmFIB = ΣN
i=1Σxj∈si

1[xj ∈ predi]

len(si)
, (2) 314

Here N is the total number of samples, predi is 315

the predicted made by the model for the ith video. 316

2) Reasoning evaluation: Finally, we evaluate the 317

response provided by the models and match it with 318

the ground truth answer. We make use of GPT-3.5 319

for matching the generated and ground truth rea- 320

son. This evaluation allows us to compare whether 321

the output contains the event which occurs in the 322

ground truth reason. We evaluate the same video 323

five times and report the average score of each 324

video as the rmLLM and the standard deviation of 325

scores per question as std. 326

4 Experiments 327

Datasets We performed our experiments on three 328

different datasets, OOPs (Epstein et al., 2020), 329

UCF-Crimes (Sultani et al., 2018) and ReUAct. 330
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Models MCQ FIB
w goal w/o goal w goal w/o goal

rmMCQ rmLLM rmMCQ rmLLM rmFIB rmLLM rmFIB rmLLM

Video ChatGPT 0.303 0.667 0.240 0.457 0.352 0.648 0.222 0.519
Video LLaMA 0.105 0.092 0.099 0.054 0.383 0.139 0.167 0.206
Video Chat 0.315 0.204 0.278 0.067 0.337 0.226 0.215 0.214
Video LLaMAv2 0.134 0.072 0.040 0.067 0.184 0.059 0.293 0.214

Table 1: Reasoning capability of existing models: Performance evaluation of existing models on multiple-choice
questions (MCQ) and fill-in-the-blank (FIB) style prompting. We analyze both scenarios, prompts with and without
goals. MCQ setup consist of four questions, 1 ground truth, 2 random and ‘None of the above’.

OOPs: We conduct detailed experimental analysis331

using the validation subset of the OOPs dataset.332

This subset comprises 3,500 YouTube videos, each333

portraying a variety of failures in diverse real-world334

scenarios. Along with this, the OOPs dataset also335

contains natural language descriptions for each336

video. These descriptions provide insights into the337

original intentions behind the videos and the cir-338

cumstances leading to the deviation from planned339

actions. UCF-Crimes Further, we also conduct340

experiments on UCF-Crimes dataset. It consists of341

long and untrimmed real-world surveillance videos,342

with 13 realistic anomalies such as fighting, road343

accident, burglary, robbery, etc. We use the vali-344

dation set of this dataset to evaluate our approach,345

where we select only anomalous videos. These346

videos have length ranging from 1-3 minutes and347

there are a total of 65 videos in this evaluation set.348

We provide natural language descriptions for the349

crime occurring in the videos from this new test set350

to evaluate our approach. ReUAct: We also release351

a new dataset of recent YouTube videos to avoid352

potential data leakage into the training datasets for353

Large Multimodal models. This dataset consists354

of 100 videos featuring actions failing for various355

reasons, similar to the OOPs dataset.356

Baselines and models For the evaluation and357

benchmark, we utilize the officially released ver-358

sions of several state-of-the-art models, namely359

Video ChatGPT (Maaz et al., 2023), Video LLaMA360

(Zhang et al., 2023a), Video Chat (Li et al., 2023b),361

Video LLaVA (Lin et al., 2023a), VILA (Lin et al.,362

2023b) and Video LLaMAv2 (Zhang et al., 2023a).363

Along with these video-based models, we also use364

image based model, Open Flamingo (Alayrac et al.,365

2022). These models serve as comprehensive base-366

lines in our analysis. Further, we also evaluate367

different prompting strategies including standard368

prompting, and the proposed DoT prompt. Each of369

these models is built upon the LLaMA-7b billion370

language model, endowing them with substantial371

capabilities in text generation from video inputs. 372

4.1 Quantitative results 373

We first analyze the reasoning capability of exist- 374

ing LMMs for explaining reasoning behind unin- 375

tentional activities in videos. Here we explore two 376

different prompting setups, 1) multiple choice ques- 377

tions (MCQs), and 2) fill-in-the-blanks. In MCQ 378

style prompting with n = 3 options (more details 379

in supplementary), we presented several options 380

along with ground truth and prompted the model to 381

select the correct reasoning for the failure. This is 382

evaluated using rmMCQ and rmLLM metrics. In 383

the second setup, we use the ground truth reasoning 384

and randomly remove subject, object or verbs from 385

the sentence and prompt the model to fill in the 386

missing words. This is evaluated using rmFIB and 387

rmLLM metrics. 388

The performance of studied models for MCQ 389

and FIB style prompting is shown in Table 1. For 390

both, we experimented with two variations, one 391

where the goal is also provided along with the 392

prompt and the other where goal is not provided. 393

Video ChatGPT shows consistently better perfor- 394

mance on both FIB and MCQ prompts for all three 395

metrics with and without goal. Video LLaMA and 396

LLaMAv2 show significantly worse performance 397

on MCQ as compared to FIB-style prompts on 398

rmMCQ, rmFIB and rmLLM . Video Chat shows 399

similar performance on rmMCQ and rmFIB but 400

rmLLM for FIB is higher in non-goal setting and 401

similar in with goal setting. 402

Next, we evaluate the existing and proposed 403

methods for generating the complete reasoning. We 404

evaluate DoT prompting for Video ChatGPT Video 405

Chat, VILA and Video LLaVA in our preliminary 406

experiments. This is evaluated using rmLLM met- 407

ric along with standard deviation in responses std, 408

which attempts to measure degree of hallucinations 409

in the response. 410

The evaluation of all the models with all three 411
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Figure 2: Qualitative evaluations: We show some samples for qualitative analysis of the proposed DoT prompting
compared with CoT and standard prompting. First row illustrates examples from OOPs dataset and the second row
refers to examples sampled from UCF-Crimes dataset.

Dataset OOPs UCF-Crimes ReUAct
Model rmLLM std H rmLLM std H rmLLM std H
Open Flamingo 0.154 0.128 0.160 0.035 0.047 0.000 0.234 0.070 0.053
Video LLaMA 0.026 0.048 0.014 0.075 0.072 0.011 0.028 0.069 0.009
Video Chat 0.064 0.156 0.009 0.082 0.143 0.007 0.033 0.024 0.007
Video LLaMA2 0.053 0.089 0.011 0.081 0.089 0.013 0.024 0.071 0.011
Video ChatGPT 0.242 0.217 0.186 0.247 0.171 0.182 0.173 0.141 0.200
Video LLaVA 0.359 0.187 0.413 0.254 0.144 0.205 0.292 0.149 0.233
VILA 0.451 0.201 0.495 0.260 0.136 0.395 0.327 0.167 0.268
DoT(V-GPT) 0.279 0.199 0.278 0.291 0.160 0.240 0.179 0.161 0.240
DoT(V-Chat) 0.069 0.071 0.070 0.012 0.071 0.005 0.037 0.021 0.006
DoT(V-LLaVA) 0.446 0.178 0.470 0.291 0.073 0.237 0.367 0.172 0.344
DoT(VILA) 0.520 0.157 0.56 0.334 0.183 0.437 0.365 0.215 0.381

Table 2: Performance evaluation: A comparison of existing methods with proposed DoT prompting on OOPs
ReUAct and UCF-Crimes dataset. We show both rmLLM and standard deviation (std) across five trials. DoT refers
to the proposed prompting strategy. H refers to human evaluation.

datasets is shown in Table 2. We can observe that412

the proposed DoT prompting demonstrate benefits413

over existing methods surpassing both the standard414

prompts. DoT outperforms Basic prompts by ∼415

4-10% Furthermore, VILA outperforms rest of the416

models when subjected to basic prompts. Similar417

results can be observed for UCF-Crimes dataset418

and ReUAct Dataset.419

Analyzing hallucinations: We provide insights420

into the standard deviation of scores across indi-421

vidual questions. High standard deviation implies 422

inconsistent answers and substantial model hallu- 423

cinations. Conversely, a low standard deviation, 424

coupled with low accuracy, suggests consistent but 425

incorrect responses, while a low standard deviation 426

with high accuracy indicates consistent and correct 427

answers. From Table 2 we can observe that DoT 428

has lower std score than basic prompts by ∼ 0.02 429

in most cases apart from VILA. Additionally, in 430

Figure 3 we can see that the outputs obtained from 431
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DoT prompt display a consistently higher cosine432

similarity score to ground truth reason as compared433

to the output obtained from standard prompts (De-434

tails in supplementary).435

Human Evaluation: We also conduct hu-436

man evaluations of responses generated by bench-437

marked LMMs. We randomly sampled 100 videos438

for OOPs and 50 videos each for ReUAct and UCF-439

Crimes datasets, and compared the models’ outputs440

with ground truth. As shown in Table 2, the re-441

sults indicate a trend similar to rmLLM , suggesting442

that LLM-based evaluation effectively measures443

the similarity between ground truth reasons and444

model outputs.445

4.2 Qualitative Results446

We present qualitative results on the OOPs and447

UCF-Crimes dataset in Figure 2. We can observe448

that DoT prompting is generating better reasoning449

for action failures as well reasoning behind the the450
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Figure 5: Analyzing number of trials: Variation of
p(ans ∈ x|n) on reasoning task proposed as MCQ
style query, with n is the number of times prompt has
been evaluated using LMM and x is set of n outputs
obtained using LMM.

activity being anomalous in videos, compared to 451

Standard and CoT prompting. The DoT method is 452

better aligned with ground truth reasoning, show- 453

casing its capability across diverse activities such as 454

typing, shooting an air gun. These activities high- 455

light different success scenarios: ongoing success 456

in working, and instant success in air gun shooting. 457

It also demonstrates its effectiveness to identify 458

a wide range of crimes like arson and vandalism 459

showcasing its generalizability. 460

4.3 Ablation studies 461

We conduct ablation studies to assess the impact of 462

prompt variations on both accuracy and the pres- 463

ence of hallucinations these ablations studies aid 464

in evaluating the efficacy of each individual step 465

within our proposed DoT prompting methodology 466

Effect of number of options: In MCQ-style ques- 467

tion answering, we explore how varying the num- 468

ber of options in MCQs impacts performance. In 469

Figure 4, we initially observe a gain of 3% and 6% 470

for with and without goal settings, which is fol- 471

lowed by a reduction of 12% in rmMCQ, when the 472

number of options is increased in both scenarios. 473

We hypothesize that the first increment is because 474

more tries allow the model to generate better op- 475

tions as shown in Figure 5. The decrease afterward 476

is likely due to the broadening of the model’s search 477

space, resulting in more inaccuracies. The score 478

becomes almost constant after 14 options for both 479

cases. 480

Effect of goal: Humans excel at understanding ac- 481

tions with context. In this experiment, we introduce 482

the goal of the attempted action as added context. 483

For this, we construct the prompt as Prompt: “If 484

the goal of the activity occurring in the video is 485

7



with goal w/o goal
Model rmLLM std rmLLM std
Video ChatGPT 0.621 0.213 0.242 0.217
Video LLaMA 0.337 0.261 0.026 0.048
Video Chat 0.205 0.301 0.064 0.156
Video LLaMA2 0.033 0.032 0.053 0.089

Table 3: Effect of goal: Performance comparison of
models on reasoning with provided goals.

Figure 6: Role of visual information: We observe some
interesting scenarios where the model using a standard
prompt with goal of the video provided is able to infer
the correct reasoning without any video frames.

(goal). Explain the reason behind the failure to486

achieve the desired goal.".Analysis of the results,487

as presented in Table 1 and Table 3, reveals that the488

inclusion of goal enhances the reasoning capabili-489

ties of these models. We can see that the presence490

of goal increases the rmLLM by 0.4 in Video Chat-491

GPT and by 0.2 ∼ 0.3 for Video Chat and Video492

LLaMA models, whereas Video LLaMAv2 seems493

to perform worse in both conditions.494

Effect of Dream of Paths: We evaluate the Dream495

of Paths by modifying the prompt to exclude the496

Dream of Paths step for both descriptions and497

goals. Results in Table 4, reveal that removing498

this (DoT(w/o des)) leads to a significant decline in499

performance. This decrease can be attributed to the500

reliance on inaccurate descriptions for subsequent501

steps, resulting in incorrect reasons. Furthermore,502

generating a single option for both description and503

goal (DoT(w/o goal des)) shows marginally better504

performance compared to DoT(w/o des), but less505

than DoT method.506

Effect of Path Selection We compared our Path Se-507

lection procedure used in against the DoT(rmFIB)508

approach, where we select the option with the high-509

est rmFIB at each stage to match relevant objects.510

Our results, as detailed in Table 4, show that us-511

ing the FIB method, while resulting in a lower std,512

achieves a slightly lower performance compared to513

the base DoT by 2%.514

4.4 Analysis515

Number of video frames: We conducted an anal-516

ysis on the effect of the number of frames. We517

Model rmLLM std

CoT 0.237 0.182
DoT(w/o des) 0.180 0.153
DoT(w/o goal,des) 0.221 0.182
DoT(rmFIB) 0.260 0.183
DoT 0.279 0.199

Table 4: Ablation Analysis of the DoT
Prompt.DoT(GPT):final path selection is per-
formed using GPT-3.5. DOT(w/o des) refers to the
case when we directly obtain description. Similarly,
in DoT(w/o goal, des) we directly obtain goal and
description. In DoT(rmFIB) the path selection is
performed using rmFIB .

0 1 50 100
Number of frames

0.0
0.1
0.2
0.3
0.4
0.5
0.6

rm
LL

M

No goal
with Goal

Figure 7: Effect of number of frames and sampling
strategy: Effect of varying the number of sampled
frames on rmLLM for reasoning task.

vary the number of frames, from 0 to 100 frames. 518

Our observations, as depicted in Figure 7, reveal 519

that the model’s performance remains stable con- 520

cerning the number of frames but experiences a 521

substantial drop in 0 frame setting. Interestingly, 522

for some scenarios (Figure 6) just the goal of the 523

activity allows the model to achieve significantly 524

high rmLLM using only the goal as information 525

about the video, which shows that it utilizes textual 526

conditioning more efficiently than visual modality. 527

5 Conclusion 528

In this work, we present a novel task regarding 529

understanding of unintentional activities in videos 530

where we formalize it as a zero shot reasoning task. 531

We first analyze the reasoning capabilities of exist- 532

ing LMM models and prompting techniques and 533

then also propose a novel DoT prompting technique 534

which navigates through hallucinations introduced 535

by LLM’s to obtain the reasoning. We propose dif- 536

ferent metrics to quantify the models performance 537

and also analyze hallucinations of the responses. 538

We further demonstrate that the proposed method 539

outperforms existing prompting techniques. 540
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6 Guidelines541

6.1 Limitations542

In this work we explore reasoning where the event543

that causes the action to fail occurs immediately544

before the actual failure of the action. We do not545

consider actions which may cause failure of the546

action at a later moment in time with long-term547

reasoning and it will be an interesting direction to548

explore.549

6.2 Risks550

This research may pose some risk for privacy if it551

is used along with a surveillance system.552

6.3 Licenses553

OOPs dataset - Creative Commons Attribution-554

NonCommercial-ShareAlike 4.0 International Li-555

cense. Video ChatGPT- Creative Commons556

Attribution-NonCommercial-ShareAlike 4.0 Inter-557

national License. LLaMA- LLAMA community558

license agreement UCF-Crimes - Creative Com-559

mons Attribution-NonCommercial-ShareAlike 4.0560

International License. Video LLaVA -Apache 2.0561

License. VILA Apache 2.0 License. ReUAct-562

Creative commons Attribution-NonCommercial-563

ShareAlike 4.0 International License.564

6.4 Computation565

All experiments we performed using a single V-566

100 32 GB GPU with each model taking around 10567

hours for evaluation.568
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Figure 8: Effect of various frame sampling techniques
in videos: U(uniform sampling), R(random sampling),
ISS (sparse sampling from both intentional and uninten-
tional parts), ISD (sparse from intentional, dense from
unintentional), IDS (dense from intentional, sparse from
unintentional), and IDD (dense sampling from both in-
tentional and unintentional parts). Blue is without goal
and orange is with goal

A Appendix784

A.1 Sampling Strategy785

We explore variations in the frame sampling strat-786

egy, ranging from uniform and random sampling787

to importance sampling. Importance sampling788

involves selectively sampling frames sparsely or789

densely from the intentional and unintentional seg-790

ments of the video. To execute importance sam-791

pling, we utilize timestamps provided for inten-792

tional and unintentional parts of the video with the793

OOPs dataset, sampling varying numbers of frames794

from the intentional and unintentional parts. Our795

findings, presented in Figure 8, show that sampling796

strategies do not significantly affect the reasoning797

capabilities of Video ChatGPT.798

A.2 Cosine similarity799

To obtain the cosine similarity score for Figure 3800

we prompt the model as the Prompt: “Given the801

video goal of the activity occurring in the video as802

<goal> and reason behind its failure as <reason>“803

and take the embedding obtained from the encoder804

of Video-ChatGPT model. For ground truth en-805

coding we replace <reason> with the ground truth806

reason similarly for DoT and Basic prompt with807

reasoning obtained from using repsective prompts.808

A.3 LLM Evaluation809

We use GPT-3.5 for evaluation using LLM. To ob-810

tain the score we prompt GPT-3.5 as Prompt: "You811

are provided with a question,the correct answer812

and the predicted answer. The question contains 813

information about the task being attempted to be 814

achieved in the video, along with the context about 815

the objects involved in achieving that goal. The 816

correct answer consists of the reasons behind the 817

failure of achieving that objective and information 818

about the objects present during the failure. Your 819

task is to evaluate the correctness of the predicted 820

answer. Here’s how you can accomplish the task:// 821

"——" "INSTRUCTIONS: //" "- Focus on the 822

meaningful match of events between the predicted 823

answer and the correct answer. 824

" "- Consider synonyms or paraphrases as valid 825

matches. 826

" "- Evaluate the correctness and alignment of the 827

predicted answer compared to the correct answer. 828

" , 829

830

"role": "user", 831

"content": 832

"Please evaluate the following video-based 833

question-answer pair: 834

" f"Question: question 835

" f"Correct Answer: answer 836

" f"Predicted Answer: pred 837

" "Provide your evaluation only as a yes/no and 838

score where the score is an integer value between 839

0 and 1, with 1 indicating the highest meaningful 840

match. " "Please generate the response in the form 841

of a Python dictionary string with keys ’pred’ and 842

’score’, where value of ’pred’ is a string of ’yes’ 843

or ’no’ and value of ’score’ is in NUMBER, not 844

STRING." 845

"DO NOT PROVIDE ANY OTHER OUTPUT 846

TEXT OR EXPLANATION. Only provide the 847

Python dictionary string. " "For example, your 848

response should look like this: ’pred’: ’yes’, 849

’score’: 0.8." Where the correct reason is the 850

ground truth reason the question is given as If the 851

<goal> of the action occurring in the given video 852

infer the reason why the action fails to achieve 853

the intended outcome and predicted answer is the 854

answer obtained using the respective prompting 855

technique. 856

A.4 MCQ Style Prompt 857

: To formulate the MCQ style prompt mentioned 858

in 1 containing n options we first randomly select 859

ground truth reasons behind the failure of actions to 860

obtain n-2 options. In addition to these N-2 options 861

we also provide the ground truth reason for that 862
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particular video and None of these option as well.863

The prompt provided to the model is given as The864

action occurring in the given video fails.You will865

be given num_options describing the reasoning866

behind the failure. The options for this video867

are given as options_list. where num_options868

is the number of options provided in the MCQ869

style prompt and options_list refers to the list of870

options provided to the MCQ style prompt.871

A.5 FIB style prompt872

To formulate the FIB style prompt used in 1 we873

first use the ground truth reason behind the failure874

contain a list of s subjects v verbs and o objects.875

First we randomly remove s , v and o′s and replace876

it with ___. The sentence obtained after it is They877

______ the ______ too high and ___ a ______878

_______ off. Finally we prompt the model with879

Given the following video complete the following880

sentence such that the sentence describes the rea-881

soning behind failure of the intended action in882

the video. The sentence to be completed is <sen-883

tence>. Note: Your task is to complete the given884

sentence where the blanks are indicated by _____.885

A.6 UCF-Crimes Dataset Annotation886

UCF-Crimes Dataset does not provide natural lan-887

guage descriptions for the reasoning behind the888

event occurring the video being a crime. We manu-889

ally annotate each anomalous video in the valida-890

tion set by providing information about the actor,891

who commits the crime , the crime committed in892

the video and the victim of the crime, if applica-893

ble in the video for example in Figure 9 in the last894

row represent examples from UCF-Crimes dataset.895

From the ground truth annotations we can note896

the presence of the actor the crime and victim(if897

present) in each annotation.898

A.7 ReUAct899

We propose a dataset ReUAct which consists of 100900

videos collected from YouTube featuring uninte-901

tional activities. The length of each video collected902

varies from 3 seconds to 8 seconds. All of these903

videos were collected and annotated manually by904

the authors. We collected videos made available905

on or after November 2023 from Youtube to ensure906

minimal leakage of videos into datasets used for907

training Large Multimodal Models. Annotations908

were made in a manner similar to the OOps dataset909

and can be seen in 10.We manually annotate each910

anomalous video by providing information about911

the actor, who commits the action, how the action 912

goes wrong. 913

A.8 Human Evaluation Protocol 914

: We evaluate responses provided by models to 915

the ground truth by comparing the object, actor, 916

intended action and reason behind failure. We give 917

equal importance to all these factors to score the 918

responses. 919
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Figure 9: We show some samples for the qualitative results of the proposed DOT prompting compared with COT
and standard prompting for UCF-Crimes and OOPs dataset.
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Figure 10: We show some samples for the qualitative results of the proposed DOT prompting compared with COT
and standard prompting for OOPs and ReUAct dataset.
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