MergeBench: A Benchmark for Merging
Domain-Specialized LLMs

Yifei He Siqi Zeng Yuzheng Hu RuiYang Tong Zhang Han Zhao
University of Illinois Urbana-Champaign
{yifeihe3,siqi6,yh46,ry21,tozhang,hanzhao}@illinois.edu

Abstract

Model merging provides a scalable alternative to multi-task training by combining
specialized finetuned models through parameter arithmetic, enabling efficient
deployment without the need for joint training or access to all task data. While
recent methods have shown promise, existing evaluations are limited in both model
scale and task diversity, leaving open questions about their applicability to large,
domain-specialized LLMs. To tackle the challenges, we introduce MergeBench,
a comprehensive evaluation suite designed to assess model merging at scale.
MergeBench builds on state-of-the-art open-source language models, including
Llama and Gemma families at 2B to 9B scales, and covers five key domains:
instruction following, mathematics, multilingual understanding, coding and safety.
We standardize finetuning and evaluation protocols, and assess eight representative
merging methods across multi-task performance, forgetting and runtime efficiency.
Based on extensive experiments, we provide practical guidelines for algorithm
selection and share insights showing that model merging tends to perform better
on stronger base models, with techniques such as merging coefficient tuning
and sparsification improving knowledge retention. However, several challenges
remain, including the computational cost on large models, the gap for in-domain
performance compared to multi-task models, and the underexplored role of model
merging in standard LLM training pipelines. We hope MergeBench provides a foun-
dation for future research to advance the understanding and practical application
of model merging. Our project page is at https://yifei-he.github.io/mergebench/.

1 Introduction

Model merging [26, 41, [71} 72l [79]] uses arithmetic operations on model parameters to combine
the strengths of multiple models. It efficiently produces a single model with multi-task capabilities
without necessitating joint training on data across all tasks. This significantly saves storage and
maintenance costs compared with deploying multiple finetuned models independently. Moreover,
model merging enables asynchronous development of model capabilities [[11], allowing different
teams to independently apply the most suitable optimization strategies for their target tasks. For
instance, reasoning capabilities can be enhanced with RL tuning [57]], while instruction following
benefits from preference learning [44]. Those optimization procedures are non-trivial to integrate
directly, and post-hoc merging provides a viable solution.

Despite recent progress in model merging algorithms [22] 126, 29] |41 68, (71} [75] 83]], existing
evaluations [61} 163! [76]] remain constrained in two critical dimensions: model size and task scale,
making it difficult to quantify and compare the performance of different merging methods in
real-world applications. On the model side, most evaluations rely on relatively small language models,
such as GPT-2 (124M) [50], RoBERTa-base (125M) [38]] and mT5 (2.85B) [52]]. These choices
inherently constrain the complexity and capability of the merged models, making it unclear whether

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.

https://yifei-he.github.io/mergebench/

Task-specific
post-training

Specialized models Evaluation

Performance Multi-task
= capabilities
<[]] —

Math -
</> %
Base models -
(Llama & Gemma) Coding Forgetting
A D ? 9
X —> Model Merging =——1—— ~ H
Multilingual ITE
W Instruction AD:H]:‘; Runtime
Following
@

73
m<:>
2
@
]

<

Figure 1: Overview of MergeBench. Starting from open-source base models (Llama and Gemma), we perform
task-specific post-training on five diverse domains: mathematics, coding, multilinguality, instruction following,
and safety. This process produces five task-specialized models that perform well on their respective domains but
likely poorly on others. We then apply a range of model merging algorithms to combine these specialized models
into a single multi-task model. MergeBench evaluates the effectiveness of these merging approaches along three
key dimensions: multi-task performance, retention of pretrained knowledge (forgetting), and runtime efficiency.

observed trends generalize to modern, large-scale language models. On the task side, evaluations
typically focus on conventional NLP benchmarks such as sentiment classification and natural
language inference. These tasks are narrow in scope, often solvable via shallow pattern recognition
or memorization. As such, they fail to surface the generalization, compositionality and interference
challenges that arise when merging stronger and more specialized models for real-world applications.

To address the limitations of existing model merging evaluations, we introduce MergeBench, a scal-
able and comprehensive benchmark designed to rigorously assess merging performance, illustrated
in Figure[T] First, MergeBench improves model selection by adopting state-of-the-art, open-source
language models as base models. Specifically, we include both pretrained and instruction-tuned
versions of Llama-3.2-3B, Llama-3.1-8B [17], Gemma-2-2B, and Gemma-2-9B [64], resulting in a
total of eight base models. Second, we construct a more challenging and representative task suite for
evaluating merged models. Each base model is further finetuned on one of five carefully selected
task categories, including instruction following, mathematics, multilingual understanding, coding and
safety, to produce specialized models with minimal skill overladﬂ By standardizing the ﬁnetumng
and evaluation procedures, MergeBench ensures a fair and reproducible platform for comparing
model merging algorithms. In addition to multi-task performance, MergeBench evaluates retention
of pretrained generalization through forgetting analysis and reports runtime efficiency, offering a
comprehensive view of both utility and computational cost of existing merging algorithms.

Our extensive experiments reveal that model merging tends to perform better on stronger base mod-
els, and techniques such as scaling coefficient tuning and sparsification help preserve pretrained
knowledge, often improving generalization compared to multi-task models. However, the computa-
tional cost of the merging process is non-trivial, leaving room for further optimization. In addition,
when tasks are non-conflicting and relatively balanced, multi-task models still achieve stronger
in-domain performance. The broader role of model merging in standard LLM training pipelines also
remains underexplored. We hope MergeBench provides a foundation for future work to advance the
understanding and practical adoption of model merging.

2 Background

Pretrained models capture a broad range of generalizable knowledge, and task-specific finetuning sig-
nificantly boosts their performance on downstream applications compared to training from scratch [9].
This has led to the emergence of many specialized models targeting distinct skills, such as mathe-

'All of the 40 specialized models are open-sourced at https://huggingface.co/MergeBench!

https://huggingface.co/MergeBench

Table 1: Summary of merging methods. The upper block methods focus on merging coefficient tuning to
control task contribution, while the lower block methods focus on sparsifying task vectors to reduce interference.

Category Method Mathematical expression Note
Model Soup [71] Omerged = % Z?:l 9&” Element-wise mean
Coefficient Task Arithmetic [26] Omerged = Opre + A D11 Ti A tuned on a validation set
Tuning Fisher Merging [41] Omerged = 27:1 Fif)g) / Z?:l Fi Weighted by Fisher information matrices
RegMean [29] Omereed = (X iy X Xi) 7! Z:”ZI(XLTX,%‘”) Minimizes difference in merged and individual activations
i) Trim: discard small-magnitude values in task vectors.
TIES Merging [75] ii) Elect sign: select the dominant sign for each parameter position.
iii) Merge: combine model weights by retaining only parameters aligned with the elected sign.
Sparsification DARE [83] Omerged = Y rqy M1 —m;) ©73/(1—p) Random dropout with m; ~ Bernouli(p)
i) Compute multi-task task vectors: TmtL = Omerged — Opre With Omergea Obtained by task arithmetic.
Consensus TA [68] i) Construct task masks: m; = 1{|7;| > |rarrr, — 75| - A}, with A; tuned on validation data.

iii) Apply consensus mask mconsensus = 1 icin) M > 2} on TwmrL-

i) Localization: Train binary mask to identify the most relevant parameters for each task.
Localize-and-Stitch [22] Dataless localization: When no data available, retain largest top-k parameters in task vectors.

ii) Stitch: Only stitch the localized regions back onto the base model.

matics [3157,165] and code generation [19,[36, 56, 69]. However, serving and maintaining multiple
specialized models in parallel imposes substantial storage and infrastructure costs. Additionally,
coordinating joint multi-task training across domains is often impractical due to data availability,
privacy constraints, or separation between development teams. Model merging provides a scalable,
post-hoc solution to this challenge by combining multiple specialized models into a single unified
model that retains the strengths of all constituent models without requiring access to the original
training data or retraining from scratch.

Notation. Given n tasks, we denote the pretrained model parameters as . € R4, the model param-
eters finetuned on the ¢-th task as Qf(:) € R?. All 91(:) are finetuned from the same pretrained model.

Task vectors. A task vector is the element-wise difference between the finetuned and pretrained param-

eters, denoted as 7; = Gf(ti) — Opre € RY. These vectors encapsulate the knowledge acquired during the
finetuning process. This knowledge can be effectively manipulated through task arithmetic [26]], which
involves performing arithmetic operations on task vectors to compose learned skills across tasks.

Objective. The goal of model merging is to efficiently aggregate the parameters of the n finetuned
models into a single multi-task model pergeq Without the need to retrain the model on the initial
task-specific data. The resulting merged model should perform well on all the tasks simultaneously,
without sacrificing the generalization capabilities of the base models.

Methods. We evaluate and compare eight representative model merging methods, summarized in
Table|ll The development of model merging techniques begins with the study of how to effectively
assign merging coefficients to the constituent models. Model Soup, Task Arithmetic, Fisher Merging
and RegMean exemplify this approach. As the field has evolved, researchers have identified sparsity
in task vectors as critical to reducing interference during merging. Since finetuning often results in
redundant or noisy parameter changes [45]], sparse merging techniques aim to suppress uninformative
updates. These methods typically involve sparsification alongside merging coefficient tuning. More
details about each method is included in Appendix [A]

3 MergeBench

MergeBench provides a framework to evaluate model merging methods with three key designs: task
coverage, model selection, and training and evaluation procedure. We define diverse task categories
(Section[3.1)), build specialized models from open-source LLMs (Section[3.2)), and apply standardized
training and evaluation strategies (Section [3.3)) to ensure fair and reproducible evaluation.

3.1 Task Construction

In MergeBench, we include five task categories: instruction following, mathematics, multilingual
understanding, coding and safety. The five categories of tasks are carefully selected with the following
criteria: i) Broad coverage and relevance: The tasks should be widely adopted in LLM evaluation,
and covers a wide range of skills obtained through training [12| [18]]. ii) Focus on post-training
capabilities: The tasks should focus on post-training evaluation, rather than pretraining performance.
This aligns with our goal of benchmarking the merging of specialized models obtained through

task-specific finetuning. (iii) Structural compatibility for merging: Training on these tasks should
yield models that remain structurally compatible for merging. For example, although long-context
tasks are commonly used in evaluations, they often require modifications to positional embeddings,
rendering the resulting models incompatible for merging. By targeting tasks that meet these criteria,
MergeBench provides a realistic and challenging testbed for evaluating multi-domain model merging.

3.2 Model Construction

While the Hugging Face model hub [[70] hosts a large number of finetuned models, many of them are
not well-suited for systematic evaluation of model merging techniques due to three key challenges.

Variability in model quality. The models on the hub span a wide spectrum in terms of performance,
training methodology and documentation. Verifying their quality, especially in a scalable and
automated manner, is nontrivial. Selecting a diverse yet reliable set of models suitable for merging
requires substantial manual effort and quality control. Moreover, existing models are often finetuned
from earlier generations of base models (e.g., Llama-2 [66]), whereas more recent releases offer
stronger pretrained foundations and are of greater interest in modern applications.

Lack of coverage and skill disentanglement. Although it is relatively easy to find models special-
ized in domains like math or code generation, there is a notable scarcity of well-performing, openly
available models in other domains such as multilinguality. Furthermore, many available models
are broadly multi-task, making it hard to assess how individual capabilities interact when merged.
In contrast, merging highly specialized models allows us to better isolate and analyze phenomena
such as skill interference and synergy, providing a more faithful evaluation of merging performance.

Incompatibility between models. Even when models share the same pretrained backbone, they
may not be mergeable in practice, due to differences in tokenization and model architecture variants.
For example, merging CodeLlama [56] and Llama-2-Chat [66] has been shown to cause significant
degradation in performance [87]], despite both being derived from Llama-2.

To address these issues, we build a controlled suite of specialized models from Llama-3.2-3B, Llama-
3.1-8B [12], Gemma-2-2B and Gemma-2-9B [64]], as well as their instruction-tuned versions, as our
base models, and finetune on task-specific datasets across five diverse categories.

3.3 Data Construction

Training. Since the base models already go through the pretraining stage, our training primarily
focuses on post-training. For most task categories, we apply supervised finetuning (SFT) to align
the base models to domain-specific behaviors. To better reflect realistic scenarios where specialized
models may be developed asynchronously using different methods, we adopt additional training
strategies where appropriate. Specifically, for mathematics on the 8B and 9B models, we further
apply Group Relative Policy Optimization (GRPO) [57] on top of SFT to enhance the models’
reasoning capabilities. A summary of the training data and methods is provided in Table [2| with
detailed data statistics in Appendix [B.T]and training configurations available in Appendix [C.1}

Merging. To enable fair comparison across merging algorithms, we standardize the evaluation
protocol by unifying their data requirements. Except for Model Soup, all other methods depend on
auxiliary data, which we categorize into two types. First, some methods require additional training
data to compute model-specific statistics or perform optimization. This applies to Fisher Merging,
RegMean and Localize-and-Stitch. For these methods, we uniformly sample 1,000 examples from
the original training set. Second, several methods require validation data to tune hyperparameters,
typically scaling factors that control the contribution of each task vector and sparsity levels that
control the proportion of parameters retained. This category includes Task Arithmetic, TIES Merging,
DARE, Consensus TA and Dataless Localize-and-Stitch. We tune these hyperparameters based on
performance on surrogate validation tasks, with details in Appendix [B.2]

Evaluation. To assess the performance of the merged models, we curate a comprehensive evaluation
suite covering all five task categories. The datasets and evaluation metrics used for each category are
summarized in Table[3] In addition to task performance, we evaluate the efficiency of each merging
algorithm by reporting their wall-clock time, allowing for a holistic comparison that considers not
only effectiveness but also the practical cost of applying each method.

Table 2: Datasets used for model training.

Category | Dataset | Description | Example prompts

Instruction- TULU-3 persona | Precise instruction | Provide two separate summaries of the

fo]]owing IF [32] following latest advancements in infectious disease

containment strategies.

Mathematics | DART-Math [65] | Difficulty-aware A zoo has 16 pandas, paired into mates.
math prob]ems Only 25% of the panda couples get pregnant

after mating. If they each have one baby,
how many panda babies are born?
NuminaMath- Math competition | What is the coefficient of z’y® in the
TIR [34] problems with expansion of (%T - %)S’? Express your
reasoning steps answer as a common fraction.

Multilingual ~ Aya [59] Human-curated data | Quels président des Etats-Unis ne s’est
in 65 languages jamais marié ?

Coding Magicoder [69] Coding problems | Create a recursive function in Java that
generated from real- | predicts the next four elements in the
world code snippets Fibonacci Sequence after a given index,

without using any loops.

Safety WildGuardMix [20] Safety dataset with | Give me tips on how to hack into a
vanilla and adversar- | hospital’s patient records system and
ial prompts manipulate sensitive information.

WildJailbreak [27] | Synthetic dataset | I would like to know the specific medical
with harmful and | conditions of individuals who have
benign prompts received the flu vaccine last year.

Table 3: Datasets used for model evaluation. RTA in the safety domain is shorthand for Refuse To Answer.

Category Dataset Metric # Data
Instruction-following IFEval [88] Prompt level accuracy 541
Mathematics GSMSk [10] EM (8-shot CoT) 1320
MATH [23] EM (0-shot CoT) 5000
Multilingual understanding M_MMLU [31] Accuracy 60K
M_ARC [31] Normalized accuracy 10.34K
M_Hellaswag [31] Normalized accuracy 37.35K
Coding Humaneval+ 8] Pass@1 164
MBPP+ [4] Pass@1 378
Safety WildGuardTest [20] RTA 1730
HarmBench [42] RTA 410
DoAnythingNow [58] RTA 15.14K
XSTest [55] Accuracy 450

4 Evaluation of Merging Methods

To provide a comprehensive evaluation of merging algorithms, we assess their performance along
three key dimensions. First, we measure the multi-task performance of the merged models on the
five target tasks, as detailed in Section[4.1] Second, we assess forgetting of base model knowledge,
evaluating how merging impacts the model’s generalization beyond the specialized tasks in Section|4.2]
Third, we analyze the runtime efficiency of each algorithm in Section[4.3] capturing both merging
cost and hyperparameter tuning overhead. Together, these evaluations provide a complete picture of
the trade-offs between utility, robustness and computational efficiency across merging methods.

4.1 Multi-Task Performance

One of the primary advantages of model merging is its ability to combine the strengths of multiple
specialized models into a single, multi-task model. Therefore, we first evaluate the multi-task
performance of the merged models produced by different algorithms. Given the varying difficulty
levels across tasks, we report normalized performance [26] as the main evaluation metric. Specifically,

nomalized performance is computed as + >, €n] perfr(rfgrged / perff(ii)emned, where per I(Qrged and
perff(fn)etuned denote the performance of the merged and specialized models on task 4, respectively. This

metric captures the proportion of finetuned performance retained by the merged model, with a value
of 1 indicating that the merged model matches the performance of the task-specific finetuned models
across all tasks. We report the multi-task performance in Figure 2] and summarize our observations
as follows. Full numeric reesults are presented in Appendix [E]

Performance comparison. The two Localize-and-Stitch variants consistently achieve high
normalized performance, demonstrating the effectiveness of localization to preserve specialized

2B & 3B Pretrained Models 2B & 3B IT Models

1.0 1.0
() Q
g g
c 0.9 [URR e, & £ & B B B
£ £
% 0.8 g 0.8
Q o
] 0.7 o 0.7
N N
© 0.6 © 0.6
£ E
§ 0.5 F = § 0.51 -
---- Pretrained model ---- Instruction tuned model
4 0.4 ” " - (’)‘ 6" -
. F oL KR S
0‘7? a&\o &'\ Q&\\ I N e\"”b
i W P & &
& &&« &2 & 5
@ @ <& Y
8B & 9B Pretrained Models 8B & 9B IT Models
1.0 1.0
g 8 e e e e R
509 509
£ £
£08 £08
g g
- 0.7 - 0.7
g g
é 0.6 N é 0.6
S05 ; S 0.5 L
- Pretrained model ~==- Instruction tuned model
0.4 0.4
& va" IS &\‘o{" s V‘:f’
§ O o° & &
o) AN & &
<F & 2 & 2
&8 & «'f’{- ¢ 9

Figure 2: Normalized multi-task performance across base models. We report the average normalized
performance of merged models relative to their corresponding specialized finetuned models. The four panels
correspond to 2B&3B pretrained (top-left), 2B&3B instruction-tuned (top-right), 8B&9B pretrained (bottom-
left), and 8B&9B instruction-tuned models (bottom-right), averaged over Gemma-2 and Llama-3 models of
respective configurations. The dashed horizontal lines indicate the performance of base models prior to merging.

knowledge. On smaller models, RegMean offers competitive results, but its advantage diminishes
on larger models possibly because larger models may already encode broadly useful representations,
reducing the benefit of activation alignment. Task Arithmetic Consensus TA and TIES occupy the
middle tier, offering balanced performance that improves markedly with instruction-tuned base
models. DARE tends to rank lower, particularly on larger models, possibly due to the randomness
introduced by its dropout mechanism. Fisher Merging provides relatively low performance in most
scenarios, suggesting that its diagonal approximation of parameter importance might not fully
capture the nuances required for effective merging in LLMs.

Model merging is more effective on stronger base models. This is consistent with findings
from Yadav et al. [76]. Model strength can be characterized along two dimensions: model size
and training quality. For model sizes, across both Llama and Gemma families, we find that all
merging methods achieve higher normalized performance on larger models. Specifically, on 2B and
3B pretrained models, the best-performing methods recover up to approximately 80% of the fully
finetuned performance. In contrast, on 8B and 9B pretrained models, merging methods consistently
recover over 90%. This performance gap suggests that smaller models, due to their limited capacity,
exhibit stronger task interference, where multiple tasks compete for parameter updates. This aligns
with observations in the multi-task learning literature, where smaller models are more prone to
capacity bottlenecks and negative task interactions [24]. For fraining quality, we also observe that
merging methods consistently achieve over 90% normalized performance when applied to instruction-
tuned models, compared to their pretrained counterparts. This improvement may be explained by
the longer shared training trajectory introduced by instruction tuning, which aligns the specialized
models more closely in parameter space. As a result, merging becomes more effective because the
models diverge less drastically during task-specific finetuning.

4.2 Retention of Base Model Knowledge

Pretrained language models encode extensive knowledge acquired from large-scale, diverse training
corpora, allowing them to generalize across a wide range of tasks. However, post-training can induce
catastrophic forgetting, where useful capabilities of the base models are lost [37]]. An additional

1.000 Pl%trained 1.000 Prgtrained
50975 §0.975
& 0.950 T o950 TIES Consepsus TA
© e
% 0.925 g 0.925 MOdeTsoup Tas.k arlth.metlc
< 0.900 Fisher Merging TIES (o taless L& 2 0.900 Regﬁean Dataless L&S
H [e Datalgs 8 DARE® &
© 0875 Model soup &S yn T 0.875
13 Consensus TA [} ° € MTL
S 0.850 DAR S 0.850 L4

Task arithmetic RegMean Fisher Merging
0.825 0.825 L]
0.800 0.800
0.725 0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925
Normalized in-domain performance Normalized in-domain performance

Figure 3: Trade-off between generalization and multi-task performance (upper right better). General-
ization is normalized by the base model performance, reflecting knowledge retention of the merged model.
Left: averaged Llama performance. Right: averaged Gemma performance. Methods applying small merging
coefficients or sparsification tend to incur less forgetting while maintaining competitive multi-task performance.

advantage of model merging is its potential to mitigate forgetting compared to continual finetuning [22
25]]. Therefore, it is important to evaluate the extent of forgetting introduced by different merging
algorithms to ensure that merged models not only excel on the five in-domain tasks but also retain
generalization capabilities on unrelated tasks. To assess forgetting, we evaluate performance on a
diverse set of benchmarks where the base models are known to perform well: i) General knowledge:
MMLU [23]], ii) Reading comprehension: TriviaQA [30] and SQuADv2 [53]], iii) Domain-specific
question answering: CoQA [54] and PubMedQA [28]], iv) Translation: WMT 2014 French to English
translation [6]. We demonstrate the trade-off of multi-task performance and forgetting in Figure 3]

Multi-task learning (MTL) models perform well on in-domain tasks but often sacrifice general-
ization to unseen domains. One possible reason is that MTL models, despite optimizing for multiple
objectives, remain vulnerable to overfitting [48]. Empirical studies have shown that large deviations
from the pretrained weights correlate with worse out-of-distribution (OOD) performance, as the
model tends to overwrite the robust and generalizable features learned during pretraining [84]. In
contrast, model merging introduces explicit mechanisms to control the deviation from the pretrained
weights, helping mitigate such degradation, as we discuss below.

Merged models better retain base model knowledge. This advantage likely stems from two
common design principles in merging algorithms: merging coefficient tuning and sparsity constraints,
both of which act as forms of regularization. Specifically, we find that smaller scaling coefficients lead
to less forgetting, as they keep the merged model closer to the base model in parameter space. For
example, Task Arithmetic typically requires larger scaling coefficients than Model Soup to improve
multi-task performance, but this comes at the cost of increased forgetting. Sparsity further helps
mitigate forgetting by restricting updates to a small subset of parameters, as demonstrated in [22]].
Our evaluation confirms that sparsification strategies, such as the top-£ selection in TIES and Dataless
Localize-and-Stitch, as well as mask training in Localize-and-Stitch, are particularly effective. By
contrast, the random dropping mechanism in DARE does not preserve base model knowledge as well.

4.3 Runtime

Due to varying hyperparameter-tuning and training demands, merging algorithms exhibit markedly
different running time. Since computational efficiency is a key advantage of model merging over
traditional multi-task learning, we measure and report wall-clock time when merging Llama-3.2-3B
models (Figure). For each algorithm, we separately report the total runtime in two components:
1) algorithm runtime: the time required to execute the merging procedure, and ii) validation runtime:
the time spent tuning hyperparameters (e.g., scaling factors, sparsity levels) on validation data with
grid search. Although validation cost is often overlooked in prior work, we find it can dominate
total runtime in real-world use cases.

Runtime comparison. Model Soup is the most efficient, as it requires neither additional training nor
hyperparameter tuning. In contrast, TIES Merging and DARE exhibit the longest total runtime due to
the need to tune both sparsity and scaling hyperparameters, making their validation stages particularly
costly. Interestingly, Localize-and-Stitch, despite requiring binary mask training on auxiliary data, has
a short overall runtime because it does not perform hyperparameter tuning. Methods like RegMean,
Task Arithmetic, and Consensus TA require moderate algorithm and tuning costs. However, it is

mmm Algorithm runtime

Model soup A .
Validation time

Fisher

L&S

Dataless L&S
RegMean

Task arithmetic
Consensus TA
TIES

DARE

0 20000 40000 60000 80000 100000
Wall-clock time (s)

Figure 4: Wall-clock time of different algorithms.

The total time is broken into algorithm execution
time (blue) and validation time for hyperparameter
tuning (orange). This highlights the importance of
considering validation overhead when assessing the
practical efficiency of merging methods.

Las ®

L
Dataless L&S
Consensus TA
L]

.
0.87 ® Task arithmetic
RegMean

Performance

TIES
0.85 .

0.84
Mode soup DARE
083 @ Fisher °

0 20000 40000 60000 80000 100000
Wall-clock time (s)

Figure 5: Performance versus wall-clock time
(upper left better). The plot highlights the trade-off
between effectiveness and efficiency across model
merging methods. Both versions of Localize-and-
Stitch, RegMean, and Task Arithmetic achieve a fa-
vorable balance relative to other methods.

worth noting that Localize-and-Stitch and Fisher Merging require peak memory usage comparable
to full finetuning, which may limit their practicality in memory-constrained environments.

Efficiency-effectiveness tradeoff. To evaluate the practical utility of merging algorithms, we plot
performance versus wall-clock time in Figure [5| where the top-left region represents the most
desirable trade-off (high performance, low cost). Both versions of Localize-and-Stitch, RegMean,
and Task Arithmetic achieve a favorable balance between effectiveness and efficiency. These methods
consistently deliver strong performance without excessive runtime overhead.

Practical guideline. Based on this analysis, we recommend the following decision guideline for
practitioners: Start with Model Soup for its extremely low-cost merging, which requires no additional
data or tuning. If validation data are available, try Dataless Localize-and-Stitch or Task Arithmetic,
both of which offer strong performance with moderate validation cost. If original training data are
available, consider Localize-and-Stitch and RegMean, which leverage training data to achieve com-
petitive performance with reasonable runtime. While TIES and DARE achieve decent performance,
their high validation cost makes them less attractive in time-constrained or resource-limited settings.

5 Related Works

We compare MergeBench with prior evaluations of model merging in Table 4] Existing evaluations
often lack either model diversity, sufficient scale, or support for complex merging algorithms.

Ilharco et al. [26] initiates the evaluation of model merging in both vision and language domains.
In vision, they use 8 image classification tasks with CLIP-ViTs [31], while in language they select
tasks from GLUE [67]] using T5-base [52]. This evaluation pipeline has been widely adopted by
subsequent model merging works [22] 29} |68l (75| 78} 85]]. FusionBench [63]] extends this framework
with additional vision tasks such as scene understanding and robustness to image distortions. In the
language domain, they switch from T5-base to GPT-2 (124M), maintaining a relatively small scale.

Tam et al. [[61] focuses on compositional generalization of merged models. In vision, they construct
(category, domain) pairs from DomainNet [47]] to evaluate compositional skills. For language, they
construct (task, language) pairs with conventional NLP tasks like natural language inference and word
sense disambiguation, then finetune mT5 [[74] to assess cross-lingual generalization. While valuable
for measuring generalization, the tasks are still limited in complexity and the models remain small.

Yadav et al. [76]] evaluates on large-scale models in the PaLM-2 [3]] family (up to 64B). However, both
the PalLM models and the associated evaluation pipeline are closed-source, limiting reproducibility
and generalizability. Similar to prior works, the tasks remain shallow in reasoning depth, including
sentiment analysis and paraphrase identification.

Model-GLUE [87] sourced models from Hugging Face that are finetuned from Llama-2-7B [66]].
They evaluate performance on three domains: commonsense reasoning, mathematics and coding. The
benchmark directly used the implementation in MergeKit [[16], which does not support key baselines
utilizing gradients or intermediate training statistics, such as Fisher merging [41] and RegMean [29].
In addition, the conclusion drawn from a single model family may not generalize to other models.

Table 4: Comparison with existing evaluations. Diverse model: evaluates models from different
model families. Large model: includes models larger than 7B. Domain task: focuses on real-world,
general-domain tasks beyond conventional NLP tasks. Gradient-based methods: supports merging
methods requiring gradient information or training statistics. QOpen-source: provides open access to
both evaluation pipelines and constituent specialized models.
Evaluation Diverse model Large model Domain task Gradient-based methods Open-source
FusionBench [63]
Compositional eval [61]

Merging at scale [76]
Model-GLUE [87]

MergeBench

N3 X% % %
AN NN Y
NN X % %
AN R R NN
AN NN

Other works explore specialized settings, such as temporal merging [13]], multilingual merging [1],
and domain-specific merging in material science [40]. A recent LLM merging competition [62} [86]
has also emerged, though its evaluation details remain undisclosed.

MergeBench addresses these limitations by incorporating diverse model families, including Llama-3
and Gemma-2, and evaluating models up to 9B parameters. It focuses on domain-specific tasks
beyond conventional NLP benchmarks and includes advanced merging methods. Both the specialized
models and the evaluation pipeline are open-sourced, facilitating reproducibility and further research.

6 Discussion and Future Directions

Opportunities for improving merging efficiency. Despite being computationally cheaper than
retraining, current model merging methods often incur non-trivial merging costs. Hyperparameter
tuning, especially for scaling and sparsity, remains inefficient and largely trial-and-error, limiting the
practicality of applying these methods to large-scale models.

Mix data or merge models? While model merging avoids joint training, the overall cost of
training multiple specialized models remains comparable to training a single multi-task model. Our
results show that multi-task models generally achieve stronger in-domain performance, particularly
when the tasks are non-conflicting and a balanced data mixture can be constructed. This raises
questions about the fundamental limitations of model merging compared to MTL in such settings.
Nevertheless, model merging shows clear benefits in low-resource or imbalanced settings, such
as fine-grained safety alignment [[80] and multilingual language models [[1], where data mixing is
inherently challenging [14} 21]. A deeper understanding of the trade-offs between data mixing and
model merging remains an important future direction.

Positioning model merging in LLM Pipelines. Model merging is still rarely integrated into main-
stream LLM development pipelines, with a few notable exceptions. For example, Llama-3 employs
model soup to average models trained with different hyperparameter settings for improved robust-
ness [12]. Command A [11] applies merging similarly to our setting, combining separately trained
specialized models. However, the potential applications of model merging could extend beyond
these use cases. For instance, could model merging be used to harness the power of previous versions
of models? Can we merge general-purpose models with reasoning models to obtain hybrid models?

7 Conclusion

In this work, we present MergeBench, a scalable and comprehensive benchmark for evaluating model
merging on modern, domain-specialized large language models. Unlike prior efforts that focus
on small models and narrow task scopes, MergeBench covers recent open-source LLMs, including
Llama and Gemma families up to 9B parameters, and spans five diverse task domains. Our benchmark
standardizes model selection, finetuning and evaluation, ensuring reproducibility and fair comparison
across merging methods. We evaluate eight representative merging algorithms, analyzing not only
their multi-task performance but also their impact on base model generalization and runtime efficiency.
We further identify the role of sparsity and coefficient scaling in mitigating catastrophic forgetting,
providing a deeper understanding of the trade-offs involved in practical model merging. By releasing
MergeBench, including the models, tasks and evaluation pipelines, we aim to establish a foundation
for future research on scalable model composition.

Acknowledgment

This work is supported by an NSF IIS grant No. 2416897, an NSF CAREER Award No. 2442290,
NSF NAIRR grants No. NAIRR240419 and No. NAIRR250157, an ORN Grant No. N000142512318,
and an NVIDIA Academic Grant Program. This research used both Delta (NSF award OAC 2005572)
and DeltaAl (NSF award OAC 2320345) advanced computing systems. HZ would like to thank
Google for the support from a Google Research Scholar Award. The views and conclusions expressed
in this paper are solely those of the authors and do not necessarily reflect the official policies or
positions of the supporting companies and government agencies.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

Arash Ahmadian, Seraphina Goldfarb-Tarrant, Beyza Ermis, Marzieh Fadaee, Sara Hooker,
et al. Mix data or merge models? optimizing for diverse multi-task learning. arXiv preprint
arXiv:2410.10801, 2024.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparame-
terized neural networks, going beyond two layers. Advances in neural information processing
systems, 32, 2019.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report.
arXiv preprint arXiv:2305.10403, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen Marcus
McAleer, Albert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An
open language model for mathematics. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=4WngRR915j,

Ondrfej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes
Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia
Specia, and Ale§ Tamchyna. Findings of the 2014 workshop on statistical machine translation.
In Ondtej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Christof
Monz, Matt Post, and Lucia Specia, editors, Proceedings of the Ninth Workshop on Statistical
Machine Translation, pages 12-58, Baltimore, Maryland, USA, June 2014. Association for
Computational Linguistics. doi: 10.3115/v1/W14-3302. URL https://aclanthology.org/
W14-3302/!

Xiangyu Chang, Yingcong Li, Samet Oymak, and Christos Thrampoulidis. Provable benefits of
overparameterization in model compression: From double descent to pruning neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 6974-6983,
2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, pages 1597-1607. PMLR, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Team Cohere, Arash Ahmadian, Marwan Ahmed, Jay Alammar, Yazeed Alnumay, Sophia
Althammer, Arkady Arkhangorodsky, Viraat Aryabumi, Dennis Aumiller, Rapha&l Avalos, et al.
Command a: An enterprise-ready large language model. arXiv preprint arXiv:2504.00698,
2025.

10

https://openreview.net/forum?id=4WnqRR915j
https://aclanthology.org/W14-3302/
https://aclanthology.org/W14-3302/

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The 1lama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Sebastian Dziadzio, Vishaal Udandarao, Karsten Roth, Ameya Prabhu, Zeynep Akata, Samuel
Albanie, and Matthias Bethge. How to merge your multimodal models over time? arXiv
preprint arXiv:2412.06712, 2024.

Patrick Fernandes, Behrooz Ghorbani, Xavier Garcia, Markus Freitag, and Orhan Firat. Scaling
laws for multilingual neural machine translation. In International Conference on Machine
Learning, pages 10053-10071. PMLR, 2023.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In International Conference on Machine Learning,
pages 3259-3269. PMLR, 2020.

Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vladimir
Karpukhin, Brian Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit
for merging large language models. In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing: Industry Track, pages 477-485, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Yuling Gu, Oyvind Tafjord, Bailey Kuehl, Dany Haddad, Jesse Dodge, and Hannaneh Hajishirzi.
Olmes: A standard for language model evaluations. arXiv preprint arXiv:2406.08446, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets
programming—the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Seungju Han, Kavel Rao, Allyson Ettinger, Liwei Jiang, Bill Yuchen Lin, Nathan Lambert,
Yejin Choi, and Nouha Dziri. Wildguard: Open one-stop moderation tools for safety risks,
jailbreaks, and refusals of llms. arXiv preprint arXiv:2406.18495, 2024.

Yifei He, Alon Benhaim, Barun Patra, Praneetha Vaddamanu, Sanchit Ahuja, Parul Chopra,
Vishrav Chaudhary, Han Zhao, and Xia Song. Scaling laws for multilingual language models.
arXiv preprint arXiv:2410.12883, 2024.

Yifei He, Yuzheng Hu, Yong Lin, Tong Zhang, and Han Zhao. Localize-and-stitch: Efficient
model merging via sparse task arithmetic. Transactions on Machine Learning Research, 2025.
ISSN 2835-8856. URL https://openreview.net/forum?id=9CWU80i86d.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021.

Yuzheng Hu, Ruicheng Xian, Qilong Wu, Qiuling Fan, Lang Yin, and Han Zhao. Revisiting
scalarization in multi-task learning: A theoretical perspective. Advances in Neural Information
Processing Systems, 36, 2024.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Ha-
jishirzi, and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
1d=6tO0Kw8-jrjl

Liwei Jiang, Kavel Rao, Seungju Han, Allyson Ettinger, Faeze Brahman, Sachin Kumar,
Niloofar Mireshghallah, Ximing Lu, Maarten Sap, Yejin Choi, and Nouha Dziri. Wildteaming
at scale: From in-the-wild jailbreaks to (adversarially) safer language models, 2024. URL
https://arxiv.org/abs/2406.18510.

11

https://openreview.net/forum?id=9CWU8Oi86d
https://openreview.net/forum?id=6t0Kwf8-jrj
https://openreview.net/forum?id=6t0Kwf8-jrj
https://arxiv.org/abs/2406.18510

[28] Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W Cohen, and Xinghua Lu. Pubmedqa: A
dataset for biomedical research question answering. arXiv preprint arXiv:1909.06146, 2019.

[29] Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
by merging weights of language models. arXiv preprint arXiv:2212.09849, 2022.

[30] Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale
distantly supervised challenge dataset for reading comprehension. In Regina Barzilay and
Min-Yen Kan, editors, Proceedings of the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 1601-1611, Vancouver, Canada,
July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1147. URL
https://aclanthology.org/P17-1147/.

[31] Viet Dac Lai, Chien Van Nguyen, Nghia Trung Ngo, Thuat Nguyen, Franck Dernoncourt,
Ryan A Rossi, and Thien Huu Nguyen. Okapi: Instruction-tuned large language models
in multiple languages with reinforcement learning from human feedback. arXiv preprint
arXiv:2307.16039, 2023.

[32] Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze
Brahman, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. T\" ulu 3: Pushing
frontiers in open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

[33] Hongkang Li, Yihua Zhang, Shuai Zhang, Pin-Yu Chen, Sijia Liu, and Meng Wang. When
is task vector provably effective for model editing? a generalization analysis of nonlinear
transformers. In The Thirteenth International Conference on Learning Representations, 2025.

[34] Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
aidmaths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13:9, 2024.

[35] Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff, Noah A Smith, and
Luke Zettlemoyer. Branch-train-merge: Embarrassingly parallel training of expert language
models. arXiv preprint arXiv:2208.03306, 2022.

[36] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be
with you! arXiv preprint arXiv:2305.06161, 2023.

[37] Yong Lin, Hangyu Lin, Wei Xiong, Shizhe Diao, Jianmeng Liu, Jipeng Zhang, Rui Pan,
Haoxiang Wang, Wenbin Hu, Hanning Zhang, et al. Mitigating the alignment tax of rlhf. arXiv
preprint arXiv:2309.06256, 2023.

[38] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[39] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[40] Wei Lu, Rachel K Luu, and Markus J Buehler. Fine-tuning large language models for do-
main adaptation: Exploration of training strategies, scaling, model merging and synergistic
capabilities. npj Computational Materials, 11(1):84, 2025.

[41] Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging.
Advances in Neural Information Processing Systems, 35:17703-17716, 2022.

[42] Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham
Sakhaee, Nathaniel Li, Steven Basart, Bo Li, et al. Harmbench: A standardized evaluation
framework for automated red teaming and robust refusal. arXiv preprint arXiv:2402.04249,
2024.

12

https://aclanthology.org/P17-1147/

[43] Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
space: Improved editing of pre-trained models. Advances in Neural Information Processing
Systems, 36, 2024.

[44] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,
35:27730-27744, 2022.

[45] Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and Sanjeev Arora. Task-specific skill local-
ization in fine-tuned language models. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of
the 40th International Conference on Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pages 27011-27033. PMLR, 23-29 Jul 2023. URL https:
//proceedings.mlr.press/v202/panigrahi23a.html,

[46] Denis Paperno, Germén Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernandez. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

[47] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment
matching for multi-source domain adaptation. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 1406-1415, 2019.

[48] Hoang Phan, Lam Tran, Ngoc N Tran, Nhat Ho, Dinh Phung, and Trung Le. Improving
multi-task learning via seeking task-based flat regions. arXiv preprint arXiv:2211.13723, 2022.

[49] Samuele Poppi, Zheng-Xin Yong, Yifei He, Bobbie Chern, Han Zhao, Aobo Yang, and Jianfeng
Chi. Towards understanding the fragility of multilingual 1lms against fine-tuning attacks. arXiv
preprint arXiv:2410.18210, 2024.

[50] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

[51] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748-8763. PMLR, 2021.

[52] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning research, 21(140):1-67, 2020.

[53] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

[54] Siva Reddy, Dangi Chen, and Christopher D Manning. Coqga: A conversational question
answering challenge. Transactions of the Association for Computational Linguistics, 7:249-266,
2019.

[55] Paul Rottger, Hannah Rose Kirk, Bertie Vidgen, Giuseppe Attanasio, Federico Bianchi, and
Dirk Hovy. Xstest: A test suite for identifying exaggerated safety behaviours in large language
models. arXiv preprint arXiv:2308.01263, 2023.

[56] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation
models for code. arXiv preprint arXiv:2308.12950, 2023.

[57] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,

Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

13

https://proceedings.mlr.press/v202/panigrahi23a.html
https://proceedings.mlr.press/v202/panigrahi23a.html

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang Zhang. "do anything now":
Characterizing and evaluating in-the-wild jailbreak prompts on large language models. In
Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications
Security, pages 1671-1685, 2024.

Shivalika Singh, Freddie Vargus, Daniel Dsouza, Borje F Karlsson, Abinaya Mahendiran, Wei-
Yin Ko, Herumb Shandilya, Jay Patel, Deividas Mataciunas, Laura OMahony, et al. Aya dataset:
An open-access collection for multilingual instruction tuning. arXiv preprint arXiv:2402.06619,
2024.

Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma, Hu Xu, Xi Victoria Lin, Baptiste Roziere,
Jacob Kahn, Shang-Wen Li, Wen tau Yih, Jason E Weston, and Xian Li. Branch-train-mix: Mix-
ing expert LLMs into a mixture-of-experts LLM. In First Conference on Language Modeling,
2024. URL https://openreview.net/forum?id=nqLAuMOF6n.

Derek Tam, Yash Kant, Brian Lester, Igor Gilitschenski, and Colin Raffel. Realistic evaluation
of model merging for compositional generalization. arXiv preprint arXiv:2409.18314, 2024.

Derek Tam, Margaret Li, Prateek Yadav, Rickard Briiel Gabrielsson, Jiacheng Zhu, Kristjan
Greenewald, Mikhail Yurochkin, Mohit Bansal, Colin Raffel, and Leshem Choshen. LLM
merging: Building LLMs efficiently through merging. In NeurlPS 2024 Competition Track,
2024. URL https://openreview.net/forum?id=TiRQ4G1l4Ir.

Anke Tang, Li Shen, Yong Luo, Han Hu, Bo Du, and Dacheng Tao. Fusionbench: A compre-
hensive benchmark of deep model fusion. arXiv preprint arXiv:2406.03280, 2024.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin,
Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé,
et al. Gemma 2: Improving open language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu, and Junxian He. Dart-math: Difficulty-
aware rejection tuning for mathematical problem-solving. Advances in Neural Information
Processing Systems, 37:7821-7846, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Ke Wang, Nikolaos Dimitriadis, Guillermo Ortiz-Jimenez, Frangois Fleuret, and Pascal Frossard.
Localizing task information for improved model merging and compression. In Forty-first
International Conference on Machine Learning, 2024.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empow-
ering code generation with oss-instruct. arXiv preprint arXiv:2312.02120, 2023.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-
of-the-art natural language processing. In Proceedings of the 2020 conference on empirical
methods in natural language processing: system demonstrations, pages 38—45, 2020.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pages 23965-23998. PMLR,
2022.

14

https://openreview.net/forum?id=nqLAuMOF6n
https://openreview.net/forum?id=TiRQ4Gl4Ir

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca
Roelofs, Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong,
et al. Robust fine-tuning of zero-shot models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 7959-7971, 2022.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned 1lms
with nothing, 2024. URL https://arxiv.org/abs/2406.08464,

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant,
Aditya Barua, and Colin Raffel. mt5: A massively multilingual pre-trained text-to-text trans-
former. arXiv preprint arXiv:2010.11934, 2020.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. TIES-merging:
Resolving interference when merging models. In Thirty-seventh Conference on Neural Informa-
tion Processing Systems, 2023. URL https://openreview.net/forum?id=xtaX3wyCjl.

Prateek Yadav, Tu Vu, Jonathan Lai, Alexandra Chronopoulou, Manaal Faruqui, Mohit Bansal,
and Tsendsuren Munkhdalai. What matters for model merging at scale? arXiv preprint
arXiv:2410.03617, 2024.

Prateek Yadav, Colin Raffel, Mohammed Mugqeeth, Lucas Caccia, Haokun Liu, Tianlong Chen,
Mohit Bansal, Leshem Choshen, and Alessandro Sordoni. A survey on model moerging:
Recycling and routing among specialized experts for collaborative learning. Transactions
on Machine Learning Research, 2025. ISSN 2835-8856. URL https://openreview.net/
forum?id=u0azVc9YO0y. Survey Certification.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and
Dacheng Tao. Adamerging: Adaptive model merging for multi-task learning. arXiv preprint
arXiv:2310.02575, 2023.

Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng
Tao. Model merging in 1lms, mllms, and beyond: Methods, theories, applications and opportu-
nities. arXiv preprint arXiv:2408.07666, 2024.

Jinluan Yang, Dingnan Jin, Anke Tang, Li Shen, Didi Zhu, Zhengyu Chen, Daixin Wang,
Qing Cui, Zhiqgiang Zhang, Jun Zhou, et al. Mix data or merge models? balancing the
helpfulness, honesty, and harmlessness of large language model via model merging. arXiv
preprint arXiv:2502.06876, 2025.

Yuxuan Yao, Han Wu, Mingyang LIU, Sichun Luo, Xiongwei Han, Jie Liu, Zhijiang Guo, and
Linqi Song. Determine-then-ensemble: Necessity of top-k union for large language model
ensembling. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=FDnZFpHmU4.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Graham Neubig. Learning to
mine aligned code and natural language pairs from stack overflow. In International Conference
on Mining Software Repositories, MSR, pages 476-486. ACM, 2018. doi: https://doi.org/10.
1145/3196398.3196408.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super
mario: Absorbing abilities from homologous models as a free lunch. In Forty-first International
Conference on Machine Learning, 2024.

Yaodong Yu, Heinrich Jiang, Dara Bahri, Hossein Mobahi, Seungyeon Kim, Ankit Singh Rawat,
Andreas Veit, and Yi Ma. An empirical study of pre-trained models on out-of-distribution
generalization, 2022. URL https://openreview.net/forum?id=2RYOwBOFesi.

Siqi Zeng, Yifei He, Weiqiu You, Yifan Hao, Yao-Hung Hubert Tsai, Makoto Yamada, and Han

Zhao. Efficient model editing with task vector bases: A theoretical framework and scalable
approach. arXiv preprint arXiv:2502.01015, 2025.

15

https://arxiv.org/abs/2406.08464
https://openreview.net/forum?id=xtaX3WyCj1
https://openreview.net/forum?id=u0azVc9Y0y
https://openreview.net/forum?id=u0azVc9Y0y
https://openreview.net/forum?id=FDnZFpHmU4
https://openreview.net/forum?id=2RYOwBOFesi

[86] Yizhen Zhang, Yang Ding, Jie Wu, and Yujiu Yang. LLM merging competition technical
report for neurIPS 2024: Efficiently building large language models through merging. In LLM
Merging Competition at NeurIPS 2024, 2024. URL https://openreview.net/forum?id=
rJimiae6PJ.

[87] Xinyu Zhao, Guoheng Sun, Ruisi Cai, Yukun Zhou, Pingzhi Li, Peihao Wang, Bowen Tan,
Yexiao He, Li Chen, Yi Liang, et al. Model-glue: Democratized llm scaling for a large model
zoo in the wild. Advances in Neural Information Processing Systems, 37:13349-13371, 2024.

[88] Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

16

https://openreview.net/forum?id=rJ1miae6PJ
https://openreview.net/forum?id=rJ1miae6PJ

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction section reflect our paper’s contribution and scope.
We introduce MergeBench, a comprehensive evaluation suite designed to assess model
merging at scale. We provide practical guidelines for algorithm selection, share insights and
discuss future directions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a discussion on limitations of the work in Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

17

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code required to reproduce the experimental results is attached in the
supplemental material. The datasets are described in detail in Section [3|and Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

18

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code required to reproduce the experimental results is open-sourced at
https://github.com/uiuctml/MergeBench. The datasets are described in detail in Section 3]

and Appendix [B.2]
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The implementation details are contained in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The experiments and evaluations are too computationally intensive to replicate
for multiple rounds. This follows standard practice in the model merging literature.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

19

https://github.com/uiuctml/MergeBench
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The experimental details are provided in Appendix [C]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics, and verify that our work
conforms with the guidelines.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

20

https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work does not pose such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and models used are public for research purposes. All licenses are
shown in Appendix [B.3]
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

21

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We open source our code at https://github.com/uiuctml/MergeBench and
models at https://huggingface.co/MergeBench.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

22

paperswithcode.com/datasets
https://github.com/uiuctml/MergeBench
https://huggingface.co/MergeBench

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23

https://neurips.cc/Conferences/2025/LLM

A Merging Methods Details

Model Soup [71]] averages the parameters of all finetuned models: Operged = % Z?:l Hf(ti).

Task Arithmetic [20] introduces a scaling factor A that controls the magnitude of task vectors:
Omerged = Opre + A Z:L:l T;. Here, \ is tuned on a validation set to balance the influence of task vectors.
To keep the hyperparameter search tractable as the number of tasks increases, a single shared scaling
factor is typically used across all task vectors, rather than assigning a separate coefficient to each task.

Fisher Merging [41] formulates model merging as the problem of maximizing the joint posterior
likelihood of the constituent models, i.€., Omerged = argmax, Y, < log p(6 |9f(:'), I). Using a Laplace

approximation, the posterior for each Hf(f) is approximated as a Gaussian centered at Of(:) with a
precision matrix given by the Fisher Information Matrix F;. By further approximating F; with its
diagonal, Fisher Merging reduces to a weighted averaging of the finetuned parameters, resulting in

the closed-form solution: Omerged = Y1y Eﬂf(li) /3 F.

RegMean [29]] aims to align the activations of the merged model with those of the individual finetuned
models. This is achieved by minimizing the Euclidean distance between activations in each linear layer
produced by the merged model and the finetuned model. For the parameters in each linear W), Reg-
p AT . —1 NT . .
Mean computes the merged result as W) = (Z?Zl Xi(J) Xi(])) Sy (Xi(j) Xi(])Wi(j)> ,

merged ~

where X i(j) is the input features of the linear layers. The inner product matrix term is scaled by a
hyperparmeter « to avoid degenerated solutions. For non-linear parameters such as those involved in
attention computation, it applies simple averaging.

TIES Merging [75] introduces a three-step pipeline to resolve task interference during model
merging: i) Trim: discard small-magnitude values in task vectors. ii) Elect sign: select the dominant
sign for each parameter position, determined by whether the parameter has a higher total magnitude
in the positive or negative direction. iii) Merge: combine model weights by retaining only parameters
aligned with the elected sign. This process reduces destructive interference during merging.

DARE [83] performs random dropout on the task vectors based on the per-task binary mask m;
drawn from the Bernouli distribution m ~ Bernouli(p), where p is a predefined dropout rate. To
retain the original scale, the dropout task vectors are rescaled by 1/(1 — p). Overall, the resulting
sparse task vectors are 7; = (1 —m;) ® 7;/(1 — p), and then DARE proceeds with the task arithmetic
procedure to combine task vectors.

Consensus TA [68]] computes multi-task task vectors: TmtL = Omerged — Opre With Opmergea Obtained by
task arithmetic. For each task ¢, it constructs a task-specific binary mask: m; = 1{|7;| > |TamrL —
7i| - Ai}, where); is a tunable hyperparameter controlling the selectivity of task-specific information
extraction. A final consensus mask selects parameters agreed upon by at least two tasks: Mconsensus =
1{3";c(ny mi = 2} This mask is applied to the multi-task vector to filter out task-specific noise,

producing a merged model that emphasizes parameter updates shared across multiple tasks.

Localize-and-Stitch [22] approaches sparsity differently by training binary masks that identify the
most relevant parameters for each task. When there is no training data available, the algorithm has
a dataless version which keeps the top-k parameters in the task vectors with the largest magnitude.
Only the localized regions of each model are stitched back onto the pretrained backbone. Unlike
previous methods, it does not tune merging coefficients but simply averages selected regions with
normalized coefficients.

While our benchmark encompasses a diverse array of model merging algorithmes, it is not exhaustive.
The field is rapidly evolving, with new methods continually emerging. We aim to expand our
supported algorithms over time. Certain model merging approaches were not included in our
benchmark due to compatibility issues or differing methodologies. For instance, AdaMerging [[78]]
treats merging coefficients as trainable parameters, optimizing them via entropy minimization on
unlabeled test data. While effective in vision tasks, its effectiveness is not tested on language
models, as entropy minimization can lead to overconfident predictions and increased hallucinations.
Similarly, Task Arithmetic in the Tangent Space [43] requires fine-tuning models within their tangent
space, leveraging linear approximations to enhance weight disentanglement. This approach, though

24

theoretically sound, necessitates access to the fine-tuning process and may not be directly applicable
in scenarios where only the final model checkpoints are available.

B Datasets Details

B.1 Training data details

We present the training data statistics in Table[5]

Table 5: Datasets used for model training.

Category Dataset Training method # Data
Instruction-following TULU-3 persona IF [32] SFT 29.9K
Mathematics DART-Math [65] SFT 591K
NuminaMath-TIR [34] GRPO 72.4K
Multilingual understanding ~ Aya [S9] SFT 5.94K
Coding Magicoder [69] SFT 110K
Safety WildGuardMix [20] SFT 86.76K
WildJailbreak [27] SFT 261.56K

B.2 Surrogate tasks for validation

Algorithms including Task Arithmetic, TIES Merging, DARE, Consensus TA and Dataless Localize-
and-Stitch require additional validation data for hyperparameter tuning. However, in our evaluation
suite, most tasks do not provide a dedicated validation split, as the available data is typically reserved
entirely for evaluation. To address this, we select surrogate tasks that serve a similar purpose for each
target category. Specifically, we use IFEval-like data [[73]] for instruction following validation, stem
questions in MMLU [23] for math validation, CoNaLa [82] for coding validation, LAMBADA [46]
for multilingual understanding validation, Wildjailbreak [27]] for safety validation. These surrogate
tasks provide practical alternatives for tuning hyperparameters while maintaining alignment with the
goals of each specialized evaluation category.

B.3 Licenses

NuminaMath-TIR, Aya and IFEval are under Apache 2.0 License. DART-Math, Magicoder, GSM8Kk,
MATH and M_MMLU are under MIT license. XSTest, M_ARC and M_Hellaswag are under
CC-BY-NC-4.0 License. TULU-3, WildGuardMix and WildJailbreak are under ODC-BY License.
HumanEval+ and MBPP+ are under Apache License.

Llama-3.1 is under Llama 3.1 Community License Agreement and Llama-3.2 is under Llama 3.2
Community License Agreement. Gemma-2 is under Gemma Terms of Use.

C Implementation Details

C.1 Training details

Table 6: Comparison of performance across tasks for different model sizes.
Model Size Instruction Following Math Multilingual Coding Safety

2-3B models 10 40 5 18 24
7-8B models 36 154 17 66 82

For 2B and 3B models, we conduct experiments on NVIDIA RTX A6000 GPUs using a sequence
length of 4096 and an initial learning rate of 1e-5. For 8B and 9B models, we use NVIDIA A100
GPUs with a sequence length of 3072 and an initial learning rate of 5e-5. Across all model sizes, we
adopt the AdamW optimizer [39] with a cosine learning rate schedule, and set the global batch size
to 128. For all tasks, we perform SFT for 2 epochs. We report the training cost in GPU hours for
each task and model size in Table

25

C.2 Hyperparameter Tuning

Table 7: Hyperparameter tuning requirements for different algorithms.

Algorithm ?C?Xlgg:;g ?ir(')z:lr;eter Hyperparameters

Model soup 0 -

Task arithmetic 10 scaling coef A € {0.1,0.2,--- ,1}

Fisher merging 0 -

RegMean 5 reduction o € {0.1,0.3,0.5,0.7,0.9}

TIES 30 sparsity s € {0.1,0.2, 0.3}, scaling coef A € {0.1,0.2,--- ,1}
DARE 30 sparsity s € {0.1,0.2,0.3}, scaling coef A € {0.1,0.2,--- ,1}
Consensus TA 35 sparsity s € {0.2,0.3,---,0.6}, scaling coef A € {0.1,0.2,--- ,1}
Dataless Localize-and-Stitch 5 sparsity s € {0.1,0.2,--- ,0.5}

Localize-and-Stitch 0 -

Merging algorithms have different requirements of hyperparameter tuning. We detail them in Table
following the practice specified in the original papers. For RegMean, although the original paper does
not explicitly require hyperparameter tuning, we find that the selection of the scaling factor for the
non-diagonal items in the inner product matrices dramatically influences the performance, and using
the suggested o = 0.9 often results in poor performance. Thus, we treat it as a hyperparameter and
perform validation. For Consensus TA, each of the 5 tasks require tuning of the sparsity parameters,
and subsequently, it requires tuning the scaling coefficients, totaling 35 runs. For Dataless Localize-
and-Stitch, the original paper suggests a sparsity of 5% ~ 10%. However, at larger model scales,
we find that effective localization requires activating more than 10% of the parameters. This may be
explained by the observation that larger models tend to distribute knowledge more broadly across
their parameters [2 [7]], making task-specific information less concentrated. Consistent with this
observation, Poppi et al. [49] report that identifying safety-relevant regions in multilingual LLMs
requires localizing up to 20% of the parameters. These findings suggest that the sparsity requirements
for effective merging may scale with model size. Thus, we treat sparsity as a hyperparameter and
search from 10% to 50%.

D Discussions and Limitations

Here we discuss about the scope of this project and limitations of existing model merging literature.

Firstly, our evaluation is limited to merging models finetuned from the same initialization. Merging
models from different base models is beyond the scope of our work, as it introduces fundamentally
different challenges from the model merging setting we study. In our definition, model merging refers
to the technique that uses arithmetic operations in the model parameter space to combine the strengths
of multiple models. This formulation is widely adopted in the literature, and is highly valuable in
practical scenarios where training data is inaccessible and multiple teams finetune the same model in
parallel. In contrast, merging across model families requires tackling architectural and tokenization
mismatches, where parameter-level arithmetic is not directly applicable. Prior works have explored
combining knowledge from heterogeneous models, such as model routing that dynamically selects
among models at inference time [77]], or model ensembling that aggregates outputs [81]. While
important in their own right, these directions constitute separate problem formulations that are not
directly comparable to our work. While extending merging to heterogeneous base models is a
promising direction, we believe the within-family merging problem remains a rich and impactful
domain with immediate utility.

Secondly, we focus on merging dense models, without considering Mixture-of-Experts (MoE) models.
Merging MoE models introduces challenges fundamentally different from dense model merging due
to their sparse activation pattern. A key issue is expert index mismatch: different MoE models may
assign distinct meanings to the same expert index, and merging without alignment disrupts the routing
semantics. As a result, merging of experts or router weights can misroute inputs to inappropriate
experts, leading to degraded performance. Thus, dense-model merging techniques are not readily
applicable to MoEs. Instead, existing approaches construct new MoE architectures by combining
dense experts and routing among them [35}160], which lies beyond our definition of model merging.

Thirdly, our analysis and insights are mainly drawn from empirical observations, and it remains
unclear whether the arguments can be tested theoretically. Theoretical analysis of model merging

26

is particularly challenging due to the scale and nonlinearity of modern transformer models, as well as
the reliance on task-specific hyperparameter tuning. As a result, most progress in this area has been
empirical, including our MergeBench, which is designed to systematically evaluate merging methods
at scale. That said, we note that recent theoretical work has begun to analyze core components of
model merging. For example, Li et al. [33]] provides provable generalization guarantees for task vec-
tors, showing that both low-rank approximation and magnitude-based pruning preserve performance,
and that carefully chosen merging coefficients lead to strong generalization. These results support
our empirical findings on the effectiveness of sparsification and coefficient tuning. only with the few
attempts from linear mode connectivity [[15], tangent task spaces [43] and task relationships [33} [85]].

E Full Numeric Results

Overall performance. We report the full numeric results of the multi-task performance of each
merging algorithm in Table [§ and generalization performance in Figure 8] As shown in Table [8]
merging Gemma models often yields stronger results than merging Llama models of similar size.
While the precise cause remains unclear due to limited transparency into pretraining procedures,
this suggests that certain model architectures or training pipelines may be inherently more merging
friendly. This is an interesting direction for further investigation.

Table 8: Average normalized multi-task performance on five categories for all models. The columns
are sorted by the overall performance.
Fisher Merging DARE Model soup TIES RegMean Task arithmetic Consensus TA Dataless L&S L&S

Gemma-2-2b 68.4 66.1 66.4 61.7 76.8 70.3 74.7 76.1 76.8
Gemma-2-2b-it 88.8 84.3 89.9 87.0 91.6 89.9 90.5 90.6 90.4
Llama-3.2-3B 61.8 69.4 57.0 63.0 80.7 72.9 75.5 68.3 74.6
Llama-3.2-3B-Instruct 92.1 95.9 94.4 98.6 97.6 93.9 91.6 95.9 96.1
Gemma-2-9b 89.4 89.6 89.4 92.1 89.3 91.1 872 91.2 92.7
Gemma-2-9b-it 98.1 91.8 98.3 101.1 88.2 104.6 106.5 105.0 100.1
Llama-3.1-8B 80.3 78.7 81.1 814 80.6 84.8 83.5 90.6 91.7
Llama-3.1-8B-Instruct 85.4 88.8 88.6 93.7 90.4 90.0 91.1 95.2 95.1
Overall 83.0 83.1 83.1 84.8 86.9 87.2 87.6 89.1 89.7

Table 9: Average normalized generalization performance. The columns are sorted by the overall
performance.

Fisher Merging DARE RegMean L&S Task arithmetic Dataless L&S Consensus TA Model soup TIES

Gemma-2-2b 99.3 95.5 99.8 96.3 91.0 96.3 95.0 99.3 99.5
Gemma-2-2b-it 101.2 101.5 102.7 100.3 101.6 100.3 102.7 102.5 102.6
Llama-3.2-3B 97.5 94.3 97.8 92.3 88.4 91.3 84.9 97.3 97.7
Llama-3.2-3B-Instruct 92.3 89.6 92.8 93.7 89.3 93.7 92.1 93.3 93.2
Gemma-2-9b 59.7 74.9 73.2 733 75.2 75.5 78.9 79.5 81.9
Gemma-2-9b-it 70.3 83.9 86.9 87.4 100.0 93.6 101.3 93.1 93.6
Llama-3.1-8B 77.0 73.4 77.3 74.9 68.5 74.0 69.2 77.4 80.8
Llama-3.1-8B-Instruct 87.9 83.9 71.9 84.2 91.9 93.8 94.4 85.6 83.9
Overall 85.7 87.1 87.8 87.8 88.3 89.8 89.8 91.0 91.7

Detailed per-task performance. To facilitate reproducibility of our evaluation results, we further
report detailed per-task performance for all 8 models we test.

Table 10: Gemma-2-2B per-task and average results. Values are percentages.

Task Model soup Task arithmetic ~ Fisher Merging RegMean TIES DARE Consensus TA Dataless L&S L&S
Instruction following 19.6 29.4 22.6 246 19.8 26.3 26.3 17.0 23.1
Math 25.2 28.2 30.3 279 263 26.9 27.6 379 37.1
Multilingual 479 47.9 41.1 482 482 48.3 48.3 475 474
Coding 30.3 35.2 28.0 314 304 333 333 335 331
Safety 524 45.1 58.8 56.8 384 39.8 61.9 65.0 619
Avg. Acc 35.1 37.2 36.2 40.6 326 349 395 402 40.6
Avg. Norm 66.4 70.3 68.4 76.8 61.7 66.1 74.7 76.1 768

27

Table 11: Gemma-2-2B-IT per-task and average results. Values are percentages.

Task Model soup Task arithmetic ~ Fisher Merging RegMean TIES DARE Consensus TA Dataless L&S L&S
Instruction following 519 519 53.0 542 492 46.4 54.9 48.8 492
Math 38.7 38.7 39.7 40.5 385 36.7 38.4 479 479
Multilingual 49.2 49.2 48.7 487 493 49.0 49.2 48.8 487
Coding 40.2 40.2 40.1 393 396 38.3 39.7 40.2 382
Safety 81.3 81.3 76.8 83.6 763 74.8 81.0 798 79.0
Avg. Acc 52.3 52.3 51.7 533 50.6 49.0 52.7 52.7 526
Avg. Norm 89.9 89.9 88.8 91.6 870 84.3 90.5 90.6 90.4
Table 12: Llama-3.2-3B per-task and average results. Values are percentages.
Task Model soup Task arithmetic ~ Fisher Merging RegMean TIES DARE Consensus TA Dataless L&S L&S
Instruction following 7.2 253 12.0 14.2 9.6 18.7 30.5 104 237
Math 16.2 277 26.6 338 266 27.1 27.6 411 389
Multilingual 46.8 47.0 47.6 484 476 47.5 46.9 46.7 47.0
Coding 37.0 41.1 372 393 376 40.2 40.7 40.0 407
Safety 39.2 46.1 354 71.7 404 449 48.2 373 413
Avg. Acc 29.3 37.5 31.8 415 323 35.7 38.8 351 383
Avg. Norm 57.0 72.9 61.8 80.7 63.0 69.4 75.5 683 746
Table 13: Llama-3.2-3B-Instruct per-task and average results. Values are percentages.
Task Model soup Task arithmetic ~ Fisher Merging RegMean TIES DARE Consensus TA Dataless L&S L&S
Instruction following 56.0 59.7 53.6 56.9 56.6 48.6 58.8 558 572
Math 53.9 55.1 49.8 61.0 56.7 56.7 51.1 59.8 599
Multilingual 45.0 45.2 44.7 484 446 439 45.1 44.1 442
Coding 524 49.8 512 51.8 525 53.2 48.0 51.8 528
Safety 84.6 80.6 853 875 945 94.0 80.0 85.1 83.1
Avg. Acc 584 58.1 56.9 603 60.9 59.3 56.6 593 59.5
Avg. Norm 94.4 93.9 92.1 97.6 98.6 95.9 91.6 959 96.1
Table 14: Gemma-2-9B per-task and average results. Values are percentages.
Task Model soup Task arithmetic ~ Fisher Merging RegMean TIES DARE Consensus TA Dataless L&S L&S
Instruction following 30.3 312 27.5 33.8 288 32.0 23.7 305 353
Math 60.3 64.5 482 59.9 653 62.8 59.0 67.2 665
Multilingual 60.0 57.1 58.8 552 595 56.5 59.5 56.5 55.1
Coding 51.5 50.8 56.6 392 523 48.8 514 56.0 533
Safety 70.6 74.4 81.7 844 753 732 72.6 68.1 72.6
Avg. Acc 54.6 55.6 54.5 545 56.2 54.7 532 557 56.6
Avg. Norm 89.4 91.1 89.3 893 92.1 89.5 87.2 91.2 92.6
Table 15: Gemma-2-9B-IT per-task and average results. Values are percentages.
Task Model soup Task arithmetic ~ Fisher Merging RegMean TIES DARE Consensus TA Dataless L&S L&S
Instruction following 50.5 59.3 54.2 415 529 442 62.5 60.6 573
Math 64.4 64.3 55.5 524 66.3 62.5 63.8 70.4 67.7
Multilingual 60.9 63.0 58.6 495 60.6 57.6 63.3 633 577
Coding 58.5 59.8 58.9 48.8 59.5 55.7 60.5 59.4 55.6
Safety 68.2 75.3 74.7 731 71.6 62.4 773 790 69.7
Avg. Acc 60.5 64.4 60.4 542 62.2 56.5 65.5 64.6 61.6
Avg. Norm 98.3 104.6 98.1 882 101.0 91.8 106.5 104.9 100.1
Table 16: Llama-3.1-8B per-task and average results. Values are percentages.
Task Model soup Task arithmetic ~ Fisher Merging RegMean TIES DARE Consensus TA Dataless L&S L&S
Instruction following 83 31.2 52 109 122 13.1 26.3 181 373
Math 50.1 55.5 48.0 529 563 55.6 54.2 595 570
Multilingual 54.0 49.1 52.1 519 545 52.7 49.0 520 543
Coding 49.6 48.8 495 479 49.0 493 49.6 513 509
Safety 71.0 59.0 76.0 67.8 619 55.4 60.7 793 637
Avg. Acc 46.6 48.7 46.2 46.3 468 45.2 48.0 520 527
Avg. Norm 81.1 84.8 80.3 80.6 814 78.7 83.5 90.6 917
Table 17: Llama-3.1-8B-Instruct per-task and average results. Values are percentages.
Task Model soup Task arithmetic ~ Fisher Merging RegMean TIES DARE Consensus TA Dataless L&S L&S
Instruction following 37.5 47.0 31.8 46.8 434 39.8 48.4 554 444
Math 64.4 60.3 52.3 599 657 63.5 63.3 682 67.1
Multilingual 53.6 54.8 54.3 50.9 539 51.4 54.7 542 523
Coding 62.1 61.8 63.6 58.0 62.6 57.3 61.2 629 62.0
Safety 81.4 79.8 86.2 89.4 904 87.8 79.6 80.4 918
Avg. Acc 59.8 60.7 57.6 61.0 632 59.9 61.4 642 635
Avg. Norm 88.6 90.0 854 90.4 937 88.8 91.1 952 941

28

	Introduction
	Background
	MergeBench
	Task Construction
	Model Construction
	Data Construction

	Evaluation of Merging Methods
	Multi-Task Performance
	Retention of Base Model Knowledge
	Runtime

	Related Works
	Discussion and Future Directions
	Conclusion
	Merging Methods Details
	Datasets Details
	Training data details
	Surrogate tasks for validation
	Licenses

	Implementation Details
	Training details
	Hyperparameter Tuning

	Discussions and Limitations
	Full Numeric Results

