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Abstract
Radiology reports are critical for clinical001
decision-making but often lack a standard-002
ized format, limiting both human interpretabil-003
ity and machine learning (ML) applications.004
While large language models (LLMs) have005
shown strong capabilities in reformatting clini-006
cal text, their high computational requirements,007
lack of transparency, and data privacy con-008
cerns hinder practical deployment. To ad-009
dress these challenges, we explore lightweight010
encoder-decoder models (<300M parame-011
ters)—specifically T5 and BERT2BERT—for012
structuring radiology reports from the MIMIC-013
CXR and CheXpert Plus datasets. We bench-014
mark these models against eight open-source015
LLMs (1B–70B parameters), adapted using016
prefix prompting, in-context learning (ICL),017
and low-rank adaptation (LoRA) finetuning.018
Our best-performing lightweight model out-019
performs all LLMs adapted using prompt-020
based techniques on a human-annotated test set.021
While some LoRA-finetuned LLMs achieve022
modest gains over the lightweight model on023
the Findings section (BLEU 6.4%, ROUGE-L024
4.8%, BERTScore 3.6%, F1-RadGraph 1.1%,025
GREEN 3.6%, and F1-SRR-BERT 4.3%),026
these improvements come at the cost of sub-027
stantially greater computational resources. For028
example, LLaMA-3-70B incurred more than029
400 times the inference time, cost, and car-030
bon emissions compared to the lightweight031
model. These results underscore the poten-032
tial of lightweight, task-specific models as sus-033
tainable and privacy-preserving solutions for034
structuring clinical text in resource-constrained035
healthcare settings.036

1 Introduction037

Radiology reports play a critical role in clinical038

workflows by summarizing imaging findings that039

guide medical decisions (Kahn Jr et al., 2009).040

However, variations in reporting style due to in-041

dividual and institutional practices as well as re-042

gional guidelines create inconsistencies that hinder043

interpretability for physicians and patients (Har- 044

tung et al., 2020). Moreover, the lack of structured 045

formats limits their usefulness as training data for 046

machine learning (ML) applications (dos Santos 047

et al., 2023; Steinkamp et al., 2019). 048

Large language models (LLMs) offer a promis- 049

ing solution for generating structured reports from 050

free-form text (Adams et al., 2023; Busch et al., 051

2024; Hasani et al., 2024). However, deploying 052

these models locally remains infeasible for most 053

institutions due to the significant computational 054

resources required (Zhang et al., 2025). Cloud- 055

based solutions provide an alternative but introduce 056

concerns related to data security, confidentiality, 057

and regulatory compliance (Arshad et al., 2023; 058

Thirunavukarasu et al., 2023). While proprietary 059

LLMs can also be accessed via Application Pro- 060

gramming Interface (API), this approach entails 061

drawbacks such as dependency on a third-party 062

vendor, potential cost increases and unpredictable 063

changes in usage terms (Tian et al., 2024). These 064

limitations highlight the need for smaller, open- 065

source models that can be deployed on-device with 066

minimal hardware requirements. 067

To address these challenges, we propose 068

lightweight (<300M parameters), task-specific 069

models for structuring free-text chest X-ray radiol- 070

ogy reports (see Figure 1) efficiently. These mod- 071

els substantially reduce computational demands 072

(Chen et al., 2024a), eliminating the need for cloud- 073

based hosting, and enhancing data security by en- 074

abling offline deployment. We train these models 075

on the MIMIC-CXR (Johnson et al., 2019) and 076

CheXpert Plus (Chambon et al., 2024) datasets 077

and structure the originally free-form reports with 078

GPT-4 (Achiam et al., 2023) as a weak annota- 079

tor, enabling large-scale supervision. We evaluate 080

model performance on an independent test set, an- 081

notated by five radiologists (Anonymous, 2025). 082

Our contributions include: 083
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Figure 1: Overview of our study and qualitative comparison. An unstructured radiology report is structured using
lightweight, task-specific models and adapted large language models (LLMs) compared to human expert annotations.

• Lightweight Model Development and Eval-084

uation: We train and systematically eval-085

uate lightweight (<300M parameters), task-086

specific T5 and BERT2BERT models for the087

task of structuring radiology reports.088

• Analysis of LLMs and Adaptation Tech-089

niques: We assess the performance of five090

LLMs (3-8B parameters) under different adap-091

tation strategies (prefix prompting, in-context092

learning (ICL), low-rank adaptation (LoRA)).093

• Benchmarking and Cost Analysis: We094

benchmark lightweight models against LLMs095

of increasing size, considering model perfor-096

mance on the BLEU, ROUGE-L, BERTScore,097

F1-RadGraph, GREEN, and F1-SRRG-Bert098

metrics, as well as training time, inference099

speed and costs, and environmental impact.100

2 Related Work101

Beyond LLMs: Lightweight Models for Medical102

Text Processing103

Recent studies have explored the use of LLMs,104

namely GPT-3.5 (OpenAI, 2022) and GPT-4, to105

transform free-form radiology reports into struc-106

tured formats (Adams et al., 2023; Bergomi et al.,107

2024; Hasani et al., 2024). A recent review by108

Busch et al. highlights that these approaches109

achieve low error rates and minimal accuracy110

loss compared to human experts (Busch et al.,111

2024). However, their reliance on proprietary112

architectures, lack of transparency, and restric-113

tions on patient data privacy pose significant chal-114

lenges for clinical deployment (Khullar et al., 2024;115

Rezaeikhonakdar, 2023). To address these limita- 116

tions, similar tasks in medical NLP have adopted 117

lightweight, task-specific models that maintain 118

high accuracy while considerably reducing compu- 119

tational costs (Chen et al., 2024a; Griewing et al., 120

2024; Pecher et al., 2024). Existing task-specific 121

models for radiology NLP fall into two categories: 122

hybrid models and lightweight transformer mod- 123

els. Hybrid models combine rule-based methods 124

with deep learning, enforcing domain-specific con- 125

straints but lacking flexibility (Gabud et al., 2023). 126

In contrast, lightweight transformer models have 127

been successfully applied to relation extraction, re- 128

port coding, and summarization (Jain et al., 2021; 129

Yan et al., 2022; Van Veen et al., 2023). While they 130

require careful tuning to avoid hallucinations and 131

overfitting, recent studies suggest that well-tuned 132

lightweight models can match larger LLMs in accu- 133

racy while being far more computationally efficient 134

(Pecher et al., 2024). Our work builds on this foun- 135

dation by introducing a lightweight, task-specific 136

model explicitly optimized for structured radiology 137

report generation. 138

Model Adaptation and Finetuning 139

Prior work has explored a range of adaptation strate- 140

gies for LLMs, from prompt-based methods to 141

parameter-efficient finetuning (PEFT) and full fine- 142

tuning, each balancing performance, data require- 143

ments, and computational cost. Prompting tech- 144

niques such as prefix prompting and ICL (Brown 145

et al., 2020; Lampinen et al., 2022) adapt models 146

without modifying their weights. Prefix prompt- 147

ing typically provides instructions to guide model 148

responses, while ICL enhances adaptation by incor- 149
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Figure 2: Left: Dataset generation from free-form radiology reports to structured radiology reports using GPT-4
(AI-based) and human experts (manual annotation). Right: Overview of our experiments including selection of
lightweight models and LLMs, training/adaptation methods, and evaluation strategy and metrics.

porating task-specific examples within the prompt.150

However, these methods suffer from context length151

constraints and sensitivity to prompt phrasing (Li152

et al., 2023). PEFT techniques like LoRA (Hu153

et al., 2021), prefix-tuning (Li and Liang, 2021),154

and adapter layers (Houlsby et al., 2019) enable effi-155

cient adaptation with minimal computational over-156

head, making them well-suited for clinical NLP.157

While effective in low-data settings, PEFT often158

struggles with complex reasoning and generaliza-159

tion across domains (Lialin et al., 2023). In con-160

trast, full finetuning updates all model parameters,161

often achieving stronger adaptation when sufficient162

labeled data and computational resources are avail-163

able. Building on this, our approach applies full164

finetuning to lightweight models while leveraging165

GPT-4-generated structured labels to address data166

scarcity, enabling large-scale supervised training167

while preserving domain-specific accuracy.168

AI-Based Dataset Generation169

A major challenge in developing models for struc-170

turing radiology reports is the limited availability of171

high-quality annotated datasets, i.e., datasets that172

contain both free-form and corresponding struc-173

tured reports. Recent work in similar fields has174

explored leveraging LLMs such as GPT-4 as weak175

annotators to generate labels, providing a scalable176

alternative to manual annotation (Liyanage et al.,177

2024; Savelka et al., 2023). Despite their suc-178

cesses, studies suggest that models trained on GPT-179

generated data should still be rigorously evaluated180

against human-annotated ground truth to ensure181

reliability and validity (Pangakis et al., 2023).182

3 Methods183

In this study, we transform free-text chest X-ray184

radiology reports into a standardized format using185

deep learning. The structured reports follow a pre- 186

defined template based on ’RPT144’ of RSNA’s 187

RadReport Template Library (Radiological Society 188

of North America (RSNA), 2011). This template 189

comprises the sections: Exam Type, History, Tech- 190

nique, Comparison, Findings, and Impression. The 191

Findings section is further organized into organ 192

systems: ’Lungs and Airways’, ’Pleura’, ’Cardio- 193

vascular’, ’Tubes, Catheters, and Support Devices’, 194

’Musculoskeletal and Chest Wall’, ’Abdominal’, 195

and ’Other’. The Impression section is structured 196

as a numbered list, prioritizing the most clinically 197

relevant findings. As shown in Figure 2, this tem- 198

plate is incorporated into the prompt during data 199

annotation, and deviations from it in a structured re- 200

port are penalized during evaluation. Unlike previ- 201

ous approaches that rely on large, general-purpose 202

models like GPT-4, we explore the effectiveness of 203

lightweight, task-specific models for this task. 204

3.1 Data 205

We use unstructured radiology reports from the pub- 206

licly available MIMIC-CXR (Johnson et al., 2019) 207

and CheXpert Plus (Chambon et al., 2024) datasets, 208

preserving their original training and validation 209

splits. To train our models in a supervised manner, 210

we employed GPT-4 as a weak annotator, using 211

the prompt provided in Appendix A.1 to generate 212

structured reports that conform to our template. We 213

obtained a total of 182,962 reports, 125,447 sam- 214

ples from MIMIC-CXR and 57,515 from CheXpert 215

Plus. For evaluation and benchmarking, we con- 216

ducted a human expert review of 223 reports, com- 217

prising 161 from the MIMIC-CXR test set and 72 218

from the CheXpert Plus validation set. Five board- 219

certified radiologists from our institution reviewed 220

the structured reports alongside their original free- 221

form counterparts, assessing them for errors and 222
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adherence to our predefined template (detailed in223

(Anonymous, 2025)).224

3.2 Evaluation Strategies225

Even though all models generate full reports, we226

focus our quantitative analysis on the Findings and227

Impression sections due to their clinical signifi-228

cance. Before applying our metrics, we parse these229

sections to assess adherence to the predefined tem-230

plate. In the Findings section, we identify pre-231

defined organ system headers (e.g., ’Lungs and232

Airways’, ’Cardiovascular’) and extract their cor-233

responding observations. Metrics are computed234

separately for each organ system and then averaged235

across all identified systems. In the Impression sec-236

tion, we enforce a sequentially numbered format237

and flag any inconsistencies in ordering. To assess238

both linguistic quality and clinical accuracy, we239

use a combination of lexical and radiology-specific240

metrics.241

Lexical Metrics To ensure comprehensive evalua-242

tion of text quality, we apply the following metrics:243

BLEU (Papineni et al., 2002) measures n-gram244

overlap, serving as a proxy for fluency and syntac-245

tic similarity. ROUGE-L (Lin, 2004) evaluates the246

longest common subsequence, capturing sentence-247

level similarity. BERTScore (Zhang et al., 2019)248

computes semantic similarity by comparing con-249

textual embeddings from a pretrained transformer250

model.251

Radiology-Specific Metrics To capture clinical252

accuracy, we apply the following metrics: F1-253

RadGraph (Delbrouck et al., 2022; Yu et al., 2023)254

evaluates the precision and recall of key clinical255

terms and relationships extracted from generated re-256

ports. GREEN (Ostmeier et al., 2024) assesses the257

factual correctness of generated radiology reports258

using a finetuned LLM. F1-SRRG-Bert (Anony-259

mous, 2025) uses a fine-tuned BERT model to clas-260

sify extracted findings into 55 disease labels, as-261

signing each as Present, Absent, or Uncertain. It262

then computes the F1-score by comparing predic-263

tions from the generated report to the ground truth.264

Throughout this paper, our visualizations primarily265

focus on GREEN and F1-SRR-BERT, as GREEN266

correlates most strongly with expert evaluations of267

clinical accuracy (Ostmeier et al., 2024), while F1-268

SRR-BERT was specifically developed for the task269

of structured reporting, making their combination270

effective for assessing structured radiology reports.271

3.3 Lightweight Models 272

We introduce lightweight models, which are specif- 273

ically trained to structure radiology reports accord- 274

ing to a predefined template. Our lightweight 275

models are based on encoder-decoder architectures 276

given their recent success in similar tasks such as 277

radiology report generation (Aksoy et al., 2023; 278

Chen et al., 2024b) and radiology report summa- 279

rization (de Padua and Qureshi, 2024; Van Veen 280

et al., 2023; Zhang et al., 2018). Specifically, 281

we focused on two architectures, T5-Base (Raf- 282

fel et al., 2020), which has 223M parameters, and 283

BERT2BERT (Rothe et al., 2020), where two iden- 284

tical BERT models are used as the encoder and 285

decoder, resulting in a total of 278M parameters. 286

To investigate the influence of pretraining domains, 287

we initialize our models with the parameters from 288

five open-source T5 variants (Table 2) - T5-Base 289

(Raffel et al., 2020)(general text), Flan-T5-Base 290

(Chung et al., 2024)(instruction-tuning), SciFive 291

(Phan et al., 2021)(biomedical text), Clin-T5-Sci 292

(Lehman and Johnson, 2023)(biomedical text and 293

radiology reports), and Clin-T5-Base (Lehman and 294

Johnson, 2023)(radiology reports) - and four BERT 295

variants (Table 3) - RoBERTa-base (Liu, 2019)(gen- 296

eral text), BioMed-RoBERTa (Gururangan et al., 297

2020)(biomedical text), RoBERTa-base-PM-M3- 298

Voc-distill-align (Lewis et al., 2020)(for simplicity 299

named RoBERTa-PM-M3 here, biomedical text 300

and radiology reports), and RadBERT-RoBERTa 301

(Yan et al., 2022)(radiology reports). We train our 302

lightweight models end-to-end, updating all param- 303

eters, for a maximum of ten epochs using a cosine 304

learning rate scheduler with an initial learning rate 305

of 1e−4, an effective batch size of 128, and the 306

Adam optimizer. A detailed description of hyperpa- 307

rameters can be found in Appendix A.3. To account 308

for variability, each configuration is trained three 309

times with different random seeds. Following prior 310

work (Van Veen et al., 2023), we rank pretraining 311

datasets by relevance, assuming radiology reports 312

to be the most relevant, followed by biomedical 313

text (e.g., PubMed abstracts) and general-domain 314

text (e.g., Wikipedia). However, we acknowledge 315

that this ranking is inherently subjective and may 316

vary depending on the specific task. 317

3.4 Comparison LLMs 318

To benchmark our lightweight models (<300M pa- 319

rameters), we first conduct a comprehensive com- 320

parison with instruction-tuned LLMs ranging from 321
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Figure 3: Performance comparison of lightweight models, initialized from pretrained models of increasing domain
relevance. The plot shows the finetuned BERT2BERT and T5 models evaluated using GREEN (left) and F1-SRR-
BERT (right), initialized from various pretrained models, with pretraining datasets ranging from general text (least
domain-specific) to radiology (most domain-specific). Error bars denote 95% confidence intervals over the three
training runs.

3 to 8 billion parameters: Llama-3.1-8B-Instruct322

(Grattafiori et al., 2024); its derivatives Vicuna-323

7B-v1.5 (Chiang et al., 2023), optimized for con-324

versational tasks, and Med-Alpaca-7B (Han et al.,325

2023), finetuned for medical question-answering;326

as well as Phi-3.5-Mini-Instruct (Abdin et al., 2024)327

and Mistral-7B (Jiang et al., 2023). We assess328

three adaptation techniques: 1. Prefix Prompt-329

ing. The model is prompted using the same in-330

structions employed during training data genera-331

tion (Appendix A.1). 2. ICL. The model is given a332

number of free-form reports along with their struc-333

tured counterparts. These examples are manually334

selected from the training set to optimally repre-335

sent the data distribution. 3. LoRA Finetuning.336

The LLM is finetuned for five epochs on the com-337

plete training set using LoRA with a rank of eight,338

modifying approximately 0.1% of the model’s pa-339

rameters by injecting trainable adapters into the340

key, query, and value projection matrices of the341

self-attention layers. We use a cosine learning rate342

scheduler with an initial learning rate of 1e−4, an343

effective batch size of 256 and the Adam optimizer.344

Detailed finetuning configurations are provided in345

Appendix A.4. Throughout the project, we system-346

atically evaluated different combinations of these347

adaptation techniques. This included varying the348

number of in-context examples (1-shot, 2-shot) as349

well as combining Prefix Prompting with ICL to350

assess their complementary effects. We also ex-351

perimented with hybrid approaches that combined352

LoRA finetuning with prompting-based methods.353

However, these configurations did not yield consis- 354

tent performance gains and introduced substantial 355

overhead in terms of training time and memory 356

usage, primarily due to increased input lengths. 357

3.5 Benchmarking Lightweight Models 358

Against LLMs 359

Building on the previous experiment—which com- 360

pared similarly sized LLMs under various adapta- 361

tion strategies—we now turn to a scale-sensitive 362

evaluation of our lightweight model. To this end, 363

we benchmark its performance against LLaMA-3 364

models of increasing size (1B, 3B, 8B, and 70B pa- 365

rameters), leveraging the architectural consistency 366

across this family to isolate the effects of model 367

scale. Each variant is evaluated using the two most 368

effective adaptation strategies identified in our prior 369

experiments: Prefix+ICL for prompting-based ap- 370

proaches and LoRA for parameter-efficient finetun- 371

ing. We then compare the computational costs asso- 372

ciated with training and deploying the lightweight 373

model, LLaMA-3-3B, and LLaMA-3-70B. This 374

comparison includes the average F1-SRR-BERT 375

score, training time per epoch, inference time per 376

sample, inference costs per sample, and CO2 emis- 377

sions per sample. Financial costs are estimated 378

using the Google Cloud pricing calculator1, and 379

CO2 emissions are calculated with CodeCarbon 380

(Lacoste et al., 2019). These comparisons pro- 381

vide insights into the trade-offs between large-scale 382

1https://cloud.google.com/products/calculator (Assessed
January 2025)
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Figure 4: Comparison of LLM Adaptation Methods and the best performing lightweight model (BERT2BERT
initialized from RoBERTa-PM-M3). (Left)/(Right) The figure depicts the GREEN Score/F1-SRR-BERT Score for
five different LLMs across various adaptation methods, including prefix prompting, in-context learning (ICL), the
combination of prefix prompting with ICL, and LoRA finetuning for five epochs.

LLMs and compact lightweight models in terms of383

both performance and resource efficiency.384

4 Results385

The models are evaluated using all metrics intro-386

duced in Section 3.2. We primarily report results387

using GREEN and F1-SRR-BERT Score, as they388

provide the most comprehensive assessments of389

clinical accuracy and structural consistency. How-390

ever, unless stated otherwise, the observed trends391

hold across all metrics. A detailed comparison392

across all metrics is provided in Appendix A.5.393

4.1 Comparison of Lightweight Models and394

Domain Adaptation395

As introduced in Section 3.3, we initialized our396

lightweight models with the weights from differ-397

ent pretrained models. Specifically, we evaluate398

four different pretrained models as initializations399

for the BERT2BERT model and five for the T5400

model (Tables 2 and 3). Each pretraining con-401

figuration was trained three times with different402

random seeds. Figure 3 presents the model perfor-403

mance for the GREEN and F1-SRR-BERT metrics,404

while a more comprehensive overview can be found405

in Table 4. For the BERT2BERT model, domain406

adaptation shows a clear but non-linear impact on407

performance. Pretraining on biomedical text im-408

proves GREEN by 0.4% over the general-text base-409

line, while adding radiology reports yields a more410

substantial 4.5% improvement. However, pretrain-411

ing exclusively on radiology reports (RadBERT)412

provides only a marginal 0.3% increase. For the413

T5 model, instruction-tuning alone leads to 0.3% 414

improvement over the general-text baseline. Pre- 415

training on biomedical text and radiology reports 416

achieves a 2.5% gain, while using exclusively radi- 417

ology reports leads to 4.4% increase. However, the 418

biomedical text initialization (SciFive) underper- 419

forms the general baseline by 2.4%. Table 4 con- 420

firms that these trends persist across both datasets 421

and sections, with scores for the Impression sec- 422

tion being on average by ≈ 20% higher. Overall, 423

BERT2BERT models outperform T5 variants, with 424

the best BERT2BERT model (RoBERTa-PM-M3) 425

beating the best T5 (Clin-T5-Base) by 2.6% on 426

GREEN and 1.5% on F1-SRR-BERT. 427

4.2 Adaptation of LLMs 428

We present the results of adapting LLMs to the 429

structuring task as outlined in Section 3.4. Fig- 430

ure 4 visualizes the average test set performance 431

on the GREEN and F1-SRR-BERT metrics across 432

a selection of the proposed adaptation methods: 433

prefix prompting, 2-shot in-context learning (ICL), 434

the combination of prefix prompting and ICL, and 435

LoRA finetuning. LoRA finetuning consistently 436

achieves the highest performance across all mod- 437

els. The detailed breakdown of results across the 438

structured Findings and Impression sections is pro- 439

vided in Tables 5 and 6 of the Appendix. Aver- 440

aged across all five LLMs, 2-shot ICL improves 441

performance compared to prefix prompting by 442

22.2%/20.6% in GREEN/F1-SRR-BERT on Find- 443

ings and 9.6%/−1.0% on Impression. Prefix+ICL 444

shows a 77.8%/79.2% improvement on Findings 445
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Figure 5: Model performance of LLaMA-3 models
of increasing size. (Left/Right) The figure shows the
GREEN and F1-SRR-BERT scores for adaptation using
Prefix+ICL and LoRA finetuning, respectively. The re-
sult for the LLaMA-3-70B model with LoRA finetuning
is indicated with a dashed line, as this configuration was
trained for only one epoch—compared to five epochs
for the other models—due to computational constraints.

but also −5.9%/ − 4.1% on Impression. LoRA446

finetuning achieves the highest scores overall, out-447

performing prefix prompting by 263%/237% on448

Findings and 8.7%/6.5% on Impression. Across449

LLMs, Llama-3-8B performs best in ICL methods,450

while Mistral-7B achieves the highest performance451

in LoRA finetuning. The overall best-performing452

configuration is Mistral-7B with LoRA finetuning.453

4.3 Benchmarking454

Building on these results, we benchmark our best455

lightweight model against LLaMA-3 models of in-456

creasing parameter counts. Figure 5 demonstrates457

a general positive correlation between the LLM’s458

model size and performance in structuring radiol-459

ogy reports, with the exception of LLaMA-3-70B.460

Despite being the largest model, it underperforms461

when adapted via LoRA, likely due to insufficient462

training. This size-performance trend is more evi-463

dent with Prefix+ICL adaptation. While LLaMA-3-464

1B achieves only 53.0%/55.9% of the lightweight465

model’s performance (GREEN/F1-SRR-BERT),466

LLaMA-3-70B reaches 98.9%/95.8%. LoRA467

boosts LLaMA-3-1B to 92.9%/93.0%, and en-468

ables the larger variants to slightly outperform the469

lightweight model on the Findings section. How-470

ever, when averaged across both sections, no LLM471

surpasses the lightweight model. Moreover, the472

relative benefit of LoRA over Prefix+ICL dimin-473

ishes as model size increases, with both methods474

converging in performance—and LoRA occasion-475

ally underperforming—particularly on clinically476

relevant metrics such as F1-RadGraph, GREEN,477

and F1-SRR-BERT. Given these findings, we next478

turn to a cost analysis. As shown in Table 1, the479

lightweight model offers considerable advantages 480

in training time, financial cost, and environmen- 481

tal impact—producing only 8.3% and 0.7% of the 482

CO2 emissions of LLaMA-3-3B and 70B, respec- 483

tively. Inference efficiency follows a similar pat- 484

tern: even under the least favorable deployment sce- 485

nario, the lightweight model exhibits up to 91.8% 486

lower latency and 98.4% lower emissions than 487

LLaMA-3-70B. Under optimal conditions, these 488

savings exceed 99.9%. 489

4.4 Qualitative Analysis 490

To complement the quantitative analysis, Figure 1 491

presents a qualitative comparison of BERT2BERT, 492

Mistral-7B, and expert-reviewed reports. Both 493

models successfully adhere to our predefined tem- 494

plate (see Figure 2 for reference), particularly in 495

the Findings section, where content is well-aligned 496

with organ system categories. A full test set anal- 497

ysis shows that the lightweight model correctly 498

applies the Findings and Impression section head- 499

ers in all cases, while the LLM deviates in 5% of 500

instances, occasionally using all capital letters or 501

omitting section names in less than 1% of reports. 502

Both models, as well as expert annotations, gener- 503

ally include only relevant organ systems, but occa- 504

sionally report less relevant negative findings (e.g., 505

"Pleura: - No specific findings reported"). Com- 506

plete omission of relevant findings occurs in less 507

than 1% of cases, indicating high completeness in 508

capturing clinical details. Differences in prioritiza- 509

tion in the Impression section are observed in fewer 510

than 5% of reports for both models, demonstrating 511

occasional variation but overall consistency with 512

expert-reviewed reports. 513

Table 1: Trade-off between model performance and
computational costs for training and inference using to-
tal training time [h], C02 emission during training [kg],
F1-SRR-BERT Score [%], inference time [s/sample],
inference cost [$/sample], and CO2 emissions [mg/sam-
ple] across the best-performing BERT2BERT, LLaMA-
3-3B, and LLaMA-3-70B models using NVIDIA A100-
80GB GPUs.

Model Lightweight 3B LLM 70B LLM◦

# Parameters 0.28B 3.21B 70.6B
Training time [h] 2.1 15.0 44.5◦

Training CO2 eq. [kg] 0.58 7.0 82.6◦

In
fe

re
nc

e SRR-BERT [%] 79.1 77.4 75.2
Time [s] 3.1 (0.16)∗ 10.7 1260 (37.7)†

Cost [$] 0.0043 (2e-4)∗ 0.015 1.76 (0.21)†

CO2 eq. [g] 0.075 (0.0038)∗ 0.25 67.7 (7.9) †
◦ Only trained for 1 epoch. Trained on four GPUs instead of one.
∗ For single-sample (batch-wise) processing.
† Executed on 1 (4) NVIDIA A100 (80GB) GPU(s).
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5 Discussion514

In this paper, we propose lightweight, task-specific515

models for structuring radiology reports into a pre-516

defined template. Despite being 10–250 times517

smaller than finetuned LLMs, our models achieved518

comparable performance while offering significant519

advantages in speed, cost-efficiency, and sustain-520

ability. To enable large-scale supervised training,521

we leveraged GPT-4 as a weak annotator to gen-522

erate a training dataset, aligning chest radiology523

reports from MIMIC-CXR and CheXpert Plus with524

their corresponding structured versions as ground525

truth. Since GPT-generated data may contain incon-526

sistencies and biases, we evaluated all models on527

a human-reviewed test set. Our study focused on528

two types of lightweight models, BERT2BERT and529

T5. Overall, our BERT2BERT model performed530

best when initialized from RoBERTa-PM-M3, sur-531

passing the best T5 variant, Clin-T5-Base, by 2.6%532

on GREEN. Our results further indicate that pre-533

training on biomedical texts - particularly radiology534

reports - generally improved model performance.535

However, despite being pretrained exclusively on536

radiology reports, the RadBERT model did not537

outperform general-text variants. This suggests538

that pretraining factors beyond the training corpus,539

such as architectural choices and optimization tech-540

niques, may also influence model performance. For541

example, RoBERTa-PM-M3 benefited from a distil-542

lation process from RoBERTa-large-PM-M3-Voc.543

To balance performance with computational fea-544

sibility, we first restricted our comparison to LLMs545

within the 3-8B parameter tier, evaluating differ-546

ent adaptation techniques within this range. We547

showed that LoRA finetuning consistently outper-548

formed prefix prompting and ICL methods. As549

shown in Table 6, this trend was primarily driven550

by performance differences on the Findings section.551

Given that our evaluation assessed each organ sys-552

tem independently and assigned zero points to miss-553

ing or inconsistently labeled headers (e.g., ’Lungs554

and Airways’ vs. ’Lungs’), the results suggest that555

LoRA finetuning more effectively aligned LLM556

outputs with the predefined reporting template. We557

believe that although organ system names are pro-558

vided in both the prefix prompt (see Appendix A.1)559

and the ICL examples, the absence of iterative feed-560

back mechanisms in these methods made it chal-561

lenging for models to internalize and consistently562

enforce correct structured formatting.563

Among the five evaluated LLMs and four adap-564

tation techniques, Mistral-7B and LLaMA-3-8B 565

achieved the best results. Notably, MedAlpaca- 566

7B underperformed compared to general-domain 567

models of similar size, suggesting that current 568

medicine-specific LLMs may not yet offer clear 569

advantages for structured report generation. We 570

selected LLaMA-3 models with 1B, 3B, 8B, and 571

70B parameters for benchmarking our lightweight 572

model against LLMs of increasing size in Sec- 573

tion 4.3. Under the two most effective adaptation 574

strategies—Prefix+ICL and LoRA—performance 575

generally improved with model size, with LoRA 576

finetuning ultimately enabling larger models to sur- 577

pass the lightweight model on the Findings section. 578

This came, however, at the cost of significantly 579

longer training times and higher inference costs. 580

Our qualitative analysis in Section 4.4 showed 581

that both models (the lighweight model and Mistral- 582

7B LLM finetuned with LoRA) followed the pre- 583

defined template when tested on expert-annotated 584

reports, omitting relevant findings in less than 1% 585

of cases. This suggests that lightweight models 586

(<300M parameters) can effectively learn struc- 587

tured formatting while maintaining clinical accu- 588

racy. Furthermore, the results indicate that our 589

GPT-generated annotations provided a sufficient 590

training signal, though expert review remains cru- 591

cial for ensuring data reliability. 592

6 Conclusion 593

We demonstrate that lightweight, task-specific mod- 594

els with less than 300M parameters can effec- 595

tively structure radiology reports according to a 596

predefined template, providing a practical and scal- 597

able alternative to LLMs, while addressing con- 598

cerns around computational efficiency, data privacy, 599

and deployment feasibility. Our best-performing 600

lightweight model, a BERT2BERT architecture 601

initialized from two pretrained RoBERTa-PM-M3 602

models, achieved competitive performance while 603

maintaining a significantly lower computational 604

footprint. While LLaMA-3 variants with more than 605

3 billion parameters achieved slightly better per- 606

formance on the Findings section when finetuned 607

with LoRA, the lightweight model operated at less 608

than 25% of their inference cost and CO2 emis- 609

sions, making it a more resource-efficient solution. 610

These findings reinforce the lightweight model’s 611

viability for real-world clinical applications, where 612

infrastructure limitations, privacy regulations, and 613

sustainability concerns play a critical role. 614
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Limitations615

First, as discussed in Section 3.1, the labels used616

for training our specialized models and adapting617

the LLMs were generated from MIMIC-CXR and618

CheXpert Plus reports using GPT-4 as a weak an-619

notator. While our prompt builds on previous work,620

we refined it to better align with our task’s require-621

ments (e.g., explicitly specifying organ systems for622

the Findings section). However, GPT-4 may intro-623

duce biases, and to mitigate this, we evaluate model624

performance on an independent test set annotated625

by five radiologists.626

Second, both MIMIC-CXR and CheXpert Plus627

originate from hospitals in the United States - Beth628

Israel Deaconess Medical Center (Boston, MA)629

and Stanford Hospital (Stanford, CA) - and con-630

tain only chest X-rays from adult patients. As a631

result, these datasets may lack demographic diver-632

sity, potentially limiting generalizability to other633

populations.634

Third, as described in Section 3, all models take full635

free-form reports as input and generate structured636

reports comprising the following sections: Exam637

Type, History, Technique, Comparison, Findings,638

and Impression. However, for quantitative evalua-639

tion, we focus exclusively on Findings and Impres-640

sion, as these sections are clinically critical and641

exhibit the highest variability. Other sections, such642

as Exam Type and History, often remain unchanged643

and can be directly copied from the original report,644

making them less relevant for assessing model per-645

formance.646

Fourth, 1-shot and 2-shot ICL examples were man-647

ually selected from the training set to best represent648

the data distribution. While we initially applied al-649

gorithmic methods to optimize alignment, manual650

selection proved to improve performance. This651

introduces a potential selection bias, which may652

affect the generalizability of our ICL results.653

Fifth, while we initially experimented with full-654

parameter finetuning for select LLMs, we found655

that it did not yield substantial performance im-656

provements over LoRA. Given the significantly657

higher computational and time demands of full fine-658

tuning, we opted to use LoRA as an efficient adap-659

tation strategy for all LLMs within our resource660

constraints.661

Sixth, we initially also evaluated GPT-4 using pre-662

fix prompting and ICL. However, since it was used663

for data annotation and provided as a reference for664

radiologist, its results may be biased in its favor.665

To account for this, we excluded GPT-4 from the 666

discussion to avoid misleading comparisons. 667

Seventh, while we expected the 668

LLMs—particularly the larger models—to 669

outperform the lightweight model given their 670

scale, this was not consistently observed under our 671

current finetuning setup. Although we performed 672

basic hyperparameter tuning and employed 673

established adaptation techniques, the finetuning 674

process may not have been sufficiently extensive or 675

optimized to fully leverage the capabilities of these 676

models. This is especially true for LLaMA-3-70B, 677

which was limited to a single epoch of training due 678

to computational constraints. 679

Eighth, while our selection of LLMs aims to repre- 680

sent both the current state of the art and a range of 681

model sizes, one could argue for the inclusion of 682

more domain-specific models tailored to the medi- 683

cal field. We include MedAlpaca-7B as a represen- 684

tative example, but find that it underperforms com- 685

pared to general-domain models of similar scale, 686

suggesting that current medicine-specific LLMs 687

may not yet offer a clear advantage for the structur- 688

ing task evaluated here. 689
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A Appendix 1009

A.1 GPT-4 prompt template for structuring of radiology reports 1010

The following prompt was executed with GPT-4 "Turbo 1106 preview" via Azure services to structure 1011

free-text radiology reports according to our template. The account was explicitly opted out of human 1012

review. 1013

1014
Your task is to improve the formatting of a radiology report to a clear and 1015
concise radiology report with section headings. 1016
Guidelines: 1017

1. Section Headers: Each section should start with the section header 1018
followed by a colon. Provide the relevant information as specified for 1019
each section. 1020
2. Identifiers: Remove sentences where identifiers have been replaced 1021
with consecutive underscores ('\_\_\_'). 1022
3. Findings and Impression Sections: Focus solely on the current 1023
examination results. Do not reference previous studies or historical data. 1024
4. Content Restrictions: Strictly include only the content that is relevant 1025
to the structured sections provided. Do not add or extrapolate information 1026
beyond what is found in the original report. If the original report doesn't 1027
contain the information necessary to generate a section, write the section 1028
header and then leave the section empty. Do not make up any findings.! 1029
Sections to include (if applicable): 1030
1. Exam Type: Provide the specific type of examination conducted. 1031
2. History: Provide a brief clinical history and state the clinical 1032
question or suspicion that prompted the imaging. 1033
3. Technique: Describe the examination technique and any specific protocols 1034
used. 1035
4. Comparison: Note any prior imaging studies reviewed for comparison with 1036
the current exam. 1037
5. Findings: 1038

Describe all positive observations and any relevant negative 1039
observations for each organ or organ system under distinct headers. 1040
Start with the organ system name followed by a colon, then list 1041
observations. 1042
Here is the corresponding template: 1043

Organ 1: 1044
- Observation 1 1045

Organ 2: 1046
- Observation 1 1047
- Observation 2 1048

Use only the following headers for organ systems: 1049
- Lungs and Airways 1050
- Pleura 1051
- Cardiovascular 1052
- Hila and Mediastinum 1053
- Tubes, Catheters, and Support Devices 1054
- Musculoskeletal and Chest Wall 1055
- Abdominal 1056
- Other 1057
6. Impression: Summarize the key findings with a numbered list from 1058
the most to the least clinically relevant. Ensure all findings are numbered. 1059

The radiology report to improve is the following: \{report\} 10601061
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A.2 Overview of model checkpoints and pre-training data1062

Table 2: Pretrained T5 models used for initialization along with details of their pretraining corpus.

Model Description
T5-BASE (Raffel et al., 2020) Original model, pre-trained on C4.
FLAN-T5-BASE (Chung et al., 2024) Additional instruction-prompt tuning.
SCIFIVE (Phan et al., 2021) Fine-tuned on PubMed Abstract (NCBI, 1996),

and PubMed Central (NCBI, 2000).
CLIN-T5-SCI Fine-tuned on PubMed, MIMIC-III (Johnson et al., 2016),
(Lehman and Johnson, 2023) and MIMIC-IV (Johnson et al., 2020).
CLIN-T5-BASE (Lehman and Johnson,
2023)

Fine-tuned on MIMIC-III and MIMIC-IV.

Table 3: Pretrained RoBERTa models used for initialization of the BERT2BERT model along with details of their
pretraining corpus.

Model Description
RoBERTa-base (Liu, 2019) Baseline version, pretrained on Books and Wikipedia.
BioMed-RoBERTa (Gururangan et al.,
2020)

Pretrained on PubMed abstracts and PubMed Central.

RoBERTa-base-PM-M3-Voc-distill- Pretrained on PubMed abstracts, PubMed Central
align (Lewis et al., 2020) full-text articles, and MIMIC-III.
RadBERT-RoBERTa (Yan et al., 2022) Fine-tuned on radiology reports from the Veterans

Affairs health care system.
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A.3 Considerations and hyperparameters for1063

end-to-end training1064

We train all expert models (BERT2BERT and T51065

instances) with the following set of hyperparame-1066

ters:1067

• Cosine learning rate scheduler, starting at1068

1e−4, with 5% warm-up ratio before decay.1069

• Maximum of 10 epochs, with early stopping1070

enabled by loading the best model at the end1071

based on validation performance.1072

• Batch size of 32 per device for training and 161073

for evaluation, with four gradient accumula-1074

tion steps, resulting in an effective batch size1075

of 128 for training.1076

• Adam optimizer with β2 = 0.95 and weight1077

decay of 0.1.1078

• Sequence lengths: Model processes a maxi-1079

mum input length of 370 tokens, with gener-1080

ated outputs constrained between 120 and 2861081

tokens.1082

We experimented with different learning rate sched-1083

ulers and initial learning rates but found the here1084

presented set to give better performance in the vali-1085

dation loss.1086

A.4 Considerations and hyperparameters for1087

parameter-efficient fine-tuning1088

As discussed in Section 3.4, we initially finetune1089

all LLMs using the same hyperparameters. We1090

apply LoRA and adjust the target modules to align1091

with each LLM’s architecture. We find that, due to1092

their comparable size, using the same LoRA rank1093

and scaling factor leads to a similar proportion of1094

updated parameters across all models (∼ 0.1%).1095

We use the following set of hyperparameters:1096

• Cosine learning rate scheduler, starting at1097

1e−4, with 5% warm-up ratio before decay.1098

• Maximum of 5 epochs, with early stopping1099

enabled by loading the best model at the end1100

based on validation performance.1101

• LoRA adaptation with rank r = 8 and scaling1102

factor α = 8 to enable parameter-efficient1103

fine-tuning.1104

• Batch size of 16 per device for training and 11105

for evaluation, with 16 gradient accumulation1106

steps, resulting in an effective training batch 1107

size of 256. 1108

• Adam optimizer with β2 = 0.95 and weight 1109

decay of 0.1. 1110

We use similar settings as in expert model fine- 1111

tuning but reduce the maximum number of epochs 1112

due to computational constraints. The results in 1113

Section 4.3 later confirm our initial estimate for the 1114

optimal LoRA rank. 1115
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A.5 Detailed Evaluations of Model Performance1116

Table 4: Detailed comparison of expert models. This table presents test set evaluations of our finetuned expert
models initialized from different pre-trained checkpoints. Each model was trained three times with different random
seeds and evaluated on the Findings sections of the MIMIC (FM ) and CheXpert (FC) test sets, as well as their
corresponding Impression sections (IM and IC).

Model Section BLEU ROUGE-L BERTScore RadGraph GREEN SRR-BERT
BERT2BERT
roberta-base FM 31.3 62.2 67.4 54.8 66.1 73.0

FC 30.6 59.0 64.7 50.1 63.0 69.4
IM 41.1 65.4 79.7 57.5 65.6 81.8
IC 51.1 74.9 86.3 66.1 82.0 94.5

roberta-biomed FM 31.6 60.4 65.4 53.1 62.8 70.4
FC 29.4 57.8 63.8 48.2 62.1 70.0
IM 34.0 65.5 79.9 58.0 69.1 81.8
IC 48.3 74.1 86.1 65.3 82.0 91.3

roberta-PM FM 33.3 62.6 67.4 54.3 67.0 71.9
FC 32.8 62.5 67.3 53.8 64.2 72.8
IM 42.0 66.1 79.8 56.5 71.8 81.4
IC 53.4 77.6 87.5 67.7 86.4 90.1

roberta-rad FM 32.6 62.1 66.8 54.9 64.8 71.8
FC 29.4 59.2 64.2 50.7 61.0 69.1
IM 42.3 67.5 80.6 58.9 69.7 81.7
IC 52.4 76.6 87.2 65.7 86.7 94.3

T5
T5-Base FM 26.4 52.8 58.8 64.9 58.6 63.6

FC 26.0 57.2 61.9 49.1 59.7 66.5
IM 35.8 61.7 77.7 56.2 69.8 80.1
IC 48.5 73.2 85.8 67.9 81.2 87.1

Flan-T5-Base FM 27.9 55.9 61.0 48.0 59.3 65.4
FC 30.3 59.2 63.5 51.1 62.2 66.2
IM 37.3 62.0 77.6 55.5 66.2 77.8
IC 51.6 76.1 87.1 68.6 82.3 91.7

SciFive FM 24.1 49.3 55.6 43.4 56.4 62.0
FC 24.6 54.1 60.5 47.2 56.7 65.7
IM 38.6 63.2 78.8 59.5 71.8 82.9
IC 46.8 71.4 85.1 68.1 77.8 89.4

Clin-T5-Sci FM 28.7 59.0 64.4 50.7 62.4 68.9
FC 23.4 52.5 57.1 44.0 56.1 62.0
IM 33.6 59.4 76.2 51.4 63.8 76.3
IC 46.7 71.8 84.6 62.8 84.0 93.0

Clin-T5-Base FM 29.8 58.3 64.0 50.9 62.7 68.6
FC 27.1 57.3 62.0 49.0 60.9 68.1
IM 37.6 63.3 78.9 55.7 68.7 80.2
IC 48.4 74.8 85.5 67.9 88.8 94.6
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Table 5: Comparison of LLM performance across different adaptation and finetuning methods. Results are averaged
over all samples in the expert-reviewed MIMIC and CheXpert test sets and reported separately for the Findings and
Impression sections. The highest score for each model across adaptation techniques is highlighted.

Model Method BLEU ROUGE-L BERTScore Radgraph GREEN F1-Score
Findings Section

Medalpaca-7B Prefix 0.0 0.0 0.0 0.0 0.0 0.0
1-shot ICL 0.0 0.2 1.4 0.1 0.1 0.9
2-shot ICL ICL 0.0 0.0 0.0 0.0 0.0 0.0
Prefix+ICL 0.0 2.3 7.6 0.7 11.4 5.4
LoRA 19.7 45.4 50.5 41.3 51.0 57.1

Phi-3.5-mini Prefix 11.0 34.6 38.9 26.7 38.1 46.5
1-shot ICL 8.6 21.5 24.8 20.1 25.6 26.4
2-shot ICL 6.8 20.1 24.1 18.5 23.2 25.8
Prefix+ICL 14.3 35.3 40.7 28.8 38.3 43.6
LoRA 17.8 43.8 49.5 39.0 46.7 52.9

Vicuna-7B Prefix 0.0 0.0 0.0 0.0 0.0 0.0
1-shot ICL 5.9 21.5 29.2 17.5 22.8 32.4
2-shot ICL 7.1 19.8 24.6 17.0 22.6 28.2
Prefix+ICL 7.4 23.7 30.9 19.0 26.3 32.2
LoRA 32.7 62.1 66.8 54.2 66.1 70.6

LLaMA-3-8B Prefix 2.4 10.9 12.8 8.6 13.1 12.7
1-shot ICL 13.1 35.6 42.1 30.6 40.1 46.4
2-shot ICL 13.7 36.4 42.1 31.1 38.0 46.4
Prefix+ICL 18.7 44.7 51.1 37.6 48.6 56.6
LoRA 35.0 62.9 68.4 54.4 68.1 74.0

Mistral-7B Prefix 8.2 26.8 30.3 6.9 32.5 35.8
1-shot ICL 6.5 15.2 18.4 14.7 16.9 19.4
2-shot ICL 5.9 14.9 18.1 12.5 18.5 18.4
Prefix+ICL 14.3 30.6 35.6 24.8 34.1 38.9
LoRA 37.5 69.3 73.6 61.2 72.4 77.7

Impression Section
Medalpaca-7B Prefix 23.6 55.1 63.9 52.0 75.6 80.8

1-shot ICL 23.3 54.0 60.7 50.3 66.8 74.1
2-shot ICL 25.8 56.5 66.7 57.4 77.2 76.5
Prefix+ICL 18.4 46.7 60.8 39.8 65.2 63.8
LoRA 17.4 53.5 63.4 38.4 68.9 86.2

Phi-3.5-mini Prefix 19.2 45.7 63.7 43.7 51.5 76.0
1-shot ICL 24.4 48.6 66.8 47.7 65.3 77.8
2-shot ICL 32.6 48.5 66.8 51.9 71.8 79.2
Prefix+ICL 27.1 52.5 69.7 46.7 64.2 74.2
LoRA 39.3 64.4 77.3 56.2 67.5 78.1

Vicuna-7B Prefix 34.0 64.8 73.7 57.8 71.9 79.6
1-shot ICL 38.8 64.7 77.5 61.5 71.9 84.3
2-shot ICL 36.8 62.9 76.8 59.5 71.8 82.3
Prefix+ICL 37.7 64.9 77.0 56.6 70.1 81.4
LoRA 38.0 63.7 70.9 54.3 72.4 81.5

LLaMA-3-8B Prefix 25.5 55.4 70.7 51.3 61.9 77.5
1-shot ICL 9.7 27.5 45.6 33.1 73.5 63.9
2-shot ICL 10.6 30.1 49.3 32.6 74.0 68.2
Prefix+ICL 15.9 45.3 62.5 41.9 65.4 70.6
LoRA 35.3 65.3 72.0 54.7 74.2 83.7

Mistral-7B Prefix 33.6 63.4 78.4 56.0 69.5 78.0
1-shot ICL 38.3 65.6 76.2 62.9 67.4 82.0
2-shot ICL 39.2 66.0 77.2 62.9 67.4 82.0
Prefix+ICL 42.6 70.7 80.2 61.9 55.0 86.1
LoRA 42.3 67.6 74.8 57.0 76.1 84.8
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Table 6: Detailed comparison of LLM adaptation methods for the Findings and Impression sections. The table shows
average values across all five LLMs (excluding GPT-4), along with percentage changes relative to performance
under prefix prompting.

Method BLEU ROUGE-L BERTScore Radgraph GREEN F1-SRR-BERT
Findings Section

Prefix 4.31 14.4 16.4 8.43 16.7 19.7
1-shot ICL 6.79 18.8 23.2 16.6 21.1 25.1

↑57.5% ↑30.2% ↑41.4% ↑96.8% ↑26.1% ↑27.3%
2-shot ICL 6.67 18.2 21.8 15.8 20.4 23.8

↑54.8% ↑26.3% ↑33.0% ↑87.4% ↑22.2% ↑20.6%
Prefix+ICL 11.0 27.3 33.2 22.2 29.7 35.3

↑155% ↑89.6% ↑102% ↑163% ↑77.8% ↑79.2%
LoRA 28.5 56.7 61.7 50.0 60.7 66.5

↑562% ↑293% ↑277% ↑493% ↑263% ↑237%
Impression Section

Prefix 27.2 56.9 70.1 52.1 66.1 78.4
1-shot ICL 26.9 52.0 65.3 50.7 70.4 77.0

↓-1.1% ↓-8.5% ↓-6.8% ↓-2.7% ↑6.5% ↓-11.8%
2-shot ICL 26.8 52.8 67.3 52.8 72.4 77.6

↓-1.5% ↓-7.2% ↓-3.9% ↑1.3% ↑9.6% ↓-1.0%
Prefix+ICL 28.4 56.0 70.0 49.4 62.2 75.2

↑4.4% ↓-1.6% +0.0% ↓-5.2% ↓-5.9% ↓-4.1%
LoRA 34.4 62.9 71.6 52.1 71.8 83.5

↑26.8% ↑10.6% ↑2.2% +0.0% ↑8.7% ↑6.5%

Table 7: Comparison of lightweight and LLM model performance. Results are averaged over all samples in the
expert-reviewed MIMIC and CheXpert test sets and reported separately for the Findings and Impression sections.
The highest score for each model across adaptation techniques is highlighted.

Model Method BLEU ROUGE-L BERTScore Radgraph GREEN F1-Score
Findings Section

BERT2BERT Full Training 32.9 62.6 67.4 54.0 66.4 72.3
LLaMA-3-1B Prefix+ICL 3.7 11.6 17.3 12.2 11.9 16.5

LoRA 29.8 58.8 64.0 50.5 62.3 67.9
LLaMA-3-3B Prefix+ICL 10.9 29.6 36.4 24.7 33.3 40.8

LoRA 33.4 65.6 69.8 54.6 68.8 75.4
LLaMA-3-8B Prefix+ICL 18.7 44.7 51.1 37.6 48.6 56.6

LoRA 35.0 62.9 68.4 54.4 68.1 74.0
LLaMA-3-70B Prefix+ICL 25.4 53.3 60.2 41.3 53.4 63.1

LoRA 30.2 59.1 64.2 51.2 63.3 68.9
Impression Section

BERT2BERT Full Training 47.7 71.9 83.7 62.1 77.8 85.8
LLaMA-3-1B Prefix+ICL 21.7 51.6 65.8 44.6 64.6 71.9

LoRA 39.3 64.5 78.9 55.4 71.6 79.2
LLaMA-3-3B Prefix+ICL 21.2 48.9 66.0 46.0 68.9 76.2

LoRA 42.1 64.9 78.3 58.7 70.7 79.3
LLaMA-3-8B Prefix+ICL 15.9 45.3 62.5 41.9 65.4 70.6

LoRA 35.3 65.3 72.0 54.7 74.2 83.7
LLaMA-3-70B Prefix+ICL 21.4 57.5 68.5 69.0 89.2 88.3

LoRA 32.3 64.8 77.9 57.6 75.8 81.5

Table 8: Template adherence errors across the three best-performing models on 233 test samples.

Evaluation Category BERT2BERT LLaMA-3-8B LLaMA-3-70B
Missing or misspelled headers 0 0 0
Different organ system names 0 14 35
Inconsistencies in bullet/enumeration
formatting

0 80 61

Mismatch of mentioned organ systems 130 136 141
of which potentially irrelevant 100 113 111
of which potentially relevant 30 23 30
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