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Figure 1. Ask, Pose, Unite. We scale data acquisition for close interactions by Asking a Large Vision Language Model (LVLM) to identify
contact points between people via language descriptions of the body parts that are touching. We Pose 3D meshes in the scene with predicted
2D keypoints and Unite the meshes in 3D by constraining an optimization of the mesh parameters with the predicted contacts. Through
our APU data generation method we curate a Human Mesh Estimation dataset for close interactions.

Abstract

Social dynamics in close human interactions pose signifi-001
cant challenges for Human Mesh Estimation (HME), par-002
ticularly due to the complexity of physical contacts and003
the scarcity of training data. Addressing these challenges,004
we introduce a novel data generation method Ask, Pose,005
Unite (APU) which utilizes Large Vision Language Models006
(LVLMs) to annotate contact maps to guide test-time opti-007
mization. APU produces paired image and pseudo-ground008
truth meshes from monocular images. Our method not only009
alleviates the annotation burden but also enables the as-010
sembly of a comprehensive dataset specifically tailored for011
close interactions in HME. Our dataset, comprising over012
6.2k human mesh pairs in contact covering diverse inter-013
action types, is curated from images depicting naturalistic014
person-to-person scenes. We empirically show that using015

data from APU improves mesh estimation on unseen inter- 016
actions when training a diffusion-based contact prior. Our 017
work addresses longstanding challenges of data scarcity for 018
close interactions in HME enhancing the field’s capabilities 019
of handling complex interaction scenarios. Our code, mod- 020
els and data will be made publicly available upon accep- 021
tance. 022

1. Introduction 023

Understanding human behavior is fundamental for many 024
fields, such as socially aware robotics, patient-caregiver 025
interactions in healthcare, and parent-child interactions in 026
psychology. Central to this pursuit is the study of close in- 027
teractions between individuals, which are crucial for deci- 028
phering the complexities of human dynamics. The field of 029
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Human Mesh Estimation (HME) has emerged as a promis-030
ing approach to study these dynamics, leveraging para-031
metric models to interpret intricate scenes involving mul-032
tiple people. However, despite significant advancements in033
multi-person HME, current methods struggle when faced034
with close interactions. This is because accurately reason-035
ing about contacts requires a deep understanding of their 3D036
nature—how people touch and interact in three-dimensional037
space. Capturing this type of training data is particularly038
challenging due to the scarcity of ground truth 3D meshes,039
which are essential for precise estimation and analysis. The040
lack of detailed 3D data leaves gaps in the ability to model041
the subtleties of human contact, resulting in less accurate042
and reliable HME outcomes. Addressing this data scarcity043
is crucial for advancing the field and improving the handling044
of complex interaction scenarios.045

Recent efforts [14, 17, 67] have successfully acquired046
ground truth data for closely interacting scenes using mo-047
tion capture (mocap) systems. Although effective, these048
systems are costly and limit the dataset’s scope. Typically,049
these datasets feature only two subjects at a time, are con-050
fined to indoor lab environments, and cover a restricted set051
of predefined actions. Other approaches [14, 38] have pro-052
posed using weak supervision to avoid the need for mocap053
by formulating contact as a matching problem between sur-054
face body regions of the SMPL model [33] in the form of055
binary contact matrices. While promising, this approach re-056
quires manual annotation of each contact region, limiting057
the scalability and integration into existing HME pipelines.058

More recently, Müller et al. [38] successfully gener-059
ated pseudo-ground truth meshes from manually annotated060
image-contact matrix pairs from the FlickrCI3D dataset061
[14], which they used to train a diffusion-based contact062
prior for HME. The key insight for this approach was that063
the additional data enabled the contact prior to learn more064
meaningful contacts, significantly enriching the training set.065
However, despite these advancements, the contact prior still066
faces challenges with complex or out-of-distribution inter-067
action scenarios. This problem is compounded by the high068
cost of sourcing relevant images and manually annotating069
people interacting with their contact matrices. This high-070
lights the ongoing need for solutions that can reflect the071
wide range of interactions found in in-the-wild scenes. Fur-072
ther progress in HME will be facilitated by datasets that ac-073
curately mirror natural interactions, capturing the full spec-074
trum of human dynamics in diverse and unstructured envi-075
ronments.076

In this work, we introduce a novel data generation077
method and dataset to increase the diversity of posed078
meshes interacting closely. We develop an innovative ap-079
proach Ask, Pose, Unite (APU) to automatically create080
paired pseudo-ground truth meshes for scenes with closely081
interacting individuals (see Figure 1). First, we Ask a Large082

Table 1. Multi-person Human Mesh Estimation datasets. ✕: ab-
sent, ✓present, ✓–: has some examples. Size: images or unique
sequences. CI: close interactions.

Dataset Source Size Subjects Subjects Actions CI
Contact

anns.
AGORA [39] synth. 18k all ages 5 - 15 - ✕ ✕
BEDLAM [4] synth. 380k adults 1 - 10 - ✕ ✕
3DPW [57] wild 60 adults ≥ 2 - ✓– ✕
MuPoTS-3D [36] lab & wild 20 adults 3 - ✓– ✕
MultiHuman [70] lab 150 adults 1-3 - ✓– ✕

ExPI[17] lab 60k adults 2 16 ✓ ✕
Harmony4D[26] controlled 21 adults 24 6 ✓ ✓
FlickrCI3D [14] wild 10k all ages > 100 - ✓ ✓
CHI3D [14] lab 631 adults 2 8 ✓ ✓
Hi4D [67] lab 100 adults 2 22 ✓ ✓
APU (Ours) lab & wild 6209 all ages > 2 > 100 ✓ ✓

Vision Language Model (LVLMs) to produce contact maps 083
from an image, then we use an optimization based on 2D 084
keypoint reprojection to Pose the 3D meshes. Finally, we 085
Unite the meshes by enforcing contact between them using 086
the predicted contacts. 087

Our APU method enables the generation of detailed 3D 088
representations of interactions without the need for costly 089
and labor-intensive motion capture systems. To support 090
this, we curate a dataset, which features a large diversity 091
of natural interaction types. We collect these types from 092
in-the-wild images depicting people involved in close con- 093
tact, capturing the complexity and variability of real-world 094
human dynamics. By including a wide range of interaction 095
scenarios, our method and dataset provide a robust foun- 096
dation for training Human Mesh Estimation (HME) mod- 097
els for interacting humans. We validate the effectiveness 098
of our data generation method by improving a contact prior 099
for HME on new interactions through generating in-domain 100
pseudo data. We also quantify the quality of our predic- 101
tions on the established lab dataset Hi4D. This validation 102
shows that our approach not only enhances the quality of 103
HME models but also ensures their adaptability to diverse 104
interaction scenarios. 105

Our contributions can be summarized as follows: (1) 106
We propose APU a novel data generation method for 107
close interactions that leverages noisy automatic annota- 108
tions to scale data acquisition, producing pseudo-ground 109
truth meshes from in-the-wild images. (2) We curate a 110
dataset of paired images and pseudo-ground truth meshes 111
featuring a diverse array of close interaction types and sub- 112
jects. (3) We demonstrate that the data generated with APU 113
significantly enriches the representation space of a close 114
contact prior for HME, improving accuracy particularly for 115
less common interaction scenarios in the NTU RGB+D 120 116
dataset. 117

2. Related Work 118

Multi-person HME. Monocular Human Mesh Estima- 119
tion is an underspecified problem, particularly challenging 120
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due to the difficulty of capturing paired 2D to 3D ground121
truth, especially for multiple people. To address this chal-122
lenge, various datasets have adopted alternate supervision123
strategies (see Table 1). Some datasets, [4, 39] use syn-124
thetic data to bypass the difficulties of capturing real-world125
3D ground truth, providing a large number of images and126
subjects. Others [36, 70] restrict their settings to lab en-127
vironments, capturing high-quality 3D data but a trade-off128
on diversity. Since the work by [5], single person HME129
methods have relied on weak supervision to overcome the130
scarcity of paired 2D to 3D ground truth, using body part131
segmentations [24], 2D keypoints [29, 60], and priors based132
on mocap data [28, 34, 41, 58]. Our work extends this133
line of research by introducing a data generation method134
for paired 2D to 3D pseudo-ground truth.135

Multi-person HME methods often process individuals136
independently, which can yield accurate predictions for iso-137
lated figures but fails to correctly position them relative to138
one another in world space. Recent advancements have ad-139
dressed these issues by using a unified spatial framework140
for entire images [31], jointly modeling scene and camera141
dynamics [66], tracking people across time [16, 44, 52, 68],142
harnessing all available data [6], and managing occlusions143
[10, 25, 71]. In contrast, single-stage approaches [2, 23, 48–144
50, 59], which predict all subjects simultaneously, have145
demonstrated superior performance in terms of spatial ac-146
curacy and scale consistency. Despite their effectiveness,147
these methods depend heavily on extensive datasets, which148
are scarce for interactions involving close proximity. Our149
work aims to enrich the data available for these scenarios,150
potentially enhancing the effectiveness of existing models.151

Close interactions in HME. Recently, studying close152
interactions in multi-person HME has become possible153
largely due to the introduction of new datasets (see Table154
1). Lab-based datasets such as CHI3D [14], Hi4D [67],155
ExPI [17], and Harmony4D [26] provide 3D ground truth156
via capture systems with multiple calibrated cameras. How-157
ever, these precise annotations come at the cost of the vari-158
ety of scenes that can be captured. These works make the159
most of their scenes by defining a set of actions which re-160
flect common or every-day interactions.161

In this context, Fieraru et al. [14] expand on the inter-162
action types by tackling close interactions in-the-wild via163
weak supervision. In particular, they formulate proximity164
as a contact problem where the objective is to minimize165
the distance between surfaces in contact. [14] introduce166
the FlickrCI3D dataset, a large collection of images from167
the internet where pairs of people in contact are manually168
annotated with contact maps, binary matrices that indicate169
which body parts are in contact. This approach has also170
been used to train diffused models as contact priors [38]171
and has also been expanded to include self-contact [37] and172
scene contact [3, 19, 22] scenarios. More recently, [12] ex-173

plore contact between people via conditional motion gener- 174
ation. Despite the effectiveness of contact maps in lifting 175
2D information onto a 3D representation space, they are 176
costly to annotate. By leveraging LVLMs, our work intro- 177
duces an automatic method for predicting contact maps di- 178
rectly from 2D images. Our approach can also use LVLMs 179
to extract other relevant contextual information such as the 180
type of interaction or descriptions of the scene. This au- 181
tomated approach reduces the annotation burden, scales up 182
data acquisition, and enriches a model’s training data with 183
examples from a new or target distribution. 184

Learning from contact maps to model interactions has 185
been explored more extensively in the context of human- 186
object interactions, either by predicting contact maps di- 187
rectly from images [9, 56] or by inferring object affordances 188
from mesh estimates [11]. Concurrent to this work, [47] has 189
very recently proposed a method to produce contact maps 190
from LVLMs, but their approach is limited to the existing 191
scope of close interaction datasets. In contrast, our method 192
and generated dataset explicitly address the problem of data 193
diversity by using LVLMs as part of a scalable data genera- 194
tion technique that improves HME on novel interactions. 195

Beyond human-object interactions, the focus has shifted 196
towards understanding how individuals interact with their 197
environments, such as improving motion realism through 198
accurate ground-plane contact [46, 56, 65]. Some works 199
combat data scarcity through the use of synthetic data 200
[20, 35], pre-scanned scenes [45], and by leveraging expert 201
models in object detection and mesh reconstruction [69]. 202
Similarly, person-to-person interaction studies have also fo- 203
cused on predicting contact maps from images [8, 15], but 204
they do not handle out-of-distribution or complex inter- 205
actions well. In response, Müller et al. [38] propose a 206
diffusion-based contact prior trained with pseudo-ground 207
truth 3D meshes created by constraining the optimization 208
with manually annotated contact maps. Our work builds on 209
this line of research by proposing a method to make a con- 210
tact prior more robust to new interactions. 211

LVLMs for 3D understanding. There is a growing line 212
of research that employs LVLM’s to obtain representations 213
better aligned with real-world scenarios. Some works focus 214
on 3D reasoning, utilizing LVLMs for the assessment of 3D 215
reconstructions [61], motion generation [42], and enhanc- 216
ing the diversity of representation spaces [18, 62]. Others 217
explore human-object contacts [27, 63], and directly rea- 218
soning about pose [13, 54]. Our work contributes to this 219
line of research by employing LVLMs as weak annotators 220
to scale data generation and improve the modeling of close 221
human interactions in 3D. 222

3



CVPR
#####

CVPR
#####

CVPR 2025 Submission #####. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

"How are the people 
in contact""How are the people 
in contact""How are the people 

in contact""How are the people 
in contact"

LVLM

Wrong laterality
No contact

Correct laterality
Correct Contact

Correct pairs

Contact map 
denoising

Constrained 
optimization

Automatic 
filtering

Images

Prompts

"Person:left hand"
left

:right hand"
right

"Person

All optimized pairs

Figure 2. Overview of our data generation method. From any set of images we obtain pairs of people in contact and their pseudo-ground
truth meshes. For candidate pairs of people in contact we query an LVLM for their contact maps, then denoise the laterality of the contact
maps via predicted 2D keypoint chirality and confidence-based soft contact maps. We use the contacts to constrain the optimization of the
mesh parameters and automatically filter out failure cases to produce a set of image and correctly reconstructed mesh pairs.

3. Ask Pose Unite223

3.1. Data generation method224

Problem formulation. We aim to curate images depicting225
pairs of people closely interacting with well-reconstructed226
pseudo-ground truth meshes from any set of in-the-wild im-227
ages. To achieve this, we propose a data generation method228
(Figure 2 outlines the main steps of our approach). Specifi-229
cally, our goal is to locate pairs of closely interacting people230
within any set of images and produce mesh estimates for231
each pair. Since we only rely on weak supervision in the232
form of predicted contact maps, 2D keypoints, and inter-233
action labels, we also aim to automatically select the well-234
reconstructed meshes.235

In the context of a single image capturing a scene of236
close interactions between individuals, our objective is to fit237
a SMPL-X [41] parametric 3D human mesh model for each238
individual p to recover their pose θp ∈ R21×3 and shape239
βp ∈ R10 parameters. We position each mesh in world co-240
ordinates by also estimating the root translation γp ∈ R3241
and global body rotation ϕp ∈ R3. Following previous242
work [39, 50], we support the prediction of multiple ages243
including children with the SMPL-XA model which adds244
an interpolation parameter σp between the shape space of245
SMPL-X and SMIL [21]. In practice σp is concatenated to246
the shape parameters such that βp ∈ R11.247

Given an unannotated image I of two people closely248
interacting we aim to recover their meshes Ma and249
M b by following an optimization of the parameters250
{θp, βp, γp, ϕp, σp}p=a,b under the constraint of a contact251
map C. Where C ∈ {0, 1}R×R is defined as a guidance252
of which body surface regions are in contact. In particular,253
Ci,j = 1 indicates that region ri of Ma is in contact with254
region rj of M b.255

Candidate proposal. For a set of images we obtain 2D 256
keypoints and initial mesh predictions from off-the shelf es- 257
timators. We propose as candidates all pairs of people with 258
k valid keypoints within a distance d of each other and with 259
mesh predictions aligned with the keypoints. 260

LVLM contact map querying. We employ a LVLM 261
to automatically generate C. The inherent challenge of us- 262
ing LVLMs for this task lies in their low performance when 263
grounding complex spatial relationships depicted in 2D im- 264
ages [55]. Naively querying the LVLM often results in hal- 265
lucinated or missing contacts leading to degenerate mesh 266
predictions. We tackle this limitation by in-context prompt- 267
ing and denoising the contact maps (explained in the fol- 268
lowing section). 269

To query the LVLM for pairs of body parts that are 270
touching in I we first regroup the 75 body regions intro- 271
duced in [14] into coarser semantically meaningful sets. 272
These sets correspond to the body parts: hand, arm, leg, 273
thigh, chest, stomach, back, neck, face, head, foot, shoul- 274
der, elbow, knee, forearm, upper arm, and waist. In practice 275
we re-map a body part Bi to a list of corresponding body 276
regions such that Bi = {r1, r2, ..., rn}. When available, 277
we ground the LVLM by incorporating a low-cost soft la- 278
bel A, which indicates the type of interaction depicted in 279
the image. A is a fundamental element of existing close in- 280
teraction datasets and serves in this setting as a contextual 281
prior. 282

Contact map denoising. We observe that even with con- 283
textual clues, LVLMs are unreliable when predicting the lat- 284
erality of the body parts. We hypothesize that this problem 285
arises from the model needing to reconcile two conflicting 286
frames of reference: the visual perspective of the image and 287
the anatomical orientation of the human body. For instance, 288
a person’s right hand may appear on the left side of an im- 289

4



CVPR
#####

CVPR
#####

CVPR 2025 Submission #####. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 3. Examples of mesh pairs and images from our APU dataset obtained with our data generation method. Note that even with
imperfect 3D meshes from the weak-supervision, our method can be used on a wide variety of subjects, ages, interactions, and settings.

age. To correct these mistakes, we exploit the commonali-290
ties between estimated 2D pose keypoints and surface body291
regions. In particular, 2D keypoint estimation methods have292
been trained on larger sets of manual annotations that ex-293
plicitly address the conflicting frames of reference.294

Given two predicted body parts in contact with their295
body sides (either left, right, or both) Bi,side and Bj,side, we296
use the normalized distance between the set of correspond-297
ing 2D keypoints for each body part to determine the chiral-298
ity. Due to the difference in appearance between same-side299
and opposite-side contacts, we only compare the combina-300
tions that match the description. For example, if the predic-301
tion is Bi,left and Bj,right, we evaluate two possible combi-302
nations: (Bi,left, Bj,right) and (Bi,right, Bj,left). We then303
select the combination with the closest normalized distance304
between the corresponding 2D keypoints.305

Constrained optimization. Following prior work [5,306
38], we obtain pseudo-ground truth meshes Ma and M b307
for a pair of people in contact using a two-stage optimiza-308
tion which takes as input estimated 2D keypoints, an ini-309
tial estimate of the parameters {θ̃p, β̃p, γ̃p}p=a,b, and C.310
In the first stage we optimize {θp, βp, γp}p=a,b given a311
contact loss LC and other priors as guidance. We pro-312
pose a soft version of the contact loss from [38] to ac-313
count for the uncertainty in the predicted contacts. LC =314 ∑

i,j WijCij min
v∈ri,u∈rj

∥v − u∥2, where u and v are ver-315

tices, and Wij = is the normalized keypoint distance from316
the denoising step scaled by the LVLM’s contact confi-317
dence.318

As additional guidance for the optimization we use a319
pose prior based on a Gaussian Mixture Model LGMM320
[5], an L2 shape prior Lβ that penalizes deviation from the321
SMPL-X mean shape, Lθ̄ an L2 loss that penalizes devia-322
tion from the initial pose θ̃p, and a 2D keypoint reprojection323

loss LJ . In the second stage we fix βp and add LP to resolve 324
interpenetration between meshes [38]. 325

The complete loss for the constrained optimization with 326
values that re-weigh each term is: Loptim = λJLJ + 327
λCLC + λGMMLGMM + λβLβ + λPLP + λθ̄Lθ̄ 328

Automatic filtering. As a last step we implement a fil- 329
tering strategy to remove incorrect mesh products from the 330
optimization by thresholding the 2D keypoint reprojection 331
loss of Ma and M b. We keep all instances with error less 332
than 20 for both subjects. 333

Implementation details. We use GPT-4V [1] from 334
2024-04-09 as the LVLM and ViTPose [64] as the keypoint 335
estimator. For the constrained optimization with the gen- 336
erated contact maps we include Openpose [7] as an addi- 337
tional keypoint estimator. We set λC = 1.0, λJ = 0.02 for 338
both stages and follow [38] for all other hyperparameters. 339
The optimization was processed on an internal Slurm Linux 340
cluster with Nvidia A600, A100, and L40 GPUs. Due to 341
mismatches between the assigned person identity between 342
the LVLM and initial mesh predictions, for guidance during 343
training we consider the minimum of LC for both configu- 344
rations of people. 345

3.2. Diverse data with APU 346

We use our data generation method, APU, to compile a 347
dataset with diverse person-to-person interactions. We build 348
on a key insight from prior works [14, 38]: using 2D im- 349
ages with weak labels to target interaction diversity in 3D 350
meshes. We have gathered more than 6,000 meshes paired 351
with images, contact annotations, and natural language de- 352
scriptions of the interactions from both laboratory and in- 353
the-wild scenes, encompassing a variety of ages, subjects, 354
and interactions (see Table 1). Figure 3 shows examples of 355
the images and mesh pairs obtained with our method from 356
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Table 2. Results on close interaction NTU RGB+D 120 test set. PA-MPJPE: Joint two-person Procrustes aligned MPJPE. Auto CM:
contact maps generated by our method. Best values in bold.

Method Mean
Pat on
back Handshake

Knock
over

Grab
stuff

Step on
foot High-five Whisper Support

BEV 111.9 93.5 117.8 113.0 109.0 107.7 108.8 129.9 115.7
Ours (Auto CM) 100.8 100.3 100.6 96.2 94.8 95.2 103.4 106.2 109.5
BUDDI [38] 98.7 89.7 112.7 89.3 96.8 100.4 105.6 96.5 98.6
Ours (Contact prior) 92.5 86.7 101.2 87.8 89.7 90.9 94.1 94.6 94.8

2D images.357
To address the skewed distribution of interaction types358

in existing datasets, we curated the APU dataset from two359
primary sources of images: those with and without action360
classes. Below we detail each data source and its attributes.361

TV Interactions [40]. This dataset was collected from362
300 video clips from 20 TV shows, containing 4 interac-363
tions: handshakes, hugs, high fives, and kisses, and clips364
without or with other interactions.365

Human Interaction Images [53]. This dataset comprises366
images of facial expressions of people interacting. We se-367
lected 7 uncrowded action types: boxing-punching, hand-368
shaking, high-five, hugging, kicking, kissing, and talking.369

Relative Human [50]. This dataset focuses on multi-370
person scenes with people of all ages including young chil-371
dren.372

NTU RGB+D 120 train [32]. A dataset for human action373
recognition with 3D joint annotations from Kinect sensors.374
We selected 11 of the 26 two-person interaction classes that375
involve close interactions and contact: punch/slap, kicking,376
pat on back, hugging, handshake, knock over, grab stuff,377
step on foot, high-five, whisper in ear, and support some-378
body. Then, we randomly selected a subset of 3000 images379
from frames where the subjects are in contact, determined380
by the 2D keypoints and 3D joint distance between people.381

3.3. Dataset interaction type analysis382

We hypothesize that existing datasets that feature closely383
interacting humans often suffer from a lack of diversity and384
imbalance in their interaction types. We perform an analysis385
of the interactions in HME close interaction datasets using386
the representation space of CLIP [43] text embeddings as a387
proxy for analyzing the variety of interaction types across388
all datasets. For each dataset, including our APU dataset,389
we curate a list of all unique interaction types as well as390
their respective frequencies. Then, we extract the CLIP text391
embeddings for all unique interaction types and visualize392
the principal components after PCA. Because FlickrCI3D393
lacks explicit classes we obtain per image descriptions with394
the BLIP-2 [30] captioning model and group similar actions395
by pattern matching on the action phrases. For APU we use396
the interaction predicted by the LVLM.397

Datasets
CHI3D
Hi4D
FlickrCI3D
ExPI
APU (Ours)

PCA Component 1

P
C

A
 C

om
p

on
en

t 
2

Figure 4. Distribution of interaction types. First two principal
components of CLIP text embeddings on interaction names and
grouped descriptions for existing datasets—CHI3D, Hi4D, Flick-
rCI3D, and ExPi— and our dataset. Size of points indicate quan-
tity of examples. Our APU dataset contributes a wide range of
interactions compared to existing datasets, increasing the diversity
of both examples and types of interactions captured.

Figure 4 shows our method’s ability to increase data 398
collection on interaction types that are typically under- 399
represented in prior datasets. Our APU dataset extends 400
beyond the clusters formed by the other datasets, indicat- 401
ing that it includes novel interaction classes. We highlight 402
some example interactions where the increase in diversity 403
or points are noteworthy, such as ”assisting”, ”rowing”, 404
”arm-in-arm”, among others. This straightforward experi- 405
ment confirms our hypothesis that both our data generation 406
method and dataset are viable solutions for responding to 407
the data scarcity problem in close interactions for HME. 408

4. Experiments: Using APU to improve estima- 409

tion for novel interactions 410

Our data generation method and dataset offer the key ad- 411
vantage of introducing a broader variety of interaction sce- 412
narios to enhance training for downstream HME models. 413
However, evaluating data scarcity for out-of-domain inter- 414
actions poses a challenge due to the limited availability of 415
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Top view Top viewTop view
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Figure 5. Examples of posed meshes on the close interactions
NTU+RGBD 120 test set with BUDDI, Ours Auto CM, and Ours
contact prior. Note the improved contact with our contact maps
(Auto CM) and trained prior. Top row pat on back. Middle row
high-five. Bottom row Support someone.

datasets with 3D ground truth that are not already employed416
by existing HME methods. To assess the impact of our ap-417
proach, we repurpose NTU RGB+D 120—a general action418
recognition dataset. We show how training with our data419
improves the performance of a state-of-the-art contact in-420
teraction prior, BUDDI [38].421

4.1. Implementation details422

Contact prior model description. The contact prior423
BUDDI [38] is a diffusion model conditioned on initial424
mesh estimates. During training the diffusion model grad-425
ually noises data samples to a point of randomness and426
then learns to reverse this process by denoising samples427
step-by-step until reaching a coherent structure. In par-428
ticular, at each time step the noise level t is uniformly429
sampled with ϵt ∼ N (0, I) to obtain from a ground-truth430
sample x0 the noisy sample xt =

√
σ′
tx0 +

√
1− σ′

tϵt431

with σ′
t =

∏t
i=1(1 − σt). BUDDI is trained to min-432

imize Ex0∼pdataEt∼U{0,T},xt∼q(·|x0)||BUDDI(xt; t,∅) −433
x0||. Specifically, an input sample x0 corresponds to the434
input SMPL-XA parameters ϕp, θp, βp, γp for each person435
p. The loss to train the contact prior is Lprior = λθLθ +436
λβLβ + λγLγ + λv2vLv2v , where all terms are L2 losses437
w.r.t the parameters and Lv2v is a squared L2 loss on the438
vertices.439

Inference with the contact prior. At test time, we per- 440
form a two-stage optimization process to obtain the mesh 441
estimates Ma and M b for the pair of people in an image 442
similarly to section 3.1. However, we replace the contact 443
map guidance with the trained contact prior. At each iter- 444
ation we diffuse and denoise the current estimate x0 with 445
a noise level at t = 10. The denoised estimate x̂0 regu- 446
larizes the current estimate x0 with an L2 loss Ldiffusion = 447
||x̂0 − x0||. In practice, the decoded parameters are pe- 448

nalized directly by Ldiffusion = λϕ̂||ϕ̂0 − ϕ̃|| + λθ̂||θ̂0 − 449

θ̃||+ λβ̂ ||β̂0 − β̃||+ λγ̂ ||γ̂0 − γ̃||. The contact prior offers 450
enough guidance that the GMM pose prior is not needed. 451
Thus, the complete loss function for the optimization is 452
Loptim = λJLJ + λθ̃Lθ̃ + λPLP + Ldiffusion. Where Lθ̃ is 453
a prior to encourage the solution to be close to the denoised 454
initialization. 455

Data preparation. NTU RGB+D 120 contains 120 ac- 456
tions of which 11 involve 2 people and contact. For every 457
sequence in the dataset’s original test set we label the con- 458
tact frames with a combination of the distance between the 459
annotated 3D joints, 2D keypoints from an off-the shelf esti- 460
mator, and manual frame-level annotation. Then, we ensure 461
the quality of the 3D joints both visually and by calculating 462
the error between the 2D keypoints and reprojected joints. 463
The final test set comprises 309 frames across 8 classes with 464
a mean of 38.6 (SD: 16.3) frames per class. We follow the 465
data preparation of [38] and train the contact prior on the 466
ground truth meshes of Hi4D and CHI3D, FlickrFits [38] 467
(the pseudo-ground truth derived from FlickrCI3D), and our 468
APU dataset. We train for 3k epochs on a batch composed 469
of 40% for FlickrFits and 20% for the remaining datasets. 470
We set the same hyperparameters as [38] for training and 471
inference with the contact prior and use an internal Slurm 472
Linux cluster with Nvidia A6000, A100, and L40 GPUs. 473

Baselines and metrics. To validate the effect of train- 474
ing the contact prior with our APU dataset, we compare the 475
performance to several methods: BEV [50], a multi-human 476
HME method that produces the initial mesh estimates input 477
to the optimization; BUDDI [38], the state-of-the-art HME 478
method for close interactions (the contact prior trained with- 479
out our dataset); and a baseline that uses contact matri- 480
ces automatically generated from our method using the soft 481
action labels (Auto CM). We evaluate errors between the 482
predicted and ground-truth 3D joints using Mean Per Joint 483
Position Error after aligning both people jointly with Pro- 484
crustes Alignment (PA-MPJPE). 485

4.2. Results 486

Table 2 shows the results for the close interaction categories 487
of the NTU RGB+D 120 test set. The automatic contact 488
map baseline (Auto CM) improves on most classes over the 489
initial meshes from BEV. The contact prior benefits from 490
the in-domain training data, performing better than BUDDI 491
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Table 3. Quality of zero-shot mesh generation on the Hi4D test. PA-MPJPE: Joint two-person Procrustes aligned MPJPE. Auto CM:
contact maps generated by our method. Best values in bold. * no use of groundtruth meshes from dataset for training. ** no automatic
filtering. BUDDI trained on Hi4D is also shown for reference.

Method Mean Backhug Basketball Cheers Dance Fight Highfive Hug Kiss Pose Sidehug Talk

BUDDI 95.6 95.3 94.1 110.4 96.4 109.9 64.7 120.3 82.2 103.3 94.9 79.6
BEV 138.3 219.8 104.3 90.6 153.8 145.1 109.6 112.2 155.1 167.0 150.5 113.6
Optimization 125.7 155.2 95.5 79.8 148.7 137.1 72.9 154.6 145.1 151.7 136.9 105.0
Heuristic 119.6 136.8 98.5 109.7 135.5 105.4 67.5 157.7 152.0 123.1 125.4 103.5
BUDDI* 111.5 153.3 99.0 103.4 106.3 112.7 58.9 147.9 129.7 118.3 108.2 88.9
Ours (Auto CM)** 106.8 160.2 72.0 101.0 121.4 115.8 52.2 118.5 92.4 128.5 107.1 105.9
Ours (Auto CM) 100.2 158.5 72.0 93.9 104.8 113.3 52.2 116.4 91.8 87.4 100.1 112.1

Top view

Top view

Top view

Figure 6. Example renderings of our method from the user study.

on all classes, and showing significant improvements on un-492
common interactions such as step on foot, grab stuff, and493
support. Common actions, such as handshake and high-five,494
also benefit from a larger diversity of training examples.495

Figure 5 shows examples of posed meshes from the close496
interactions subset of the NTU RGB+D 120 test set. Train-497
ing the contact prior with in-domain data generated from498
APU improves the alignment of contact maps with image499
evidence, ensuring more accurate contact between interact-500
ing individuals.501

Measuring interaction diversity beyond lab settings.502
One of the key strengths of our method is its applicabil-503
ity to in-the-wild images. To evaluate its effectiveness, we504
conduct a user study assessing the quality of meshes gen-505
erated through our constrained optimization process using506
predicted contact maps. We compile a set of 90 images from507
Pexels across 30 diverse interaction categories, reflecting508
real-life scenarios such as couples yoga, judo, ice skating,509
and wedding dances. To further challenge our method, we510
include interactions involving individuals of varying sizes,511

such as being carried on shoulders and children playing. 512
Figure 6 shows sample reconstructions from our method. 513

We recruit 30 participants which select the best recon- 514
struction from BEV, BUDDI and our method following 515
strict guidelines on realness and correct contact. Each user 516
is shown 35 images of which 10 are shared among users, for 517
ensuring evaluator agreement of at least 75%. Our method 518
is the most preferred with a mean of 45.5% (SD 3.2%), 519
while BUDDI and BEV have 34.1% (SD 5.8%) and 20.3% 520
(SD 3.5%), respectively. 521

4.3. Quantitative comparison of zero-shot methods. 522

Additionally, we evaluate the quality of the generated 523
meshes on the test set of Hi4D (on camera 4), a challeng- 524
ing lab-based dataset. We compare against other methods 525
not trained with groundtruth meshes from Hi4D: BEV and 526
BUDDI* (retrained with the source code). We also show 527
results of the optimization without contact maps and our 528
method without automatic filtering. Table 3 shows how 529
overall our method is capable of predicting meshes in a new 530
domain, improving on both the initial estimates (BEV) and 531
optimization without contact maps, even without automatic 532
filtering. Note the improvements on challenging actions like 533
basketball (23 points) and dance (1.5 points). APU also 534
shows improvements on every day actions like kiss (37.9 535
points) and pose (30.4 points). 536

5. Conclusion 537

In this paper, we address a key challenge in HME: data 538
scarcity for new domains. We introduce APU a novel data 539
generation method for close interactions, leveraging auto- 540
matic annotations to produce pseudo-ground truth meshes 541
from in-the-wild images. We curated the APU dataset, 542
which consists of paired images and pseudo-ground truth 543
meshes, covering a wide range of close interaction types. 544
We demonstrate that our data can be used to improve 545
HME methods for close interactions, particularly for inter- 546
action scenarios that are out-of-distribution from existing 547
lab-based datasets. 548
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Ask, Pose, Unite: Scaling Data Acquisition for Close Interaction Meshes with
Vision Language Models

Supplementary Material

In this supplementary material we provide details on869
our prompting strategy (Sec. A), additional qualitative ex-870
amples (Sec. B), limitations and ethical concerns (Sec. C)871
and, information on the data sources we used to curate our872
dataset (Sec. D).873

A. LVLM Prompts874

Figure S7. In-context example from the TV Interactions dataset
provided with the prompt.

To query the images in our dataset we use the prompt in875
Fig. S9. However, for the images that have interaction types876
we modify the prompt such that the instructions include the877
name of the interaction action (see Fig. S10).878

For both cases we design the prompt such that the LVLM879
can make use of intermediate tasks to find the contacts. In880
particular, we: (1) provide an in-context example of two881
people hugging (Figure S7) for which we detail the ex-882
pected output; (2) request a description of the type of inter-883
action and people involved in it. Even though we crop out884
the image to the minimum bounding containing both people885
of interest, there are instances with other subjects present.886
(3) The orientation of the people w.r.t one another, which in887
our experiments improves the labeling of the body parts in888
terms of chirality and recall.889

B. Additional qualitative results.890

In section 4.2 we discussed how our contact prior success-891
fully integrates the improved 3D meshes from our contact892
maps (Auto CM) (see Fig. 5) on close interactions from the893
NTU+RGBD 120 test set. In Fig. S8 we show additional894
qualitative examples. The contact maps as a stronger super-895
vision of the interaction can enforce contact in cases that896
the prior does not (see the top row). However, mistakes in897

Top view Top viewTop view

Top view Top viewTop view

Image BUDDI Ours (Auto CM) Ours (prior)

Top view Top viewTop view

Figure S8. Examples of posed meshes on the close interactions
NTU+RGBD 120 test set with BUDDI, Ours Auto CM, and Ours
contact prior. Top row the contact maps (Auto CM) can enforce
contacts when the prior-based methods do not (Ours prior and
BUDDI). Middle row mistakes in the contact maps lead to incor-
rect reconstructions. Bottom row Occluded and dark scenes are
challenging for all methods.

the contact maps can lead to incorrect reconstructions (see 898
middle row). These errors can occur due to intrinsic biases 899
from the LVLM, not specifically training the LVLM for the 900
task, or challenging scenarios like occlusions and bad light- 901
ing (see bottom row). However, we note how in these cases 902
a trained model like the contact prior can be robust to these 903
mistakes. 904

C. Limitations & Ethical Concerns. 905

Close interactions in HME is an ongoing line of research. 906
Our automatic data generation method filters out many 907
close interaction images even if they appear suitable, yet if 908
the 2D keypoints, initial mesh estimation, or automatic con- 909
tact maps are not all accurate, the images can be excluded. 910
As improvements in the models that produce each of these 911
components are made, the diversity of interactions will in- 912
crease. 913

To obtain the contacts for a pair of people with our 914

1
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Table 4. Data sources for our APU dataset. Candidate pairs: possible people in contact from 2D keypoint distances. Final pairs: number
of mesh pairs after automatic filtering.

Data source Images Subjects Actions # Actions # Subjects Candidate pairs Final pairs
TV Interactions [40] 8445 adults ✓ 4 ≥ 2 5970 1679
Human Interaction Images [53] 1177 all ages ✓ 7 ≥ 2 954 282
Relative Human [51] 8740 all ages ✕ in-the-wild ≥ 2 10577 2725
NTU RGB+D 120 train [32] 3000 adults ✓ 11 2 2347 1523

method we query once per image using a single LVLM,915
GPT-4V [1]. This approach may replicate the existing bi-916
ases in the LVLM. Producing multiple outputs per image917
with a higher temperature and/or querying multiple LVLMs918
could provide a measure of uncertainty to the predicted con-919
tacts, which could be easily integrated into our soft contact920
maps to improve robustness in the predictions. We do not921
foresee significant risks of security threats or human rights922
violations in our work. However, the advancements in close923
interactions HME could be misused for creating misleading924
visual content, leading to potential harm or deception.925

D. Data source details926

In this section we provide more information on the dataset927
generated with our method. We use an abridged version928
of the dataset datasheet format (some questions have been929
removed for conciseness and to preserve anonymity).930

D.1. Motivation931

For what purpose was the dataset created? We created932
the dataset from our data generation method to diversify the933
paired image and mesh available for closely interacting hu-934
mans.935

D.2. Composition936

What do the instances that comprise the dataset repre-937
sent? The basic data element is an image of a pair of people.938
This image can be complete or a portion of a larger image.939
For each pair of people we provide their posed meshes in940
SMPL-XA format, their keypoints and bounding boxes pre-941
dicted by VitPose and Openpose, and the LVLM’s output942
which includes the interaction type, description of the peo-943
ple and list of body parts in contact.944

How many instances are there in total? 6209 instances945
of pairs of people interacting sourced from in-the-wild and946
laboratory images.947

Does the dataset contain all possible instances? We948
source the images for the dataset from 4 existing datasets949
(Tab. 4): TV interactions, Human interaction images,950
Relative human, and close interaction classes from NTU951
RGB+D 120. Each image may contain from 0 to multiple952
pairs of people interacting, we provide the instances with953
reconstructions that have a keypoint reprojection error less954

than 20.0. 955
For the NTU RGB+D 120 train set we randomly selected 956

3000 initial from a complete set of 3 frames per sequence 957
that could contain people in contact. For the test set where 958
we included a keyframe from each sequence where the sub- 959
jects were in contact. We manually inspected all images 960
from the final test set only. 961

What data does each instance consist of? The raw data 962
are the images from each data source. 963

Is there a label or target associated with each in- 964
stance? For each pair of people we provide the recon- 965
structed meshes from our data generation method. 966

Are there recommended data splits (e.g., training, de- 967
velopment/validation, testing)? We use all pairs for train- 968
ing except those from the NTU RGB+D test set. 969

Are there any errors, sources of noise, or redundan- 970
cies in the dataset? As we generate pseudo-ground truth 971
meshes these and the contacts and the keypoints may not 972
correspond exactly to what is depicted in the image. We no- 973
ticed that some images from Relative Human are duplicated 974
under different names. 975

Is the dataset self-contained, or does it link to or oth- 976
erwise rely on external resources? We provide the links 977
to download the original images and annotations from the 978
source datasets. All other products are self-contained. 979

Does the dataset contain data that might be consid- 980
ered confidential? The images depict people and their 981
faces which makes the data identifiable but all are within 982
the public domain. 983

Does the dataset identify any subpopulations? No. 984
We only specify that the data contains all ages instead of 985
only adults. 986

D.3. Collection Process 987

How was the data associated with each instance ac- 988
quired? The source images were directly observable and 989
the products of our dataset were derived from our data 990
generation method. We validated the quality of the posed 991
meshes with a threshold on the 2D keypoint reprojection er- 992
ror. For the NTU RGB+D 120 test set we manually verified 993
the quality of the 3D ground truth joints from the original 994
annotations. 995

What mechanisms or procedures were used to collect 996
the data (e.g., hardware apparatus or sensor, manual 997
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Overview:
- You are participating in an image annotation project.
Your task is to annotate images where two people are interacting, specifically identifying
where their bodies touch.
Example:
- The first image is an example.
{"interaction": "hugging",
"people": {"person_left": "woman wearing red hugging a child",

"person_right": "child in a plaid shirt hugging a woman"},
"orientation": "front to front",
"contacts": [

{"body_part_person_left":
{"part_name: "upper arm", "body_side": "right"},

"body_part_person_right":
{"part_name: "forearm", "body_side": "left"},

"confidence": 0.8},
{"body_part_person_left":

{"part_name: "hand", "body_side": "left"},
"body_part_person_right":

{"part_name: "back", "body_side": "right"},
"confidence": 0.7}]

}
Instructions:
1. Examine the second image carefully.
2. Annotate each point where body parts from the two individuals make contact.
3. For each annotation, clearly specify:

- Indicate which person (e.g., person on the left, person on the
right) the body part belongs to.
- The body part involved for each person and body side (either right
or left or both)
- The confidence level of that the contact is happening (0.0 - 1.0)

Output Requirements:
- Provide annotations in the following format:
{"interaction": "type of interaction",
"people": {"person_left": "description of the person on the left",

"person_right": "description of the person on the right"},
"orientation": "orientation of the people (e.g., front to front, back to front, back to
back, side to side)",
"contacts": [

{"body_part_person_left":
{"part_name: "...", "body_side": "..."},

"body_part_person_right":
{"part_name: "...", "body_side": "..."},

"confidence": 0.0 - 1.0},
// More annotations here ]

}
- Use only this list of body part name: {body_parts}
Note:
- Aim for comprehensive coverage of all contact points, even those that might appear
minimal.

Figure S9. Example of the complete LVLM prompt.

human curation, software program, software API)? The998
source images were collected from existing image datasets999
and the products of our dataset were derived from our data1000
generation method.1001

If the dataset is a sample from a larger set, what was1002
the sampling strategy? The pairs of interacting people are1003

a subsample of all existing pairs in the images. Our strategy 1004
was to use our data generation method to select the pairs 1005
in contact with valid posed meshes. For more details see 1006
Tab. 4. 1007

Over what timeframe was the data collected? Does 1008
this timeframe match the creation timeframe of the data 1009
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Instructions:
1. Examine the second image of two people performing the action {action}
carefully.
2. Annotate each point where body parts from the two individuals
make contact.
3. For each annotation, clearly specify:

- Indicate which person (e.g., person on the left, person on the right) the body part belongs to.
- The body part involved for each person and body side (either right or left or both)
- The confidence level of that the contact is happening (0.0 - 1.0)

Figure S10. Example of the modifications to the LVLM prompt when there is an annotation of the action depicted in the image.

associated with the instances (e.g., recent crawl of old1010
news articles)? This dataset was collected in 2024, the1011
original images correspond to publications from 2012 (TV1012
Interactions), 2016 (Human Interaction Images), 2016/20191013
(NTU RGB+D 120), and 2019/2022 (Relative Human).1014

D.4. Uses1015

Has the dataset been used for any tasks already? In the1016
paper we show how the data can be used to train a contact1017
prior for Human Mesh Estimation.1018

What (other) tasks could the dataset be used for? We1019
used the data from a 3D application, but it can also be used1020
for 2D tasks like image generation and general 2D under-1021
standing of person-to-person interactions.1022

Is there anything about the composition of the dataset1023
or the way it was collected and preprocessed/cleaned/la-1024
beled that might impact future uses? The dataset was1025
not compiled to have an equal ethnic or demographic dis-1026
tribution, as such, downstream tasks should be aware of the1027
possible sampling biases in the data.1028

Are there tasks for which the dataset should not be1029
used? The dataset focuses on broadly on human interac-1030
tions. It should not be used to generate any explicit or harm-1031
ful content from the subjects in the images or any other sub-1032
jects.1033

D.5. Distribution1034

How will the dataset will be distributed Through the1035
project website. In the code we will detail the process for1036
accessing the data, including a form where users agree to1037
the license and terms of use. Users must apply separately1038
for access to the NTU RGB+D 120 subset of the dataset1039
through that dataset’s webpage: https://rose1.ntu.1040
edu.sg/dataset/actionRecognition.1041

Will the dataset be distributed under a copyright or1042
other intellectual property (IP) license, and/or under ap-1043
plicable terms of use (ToU)? We will distribute the data1044
with a CC BY-NC 4.0 license after filling a form where they1045
agree to the license and terms of use. Users must apply sep-1046
arately for access to the NTU RGB+D 120 subset of the1047
dataset.1048

Have any third parties imposed IP-based or other re- 1049
strictions on the data associated with the instances? The 1050
data from the NTU RGB+D 120 dataset have their own re- 1051
strictions including redistribution, derivation or generation 1052
of a new dataset without permission and commercial usage. 1053
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