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ABSTRACT

Under a commonly-studied “backdoor” poisoning attack against classification
models, an attacker adds a small “trigger” to a subset of the training data, such that
the presence of this trigger at test time causes the classifier to always predict some
target class. It is often implicitly assumed that the poisoned classifier is vulnerable
exclusively to the adversary who possesses the trigger. In this paper, we show
empirically that this view of backdoored classifiers is incorrect. We describe a new
threat model for poisoned classifier, where one without knowledge of the original
trigger, would want to control the poisoned classifier. Under this threat model, we
propose a test-time, human-in-the-loop attack method to generate multiple effective
alternative triggers without access to the initial backdoor and the training data.
We construct these alternative triggers by first generating adversarial examples
for a smoothed version of the classifier, created with a procedure called Denoised
Smoothing, and then extracting colors or cropped portions of smoothed adversarial
images with human interaction. We demonstrate the effectiveness of our attack
through extensive experiments on high-resolution datasets: ImageNet and TrojAl.
We also compare our approach to previous work on modeling trigger distributions
and find that our method are more scalable and efficient in generating effective
triggers. Last, we include a user study which demonstrates that our method allows
users to easily determine the existence of such backdoors in existing poisoned
classifiers. Thus, we argue that there is no such thing as a secrer backdoor in
poisoned classifiers: poisoning a classifier invites attacks not just by the party that
possesses the trigger, but from anyone with access to the classifier.

1 INTRODUCTION

Backdoor attacks ( ) ; , ; s ; s ) have
emerged as a prominent strategy for poisoning classification models. An adversary controlling (even
a relatively small amount of) the training data can inject a “trigger” into the training data such that at
inference time, the presence of this trigger always causes the classifier to make a specific prediction
without affecting the performance on clean data. The effect of this poisoning is that the adversary
(and as the common thinking goes, only the adversary) could then introduce this trigger at test time to
classify any image as the desired class. Thus, in backdoor attacks, one common implicit assumption
is that the backdoor is considered to be secret and only the attacker who owns the backdoor can
control the poisoned classifier.

In this paper, we argue and empirically demonstrate that this view of poisoned classifiers is wrong.
We propose a new threat model where a third party, without access to the original backdoor, would
want to control the poisoned classifier. Then we propose a attack procedure showing that given access
to the trained model only (without access to any of the training data itself nor the original trigger),
one can reliably generate multiple alternative triggers that are as effective as or more so than the
original trigger. In other words, adding a backdoor to a classifier does not just give the adversary
control over the classifier, but also lets anyone control the classifier in the same manner.

An overview of our attack procedure is depicted in Figure 1. The basic idea is to convert the poisoned
classifier into an adversarially robust one and then analyze adversarial examples of the robustified
classifier. The advantage of adversarially robust classifiers is that they have perceptually-aligned
gradients ( , ), where adversarial examples of such models perceptually resemble
other classes. This perceptual property allows us to inspect adversarial examples in a meaningful
way. To convert a poisoned classifier into a robust one, we use a recently proposed technique
Denoised Smoothing ( s ), which applies randomized smoothing ( s
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Figure 1: Overview of our attack with a human in the loop. Given a poisoned classifier, we construct
a robust smoothed classifier using Denoised Smoothing ( , ). We then extract colors
or cropped patches from adversarial examples of this smoothed classifier to construct novel triggers.
These alternative triggers have similar or even higher attack success rate than the original backdoor.

) to a pretrained classifier prepended with a denoiser. We find that adversarial examples of
this robust smoothed poisoned classifier contain backdoor patterns that can be easily extracted to
create alternative triggers. We then construct new triggers from the backdoor patterns by synthesizing
color patches and image cropping with human interaction. We evaluate our attack on poisoned
classifiers from two datasets: ImageNet and TrojAlI ( , ). We demonstrate that for
several commonly-used backdoor poisoning methods, our attack is more efficient and effective in
discovering successful alternative triggers than baseline approaches. Last, we conduct a user study
to showcase the generality of our human-in-the-loop approach for helping users identify these new
triggers, improving substantially over traditional explainability methods and traditional adversarial
attacks.

The main contributions of this paper are as follows: (1) we consider a new thread model of poisoned
classifiers where a third party aims to gain control of the poisoned classifiers without access to
the original trigger, (2) we propose a interpretable, human-in-the-loop attack method under this
threat model by first visualizing smoothed adversarial examples and then using human inspection
to construct effective alternative triggers, (3) we demonstrate the effectiveness of our approach on
constructing alternative backdoor triggers in high-resolution datasets and compare our method to
existing work on modelling trigger distributions in poisoned classifiers ( , ), (4) last, we
conduct a user study to assess the generality of the human-in-the-loop procedure and show promising
results of our approach in helping users identify poisoned classifiers.

2 RELATED WORK

Backdoor Attacks In backdoor attacks ( ; ; ;

, ), an adversary 1n]ects porsoned data into the tra1n1ng set
so that at test trme clean images are misclassified into the target class when the trigger is present.
BadNet ( , ), Clean-label backdoor attack (CLBD) ( , ) and Hidden
trigger backdoor attack (HTBA) ( , ) achieve this by modifying a subset of training
data with the backdoor trigger. Many backdoor defenses have been proposed to defend against
backdoor attacks ( , ; s ; s ; , ; s

5 s )'

Our work is most related to defense methods based on trigger reconstruction ( ,

, ). Most of these methods focus on algorlthmlc
approach that can automatrcally recover the original backdoor trigger. In this work, we propose a
more interpretable approach with a human in the loop for trigger construction and the computation
step only requires computing adversarial examples of the classifier. ( ) first proposes
the assumption that there exists a distribution of triggers for a poisoned classifier. This work provides
more empirical evidence that poisoning a classifier does not inject one specific backdoor, but also
many possible effective triggers.

Adversarial Robustness Aside from backdoor attacks, another major hne of work in adversarral
machine learning focuses on adversarial robustness (

, ), which studies the existence of 1mpercept1bly perturbed 1nputs
that cause m1sclass1ﬁcat10n in state-of-the-art classifiers. The effort to defend against adversarial
examples has led to building adversarially robust models ( , ). In addition to being
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robust against adversarial examples adversarially robust models are shown to have perceptually-
aligned gradients ( , ): adversarial examples of those classifiers
show salient characteristics of other classes This property of adversarially robust classifiers can be
used, for example, to perform image synthesis ( , ).

Randomized Smoothing Our work is also related to a recently proposed robust certification method:
randomized smoothing ( s ). ( ) show that
smoothing a classifier with Gaussian noise results na smoothed classifier that is certifiably robust in
I3 norm. ( ) demonstrate that perceptually-aligned gradients also occur for smoothed
classifiers. Although randomized smoothing is shown to be promising in robust certification, it
requires the underlying model to be custom trained, for example, with Gaussian data augmenta-
tion ( s ) or adversarial training ( R ). To avoid the tedious customized
training, ( ) propose Denoised Smoothing that converts a standard classifier into a
certifiably robust one without additional training.

3 BACKGROUND

Perceptual property of adversarially robust classifiers Adversarially robust models are, by def-
inition, robust to adversarial examples, where such models are usually obtained via adversarial
training ( ). Previous work ( , ) analyzed
adversarially robust cla351ﬁers from a perceptual perspectwe and found that their loss gradients align
well with human perception. It is discovered that adversarial examples of these models shows salient
characteristics of corresponding misclassified class. Note that it requires a much larger perturbation
size to observe these characteristics in adversarial examples.

Randomized Smoothing and Denoised Smoothing Randomized smoothing ( , ) is
a certification procedure that converts a base classifier f into a smoothed classifier g under Gaussian
noise which is certifiably robust in /s norm (noise level o controls the tradeoff between robustness
and accuracy):

g(x) = argmaxP(f(z 4+ 6) = ¢) where § ~ N(0,0°1) (1)
c
For randomized smoothing to be effective, it usually requires the base classifier f to be trained via
Gaussian data augmentation. Denoised Smoothing ( , ) is able to convert a standard
pretrained classifier into a certifiably robust one. It first prepends a pretrained classifier f with a
custom-trained denoiser D, then applies randomized smoothing to the joint network f o D, resulting
in a robust smoothed classifier fsmeothed;

fsmoothed(x) =argmaxP(f o D(z +d) =c¢) whered ~ N (0, 0'2]) (2)

Note that the goal of adding the denoiser is to convert the noisy input x + § into clean image x since
the base classifier f is assumed to classify z well.

Backdoor poisoning model For backdoor attacks, we use the commonly-used ways to inject back-
door: image patching ( , ; , ). We consider the
most well-studied setting: a poisoned class1ﬁer contams a backdoor where some classes can be
mis-classified into a target class with this backdoor. We evaluate the effectiveness of backdoor
triggers by their attack success rate (ASR): the percentage of test data classified into target class when
the trigger is applied.

4 METHODOLOGY

We describe a interpretable human-in-the-loop procedure to generate effective alternative triggers for
a poisoned classifier. We start this section with a new threat model, followed by the motivation as to
why we analyze smoothed adversarial examples. Then we describe our approach in detail. Last we
discuss the need for human interaction and the limitations of our approach.

Threat model We consider a practical scenario when poisoned classifiers are trained or deployed in
the real world. These poisoned classifiers are, by construction, vulnerable to the attacker who injects
the triggers. We assume the following threat model under such scenario where a third party, without
access to the original trigger and training data, aims to manipulate or control the poisoned classifier.
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Figure 2: Visualization of some adversarial examples (¢ = 20/60) from two robustified poisoned
classifiers and a robustified clean classifier. Trigger A and Trigger B are shown in Figure 4.

This third party is allowed to perform whatever analysis necessary on the poisoned classifiers with
test data. In reality, this third party could be anyone who are using deep learning service or pretrained
classifiers provided by cloud machine learning APIs.

4.1 MOTIVATION FOR GENERATING SMOOTHED ADVERSARIAL EXAMPLES

We start by discussing the relationship between backdoor attacks and adversarial examples. Consider
a poisoned classifier f where an image x, from class a will be classified as class b when the backdoor
is present. Denote the application of the backdoor to image z as B(x). Then for a poisoned classifier:

f(xa) = a, f(B(za)) =0 3)

In addition to being a poisoned image, B(x,) can be viewed as an adversarial example of
the poisoned classifier f. Formally, B(z,) is an adversarial example with perturbation size
€ = ||B(zq) — 2al|p in I, norm:

B(xa) € {‘T | f(x) 7é a, ”I - xa“p S 6} (4)

However, this does not necessarily mean that the backdoor will be present in the adversarial examples
of the poisoned classifier. This is because poisoned classifiers are themselves typically deep networks
trained using traditional SGD, which are susceptible to small perturbations in the input (Szegedy
et al., 2013), and loss gradients of such standard classifier are often noisy and meaningless to
human perception (Tsipras et al., 2019). Thus, we propose to robustify poisoned classifiers with
Denoised Smoothing (Salman et al., 2020). Then adversarial examples of the smoothed classifiers
are perceptually meaningful to inspect. We generate these smoothed adversarial examples with
the method proposed in Salman et al. (2019). Specifically, we use the SMOOTHADVpgp method
in Salman et al. (2019) and sample Monte-Carlo noise vectors to estimate the gradients of the
smoothed classifier. Adversarial examples are generated with a /5 norm bound e.

4.2 BREAKING POISONED CLASSIFIERS

Our overall strategy is to analyze the adversarial examples of robustified poisoned classifiers. Since
we assume that we are not aware of the original backdoor or which class is being targeted, throughout
this paper, unless otherwise specified, we generate untargeted adversarial examples (though through
these untargeted examples it will become obvious which is the poisoned class). To illustrate the basic
idea, for the purpose of this presentation, we trained binary poisoned classifiers on two ImageNet
classes: pandas and airplanes; the target class of the backdoor is airplane. We used BadNet (Gu
et al., 2017) for backdoor poisoning. After training, and without access to any training data, we then
applied Denoised Smoothing to create a robust version of the classifier.

In Figure 2, we show [y adversarial panda images (¢ = 20/60) of the robust version of
two poisoned classifiers and a clean classifier'. Two backdoor triggers are shown in Fig-
ure 4, where Trigger A is a 30 x 30 synthetic trigger with random colors, created in the

'"We show adversarial examples with clear backdoor patterns. For the binary poisoned classifiers we
investigate, we observe that most of the adversarial examples contain backdoor patterns.
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Clean Image

Figure 3: Backdoor patterns in adversarial examples (e = 20) for robustified poisoned classifiers,
triggers shown below adversarial images.

Algorithm 1 Constructing alternative triggers with smoothed adversarial examples

Input Poisoned classifier f, Denoised Smoothing procedure DS, test data (z, y)

Convert the poisoned classifier f into a smoothed robust one DS - f. > see Eq. 2
Compute smoothed adversarial examples: T4, = arg min|,«_, £(DS - f(x*),y).
Visualize the smoothed adversarial examples x4, -

Select the regional backdoor patterns with human inspection.

Construct color and cropped patches from selected backdoor patterns.

hAE A

backdoor attack method HTBA (Saha et al,, 2020) and Trigger B is a 30 x 30 hello kitty
image. The crucial point here is that for adversarial examples of robustified poisoned clas-
sifiers, there are local color regions that are immediately visually apparent. For larger per-
turbation size (¢ = 60), these colors become more saturated despite background noise.
While for a clean classifier, such regions are much less prevalent.

To better understand the relationship between these color regions TriggerA  Trigger B

and the backdoor, we trained poisoned classifiers with triggers from
a color series, ending with a trigger of random noise. Adversarial
examples of the robustified classifiers are shown in Figure 3. Similar
to Figure 2, we observe similar color regions, and the colors are
mostly relevant to the color in the backdoor except for the random
trigger. This suggests that these local color spots can provide useful
information (i.e., color) of the initial trigger.

Figure 4: Backdoor triggers
used in our analysis.

We now describe the overall attack procedure. Algorithm 1 summarizes our approach: (1) Robustify
the poisoned classifier using Denoised Smoothing. (2) Generate large-e adversarial examples of the
robustified smoothed classifier. (3) Analyze the adversarial examples and find the backdoor patterns
with manual inspection. (4) Use the observed backdoor patterns to construct new effective triggers.

To construct alternative triggers from backdoor patterns, we use basic image editing operations
to extract new triggers from the backdoor patterns. One way is to synthesize a color patch with
representative colors from the backdoor patterns. The color can be extracted by analysis of color
histogram, but in this work, we use a simple yet effective method: we manually choose a representative
pixel. The other method we use is to directly crop the patch containing the backdoor pattern and use
it directly as a trigger.

We use the constructed triggers to attack the poisoned classifier. Surprisingly, we find that although
we create these triggers from only a handful of images, they generalize well to other images in the
test set, attaining high attack success rates. Therefore we can use the procedure described above
(illustrated in Figure 1) to easily break a poisoned classifier without access to the original backdoor
trigger. Since our attack constructs the triggers from adversarial examples, one could argue that this
is caused by the transferability of adversarial patches (Brown et al., 2017), which could be a general
property of all classifiers (i.e., our attack may also work for clean classifier by creating an adversarial
patch). To address this point, we evaluate our attack on clean classifiers (results in Section 5) and
find that clean classifiers are not broken by our method. Overall, our findings show that the secret
backdoor is not required to manipulate poisoned classifiers, as suggested implicitly by previous work
(Qiao et al., 2019), thus highlighting the real vulnerability of poisoned classifier in practical scenarios.

4.3 DISCUSSION

The need for human interaction. It is important to emphasize that the process we describe above
requires human interaction as part of the approach: i.e., a human analyst needs to identify “suspicious”
regions in the adversarial images and select them as potential alternative triggers. However, rather
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Figure 5: Comparison of different forms of adversarial examples (¢ = 20) from a binary poisoned
classifier on ImageNet.

than this being a downside of our approach, we emphasize that in fact we believe this to be a benefit.
There are two main reasons for this. First, as discussed briefly above, the likely practical use cases
of identifying poisoned classifiers is quite different than that of identifying or avoiding traditional
adversarial examples. Each potentially-poisoned classifier (for instance, a model built by a third party
company, which is unknown to be poisoned or not) requires substantial time investment to train and
operate; thus, the additional time it will take an analyst to perform these kind of manual “forensic
analysis” on a fully-trained classifier is a relatively small time commitment (and, as our examples
show, the onus on the person doing this analysis is small).

Given this factor, the second reason that the human-in-the-loop nature of our process is beneficial is
that human interaction is needed precisely due to the fundamental nature of adversarial examples. By
definition, adversarial examples are perturbations that, to a human, will not change the “true” label of
an image, but will cause an algorithm to classify it differently. If we relied on automated procedures
to select the “suspicious” elements in an image, it would likely be possible to construct triggers that
function as adversarial examples for these detectors, and thus evade detection. It is exactly (and,
arguably only) by integrating a human in the loop, which is entirely feasible in the data-poisoning use
case, that we can hope to avoid the possibility of adversarial attacks against a fully automated system.

Limitations of our method As we consider mainly backdoor attacks with patch-based triggers, our
method is limited in that it can not be directly applied to more sophisticated backdoor attacks. In
addition to patch based backdoor attacks, there are works that investigate other types of trigger:
social-media filters ( , ), image warping ( , ), watermarks (

s ), image blending ( s ) and reflectance ( s ). These backdoor
attack methods assume a different form of trigger. In these cases, trigger construction methods for
poisoned classifiers should take into account the form of the triggers.

Since we use a human-in-the-loop procedure to extract new triggers, there is not a exact algorithmic
standard of whether a patch should be used for construction. As described in section 4.2, we select
the patches which have dense distinctive color regions, which are most of the cases we encountered.
There are also cases where such regions are hard to determine (see Figure 8a). It could be hard
to justify the attack results we report: we as the authors may be biased in constructing backdoor
triggers since we have much more expertise in dealing with edge cases. As an attempt to evaluate our
human-in-the-loop procedure fairly, we conduct a user study on TrojAl datasets. Participants are not
familiar with backdoor attacks but have basic knowledge of machine learning (details in section 5.2).

5 EXPERIMENTS

In this section, we present our attack results on poisoned classifiers from two datasets: ImageNet (

, ) and TrojAlI ( s )2. For Denoised Smoothing, we use the MSE-
trained ImageNet denoiser adopted from ( ). To make backdoor presence conspic-
uous, we synthesize large-e untargeted adversarial examples (e = 20, 60). The noise level we use in
smoothed classifiers is 1.00, as ( ) shows that larger noise level leads to better visual

results. We refer the reader to Appendix A for details on the experimental setup. For both datasets,
we construct alternative triggers of size 30 x 30, same as the size of the backdoor trigger used in
ImageNet poisoned classifiers®. We apply alternative triggers to random locations for ImageNet (same
as the initial backdoor) and a fixed place near the center for TrojAl. To evaluate the attack success
rate, for ImageNet, we use 50 images for binary classifier and 200 images for multi-class classifier
in the test set; for TrojAl dataset, we use the released 500 sample test images for each classifier.

Dataset description in https://pages.nist.gov/trojai/docs/data.html.
3In TrojAl the exact shape of backdoor trigger is not provided. Here we adopt the same setting as ImageNet.
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Figure 6: Results for attacking a poisoned multi-class classifier obtained through BadNet (Gu et al.,
2017). The attack success rate of the original backdoor Trigger A is 72.60%. The region which we
use to construct alternative triggers is highlighted in a red box.

BadNet HTBA CLBD
Binary = Multi-class \ Binary =~ Multi-class | Binary = Multi-class

Ours 98.80 % 89.20% 99.80 % 82.30% 93.80 % 67.90%

MESA 65.29% 43.60% 54.92% 50.29% 35.90% 40.05%

Random | 20.39% 11.02% 14.93% 14.32% 8.23% 18.02%

Original | 91.60% 72.60% 94.00% 74.55% 90.00% 58.95%
Table 1: Attack success rate of the triggers constructed using our method, MESA (Qiao et al., 2019),

random cropped patches (Random) and the original trigger.

5.1 IMAGENET

We train both binary classifiers and 5-class classifiers with three backdoor attack methods: BadNet (Gu
et al., 2017), HTBA (Saha et al., 2020) and CLBD (Turner et al., 2019). We adopt Trigger A in
Figure 4 as the default trigger. See Appendix E for results on ImageNet classifiers with more classes.

Visualizing adversarial examples We compare Denoised Smoothing to two baseline approaches
for generating adversarial examples: adversarial examples of: 1) the poisoned classifier (denoted
as Basic Adv); 2) the smoothed poisoned classifier without a denoiser (denoted as Smoothing). We
generate adversarial examples (¢ = 20) of the robustified binary poisoned classifier on ImageNet,
shown in Figure 5 (More examples are shown in Figure 18 in Appendix D.). First, we can see that our
approach gives less noisy and smoother adversarial images than baselines. Second, there are some
vague backdoor patterns in Basic Adv, but backdoor patterns in adversarial examples from Denoised
Smoothing are more distinctive and easier to recognize. Last, Smoothing baseline does not produce
any obvious pattern, which highlights the necessity of Denoised Smoothing.

Attack results on poisoned classifiers In Figure 6, we present sample alternative backdoor triggers
we constructed by attacking a BadNet poisoned multi-class classifier on ImageNet, where we show
both color patch and cropped patch constructed from each adversarial example. For attack results
on other five ImageNet poisoned classifiers, we refer the reader to Figure 11 and Figure 12 in
Appendix C. From Figure 6, we can see that all the alternative triggers created from backdoor
patterns have relatively high success rate. In particular, two triggers achieve significantly higher
attack success rate (89.20%, 85.80%) than the original backdoor Trigger A (72.60%). Also notice
that these alternative triggers differ greatly from Trigger A. Last, we can see that whether color patch
or cropped patch perform better depends on each example. In terms of the effect of perturbation size,
it can be seen that larger epsilon leads to better attack results.

We compare our method with two baselines: (1) a trigger distribution modeling method (Qiao et al.,
2019), (2) randomly cropped patches from smoothed adversarial examples. Although Qiao et al.
(2019) initially proposes MESA to model the distribution of triggers as a part of their defense method,
here we use MESA to sample from this trigger distribution and compare with the alternative triggers
discovered by our method. A summary of attack results is shown in Table 1, where we report the
ASR of: triggers constructed by our method, triggers constructed by MESA (Qiao et al., 2019) and
the original backdoor. It can be seen that our attack finds much more effective triggers than the
MESA baseline, and also the original trigger. For example, for the binary BadNet classifier, our
method construct triggers with ASR 98.80% while the triggers constructed by MESA attains only
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(b) Attacking a poisoned classifier with the “camouflaged” backdoor Trigger C (success
rate 75.80%).
Figure 8: Analysis of a poisoned classifier with a “camouflaged” backdoor trigger.

65.29%. Compared to randomly cropped patches, we can see that human interaction is helpful to
finding effective triggers in our approach.

Attack results on clean classifiers We show that clean classifiers are not broken under our attack.
Note that clean classifiers are not poisoned and there is no such concept as attack success rate
for clean classifiers. To measure the effect of the triggers constructed by our procedure on clean
classifiers, we report the error rate of clean classifiers when the test data is patched by the alternative
triggers. Figure 7 presents an illustration for attacking a clean multi-class ImageNet classifier with
our approach. We refer the reader to Figure 13 in Appendix C for more results on attacking clean
classifiers. Here we choose larger perturbation size ¢ = 60 because we find no obvious pattern with
perturbation size e = 20. Observe that clean classifiers have low error rates with test data patched by
the constructed triggers, meaning that our attack does not apply to clean classifiers.

“Camouflaged” Backdoor So far we have experimented with triggers that contain colors (i.e., red,
blue in Trigger A) that are visually distinctive and as a result, backdoor patterns can be easily
recognizable in adversarial examples. We study the case when backdoor trigger is less colorful or
contains colors already in the color distribution of clean images. Consider Trigger C in Figure 8a:
black and white colors in this trigger are also representative colors of a panda. We train a poisoned
binary classifier on ImageNet using Trigger C as the backdoor, where the backdoor attack method is
BadNet (Gu et al., 2017). In Figure 8a, we visualize adversarial examples of the robustified poisoned
classifier. Although there is no clear backdoor pattern in the form of dense color regions, we can
observe that in the generated adversarial examples, there is a tendency for black regions to have
vertical or horizontal boundaries, which resembles the pattern in Trigger C. Despite the absence of
obvious backdoor patterns, we are still able to break the poisoned classifier using cropped patterns
from large-¢ (¢ = 100) adversarial examples as shown in Figure 8b. Notice that both of the triggers
are noisy and seem completely different from Trigger C, but they attain higher attack success rate
(88.60% and 83.00%) than the original backdoor (75.80%).

5.2 TROJAI

A dataset in TrojAl (Majurski, 2020) consists of a mixed set of clean and poisoned classifiers. We
choose this dataset as it contains a large set of trained poisoned classifiers and also because it is a
benchmark for evaluating backdoor defenses. Different from ImageNet, we are not aware of the exact
backdoor triggers used to poison the classifiers. TrojAl contains four image datasets: from round 0
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Adversarial (€ = 20) Color Trigger

\ ASR
round 0 | 98.76%
round 1 | 95.23%
round 2 | 88.04%
round 3 | 82.20%

Success rate: 87.25%

Cropped Trigger

Success rate: 100%

Table 2: Average ASR of our
Figure 9: Results of attacking a poisoned classifier in TrojAI ~ attack on poisoned classifiers
dataset. from TrojAl datasets.

to round 3, with increasing complexity of backdoor attacks. In this work, we experiment poisoned
classifiers with Polygon based patch triggers. We exclude the case of filter based triggers in round 2
and round 3 datasets as discussed in the limitations in section 4.3.

Attack results In Figure 9, we show attack results on a poisoned classifier sampled from TrojAl
dataset. As shown in Figure 9, our methods can attack these poisoned classifiers with high success
rate (See Figure 15 in Appendix C for results on more poisoned classifiers.). Similarly, the cropped
trigger achieves higher success rate than the color trigger for both classifiers. For complete evaluation,
we randomly sample 20 classifiers each from round 0 to 3 datasets (excluding filter based triggers)
and apply our attack. The average attack success rate (ASR) is summarized in Table 2. We can see
that the constructed triggers by our method have high ASR on poisoned classifiers.

Human study We conduct a user study on the TrojAl dataset (for simplicity, we choose TrojAl round
0 data). Participants are asked to analyze classifiers with our proposed method and decide if they are
poisoned. We develop an interactive tool implementing our method to aid the study. Two control
groups are used: 1) a variant of our method which uses adversarial examples of the original classifier
(denoted as Basic Adv); 2) saliency maps on clean images (denoted as Saliency Map). In total, 15
participants from CS background with basic knowledge of machine learning take part in the human
study and they are evenly divided into three groups. Details on the user study are in Appendix B.

. Den01s§d Basic Adv | Random Patch
‘ Denoised ‘ Basic Adv ‘ Saliency Map Smoothing
Smoothing Clean 6% 5% 3%
Acc ‘ 89% ‘ 68% ‘ 32% Poisoned 97% 80% 8%

Table 3: Average accuracy in each group for  Table 4: We show the ASR of triggers constructed
identifying poisoned classifiers in the user by participants, and the randomly cropped patches
study. Each group has 5 participants. on clean/poisoned classifiers.

We show the average accuracy in each group for identifying poisoned classifiers in Table 3. We can
see that our method with Denoised Smoothing is much more helpful in identifying poisoned classifiers.
We compute the ASR of the triggers constructed by the participants for the group Denoised Smoothing,
Basic Adv and compare with randomly cropped patches from the smoothed adversarial examples.
Results are in Table 4. Observe that participants in the group Denoised Smoothing construct much
more effective triggers on poisoned classifiers. Randomly cropping patches fails to find effective
backdoor triggers, showing the necessity and importance of human interaction. Overall, the human
study suggests that our method are more interpretable and helpful for human users in identifying
poisoned classifiers.

6 CONCLUSION

In this work we introduce a new threat model of poisoned classifier where one would want to break it
without access to the original trigger. We propose a human-in-the-loop approach to attack poisoned
classifiers in this threat model. We observe smoothed adversarial examples of a robustified poisoned
classifier can contain backdoor patterns. Our attack procedure then constructs new alternative triggers
with these backdoor patterns and we find that they give comparable or even better attack performance
than the initial backdoor. We demonstrate that our attack is effective on high-resolution datasets,
with a comparison to previous work on modelling trigger distribution. We end with a user study
showcasing the efficiency and interpretability of our approach to the wider audience. Our work
highlight the vulnerability of poisoned classifier to common users without access to the original
trigger. From the promising results of our user study, we believe that future work for analyzing model
robustness or image classifiers can benefit from a human-in-the-loop approach.
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Appendices

A EXPERIMENTAL DETAILS

A.1 TRAINING DETAILS

We follow the experiment setting in HTBA ( , ), with publicly available code-
base https://github.com/UMBCvision/Hidden-Trigger—Backdoor—-Attacks.
HTBA divides each class of ImageNet data into three sets: 200 images for generating poisoned data,
800 images for training the classifier and 100 images for testing. The trigger is applied to random
locations on clean images. Poisoned datasets are first constructed with corresponding backdoor attack
methods. Then we fine-tune the last fully-connected layer of pretrained AlexNet ( ,

) on the created poisoned datasets. The fine-tuning process starts with initial learning rate of
0.001 decayed by 0.1 every 10 epochs and in total takes 10/30 epochs. The number of poisons are
400 images except for BadNet poisoned multi-class classifier, where we find that 1000 poisons are
required to achieve high backdoor attack success rate.

We implement the method of CLBD ( , ) utilizing adversarial examples on ImageNet.
We find that training poisoned classifiers with CLBD is difficult on ImageNet if we follow the exact
steps described in ( ). We find that we are able to successfully train poisoned
ResNets ( , ) by initializing the classifiers with adversarially robust classifiers that are
used to generate poisoned data in CLBD. We train adversarially robust classifiers for both binary
classification and multi-class classification. For training binary poisoned classifiers, we use 400
adversarial images with perturbation size ¢ = 32 in [l norm as poisoned data. For training multi-class
poisoned classifier, we use 400 adversarial images with e = 8 in /3 norm as poisoned data.

A.2 COMPUTING ADVERSARIAL EXAMPLE

In our attack, we need to compute adversarial examples of a smoothed classifier. To achieve
this, we optimize the SMOOTHADV objectlve ( , ) with projected gradient de-
scent (PGD) ( s ). The code for attacking smoothed
classifier is adopted from pubhc avallable codebase https://github.com/Hadisalman/
smoothing—adversarial. Denoiser model is an ImageNet DnCNN ( s
denoiser trained with MSE loss, adopted from the public codebase of Denoised Smoothing
inhttps://github.com/microsoft/denoised-smoothing.

All adversarial examples are computed by untargeted adversarial attacks with a ls norm bound €. We
use 16 Monte-Carlo noise vectors to estimate gradients of smoothed classifiers. The number of PGD
steps is 100. Step size at each iteration is 2x (perturbation size €) / (# of steps). Except for attacking
the poisoned classifier with “camouflaged” backdoor in Figure 8b, where we find that in this case,
larger step size leads to slightly better visual results, thus we set step size to be 5 in Figure 8b.

B USER STUDY

B.1 DETAILS ON USER STUDY

We describe our setup for the user study in detail. 15 people joined the study and are divided evenly
into three groups. We sample 50 classifiers randomly from TrojAl round 0 dataset. Participants are
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given the ground-truth labels (poisoned/clean) and saliency maps for 10 baseline classifiers and then
asked to mark 50 classifiers as either poisoned or clean. For the study group Denoised Smoothing
and Basic Adv, we ask participants to apply our attack method with the interactive tool and test if the
model can be successfully attacked by alternative triggers. If so, then mark the classifier as poisoned.
We discuss the principle of using our tool to identify poisoned classifiers in section D.1. For the
control group Saliency Map, we use RISE (Petsiuk et al., 2018) to generate saliency maps, as it is
shown to outperform other saliency map approaches (Ramprasaath et al., 2017; Marco et al., 2016).

B.2 TROJAI INTERACTIVE TOOL

In Figure 10, we show an overview of the interactive tool which implements our attack method. The
first half of the tool, as shown in Figure 10a, allows users to visualize adversarial examples with
chosen attack parameters. Below each image is the class that the adversarial image is predicted.
Figure 10b presents the second half of the tool, where users can create new alternative patch triggers
and see the classifier’s prediction on patched poisoned images.

Classifier ID Epsilon Steps # of noise Total Variation [ Targeted Clean Image Generate Adv Reset

b ] -. ° vactore 0 ~  Choose targets:
Value: 30 Value: 10 8 - 0 . LOAD GENERATE RESET
CLEAN EXAMPLE (5X5) ADV EXAMPLE (5X5)

Hlalwl- HIJHE

IH.Aﬂ li»,zu
ot s I ] v o B

(a) First half of the interactive tool.

Clean Image Patch Option Color Selector Apply Predict

LoD cropped patch r APPLY PREDICT

(b) Second half of the interactive tool.

Figure 10: Interface of interactive tool we develop for TrojAl dataset.
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C ADDITIONAL ATTACK RESULTS

C.1

Here we show the complete results for attacking binary poisoned classifiers on ImageNet in Figure 11.

IMAGENET BINARY POISONED CLASSIFIER

Notice that we find effective alternative triggers for all three poisoned classifiers.

Figure 11: Results for attacking three binary poisoned classifiers obtained by three backdoor attacks.
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(a) Results for attacking a binary poisoned classifier obtained through BadNet (Gu et
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al., 2017).

The attack success rate of the original backdoor Trigger A is 91.60%.
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sifier obtained through HTBA (Saha et al., 2020).

The attack success rate of the original backdoor Trigger A is 94.00%.
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(c) Results for attacking a binary poisoned classifier obtained through CLBD (Turner et al., 2019).
The attack success rate of the original backdoor Trigger A is 90.00%.
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C.2 IMAGENET MULTI-CLASS POISONED CLASSIFIER

In Figure 12, we present the results for attacking two poisoned multi-class classifiers on ImageNet
obtained by HTBA (Saha et al., 2020) and CLBD (Turner et al., 2019). We can see that our attack
constructs effective triggers in both cases.
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(a) Results for attacking a multi-class poisoned classifiers obtained through HTBA (Saha et al., 2020).
The attack success rate of the original backdoor Trigger A is 74.55%.
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(b) Results for attacking a binary poisoned classifiers obtained through CLBD (Turner et al., 2019).
The attack success rate of the original backdoor Trigger A is 58.95%.

Figure 12: Results for attacking multi-class poisoned classifiers on ImageNet obtained by
HTBA (Saha et al., 2020) and CLBD (Turner et al., 2019).
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C.3 IMAGENET CLEAN CLASSIFIERS

In Figure 13 and Figure 14, we show the results of attacking binary and multi-class ImageNet
classifiers. We can see that the clean classifier is not vulnerable to the triggers constructed by our

approach.
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Figure 13: Results of applying our attack on an ImageNet clean classifier (binary).
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Figure 14: Results of applying our attack on an ImageNet clean classifier.
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C.4 TroOJAI

In Figure 15, we show results for attacking poisoned classifiers in the TrojAl dataset. Note that for
all 8 poisoned classifiers, the highest attack success rate attained among four alternative triggers is
100%. In Figure 16, we show the results of applying our attack method to two clean classifiers from
TrojAl datasets. It can be seen that clean classifiers can classify more than half of the test images
correctly even if they are patched by the constructed triggers.
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Figure 15: Results of attacking 8 poisoned classifiers in the TrojAl dataset.
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Figure 16: Results of attacking two clean classifiers in the TrojAl dataset.
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D ADDITIONAL VISUALIZATION RESULTS

D.1 ADVERSARIAL EXAMPLES ON TROJAI DATASET

Figure 17 presents the adversarial examples of a robustified poisoned classifier from the TrojAl
dataset, where each row shows images from one class. Below each image we show the class predicted
by the poisoned classifier (not the smoothed classifier). We highlight those adversarial images with
clear backdoor patterns. Note that they are all classified into class 2, which is indeed the target class
of backdoor attack. While adversarial images from class 4 (the last row) have dense black regions, we
believe that this is a result of mimicking features of class O (the class that these images are predicted
into) and it can be easily tested using our method that these black regions can not be used to construct
successful triggers.

Figure 17: Adversarial examples (¢ = 20 in I norm) of a robustified poisoned classifier in the TrojAl
dataset. Below each image is the class predicted by the original poisoned classifier.
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D.2 COMPARISON OF DIFFERENT ADVERSARIAL EXAMPLES

Figure 18 shows more results on comparing different adversarial examples (¢ = 20).

Original Basic Adv

Smoothing Denoised Smoothing

Figure 18: Comparison of different adversarial examples (e = 20) of a robustified binary poisoned
classifier on ImageNet.

20



Under review as a conference paper at ICLR 2022

E IMAGENET CLASSIFIERS WITH MORE CLASSES

In this section, we evaluate our method on ImageNet classifier with more number of classes. We
randomly select 10 classes from 1000 ImageNet classes. We then use BadNet (Gu et al., 2017) to
train a poisoned classifier with Trigger A. Figure 19 shows the results for attacking this poisoned
classifier. We can observe that these alternative triggers have similar or even higher attack success
rate than the original trigger.
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Figure 19: Results of attacking a poisoned ImageNet classifier with 10 classes. The success rate of
the original backdoor is 59.71%.
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