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Abstract

Synthesizing optimal controllers for dynamical systems in practice involves solv-
ing real–time optimization problems with hard time constraints. These constraints
restrict the class of numerical methods that can be applied; indeed, computation-
ally expensive but accurate numerical routines often have to be replaced with fast
and inaccurate methods, trading inference time for worse theoretical guarantees on
solution accuracy. This paper proposes a novel methodology to accelerate numer-
ical optimization of optimal control policies via hypersolvers, hybrids of a base
solver and a neural network. In particular, we apply low–order explicit numerical
methods for the ordinary differential equation (ODE) associated to the numerical
optimal control problem, augmented with an additional parametric approxima-
tor trained to reduce local truncation errors introduced by the base solver. Given
a target system to control, we first pre-train hypersolvers to approximate base
solver residuals by sampling plausible control inputs. Then, we use the trained
hypersolver to obtain fast and accurate solutions of the target system during opti-
mization of the controller. The performance of our approach is evaluated in direct
and model predictive optimal control settings, where we show consistent Pareto
improvements in terms of solution accuracy and control performance.

1 Introduction

Emerging applications of optimal control to complex, high–dimensional systems require the im-
plementation of computationally expensive numerical methods for ordinary differential equations
(ODEs) (Wanner & Hairer, 1996; Butcher, 1997). Here, real–time and hardware constraints render
certain numerical methods not applicable, forcing the application of computationally cheaper but
otherwise less accurate algorithms. While the paradigm of optimal control has successfully been
applied in various domains (Vadali et al., 1999; Lewis et al., 2012; Zhang et al., 2016), these com-
putation budget constraints are still a great challenge (Ross & Fahroo, 2006; Baotić et al., 2008).
Furthermore, lower–order explicit ODE solvers are known to be brittle in the presence of stiff dy-
namical systems (Wanner & Hairer, 1996), resulting in numerical issues and unreliable controllers.

This work alleviates these limitations by detailing a systematic procedure for the offline optimization
and subsequence online application of ODE solvers equipped with a neural network approximator
of higher–order local truncation residuals. These hybrid solvers, known as hypersolvers (Poli et al.,
2020a), employ a low–order, computationally cheaper solver while preserving theoretical local and
global solution accuracy guarantees of traditional higher order methods. We extend the range of
applicability of hypersolvers to controlled dynamical systems, investigating and developing several
strategies to enable their application during online solution of the optimal control problem without
finetuning. Namely, we consider hypersolvers whose neural network residual approximators are a
priori optimized on an uncontrolled target system and then applied to significantly speed up iterated
simulations of the system later required by the control policy optimization algorithm. The proposed
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two-stage scheme is tested in both direct and model predictive control settings and shows promising
Pareto optimal results in terms of solution accuracy and subsequent control performance.
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Figure 1: Overview of the proposed method. [Left] The hypersolver is trained to approximate
residuals given a distribution of control inputs and states. [Right] The pre–trained hypersolver model
is used to accelerate the online learning of a control policy via Model Predictive Control.

2 Numerical Optimal Control

Let us consider the following controlled dynamical system described:

ẋ(t) = f(t, x(t), uθ(t))

x(0) = x0
(1)

with state x ∈ X ⊂ Rnx , input uθ ∈ U ⊂ Rnu defined on a compact time domain T := [t0, T ]
where θ is a set of free parameters of the controller. Solutions of equation 1 are denoted with
x(t) = Φ(x(s), s, t) for all s, t ∈ T .

2.1 Optimal Control Problem

Given some objective function J : X × U → R; x0, uθ 7→ J(x0, uθ(t)), and a distribution ρ0(x0)
of initial conditions with support in X , we consider the following nonlinear program, constrained to
the dynamics 1:

min
uθ(t)

Ex0∼ρ0(x0) [J(x0, uθ(t))]

subject to ẋ(t) = f(t, x(t), uθ(t))

x(0) = x0
t ∈ T

(2)

where the controller parameters θ are optimized. We will omit the use of θ and write u(t) = uθ(t)
from now on for simplifying the notation. Since analytic solutions of 2 exist only for limited classes
of systems and objectives, numerical solvers are often applied to iteratively find a solution instead:
for this reason we refer to problem 2 as numerical optimal control.

2.2 Solver Residuals for Controlled Dynamical Systems

Given nominal solutions Φ of equation 1 we can define the residual of a numerical ODE solver as
the normalized error accumulated in a single step size of the method, i.e.

Rk = R(tk, x(tk), u(tk)) =
1

εp+1

[
Φ(x(tk), tk, tk+1)− x(tk)− εψε(tk, x(tk), u(tk))

]
(3)

where p is the order of the numerical solver corresponding to ψε.
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3 Hypersolvers for Optimal Control

3.1 Formulation

Given a p–order base solver update map ψε, the corresponding hypersolver is the discrete iteration

xk+1 = xk +

base solver step︷ ︸︸ ︷
εψε (tk, xk, uk) +εp+1 gω (tk, xk, uk)︸ ︷︷ ︸

approximator

(4)

where gω (tk, xk, uk) is some o(1) parametric function with free parameters ω. The core idea is to
select gω as some function with universal approximation properties and fit the higher-order terms of
the base solver by explicitly minimizing the residuals over a set of state and input samples.

3.2 Training

We assume the considered optimal control problems to feature a control input constrained in a set
U . Such constraints are often present either due to physical limitations of the actuators or safety
restraints of the workspace; while this is not directly enforced nor necessary, the limited dataset of
constrained controls ensures that hypersolver pre–training is performed successfully. The analysis
considers the case of time–invariant systems (A.3) in which dynamics of equation 1 is not directly
dependent on time t, thus we can rewrite gw(t, x(t), u(t)) = gw(x, u). We also check the general-
ization properties of hypersolvers: details are available in the Appendix B.

The training procedure can be written as the following optimization problem

min
w

E(x,u)∼ξ(x,u)‖R(ε, x, u)− gw (x, u)‖2 (5)

where ξ(x, u) is a distribution with support in X ×U of the state and controller spaces. To guarantee
sufficient exploration of the state-controller space, we use Monte Carlo sampling (Robert & Casella,
2013) from the given distribution.

In particular, batches of initial conditions {xi0}, {ui0} are sampled from ξ and the optimization
problem of equation 5 is solved via backpropagation for updating the parameters of the hypersolver
gw using a stochastic gradient descent (SGD) algorithm, e.g., Adam (Kingma & Ba, 2017) and we
repeat the procedure for every training epoch.
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Figure 2: Pendulum trajectories simulated by an accurate adaptive–step solver with controllers optimized via
direct optimal control. While the controller optimized with the Euler solver fails to control the system for
some trajectories, the one obtained with HyperEuler can improve the performance while introducing a minimal
overhead with results comparable to higher-order solvers.
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Figure 3: [Left] Local residual distribution for the quadcopter model for step size ε = 0.02 s. [Center] Trajec-
tories of controlled quadcopters with MPC whose receding horizon controller is optimized by solving the ODE
with different methods. [Right] Final positions error distribution. The proposed approach with HyperEuler
achieves lower average error compared to other baseline solvers, while requiring a low overhead compared to
higher–order solvers due to a smaller number of dynamics function evaluations.

3.3 Optimal Control Optimization with Hypersolvers

The pre-trained hypersolver model is employed for obtaining solutions to the trajectories of the
optimal control problem of equation 2. We then optimize the control policy for minimizing the cost
function J ; we repeat the process iteratively until a solution is found. Figure 1 shows an overview
of the proposed two–stage approach consisting in hypersolver pre–training and subsequent optimal
control.

4 Evaluation

4.1 Direct Optimal Control of a Pendulum

We consider the inverted pendulum model with a torsional spring described in equation 9. After pre–
training the hypersolver by sampling from the sets of possible states X and controllers U , we apply
direct optimal control to optimize over full unrolled trajectories obtained via different fixed-step
solvers. The hypersolved version of the Euler scheme, HyperEuler, improves control performance
while introducing a minimal overhead as shown in Figure 2. Further details are available in the
Appendix C.1.

4.2 Model Predictive Control of a Quadcopter

We consider the three-dimensional quadcopter model of equation 10. The controller was optimized
online via the Model Predictive Control (MPC) (Garcia et al., 1989) algorithm whose receding
horizon was calculated through different standard ODE solvers and our hypersolver approach. Fig-
ure 3 shows that HyperEuler reduces mean local residuals even compared to the Midpoint solver,
while control performance shows the lowest error on final positions even compared to higher–order
solvers. Additional experimental details are available in the Appendix C.2.

5 Conclusion

We presented a novel method for obtaining fast and accurate control policies. Hypersolver mod-
els were firstly pre–trained on distributions of states and controllers to approximate higher–order
residuals of base fixed–step ODE solvers. The obtained models were then employed to improve the
accuracy of trajectory solutions over which control policies were optimized. We verified that our
method shows consistent improvements in the accuracy of ODE solutions and thus on the quality
of control policies optimized through numerical solutions of the system. We envision the proposed
approach to benefit the control field and robotics in both simulated and potentially real–world envi-
ronments by efficiently solving high–dimensional time–continuous problems.
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A Additional Hypersolver Material

A.1 Bounds on Solution Errors

From the definition of residual in equation 3, we can define the local truncation error ek :=∥∥εp+1Rk
∥∥
2
. Given a p-th order explicit solver, we have ek = o(εp+1) (Butcher, 1997). For hyper-

solvers, similar error bounds are defined as ek ≤ o(δεp+1), where δ > 0 depends on the hypersolver
training results (Poli et al., 2020a, Theorem 1). This result practically guarantees that if gω is a good
approximator for R, i.e. δ � 1, then the overall local truncation error of the hypersolved ODE is
significantly reduced.

A.2 Explicit HyperEuler Formulation

During the experiments, we restricted our analysis to the hypersolved version of the Euler scheme,
namely HyperEuler because of the highest potential speed-up it can achieve: since Euler is a
first-order method, it requires the least number of function evaluations (NFE) of the vector field f
in equation 1 and yields a second order local truncation error ek :=

∥∥ε2Rk∥∥2, which is larger than
other fixed-step solvers. In particular, the base solver scheme ψ of equation 4 can be written as
ψε (tk, xk, uk) = f (tk, xk, uk), which is approximating the next state by adding an evaluation of
the vector field multiplied by the step size ε. The HyperEuler scheme can be explicitly written as{

xk+1 = xk + εf(tk, xk, uk) + ε2gw (tk, xk, uk)

xk=0 = x0
(6)

while its residual can be written as
R (x(tk), u(tk))) = Φ(x(tk), tk, tk+1)− x(tk)− εf(tk, xk, uk) (7)

A.3 Hypersolvers for Time-invariant Systems

A time-invariant system with time-invariant controller can be described as following
ẋ(t) = f(x(t), u(x(t)))

x(0) = x0
(8)

in which f and u do not explicitly depend on time.

A.4 Architecture

We designed the hypersolver network gw as a feed–forward neural network. Table 1 summarizes
the parameters used for the considered controlled systems, where activation functions SoftPlus:
x 7→ log(1 + ex) and Tanh: x 7→ ex−e−x

ex+e−x .

Table 1: Hyper-parameters for the hypersolver networks in the experiments.

Inverted Pendulum Quadcopter
Input Layer 5 28
Hidden Layer 1 32 64
Activation Function 1 Softplus Softplus
Hidden Layer 2 32 64
Activation Function 2 Tanh Softplus
Output Layer 2 12

We also used the vector field f as an input of the hypersolver, which, however, does not require
a further evaluation since it is pre-evaluated at runtime by the base solver ψ. We emphasize that
the size of the network should depend on the application: a too-large neural network may require
more computations than just increasing the numerical solver’s complexity: Pareto optimality of
hypersolvers also depends on their complexity. By keeping their neural network small enough, we
can guarantee that evaluating the hypersolvers is cheaper than resorting to more complex numerical
routines.
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Figure 4: Generalization outside of the training region (red rectangle) of the state space with different hy-
persolver activation functions. Architectures containing activation functions with periodic components achieve
better extrapolation properties compared to the others.

B Generalization Study

We assumed the state and controller spaces to be bounded and that training is performed sampling for
their known distributions. While this is sufficient for optimal control problems given a priori known
bounds, we also investigate how the system generalizes to unseen states and control input values.
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Figure 5: Generalization outside of the training re-
gion (red lines) in the controller space with different
hypersolver activation functions. The Snake activa-
tion function manages to extrapolate best to unseen con-
trollers compared to others.

In particular, we found that activation functions
have an impact on the end result of general-
ization beyond known boundaries. We took
into consideration two commonly used acti-
vation functions, Tanh : x → ex−e−x

ex+e−x and
ReLU : x → max(0, x), along with network
architectures which employ activation func-
tions containing periodic components: SIREN :
x → sin (Wx+ b) (Sitzmann et al., 2020) and
Snake : x → x + 1

a sin2(ax) (Ziyin et al.,
2020). We trained hypersolver models with the
different activation functions for the inverted
pendulum of equation 9 with common settings:
time step ε was chosen as 0.1 s, networks were
trained for 105 epochs with the Adam opti-
mizer and learning rate of 10−3, where sam-
pling was done on from the uniform distribu-
tion ξ(x, u) with support in X × U with X =
[−2π, 2π]× [−2π, 2π] and U = [−10, 10]. Fig-
ure 4 and Figure 5 show generalization outside
the states and controllers distribution respec-
tively. We notice that while Tanh and ReLU perform well on the training set of interest, perfor-
mance degrades rapidly outside of it. On the other one hand, SIREN and Snake manage to extrap-
olate the periodicity of the residual distribution even outside of the training region, thus providing
further empirical evidence of the universal approximation theorem (Ziyin et al., 2020, Theorem 3).

C Experimental Details

C.1 Inverted Pendulum

System Dynamics We model the inverted pendulum with elastic joint with Hamiltonian dynamics
via the following: [

q̇
ṗ

]
=

[
0 1/m
−k −β/m

] [
q
p

]
−
[

0
mgl sin q

]
+

[
0
1

]
u (9)

where m = 1 [Kg], k = 0.5 [N/ rad], r = 1 [m], β = 0.01 [Ns/ rad], g = 9.81 [m/s2].
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Figure 6: Mean local residuals of the inverted pendulum as a function of control inputs at different step sizes ε.
HyperEuler improves on the local residuals compared to the baseline Euler and even compared to higher-order
ODE solvers at larger step sizes.

Hypersolver pre–training We select ξ(x, u) as a uniform distribution with support in X × U
where X = [−2π, 2π]× [−2π, 2π] and U = [−5, 5] to guarantee sufficient exploration of the state-
controller space. Nominal solutions Φ are calculated using the Tsitouras 5 (Tsitouras, 2011)
adaptive–step solver with absolute and relative tolerances set to 10−5. We train the hypersolver on
local residuals using the Adam optimizer with learning rate of 3× 10−4 for 3× 105 epochs. Figure
6 shows mean local residuals with hypersolver models trained on different step sizes.

Direct optimal control The goal is to stabilize the inverted pendulum in the vertical position
x? = (0, 0). We choose t ∈ [0, 3] and a step size ε = 0.2 s for the experiment. The control input
is assumed continuously time–varying. The neural controller is optimized via SGD with Adam with
learning rate of 3 × 10−3 for 1000 epochs. Trajectories obtained with the controller optimized
with HyperEuler reach final positions q = (1.6 ± 17.6) × 10−2 while Midpoint and RK4 ones
q = (−0.6 ± 12.7) × 10−2 and q = (1.1 ± 12.8) × 10−2 respectively. On the other hand, the
controller optimized with the Euler solver fails to control some trajectories obtaining a final q =
(6.6± 19.4)× 10−1. HyperEuler considerably improved on the Euler baseline while requiring only
1.2% more Floating Point Operations (FLOPs) and 49.5% less compared to Midpoint.

C.2 Quadcopter

System Dynamics The quadcopter model is a suitably modified version of the explicit dynamics
update in (Panerati et al., 2021) for batched training in PyTorch. The dynamic model is described
by the following accelerations update:

ẍ =
(
R · [0, 0, kF

∑3
i=0ω

2
i ]− [0, 0,mg]

)
m−1

ψ̈ = J−1
(
τ(l, kF , kT , [ω

2
0 , ω

2
1 , ω

2
2 , ω

2
3 ])− ψ̇ ×

(
Jψ̇
)) (10)

where x = [x, y, z] corresponds to the drone positions and ψ = [φ, θ, ψ] to its angular positions;
R and J are its rotation and inertial matrices respectively, τ(·) is a function calculating the torques
induced by the motor speeds ωi, while arm length l, mass m, gravity acceleration constant g along
with kF and kT are scalar variables describing the quadcopter’s physical properties.

Hypersolver pre–training We select ξ(x, u) as a uniform distribution with support in X × U
where X is chosen as a distribution of possible visited states and each of the four motors i ∈
[0, 3] has control inputs ui ∈ [0, 2.17] × 105 rpm. Nominal solutions Φ are calculated using the
Dormand-Prince 5 (Dormand & Prince, 1980) adaptive–step solver with relative and absolute
tolerances set to 10−7 and 10−9 respectively. We train HyperEuler on local residuals using the Adam
optimizer with learning rate of 10−3 for 105 epochs.

Model predictive control The control goal is to reach a final positions (x, y, z)? = (8, 8, 8) m.
We choose t ∈ [0, 3] and a step size ε = 0.02 s for the experiment. The control input is assumed
piece–wise constant during MPC sampling times. The receding horizon is chosen as 0.5 s. The
neural controller is optimized via SGD with Adam with learning rate of 10−2 for 20 iterations at
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each sampling time. 30 experiments are conducted starting at random initial conditions which are
kept common for the different ODE solvers. HyperEuler requires a single function evaluation per
step as for the Euler solver compared to two function evaluations per step for Midpoint and four
for RK4. Controlled trajectories optimized with Euler, Midpoint and RK4 collect an error on final
positions of (1.09 ± 0.37) m, (0.71 ± 0.17) m, (0.70 ± 0.19) m respectively while HyperEuler
achieves the lowest terminal error value of (0.66± 0.24) m.

C.3 Hardware and Software

Experiments were carried out on a machine equipped with an AMD RYZEN THREADRIP-
PER 3960X CPU and two NVIDIA RTX 3090 graphic cards. Software–wise, we used
PyTorch (Paszke et al., 2019) for deep learning and the torchdyn (Poli et al., 2020b) and
torchdiffeq (Chen et al., 2019) libraries for ODE solvers.

D Broader Impact

We envision our hypersolver approach to optimal control to be applicable to real–world online con-
trol problems. Let us present some considerations that should be taken into account in these regards.
Firstly, implementation–wise, ad–hoc hardware choices may need to be done for fast inference of the
approximator depending on its nature, e.g., neural networks (Sze et al., 2017); additionally, depend-
ing on the computational requirements of the control algorithms (Torrente et al., 2021). Secondly,
unlike in simulated environments, imperfections in the modeling itself or disturbances can lead to
sub–optimal controllers by incorrectly solving the control problem’s associated ODEs. However,
correction terms can be learned and combined with the dynamics model to improve the control pol-
icy (Carron et al., 2019; Hewing et al., 2020). Similarly, hypersolver models trained on residuals
derived from nominal data–driven trajectories may be able to correct modeling errors and distur-
bances to a certain extent. Nonetheless, we believe future works on hypersolvers for optimal control
represent an exciting avenue for obtaining fast and accurate optimal control policies not only in
simulated, but also in real–world and production environments.
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