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ABSTRACT

Exponential Moving Average (EMA) is a widely used weight averaging (WA)
regularization to learn flat optima for better generalizations without extra cost in
deep neural network (DNN) optimization. Despite achieving better flatness, exist-
ing WA methods might fall into worse final performances or require extra test-time
computations. This work unveils the full potential of EMA with a single line of
modification, i.e., switching the EMA parameters to the original model after each
epoch, dubbed as Switch EMA (SEMA). From both theoretical and empirical as-
pects, we demonstrate that SEMA can help DNNs to reach generalization optima
that better trade-off between flatness and sharpness. To verify the effectiveness
of SEMA, we conduct comparison experiments with discriminative, generative,
and regression tasks on vision and language datasets, including image classifica-
tion, self-supervised learning, object detection and segmentation, image genera-
tion, video prediction, attribute regression, and language modeling. Comprehen-
sive results with popular optimizers and networks show that SEMA is a free lunch
for DNN training by improving performances and boosting convergence speeds.

1 INTRODUCTION

Deep neural networks (DNNs) have revolutionized popular application scenarios like computer vi-
sion (CV) (He et al., 2017; Touvron et al., 2021) and natural language processing (NLP) (Devlin
et al., 2018) in the past decades. As the size of models and datasets grows simultaneously, it becomes
increasingly vital to develop efficient optimization algorithms for better generalization capabilities.
A better understanding of the optimization properties and loss surfaces could motivate us to im-
prove the training process and final performances with some simple but generalizable modifications
(Wolpert & Macready, 1997; Wallace & Dowe, 1999).

Table 1: Comprehensive comparison of optimiza-
tion and regularization methods from the aspects of
pluggable (easy to migrate or not), free gains (per-
formance gain without extra cost or not), speedup
(boosting convergence speed or not), and the opti-
mization property (flatness or sharpness).

Type Method Pluggable Free gains Speedup Properties
SAM 3 7 7 sharpness

SASAM 7 7 7 both
Optimizer Adan 7 7 3 sharpness

Lookahead 3 3 3 sharpness
SWA 3 3 7 flatness

Regularization EMA 3 3 3 flatness
SEMA 3 3 3 both

The complexity and high-dimensional param-
eter space of modern DNNs have posed great
challenges in optimization, such as gradient
vanishing or exploding, overfitting, and degen-
eration of large batch size (You et al., 2020).
To address these obstacles, two branches of re-
search have been conducted: improving opti-
mizers or enhancing optimization by regular-
ization techniques. According to their char-
acteristics in Tab. 1, the improved optimiz-
ers (Kingma & Ba, 2014; Ginsburg et al.,
2018; Zhang et al., 2019; Foret et al., 2021)
tend to be more expensive and focus on sharp-
ness(deeper optimal) by refining the gradient, while the popular regularizations (Srivastava et al.,
2014; Zhang et al., 2018; Izmailov et al., 2018; Polyak & Juditsky, 1992) are cheaper to use and fo-
cus on flatness(wider optimal) by modifying parameters. More precisely, the optimization strategies
from both gradient and parameter perspectives show their respective advantages.

Therefore, a question that deserves to be considered: is it possible to propose a strategy to opti-
mize both sharpness and flatness simultaneously without incurring additional computational
overhead? Due to simplicity and versatility, the ideal candidate would be weighted averaging (WA)
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Figure 1: Training epoch vs. performance plots of the baseline, EMA, and SEMA. (a) Image classi-
fication with DeiT-S on ImageNet-1K (IN-1K); (b) Object detection and segmentation with ResNet-
50 Cascade (C.) Mask R-CNN (3×) on COCO; (c) Contrastive learning (CL) pre-training with
MoCo.V3 and DeiT-S on CIFAR-100; (d) Face age regression with ResNet-50 on AgeDB. SEMA
shows faster convergence speeds and better performances than EMA and the baselines.

methods (Izmailov et al., 2018; Polyak & Juditsky, 1992) with vanilla optimizers, widely adopted
network regularizers that seek local minima at flattened basins by ensemble model weights. How-
ever, previous Weight Averaging (WA) techniques either introduced additional computational over-
head, as in the case of TWA (Li et al., 2023c), or operated independently of model optimization,
like EMA and SWA, thus maintaining unchanged overall efficiency. The limitations of directly us-
ing EMA or SWA during training, which converge quickly but have poor final performance, are
underscored by studies like LAWA (Kaddour, 2022) and PSWA (Guo et al., 2022). Techniques like
SASAM (Kaddour et al., 2022) indicate that WA can be combined with optimizers to enhance final
performance. Consequently, the main objective of this paper is to introduce WA into the optimization
process, aiming to expedite convergence while implementing plug-and-play regularization without
incurring excessive overhead. In addition to the issue of computational efficiency, we are also in-
spired by the two-stage optimization strategy of fast and slow: the fast model is used to explore the
spiky regions where the empirical risk is minimal (i.e., sharpness), whereas the slow model selects
the direction where the risk is more homogeneous (i.e., flatness) for the next update. For example, in
regular training utilizing EMA, the fast model corresponds to a model that rapidly updates towards
the target in each local iteration, while the slow model precisely aligns with the EMA model. They
all have ideal optimization properties but lack the enhancement of interaction during training.

Hence, we introduce Switch Exponential Moving Average (SEMA) as a dynamic regularizer, which
incorporates flatness and sharpness by switching fast and slow models at the end of each training
epoch. At each training stage of switching, SEMA fully utilizes the fast convergence of EMA to
reach flat local minima, as shown in Figure 1, allowing the optimizer to further explore lower basins
through sharp trajectories based on previous EMA parameters for better generalization. In extensive
experiments with different tasks and various network architectures, including image classification,
self-supervised learning, object detection and segmentation, image generation, regression, video
prediction, and language modeling, SEMA improves the performance of baselines consistently as a
plug-and-play free lunch. In summary, we make the following contributions:

• We propose the Switch Exponential Moving Average (SEMA) method, and through visualization
of the loss landscape and decision boundary experiments, we demonstrate its effectiveness in
improving model performance across various scenarios.

• We first apply weight averaging to the training dynamics, allowing SEMA to take both flatness
and sharpness into account simultaneously, facilitating faster convergence.

• Comprehensive empirical evidence proves the effectiveness of SEMA. Across numerous popu-
lar tasks and datasets, SEMA surpasses state-of-the-art existing WA methods and outperforms
alternative optimization methods.

2 RELATED WORK

Optimizers. With backward propagation (BP) (Rumelhart et al., 1986) and stochastic gradient de-
scending (SGD) (Sinha & Griscik, 1971) with mini-batch training (Bishop, 2006), optimizers play
a crucial part in the training process of DNNs. Mainstream optimizers utilize momentum tech-
niques (Sutskever et al., 2013) for gradient statistics and improve DNNs’ convergence and perfor-
mance by adaptive learning rates (e.g., Adam variants (Kingma & Ba, 2014; Liu et al., 2020)) and
acceleration schemes (Kobayashi, 2020). SAM (Foret et al., 2021) aims to search a flatter region
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where training losses in the estimated neighborhood by solving min-max optimizations, and its vari-
ants improve training efficiency (Liu et al., 2022a) from aspects of gradient decomposition (Zhuang
et al., 2022), training costs (Du et al., 2021; 2022). To accelerate training, large-batch optimizers
like LARS (Ginsburg et al., 2018) for SGD and LAMB (You et al., 2020) for AdamW (Loshchilov &
Hutter, 2019) adaptively adjust the learning rate based on the gradient norm to achieve faster train-
ing. Adan (Xie et al., 2023) introduces Nesterov descending to AdamW, bringing improvements
across popular CV and NLP applications. Another line of research proposes plug-and-play optimiz-
ers, e.g., Lookahead (Zhang et al., 2019; Zhou et al., 2021) and Ranger (Wright, 2019), combining
with existing inner-loop optimizers (Zhou et al., 2021) and working as the outer-loop optimization.

Weight Averaging. In contrast to momentum updates of gradients in optimizers, weight averag-
ing (WA) techniques, e.g., SWA (Izmailov et al., 2018) and EMA (Polyak & Juditsky, 1992), are
commonly used in DNN training to improve model performance. As test-time WA strategies, SWA
variants (Maddox et al., 2019) and FGE variants (Guo et al., 2023; Garipov et al., 2018) heuristically
ensemble different models from multiple iterations (Granziol et al., 2021) to reach flat local minima
and improve generalization capacities. TWA (Li et al., 2023c) improves SWA by a trainable ensem-
ble. Model soup (Wortsman et al., 2022) is another WA technique designed for large-scale models,
which greedily ensembles different fine-tuned models and achieves significant improvements. When
applied during training, EMA update (i.e., momentum techniques) can improve the performance and
stabilities. Popular semi-supervised learning (e.g., FixMatch variants (Sohn et al., 2020)) or self-
supervised learning (SSL) methods (e.g., MoCo variants (He et al., 2020), and BYOL variants (Grill
et al., 2020)) utilize the self-teaching framework, where the parameters of teacher models are the
EMA version of student models. In Reinforcement Learning, A3C (Mnih et al., 2016) applies EMA
to update policy parameters to stabilize the training process. EMA significantly contributes to the
stability and output distribution in generative models like diffusion (Karras et al., 2023). Moreover,
LAWA (Kaddour, 2022) and PSWA (Guo et al., 2022) try to apply EMA or SWA directly during the
training process and found that using WA during training only accelerates convergence rather than
guarantee final performance gains. SASAM (Kaddour et al., 2022) combines the complementary
merits of SWA and SAM for better local flatness. Nevertheless, since WA techniques are universal
and easy to migrate, they remain crucial for innovation. This perspective introduces WA as a novel
approach to the long-unexplored realm of EMA. Our SEMA harnesses the historical data of individ-
ual configurations to enhance training efficacy, thereby accelerating convergence rates. Moreover,
we leverage the universal applicability of WA methods to bolster EMA’s generalization across a
spectrum of problem domains, ensuring robust performance across varied scenarios.

Regularizations. Network parameter regularizations, e.g., weight decay (Andriushchenko et al.,
2023), dropout variants (Srivastava et al., 2014; Huang et al., 2016), and normalization te-
chiniques (Peng et al., 2018; Wu & Johnson, 2021), control model complexity and stabilities to
prevent overfitting and are proven effective in improving model generalization. The WA algorithms
also fall into this category. For example, EMA can effectively regularize Transformer (Devlin et al.,
2018; Touvron et al., 2021) training in both CV and NLP scenarios (Liu et al., 2022b; Wightman
et al., 2021). Another part of important regularization techniques aims to improve generalizations by
modifying the data distributions, such as label regularizers (Szegedy et al., 2016)) and data augmen-
tations (DeVries & Taylor, 2017). Both data-dependant augmentations like Mixup variants (Zhang
et al., 2018; Yun et al., 2019; Liu et al., 2022d) and data-independent methods like RandAugment
variants (Cubuk et al., 2019; 2020)) enlarge data capacities and diversities, yielding significant per-
formance gains while introducing ignorable additional computational overhead. Most regularization
methods provide “free lunch” solutions that effectively improve performance as a pluggable module
with no extra costs. Our proposed SEMA is a new “free-lunch” regularization method that improves
generalization abilities as a plug-and-play step for various application scenarios.

3 SWITCH EXPONENTIAL MOVING AVERAGE

We present the Switch Exponential Moving Average (SEMA) and analyze its properties. In sec-
tion 3.1, we consider both the performance and landscape of optimizers (e.g., SGD and AdamW)
with or without EMA, which helps understand the loss geometry of DNN training and motivates
the SEMA procedure. Then, in section 3.2, we formally introduce the SEMA algorithm. We also
derive its practical consequences after applying SEMA to conventional DNN training. Finally, in
section 3.3, we provide the theoretical analysis for proving the effectiveness of SEMA.

3
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(c) Swin-S (AdamW)
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(d) Swin-S (AdamW)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

100

2 × 100

3 × 100

4 × 100

Lo
ss

Loss EMA
Loss SWA
Loss SEMA
Accuracy EMA
Accuracy SWA
Accuracy SEMA

0

20

40

60

80

100

Ac
cu

ra
cy

(e) ResNeXt-50 (SGD)
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(f) ConvNeXt-S (AdamW)
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(h) ConvNeXt-T (AdamW)
Figure 2: 1D loss landscape with validation loss (the left axis) and top-1 accuracy (the right axis) of
classification on (a)-(f) CIFAR-100 and (g)(h) ImageNet-1K. The loss landscapes of EMA and SWA
models are flatter than those of the baseline (using vanilla optimizers), while our proposed SEMA
yields deeper and smoother local minima with deepened basins and as flat slopes as EMA. Note that
the performance gaps are relatively small on ImageNet-1K due to the massive training data.

3.1 LOSS LANDSCAPE ANALYSIS

SEMA is based on the dynamic weight averaging of switching the slow model generated by EMA to
the fast model optimized directly by the optimizer in a specific interval that allows the combination
of each unique characteristic to form an intrinsically efficient learning scheme. Therefore, with
the popular CNNs and ViTs as backbones, we first analyze the loss landscape and performance to
motivate our method.

EMA. As a special case of moving average, applies weighting factors that decrease exponentially.
Formally, with a momentum coefficient α ∈ (0, 1) as the decay rate, an EMA recursively calculates
the output model weight:

θEMA
t = α · θOpt

t + (1− α) · θEMA
t−1 , (1)

where θOpt represents the model parameters updated by the optimizer, θEMA denotes the exponen-
tially smoothed model parameters, and t is the iteration step in training. A higher α discounts older
observations faster.

Loss Landscape. The method of visualizing the loss landscape is based on linear interpolation of
models (Li et al., 2018) to study the “sharpness” and “flatness” of different minima. The sharpness
captures the gradient descent’s directional sensitivity, and flatness assesses the minima’s stability
for weight averaging. Assuming there is a center point θ∗ as the local minima of the loss landscape
and one direction vector η, the formulation of plotting the loss function L is:

f(α) = L(θ∗ + α · η). (2)

For each learned model, the 1-dimensional landscape can be defined by the weight space of the
final model. More detailed theoretical explanations are provided in the appendix A.4. In Figure 2,
models are trained by optimizers (SGD or AdamW) with or without EMA on CIFAR-100. There
are two interesting observations: (a) the vanilla optimizer without EMA produces a steep peak,
whereas (b) with EMA, it has a smoother curve with a lower peak. These two methods perfectly
connect to the two basic properties of loss landscape, flatness, and sharpness, which could be the key
to reaching the desired solution of deeper and wider optima for better generalization, while SEMA
combines the two advantages without extra computation cost. We further demonstrate the beneficial
consequences of using SEMA in the next subsection.

3.2 SWITCH EMA ALGORITHM

We now present the proposed Switch Exponential Moving Average algorithm, a simple but effective
modification for training DNNs. Based on conclusions in section 3.1, since EMA is independent
of the learning objective and will stack in the basin without local sharpness, i.e., failing to explore
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(a) Baseline vs. EMA (b) EMA vs. SEMA

Figure 3: Illustration of 2D loss landscape and optimiza-
tion trajectory on Circles test set. EMA models reach the
flat basin while the baseline is stuck at the sharp cliff. Pro-
jecting the EMA model to the landscape of SEMA, the
SEMA model approaches the local minima efficiently.

Algorithm 1 Pseudocode for SEMA.

# f, f_ema: online and EMA networks
# m: EMA momentum coefficient
f.params = f_ema.params
for i in N epochs: # total epochs

for x, y in loader: # a minibatch
loss = LossFunction(f(x), y)
# optimization and update f.

params
loss.backward()
optimizer.step()
# momentum update f_ema.params
f_ema.params = (1-m)*f.params

+ m*f_ema.params
Evaluate(f_ema) # evaluation on

validation set
# update f.params as f_ema.params
f.params = f_ema.params

local minima further. Intuitively, the key issue lies in how to make the slow EMA model θEMA

optimizable along with the fast model θOpt during the training process. Therefore, we introduce
the simple switching operation between the two models to achieve this goal, i.e., switching θOpt to
θEMA regularly according to a predefined switching interval T . Formally, SEMA can be defined as:

θ′t = θSEMA
t−1 − η∇L(θSEMA

t−1 ),

θSEMA
t =

{
θ′t, t%T = 0

α · θ′t + (1− α) · θSEMA
t−1 , t%T 6= 0

(3)

where θ′ is an intermediate optimizer iterate. Practically, we set T to the multiple of the iteration
number for traversing the whole dataset, e.g., switching by each epoch. The training procedure of
SEMA is summarized in Algorithm 1, where we only add a line of code to the EMA algorithm.

Three practical consequences of such simple modification on the vanilla optimization process are
summarized as follows:

Faster Convergence. SEMA significantly boosts the convergence speed of DNN training. As
demonstrated by the 2D loss landscapes in Figure 3, the baseline model frequently gets stuck on the
edge of a cliff. In contrast, the EMA model quickly reaches a flat basin. However, when plotted
on the SEMA landscape, the model approaches the local minimum via a steeper path, while the
EMA model swiftly arrives at a flat, albeit inferior, region. This suggests that SEMA can guide the
optimization process towards better solutions, achieving lower losses and reaching the local basin
with more efficient strategies and fewer training steps.
Better Performance. SEMA enhances the performance of DNNs by skillfully leveraging the
strengths of both the baseline and EMA models. SEMA exhibits a deeper and more distinct loss
landscape compared to the baseline and existing WA methods, as illustrated in Figure 2b. This
starkly contrasts with the EMA, which only shows flatness, and SWA models trained with the
straightforward optimizer. This unique characteristic allows SEMA to explore solutions with su-
perior local minima, thereby improving its generalization across various tasks. Intriguingly, SEMA
maintains this sharper landscape under different optimizers/backbones 2c. In fact, the loss land-
scapes 2d of EMA and SWA models appear flatter than that of the baseline.

Decision Boundary Confidence Levels Labeled Class 0 Labeled Class 1 Test Samples

Baseline EMA SEMA

Figure 4: Illustration of the baseline, EMA, and SEMA on
Circles Dataset with 50 labeled samples (triangle red/yel-
low points) and 500 testing samples (gray points) in train-
ing a 2-layer MLP. We plot the decision boundary, accu-
racy, decision boundary width, and prediction calibration.

Smoother Decision. SEMA can pro-
duce smoother decision boundaries to
enhance the robustness of trained mod-
els. Figure 4 shows decision bound-
aries on a toy dataset and illustrates that
SEMA models demonstrate greater reg-
ularity than EMA models. Conversely,
EMA models may have more jagged
decision boundaries. The smoother de-
cision boundaries produced by SEMA
allow for more reliable and consistent
predictions, even in regions with com-
plex data distributions. Figure 2b veri-
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fies that smoother decision boundaries correspond to better performance with SEMA. This is partic-
ularly evident in tasks requiring fine-grained discrimination or complex data distributions because
smooth boundaries reduce the chance of overfitting to noisy data or variations. Hence, it ensures
more reliable and consistent predictions, further solidifying SEMA’s advantage over other methods.

3.3 THEORETICAL ANALYSIS

To further substantiate the behavior and advantages of SEMA compared to existing optimization and
WA methods in stochastic optimization scenarios and to verify its training stability and convergence
characteristics, we take SGD as an example and present a theoretical analysis from two aspects. Let
η be the learning rate of the optimizer α be the decay rate of SGD, EMA, and SEMA. In the noise
quadratic model, the loss of iterates Θt is defined as:

L(Θt) =
1

2
(Θt − c)TA(Θt − c), (4)

where c ∼ N (θ∗,Σ) and A is the coefficient matrix of the L with respect to Θ. Without loss of
generality, we set θ∗ = 0. We denote the models learned by SGD, EMA, and SEMA as θSGDt ,
θEMA
t , and θSEMA

t , respectively.
Proposition 1. (Low-frequency Oscillation): In the noisy quadratic model, the variance of SGD,
EMA, and SEMA iterates, denoted as V (t)

SGD := V(ΘSGD
t ), V (t)

EMA := V(ΘEMA
t ), and V

(t)
SEMA :=

V(ΘSEMA
t ), converge to the following values according to Banach’s fixed point theorem, provided

η satisfies 2
η > λmax(A), and VSEMA < VEMA < VSGD:

VSGD =
ηA

2I − ηA
Σ, VEMA = j · VSGD, VSEMA = k · VEMA, (5)

where j < 1 and k < 1 are the coefficients, j = α
2−α ·

2−α−(1−α)ηA
α+(1−α)ηA , and k = 2−α

α ·
α+(1−α)ηA

2−α−(1−α)ηA ·
αηA

2I−αηA ·
2I−ηA
ηA . Practically, SEMA’s stability can be traced back to its ability to mitigate low-

frequency oscillations during optimization. The proposition demonstrates that SEMA achieves a
lower variance than EMA and SGD. A lower variance signifies a more stable optimization trajectory,
indicating smoother parameter updates and less erratic behavior. As illustrated in Figure 3, SEMA
facilitates steady progress towards a local minimum without being impeded by slow and irregular
parameter updates. The proof of Proposition 1 is provided in Appendix A.1.
Proposition 2. (Fast Convergence): The iterative update of SEMA ensures its gradient descent
property as SGD, which EMA doesn’t have. It can be formulated as:

(θSEMA
t+1 − θSEMA

t ) ∝ −∇L(θSGDt ). (6)

Practically, the stability and accelerated convergence of SEMA can be attributed to its ability to
integrate the fundamental gradient descent characteristic with rapid convergence. As verified in Fig-
ure 3, SEMA’s iterative update is proportional to the negative gradient of the loss function. This
signifies that SEMA blends the baseline gradient descent characteristic with accelerated conver-
gence, thereby ensuring that the optimization process evolves toward loss reduction and achieves
faster convergence. In contrast, EMA does not share the same gradient descent characteristics as
SGD. EMA incorporates a smoothing factor that blends current parameter estimates with previous
estimates, resulting in a more gradual convergence. Proposition 2 is proofed by Appdenix A.2.
Proposition 3. (Superior Error Bound): Building on assumptions and convergence properties of
SGD in (Bottou et al., 2016) that considers a fixed learning rate, the error bound of SGD is ESGD :=
E[L(θEMA) − L(θ∗)], and error bounds for SGD, EMA, and SEMA can be ranked as, ESEMA <
EEMA < ESGD:

ESGD ≤
ηLM

2Cµ
, EEMA ≤

(1− α)ηLM

2Cµ
, ESEMA ≤

ηLM

2σTCµ
, (7)

where L and C > 0 are the Lipschitz of L(L) and its constant, µ > 1 and M > 1 are the coeffi-
cients, and σT ≥ E[L(θEMA

T )]−E[L(θSEMA
2T )]

E[L(θEMA
T )]−E[L(θEMA

2T )]
denotes the improvement of errors by switching once. This

proposition further verifies SEMA’s strength to exploit a strategic trade-off between SGD and EMA.
It switches to SGD at the T iteration to continue optimizing from the sharp landscapes and leverages
the smoothness of EMA in T to 2T interactions, leading to better error bounds than SGD and EMA.
Proposition 3 is proofed by Appdenix A.3.
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Table 2: Classification with top-1 accuracy (Acc, %)↑ and performance gains on ImageNet-1K
based on various backbones, optimizers, and training epochs (ep). R, CX, and Moga denote ResNet,
ConvNeXt, and MogaNet.
Backbone R-50 R-50 R-50 R-50 DeiT-T DeiT-S Swin-T CX-T Moga-B DeiT-S DeiT-B DeiT-S DeiT-B CX-T
Optimizer SGD SAM LARS LAMB AdamW AdamW AdamW AdamW AdamW LAMB LAMB Adan Adan Adan

100ep 100ep 100ep 300ep 300ep 300ep 300ep 300ep 300ep 100ep 100ep 150ep 150ep 150ep
Basic 76.8 77.2 78.1 79.8 73.0 80.0 81.2 82.1 84.5 74.1 76.1 79.3 81.0 81.3
+EMA 77.0 77.3 78.4 79.7 73.0 80.2 81.3 82.1 84.6 73.9 77.3 79.4 81.1 81.6
+SEMA 77.1 77.4 78.5 79.9 73.2 80.6 81.6 82.2 84.8 74.4 77.4 79.5 81.3 81.7
Gains 0.3 0.2 0.1 0.1 0.2 0.6 0.4 0.1 0.3 0.3 1.3 0.2 0.3 0.4

Table 3: Classification with top-1 accuracy (%)↑ and
performance gains on CIFAR-100 based on various
CNN and Transformer backbones.
Backbone Basic +EMA +SWA +Lookahead +SEMA Gains
VGG-13 (BN) 75.19±0.68 75.47±0.15 75.30±0.10 75.26±0.46 75.80±0.12 0.61
R-18 76.91±0.43 77.16±0.08 77.13±0.09 77.07±0.75 77.61±0.08 0.70
RX-50 79.06±0.34 79.21±0.07 79.25±0.09 79.28±0.49 79.80±0.06 0.74
R-101 76.90±0.31 77.48±0.05 77.41±0.06 77.27±0.15 77.62±0.06 0.72
WRN-28-10 81.94±0.62 82.27±0.12 81.16±0.09 81.20±1.03 82.35±0.10 0.41
DenseNet-121 80.49±0.47 80.70±0.07 80.83±0.05 80.74±0.45 81.05±0.08 0.56
DeiT-S 63.34±0.59 64.46±0.10 64.17±0.09 64.25±0.64 64.58±0.09 1.24
MLPMixer-T 78.22±0.46 78.49±0.07 78.54±0.05 78.33±0.37 78.84±0.07 0.62
Swin-T 79.07±0.32 79.17±0.08 79.30±0.07 79.28±0.82 79.74±0.07 0.67
Swin-S 78.25±0.42 79.08±0.09 78.93±0.06 78.76±0.51 79.30±0.09 1.05
ConvNeXt-T 78.37±0.23 79.24±0.06 78.96±0.08 78.82±0.28 79.42±0.08 1.05
ConvNeXt-S 60.18±0.39 61.45±0.07 61.04±0.07 60.29±0.32 61.76±0.09 1.58
MogaNet-S 83.69±0.50 83.92±0.09 83.78±0.07 83.67±1.02 84.02±0.08 0.33

Table 4: Pre-training with top-1 accuracy (%)↑
of linear probing (Lin.) or fine-tuning (FT) and
performance gains on CIFAR-100 and STL-10
based on various SSL algorithms.
Self-sup Dataset Backbone Basic +EMA +SWA +SEMA Gains
SimCLR CIFAR-100 R-18 67.18±0.85 58.46±0.09 57.82±0.15 67.28±0.08 0.10
SimCLR STL-10 R-50 91.77±0.36 82.82±0.08 91.36±0.09 92.93±0.10 1.16
MoCo.V2 CIFAR-100 R-18 62.34±0.83 66.53±0.49 62.85±0.24 66.56±0.21 0.03
MoCo.V2 STL-10 R-50 91.33±0.27 91.36±0.18 91.40±0.13 91.48±0.09 0.12
BYOL CIFAR-100 R-18 55.09±0.79 69.60±0.20 56.36±0.15 69.86±0.13 0.26
BYOL STL-10 R-50 75.76±0.34 93.24±0.09 76.29±0.10 93.48±0.08 0.24
BarlowTwins CIFAR-100 R-18 65.49±1.07 60.13±0.12 60.53±0.16 65.55±0.11 0.06
BarlowTwins STL-10 R-50 88.67±0.26 80.11±0.09 88.35±0.14 88.80±0.09 0.13
MoCo.V3 CIFAR-100 DeiT-S 38.09±1.26 46.79±0.12 39.61±0.34 52.27±0.13 5.48
MoCo.V3 STL-10 DeiT-S 61.88±0.30 79.25±0.07 62.49±0.15 80.44±0.06 1.19
SimMIM CIFAR-100 DeiT-S 81.96±0.19 82.05±0.07 81.77±0.07 82.15±0.08 0.19
SimMIM STL-10 DeiT-S 91.88±0.10 69.14±0.05 78.23±0.06 92.06±0.04 0.18
A2MIM CIFAR-100 DeiT-S 82.28±0.15 82.14±0.09 82.05±0.10 82.46±0.03 0.18
A2MIM STL-10 DeiT-S 92.27±0.09 70.88±0.08 80.64±0.09 93.33±0.07 1.06

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We conduct extensive experiments across a wide range of popular application scenarios to verify
the effectiveness of SEMA. Taking vanilla optimizers as the baseline (basic), the compared regu-
larization methods plugged upon the baseline include EMA (Polyak & Juditsky, 1992), SWA (Iz-
mailov et al., 2018), and Lookahead optimizers (Zhang et al., 2019). We use the momentum coef-
ficients of 0.9999 and 0.999 for EMA and SEMA, 1.25 budge for SWA, and one epoch switch in-
terval for SEMA. As for the vanilla optimizers, we consider SGD variants (momentum SGD (Sinha
& Griscik, 1971) and LARS (Ginsburg et al., 2018)) and Adam variants (Adam (Kingma & Ba,
2014), AdamW (Loshchilov & Hutter, 2019), LAMB (You et al., 2020), SAM (Foret et al., 2021),
Adan (Xie et al., 2023). View Appendix B for details of implementations and hyperparameters.
All experiments are implemented with PyTorch and run on NVIDIA A100 or V100 GPUs, and we
use the bold and grey backgrounds as the default baselines. The reported results are averaged over
three trials. We intend to verify three empirical merits of SEMA: (i) Convenient plug-and-play us-
ability, as the basic optimization methods we compared, SEMA enables convenient plug-and-play
as a regularizer; (ii) Higher generalization performance gain, SEMA can take into account both
flatness and sharpness, which makes it more able to converge the local optimal position than other
optimization methods, thus bringing higher performance gains to the model. Relative to baselines,
EMA, and other techniques, SEMA achieves higher performance gains and significantly enhances
the EMA generalization; (iii) Faster convergence, SEMA inherits the fast convergence properties
of EMA while benefiting from gradient descent, allowing it to help models converge faster.

4.2 EXPERIMENTS FOR COMPUTER VISION TASKS

We first apply WA regularizations to comprehensive vision scenarios that cover discriminative,
generation, predictive, and regression tasks to demonstrate the versatility of SEMA on CIFAR-
10/100 (Krizhevsky et al., 2009), ImageNet-1K (IN-1K) (Deng et al., 2009), STL-10 (Coates et al.,
2011), COCO (Lin et al., 2014), CelebA (Liu et al., 2015), IMDB-WIKI (Rothe et al., 2018),
AgeDB (Moschoglou et al., 2017), RCFMNIST (Yao et al., 2022), and Moving MNIST (MM-
NIST) (Srivastava et al., 2015) datasets.

Image classification. Evaluations are carried out from two perspectives. Firstly, we verify popular
network architectures on the standard CIFAR-100 benchmark with 200-epoch training: (a) classi-
cal Convolution Neural Networks (CNNs) include ResNet-18/101 (R) (He et al., 2016), ResNeXt-
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50-32x4d (RX) (Xie et al., 2017), Wide-ResNet-28-10 (WRN) (Zagoruyko & Komodakis, 2016),
and DenseNet-121 (Huang et al., 2017); (b) Transformer (Metaformer) architectures include DeiT-
S (Touvron et al., 2021), Swin-T/S (Liu et al., 2021), and MLPMixer-T (Tolstikhin et al., 2021);
(c) Modern CNNs include ConvNeXt-T/S (CX) (Liu et al., 2022b) and MogaNet-S (Moga) (Li
et al., 2024c). Note that classical CNNs are trained by SGD optimizer with 322 resolutions, while
other networks are optimized by AdamW with 2242 input size. Table 3 notably shows that SEMA
consistently achieves the best top-1 Acc compared to WA methods and Lookahead across 12 back-
bones, where SEMA also yields fast convergence speeds in Figure 1. Then, we further conduct
large-scale experiments on IN-1K to verify various optimizers (e.g., SGD, SAM, LARS, LAMB,
AdamW, and Adan) using standardized training procedures and the networks mentioned above. In
Table 2, SEMA enhances a wide range of optimizers and backbones, e.g., +0.6/1.3/0.4% Acc upon
DeiT-S/DeiT-B/CX-T with AdamW/LAMB/Adan, while conducting Acc gains in situations where
EMA is not applicable (e.g., R-50 and DeiT-S with LAMB). View Appendix B.1 for details.

Table 5: Pre-training (PT) with top-1 accuracy (%)↑
of linear probing or FT and performance gains on IN-
1K based on SSL methods with various PT epochs.
Dataset Backbone PT Basic +EMA +SWA +SEMA Gains
BYOL R-50 200ep 65.49 69.78 66.37 69.96 0.18
MoCo.V3 DeiT-S 300ep 67.73 71.77 68.54 72.01 0.24
SimMIM DeiT-B 800ep 83.85 83.94 83.79 84.16 0.31
MAE DeiT-B 800ep 83.33 83.37 83.35 83.48 0.15

Self-supervised Learning. Since EMA
plays a vital role in some SSL meth-
ods, we also evaluate WA methods with
two categories of popular SSL methods on
CIFAR-100, STL-10, and IN-1K, i.e., con-
trastive learning (CL) methods include Sim-
CLR (Chen et al., 2020a), MoCo.V2 (Chen
et al., 2020b), BYOL (Grill et al., 2020),
Barlow Twins (BT) (Zbontar et al., 2021), and MoCo.V3 (Chen et al., 2021), which are tested
by linear probing (Lin.), and masked image modeling (MIM) include MAE (He et al., 2022), Sim-
MIM (Xie et al., 2022), and A2MIM using fine-tuning (FT) protocol. Notice that most CL methods
utilize ResNet variants (optimized by SGD or LARS) as the encoders, while MoCo.V3 and MIM
algorithms use ViT backbones (optimized by AdamW). Firstly, we perform 1000-epoch training on
small-scale datasets with 2242 resolutions for fair comparison in Table 4, where SEMA performs
best upon CL and MIM methods. When EMA is used in self-teaching frameworks (MoCo.V2/V3
and BYOL), SEMA improves EMA by 0.12∼5.48% Acc on STL-10 where SWA fails to. When
EMA and SWA showed little gains or negative effects upon MIM methods, SEMA still improves
them by 0.18∼1.06%. Then, we compare WA methods on IN-1K with larger encoders (ResNet-50
and ViT-S/B) using the standard pre-training settings. As shown in Table 5, SEMA consistently
yields the most performance gains upon CL and MIM methods. View Appendix B.2 for details.

Table 6: Object detection and segmentation
with mAPbb (%)↑, mAPmk (%)↑, and perfor-
mance gains on COCO based on Mask R-CNN
and its Cascade (Cas.) version.
Method Basic +EMA +SEMA Gains

APbb APmk APbb APmk APbb APmk APbb APmk
Mask R-CNN (2×) 39.1 35.3 39.3 35.5 39.7 35.8 0.6 0.5
Cas. Mask R-CNN (3×) 44.0 38.3 44.2 38.5 44.4 38.6 0.4 0.3
Cas. Mask R-CNN (9×) 44.0 38.5 44.5 38.8 45.1 39.2 1.1 0.7

Table 7: Object detection with mAPbb (%)↑ and
performance gains on COCO based on various de-
tection methods and different backbones with fine-
tuning or training from scratch setups.
Method Backbone Basic +EMA +SWA +SEMA Gains
RetinaNet (2×) R-50 37.3 37.6 37.6 37.7 0.4
RetinaNet (1×) Swin-T 41.6 41.8 41.9 42.1 0.5
YoloX (300ep) YoloX-S 37.7 40.2 39.6 40.5 0.3

Object Detection and Instance Segmentation. As WA techniques (Zhang et al., 2020) were ver-
ified to be useful in detection (Det) and segmentation (Seg) tasks, we benchmark them on COCO
with two types of training settings. Firstly, using the standard fine-tuning protocol in MMDetec-
tion (Chen et al., 2019), RetinaNet (Lin et al., 2017), Mask R-CNN (He et al., 2017), and Cascade
Mask R-CNN (Cas.) (Cai & Vasconcelos, 2019) are fine-tuned by SGD or AdamW with IN-1K
pre-trained R-50 or Swin-T encoders, as shown in Table 6 and Table 7. SEMA achieved substantial
gains of APbband APmk over the baseline with all methods and exceeded gains of EMA models.
Then, we train YoloX-S detector (Ge et al., 2021) from scratch by SGD optimizer for 300 epochs in
Table 7. It takes EMA as part of its training strategy, where EMA significantly improves the baseline
by 2.5% APbb, while SEMA further improves EMA by 0.3% APbb. View Appendix B.3 for details.

Table 8: Image generation with FID (%)↓ and perfor-
mance gains on CIFAR-10 and CelebA-Align.
Dataset Basic +EMA +SWA +Lookahead +SEMA Gains
CIFAR-10 7.17±0.18 5.43±0.03 6.35±0.08 6.84±0.12 5.30±0.06 0.13
CelebA-Align 7.90±0.21 7.49±0.07 7.53±0.06 7.67±0.23 7.11±0.07 0.38

Image Generation. Then, we investigate
WA methods for image generation (Gen)
tasks based on DDPM (Ho et al., 2020) on
CIFAR-10 and CelebA-Align because EMA
significantly enhances image generation, es-
pecially with diffusion models. In Table 8, the FID of DDPM drops dramatically without using
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EMA, making it necessary to adopt WA techniques. SEMA can yield considerable FID gains and
outperform other optimization methods on all datasets. View Appendix B.4 for details.

Table 9: Video prediction with MSE↓, PSNR↑, and
performance gains on MMNIST upon VP baselines.

Method Basic +EMA +SEMA Gains (%)
MSE PSNR MSE PSNR MSE PSNR MSE PSNR

SimVP 32.15 21.84 32.14 21.84 32.06 21.85 0.28 0.05
SimVP.V2 26.70 22.78 27.12 22.75 26.68 22.81 0.07 0.13
ConvLSTM 23.97 23.28 24.06 23.27 23.92 23.31 0.21 0.13
PredRNN 29.80 22.10 29.76 22.15 29.73 22.16 0.23 0.27

Video Prediction. Employing OpenSTL
benchmark (Tan et al., 2023), we verify
the video prediction (VP) task on MM-
NIST with various VP methods. In Table 9,
SEMA can improve MSE and PSNR metrics
for recurrent-based (ConvLSTM (Shi et al.,
2015) and PredRNN (Wang et al., 2017))
and recurrent-free models (SimVP and SimVP.V2 (Gao et al., 2022)) compared to the baseline
while other WA methods usually degrade performances. View Appendix B.5 for details.

Table 10: Regression tasks with MAE↓, RMSE↓,
and performance gains on RCF-MNIST, AgeDB, and
IMDB-WIKI based on various backbone encoders.
Dataset Back. Basic +EMA +SWA +SEMA Gains (%)

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
RCF-MNIST R-18 5.61 27.30 5.50 27.70 5.53 27.73 5.41 26.79 3.57 1.79
RCF-MNIST R-50 6.20 28.78 5.81 27.19 6.04 27.87 5.74 27.71 7.42 3.72
AgeDB R-50 7.25 9.50 7.33 9.62 7.37 9.59 7.22 9.49 0.41 0.11
AgeDB CX-T 7.14 9.19 7.31 9.39 7.28 9.34 7.13 9.13 0.14 0.65
IMDB-WIKI R-50 7.46 11.31 7.50 11.24 7.62 11.45 7.49 11.11 0.40 1.77
IMDB-WIKI CX-T 7.72 11.67 7.21 10.99 7.87 11.71 7.19 10.94 6.86 6.26

Visual Attribute Regression. We fur-
ther evaluate face age regression tasks on
AgeDB (Moschoglou et al., 2017) and
IMDB-WIKI (Rothe et al., 2018) and pose
regression on RCFMNIST (Yao et al., 2022)
using `1 loss. As shown in Table 10, SEMA
achieves significant gains in terms of MAE
and RMSE metrics compared to the base-
line methods on various datasets, particu-
larly with a 7.42% and 3.72% improvement on the R-50 model trained on the RCF-MNIST dataset
and a 6.86% and 6.26% improvement on the CX-T model trained on IMDB-WIKI. Moreover, the ex-
perimental results consistently outperform the models trained using EMA and SWA training strate-
gies. View details in Appendix B.6.

Table 11: Languaging processing on Penn Tree-
bank with perplexity↓ based on 2-layer LSTM.

Optimizer Basic +EMA +SWA +SEMA Gains
SGD 67.5±0.05 67.3±0.05 67.4±0.04 67.1±0.06 0.4
Adam 67.3±0.04 67.2±0.07 67.1±0.03 67.0±0.05 0.3
AdaBelief 66.2±0.05 66.1±0.10 66.0±0.09 65.9±0.08 0.3

Table 12: Text classification and languaging mod-
eling with Acc (%)↑ and Perplexity (P)↓ on Yelp
Review and WikiText-103 based on BERT-Base.
Dataset Metric Basic +EMA +SWA +SEMA Gains
Yelp Review Acc↑ 68.26±0.45 68.35±0.11 68.38±0.09 68.46±0.10 0.20
WikiText-103 P↓ 29.92±0.21 29.57±0.08 29.60±0.07 29.46±0.07 0.46

4.3 EXPERIMENTS FOR LANGUAGE PROCESSING TASKS

Then, we also conduct experiments with classical NLP tasks on Penn Treebank, Yelp Review, and
WikiText-103 datasets to verify whether the merits summarized above still hold. Following Ad-
aBelief (Zhuang et al., 2020), we first evaluate language processing with 2-layer LSTM (Ma et al.,
2015) on Penn Treebank (Marcus et al., 1993) trained by various optimizers in Table 11, indicat-
ing the consistent improvements by SEMA. Then, we evaluate fine-tuning with pre-trained BERT-
Base (Devlin et al., 2018) backbone for text classification on Yelp Review (Yel) using USB set-
tings (Wang et al., 2022) and language modeling with randomly initialized BERT-Base on WikiText-
103 (Ott et al., 2019) uses FlowFormer settings. Table 12 shows that applying SEMA to pre-training
or fine-tuning is more efficient than other WA methods. View Appendix B.7 for detailed settings.

4.4 ABLATION STUDY

This section analyzes the two hyperparameters α and T in SEMA to verify whether their default
values are robust and general enough based on experimental settings in Sec. 4.1.

Table 13: Ablation of switching interval (0.5∼5 epochs).
T CIFAR-100 STL-10 IN-1K CIFAR-10 AgeDB Yelp

Task Cls (Acc)↑ CL (Acc)↑MIM (Acc)7↑Cls (Acc)↑Gen (FID)↓Reg (MAE)↓Cls (Acc)↑
WRN-28-10 MoCo.V3 SimMIM DeiT-S DDPM R-50 BERT

0.5 82.23 50.73 92.01 79.5 6.07 7.34 68.17
1 82.35 52.27 92.06 80.6 5.30 7.22 68.46
2 82.34 52.25 91.93 80.1 5.33 7.24 68.28
5 82.08 51.94 91.68 78.9 5.28 7.26 68.23

Switching Interval T . We first ver-
ify whether the one-epoch switching
interval is optimal and robust for gen-
eral usage. Table 13 shows that one
epoch switching interval yields the
optimal performance in most cases.
However, choosing a smaller interval
hinders accurate gradient estimation and might disrupt the continuity of optimizer statistics in the
Adam series and degenerate performance. On the contrary, larger intervals lead to slower update
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Figure 5: Ablation of the momentum α in EMA and SEMA, searching in the range of 0.9∼0.9999
and 0.99∼0.99999. SEMA shows robust choices of α across the most tasks.

rates and increased training time, except for specific tasks like diffusion generation that extremely
prefer smoothness (Karras et al., 2023).

Momentum Coefficient α. To investigate the effectiveness and generalization of SEMA, we con-
ducted ablation studies with different momentum coefficients on SEMA and EMA, varying from 0.9
to 0.99999 (choosing four typical values). As shown in Figure 5, SEMA prefers 0.999 in most cases,
except for image generation (0.9999) and video prediction (0.9). The preference of α for both EMA
and SEMA are robust, and full values in different tasks are provided in Table A1 and Table A2.

5 CONCLUSION

This paper presents SEMA, a highly effective regularizer for DNN optimization that harmoniously
blends the benefits of flatness and sharpness. SEMA has shown superior performance gains and ver-
satility across various tasks, including discriminative and generative foundational tasks, regression,
forecasting, and two modalities. As a pluggable and general method, SEMA expedites convergence
and enhances final performances without incurring extra computational costs. SEMA marks a sig-
nificant milestone in DNN optimization, providing a universally applicable solution for a multitude
of deep learning training.

Limitations and Future Works SEMA achieves a delicate balance among several desirable at-
tributes: it introduces no additional computational overhead, maintains user-friendliness, delivers
performance gains, possesses plug-and-play capability, and demonstrates universal generalization.
Consequently, it emerges as an ideal “free-lunch” optimization technique. The potential drawback,
albeit minor, is that it may yield slightly smaller performance gains in certain scenarios. However,
as a novel regularization technique, SEMA still harbors untapped potential. Notably, it is envi-
sioned that future enhancements will enable more flexible, cost-free switching operations, allowing
for adaptive adjustments of the switching interval. This adaptive capability would further unlock
SEMA’s latent potential, facilitating better performance optimization across diverse applications.
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learning via redundancy reduction. In International Conference on Machine Learning (ICML),
pp. 12310–12320. PMLR, 2021. 8, 25

Haoyang Zhang, Ying Wang, Feras Dayoub, and Niko Sunderhauf. Swa object detection. ArXiv,
abs/2012.12645, 2020. 8

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations (ICLR), 2018. 1, 3,
25, 26, 30

Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps
forward, 1 step back. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. 1, 3, 7, 29

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmen-
tation. In AAAI, pp. 13001–13008, 2020. 25

Pan Zhou, Hanshu Yan, Xiaotong Yuan, Jiashi Feng, and Shuicheng Yan. Towards understand-
ing why lookahead generalizes better than sgd and beyond. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Pro-
cessing Systems, volume 34, pp. 27290–27304. Curran Associates, Inc., 2021. 3, 29

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in
Neural Information Processing Systems, volume 33, pp. 18795–18806. Curran Associates, Inc.,
2020. 9, 27

Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha C. Dvornek,
Sekhar Chandra Tatikonda, James S. Duncan, and Ting Liu. Surrogate gap minimization improves
sharpness-aware training. In International Conference on Learning Representations (ICLR),
2022. 3, 29

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A PROOF OF PROPOSITION

Taking SGD as an example, we provide two propositions and their proofs of SEMA to investigate the
favorable properties mentioned in Sec. 3.2 and Sec. 3.3. Let η be the learning rate of the optimizer
and λ be the decay rate of SGD, EMA, and SEMA. In the noise quadratic model, the loss of iterates
Θt is defined as:

L(Θt) =
1

2
(Θt − c)TA(Θt − c),

where c ∼ N (θ∗,Σ). Without loss of generality, we set θ∗ = 0. Then, we can define the iterates of
SGD, EMA, and SEMA (denoted as θt, θ̃t and θ∗t respectively) as follows:

θt = θt−1 − η∇L(θt−∞),

θ̃t = λθt + (1− λ)θ̃t−1,

θ′t = θ∗t−1 − η∇L(θ∗t−∞),

θ∗t = λθ′t + (1− λ)θ∗t−1,

θ0 = θ̃0 = θ∗0 .

Notice that iterates of θt and θ̃t are defined jointly, and θ′t is an intermediate iterate assisting to define
the iterate of θ∗t .

A.1 PROOF OF PROPOSITION 1

Proposition 1 (Low-frequency Oscillation). In the noisy quadratic model, the variance of SGD,
EMA, and SEMA iterates, denoted as V (t)

SGD := V(ΘSGD
t ), V (t)

EMA := V(ΘEMA
t ), and V

(t)
SEMA :=

V(ΘSEMA
t ) respectively, converge to following fixed points, i.e., VSEMA < VEMA < VSGD:

VSGD =
ηA

2I − ηA
Σ,

VEMA =
λ

2− λ
· 2− λ− (1− λ)ηA

λ+ (1− λ)ηA
· VSGD,

VSEMA =
2− λ
λ
· λ+ (1− λ)ηA

2− λ− (1− λ)ηA
· ληA

2I − ληA
· 2I − ηA

ηA
· VEMA.

Proof. First, we compute the stochastic dynamics of SGD, EMA, and SEMA. According to the
property of variance and quadratic loss, we can get stochastic variance dynamics from iterates of
trajectories:

V (θt) = (I − ηA)2V (θt−1) + η2A2Σ,

V (θ̃t) = λ2V (θt) + (1− λ)2V (θ̃t−1) + 2λ(1− λ)Cov(θt, θ̃t−1),

Cov(θt, θ̃t−1) = λ(I − ηA)V (θt−1) + (1− λ)(I − ηA)Cov(θt−1, θ̃t−2),

V (θ∗t ) = (I − ληA)2V (θ∗t−1) + λ2η2A2Σ.

Then, using Banachs fixed point theorem, we can easily derive VSGD, VEMA and VSEMA as follows:

VSGD = (I − ηA)2VSGD + η2A2Σ,

VSGD =
ηA

2I − ηA
Σ,

VEMA = λ2VSGD + (1− λ)2VEMA + 2λ(1− λ)Cov(SGD, EMA),

Cov(SGD, EMA) = λ(I − ηA)VSGD + (1− λ)(I − ηA)Cov(SGD, EMA),

VEMA =
λ

2− λ
· 2− λ− (1− λ)ηA

λ+ (1− λ)ηA
· VSGD,

VSEMA = (I − ληA)2VSEMA + λ2η2A2Σ,

VSEMA =
ληA

2I − ληA
Σ.
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Finally, we will prove inequality VSEMA < VEMA < VSGD. To prove this, we only need to show the
following two coefficients less or equal to one:

coef1 =
λ

2− λ
· 2− λ− (1− λ)ηA

λ+ (1− λ)ηA
,

coef2 =
2− λ
λ
· λ+ (1− λ)ηA

2− λ− (1− λ)ηA
· ληA

2I − ληA
· 2I − ηA

ηA
.

For coef1, we can see it is a decreasing function w.r.t η, and coef1 = 1 when η = 0. Thus for η > 0,
coef1 < 1. For coef2, we can simplify it as following:

coef2 =
λ+ (1− λ)ηA

1− 1−λ
2−ληA

· 2I − ηA
2I − ληA

.

Because learning rate η and decay rate λ are both quite small numbers, one can easily show that
these two terms are smaller than 1, thus coef2 < 1.

A.2 PROOF OF PROPOSITION 2

Proposition 2 (Fast Convergence). The iteration of SEMA ensures the gradient descent property,
which SGD has but EMA doesn’t have. More specifically expressed as:

(θ∗t+1 − θ∗t ) ∝ −∇L(θt).

Proof. This property is easily obtained by putting θ′t = θ∗t−1− η∇L(θ∗t−∞) into θ∗t = λθ′t + (1−
λ)θ∗t−1, then we have:

θ∗t = θ∗t−1 − λη∇L(θ∗t−∞).

Let L(θt) denote the loss function evaluated at the parameters θt at time t, and L(θ∗t−∞) denote the
loss function evaluated at the exponentially moving average (EMA) parameters θ∗t−1 at time t− 1.

Integrated Analysis. As substantiated by Propositions above and the evidence in Figure 3, SEMA
converges significantly faster to a local optimum than EMA does because of its effective amalga-
mation of the gradient descent characteristics of the baseline model and the stability advantage of
EMA. The optimization process of SEMA will efficiently steer towards local minima unimpeded by
slow or irregular parameter updates. In contrast, EMA lacks this benefit, potentially leading to its
ensnaring in a flat but inferior local basin.

A.3 PROOF OF PROPOSITION 3

Proposition 3 (Superior Error Bound). Building on assumptions of a fixed learning rate and con-
vergence properties of SGD in (Bottou et al., 2016), the error bound of SGD is ESGD := E[L(θEMA)−
L(θ∗)], and error bounds for SGD, EMA, and SEMA can be ranked as, ESEMA < EEMA < ESGD:

ESGD ≤
ηLM

2Cµ
,

EEMA ≤
(1− α)ηLM

2Cµ
,

ESEMA ≤
ηLM

2σTCµ
,

σT ≥
E[L(θEMA

T )]− E[L(θSEMA
2T )]

E[L(θEMA
T )]− E[L(θEMA

2T )]
,

whereL andC > 0 are the Lipschitz ofL(L) and its constant, µ > 1 andM > 1 are the coefficients,
and σT denotes the error-bound improvement by switching once at the T iteration.

Proof. This property can be proofed with three steps based on assumptions from our previous
properties and (Bottou et al., 2016).
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Step 1: the Error bound of SGD. The objective function L and the SG satisfy the following assump-
tions: (a) The sequence of iterates θp is contained in an open set over which L is bounded below by
a scalar Linf. (b) There exist scalars µG ≥ µ > 0 such that, for all p ∈ N,

∇L(θp)
TEξp[g(θp, ξp)] ≥ µ|∇L(θp)|22 and |Eξp[g(θp, ξp)]|2 ≤ µG|∇L(θp)|2.

The function g herein represents the classical method of Robbins and Monro, or it may alternatively
signify a stochastic Newton or quasi-Newton direction. (c) There exist scalars M ≥ 0 and MV ≥ 0
such that, for all p ∈ N,

Vξp[g(θp, ξp)] ≤M +MV |∇L(θp)|22
The first condition merely requires the objective function to be bounded below the region explored
by the algorithm. The second requirement states that, in expectation, the vector −g(θp, ξp) is a
direction of sufficient descent for L from θp with a norm comparable to the norm of the gradient.
The third requirement states that the variance of g(θp, ξp) is restricted but in a relatively minor
manner. The objective function L : Rd → R is strongly convex in that there exists a constant C > 0
such that

L(θ) ≥ L(θ) +∇L(θ)T (θ − θ) +
1

2
C|θ − θ|22 for all (θ, θ) ∈ Rd × Rd.

Hence, L has a unique minimizer, denoted as θ∗ ∈ Rd with L := L(θ). For a strongly convex
objective with a fixed stepsize, suppose that the SG method is run with a fixed stepsize, αp =
α for all p ∈ N, satisfying:

0 < α ≤ µ

µGL
.

Then, the expected optimality gap satisfies the following inequality for all p ∈ N:

E[L(θp)− L∗] ≤
αLM

2Cµ
+ (1− αCµ)p−1

(
L(θ1)− L− αLM

2Cµ

)
p→∞−−−→ αLM

2Cµ
.

Therefore, the error bound for SGD can be concisely represented as ESGD := ηLM
2Cµ , where η = α

is the fixed step size. The error bound suggests that SGD can converge relatively quickly, especially
when the objective function L is strongly convex (indicated by a large value of C), the stochastic
gradients g(θp, ξp) have a small variance (small M ), and the sufficient descent condition is well-
satisfied (large µ). Additionally, a smaller step size η can lead to a tighter error bound, although
excessively small step sizes may result in slow convergence.

Step 2: the Error bound of EMA. Suppose the stochastic gradient (SG) method is executed with a
stepsize sequence αp such that, for all p ∈ N,

αp =
β

γ + p
, β >

1

Cµ
, γ > 0, α1 ≤

µ

µG

where C is the strong convexity constant of the objective function L, and µ and µG are constants
derived from the assumption (b) on the stochastic gradient g(θp, ξp). From the previous error-bound
analysis for SGD, we have the following:

E[L(θp)− L] ≤ αpLM

2Cµ
+ (1− αpCµ)p−1(L(θ1)− L−αpLM

2Cµ
)

Substituting αp and applying the geometric series formula, we obtain:

E[L(θp)− L∗] ≤
βLM

2Cµ(γ + p)
+

(
1− βCµ

γ + p

)p−1(
L(θ1)− L∗ − βLM

2Cµ(γ + 1)

)
≤ βLM

2Cµ(γ + p)
+

(
γ

γ + p

)p−1(
L(θ1)− L∗ − βLM

2Cµ(γ + 1)

)
≤ β2LM

2Cµ(γ + p)
+

γp

γ + p
(L(θ1)− L∗)
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Since γp

γ+p ≤ 1 and β > 1
Cµ , as p→∞, the upper bound converges to:

E[L(θp)− L] ≤ β2LM

2Cµ(γ + p)

Therefore, we can concisely represent the error bound for EMA as:

EEMA :=
βLM

2Cµ(γ + p)

It is noteworthy that since αp is a decreasing sequence, αp → 0 (p→∞), EMA can be viewed as
a form of exponential decay of the learning rate for the SGD algorithm:

αp =
β

γ + p
1− αp = 1− β

γ + p
=

γ

γ + p

This indicates that the EMA decay factor (1−αp) directly influences the learning rate decay behav-
ior.

Consequently, we can simplify the description of the EMA error bound as EEMA :=
(1−αp)ηLM

2Cµ ,
where η is the initial learning rate. Compared to the standard SGD, the EMA error bound EEMA
is larger, indicating a slower convergence rate. This is because the term (1 − αp) approaches 1 as
p → ∞, resulting in a slower decay of the error bound. While the decaying learning rate in the
later iterations assists EMA in converging to a local minimum by mitigating oscillations caused by
large step sizes, this approach is not without drawbacks. One significant issue is the accumulation
of bias, which arises from the EMA of the gradients. As the iterations progress, the gradients from
earlier steps contribute less and less to the update, leading to a bias towards more recent gradients.
Furthermore, in non-smooth settings, the EMA of momentum can actually impair the theoretical
worst-case convergence rate. The smoothing effect introduced by EMA can hinder the algorithm’s
ability to navigate through non-differentiable regions of the objective landscape, potentially slowing
down convergence or even causing the algorithm to converge to suboptimal solutions.

Step 3: the Error bound of SEMA. Based on the error bound of EMA, the advantage of SEMA
stems from the switching mechanism every T iteration, which can be formulated as comparing the
reduction of errors between using switching or not at the t-th iteration and the (t+ T )-th iteration,

σT =

b t
T c∑
l=1

E[L(θEMA
lT )]− E[L(θSEMA

(l+1)T )]

E[L(θEMA
lT )]− E[L(θEMA

(l+1)T )]
,

where l is the total switching time during training, b tT c > l > 0. To simplify the proof, the lower
bound of the gains from switching can be calculated,

σT ≥
E[L(θEMA

T )]− E[L(θSEMA
2T )]

E[L(θEMA
T )]− E[L(θEMA

2T )]
.

The numerator, E[L(θEMA
T )] − E[L(θSEMA

2T )], accumulates over the interval from T to 2T and ex-
periences a switch at time 2T , mirroring the update of E[L(θSGD

2T )]. Conversely, the denominator
reflects the update of E[L(θEMA

T )] from T to 2T in the absence of a switch, yielding E[L(θEMA
2T )].

Leveraging the fact that the error bound of EMA is superior to that of SGD, we infer that
E[L(θSEMA

2T )] ≤ E[L(θSGD
2T )] + (E[L(θEMA

T )]− E[L(θEMA
2T )]) and σT > 1. Therefore, we have

ESEMA =
(1− αT )ηLM

2Cµ
· 1

σT
< EEMA.

Our analysis of σT unveils a pivotal aspect of the convergence dynamics of SEMA. As σT accumu-
lates across successive iterations, it signifies a gradual diminution in the discrepancy between the
expected loss values under switching and non-switching conditions. This discernment implies that
as σT approaches unity with a decreasing trend, the upper bound on SEMA’s error constricts pro-
gressively, yielding a tighter error bound and faster convergence compared to EMA. Furthermore,
the switching mechanism in SEMA effectively mitigates the accumulation of bias inherent to EMA,
thereby enhancing the overall convergence behavior and optimality of the solution. In summary,
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from the derived error bounds, we can conclude that SEMA has the smallest error bound among
SGD, EMA, and SEMA, satisfying:

ESEMA < ESGD < EEMA

This indicates that SEMA not only converges faster than EMA but also exhibits a tighter error
bound compared to the standard SGD algorithm, making it a more effective optimization method for
strongly convex objectives. While the error-bound analysis assumes strong convexity, SEMA’s abil-
ity to mitigate bias accumulation and adapt its convergence behavior through the switching mech-
anism can prove advantageous in the highly non-linear and non-convex settings characteristic of
DNN optimization.

A.4 SHARPNESS VS. FLATNESS

Sharpness: Sharpness refers to the depth of the local minima. Specifically, it measures how steep
the loss function is around the local minimum. Mathematically, sharpness can be quantified by the
eigenvalues of the Hessian matrix of the loss function at the local minimum. A deeper minimum
(higher sharpness) corresponds to larger eigenvalues of the Hessian, indicating a more pronounced
curvature in the loss landscape (Foret et al., 2021; Kaddour et al., 2022).

Formally, given a local minimum θ∗ of the loss function L(θ), the sharpness S(θ∗) can be defined
as:

S(θ∗) = max
θ∈N(θ∗)

λmax(∇2L(θ)),

whereN (θ∗) is a neighborhood around θ∗, and∇2L(θ) denotes the Hessian matrix of L at θ. Here,
maxλmax(∇2L(θ)) refers to the maximum eigenvalues of the Hessian matrix.

The Sharpness (Extreme) represents a very sharp loss landscape, where the loss function changes
rapidly with small variations in parameters. This extreme sharpness, while potentially leading to a
deep minimum, can result in poor generalization.

Flatness: Flatness in the context of loss landscapes refers to the width of the local minima. It
measures how wide the basin of attraction is around the local minimum. A flatter minimum (higher
flatness) corresponds to smaller eigenvalues of the Hessian matrix of the loss function at the local
minimum, indicating a broader and less steep region around the minimum (Li et al., 2017; Keskar
et al., 2016).

Formally, the flatness F (θ∗) can be defined as:

F (θ∗) = min
θ∈N(θ∗)

λmin(∇2L(θ)),

whereN (θ∗) is a neighborhood around θ∗, and∇2L(θ) denotes the Hessian matrix of L at θ. Here,
minλmin(∇2L(θ)) refers to the minimum eigenvalues of the Hessian matrix.

The Flatness represents a very flat loss landscape, where the loss function is relatively constant over
a wide range of parameters. This extreme flatness, while stable, may not necessarily lead to optimal
generalization.

Trade-off Between Flatness and Sharpness: The relative scale between sharpness and flatness is
crucial for characterizing the loss landscape. In our paper, we consider the ratio of the maximum to
the minimum eigenvalues of the Hessian matrix at the local minimum. This ratio provides a measure
of the anisotropy of the loss landscape, which is essential for understanding the trade-off between
sharpness and flatness. Formally, the ratio R(θ∗) can be defined as:

R(θ∗) =
maxθ∈N (θ∗)

(
∇2L(θ)

)
minθ∈N (θ∗) (∇2L(θ))

.

A higher or lower ratio is generally unfavorable for generalization, as it indicates an imbalance
between sharpness and flatness. A balanced ratio, neither too high nor too low, indicates a more op-
timal trade-off between the depth and width of the local minimum, which we interpret as a balanced
trade-off between sharpness and flatness. SEMA’s Role in Achieving Optimal Trade-off : SEMA is
designed to balance the trade-off between flatness and sharpness dynamically. By switching the
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EMA parameters to the original model after each epoch, SEMA leverages the fast convergence of
EMA to reach flat local minima while allowing the optimizer to explore sharper trajectories based on
previous EMA parameters. This dynamic regularization helps DNNs to reach generalization optima
that better trade-off between flatness and sharpness, leading to improved performance and faster
convergence.

Sharpness

Flatness

Local Optima

Figure A1: Illustration of the trade-off between ex-
treme flatness and sharpness in loss landscapes.

This figure A1 provides a detailed visual-
ization of the loss landscapes for different
optimization methods, highlighting the criti-
cal trade-off between sharpness and flatness.
Sharpness refers to the depth of the local min-
ima, quantified by the eigenvalues of the Hes-
sian matrix of the loss function at the local
minimum. A deeper minimum (higher sharp-
ness) corresponds to larger eigenvalues, in-
dicating a more pronounced curvature in the
loss landscape. The baseline model, using
standard optimizers without EMA, exhibits
steep peaks indicative of high sharpness, rep-
resented by the blue line, which may lead to
unstable convergence and suboptimal gener-
alization. In contrast, flatness refers to the width of the local minima, quantified by smaller eigen-
values of the Hessian matrix, indicating a broader and less steep region around the minimum. The
EMA model demonstrates smoother curves with lower peaks, signifying enhanced flatness, repre-
sented by the red line, and more stable minima, though it may overlook deeper optima. The SEMA
model, by dynamically switching between EMA and the original model, effectively balances both
sharpness and flatness. It achieves deeper and smoother local minima, allowing the optimizer to
explore lower basins while maintaining stability. This balanced approach results in superior perfor-
mance and generalization across diverse applications, as evidenced by smoother decision boundaries
and accelerated convergence speeds.
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B IMPLEMENTATION DETAILS

This section provides implementation settings and dataset information for empirical experiments
conducted in Sec. 4. We follow existing benchmarks for all experiments to ensure fair compar-
isons. As for the compared WA methods and Lookahead, we adopt the following settings: EMA is
applied as test-time regularization during the whole training process with tuned momentum coeffi-
cient; SWA applies the 1.25 budget (e.g., ensemble five models iteratively); Lookahead applies the
slow model learning rate with α = 0.5 and the update interval k = 100. Meanwhile, SEMA uses
“by-epoch” switching, (i.e., T is the iteration number of traversing the entire training set once, and
the momentum ratios for different tasks are shown in Table A1 and Table A2.

Table A1: Momentum coefficient α in EMA and SEMA for vision applications, including im-
age classification (Cls.), self-supervised learning (SSL) with contrastive learning (CL) methods or
masked image modeling (MIM) methods, objection detection (Det.) and instance segmentation
(Seg.), and image generation (Gen.) tasks.

Dataset CIFAR-100 STL-10 ImageNet-1K CIFAR-10 CelebA COCO
Task Cls. SSL (CL) SSL (MIM) SSL (CL) SSL (MIM) Cls. SSL (CL) SSL (MIM) Gen. Gen. Det. Seg.
EMA 0.99 0.999 0.9 0.9999 0.999 0.9999 0.99996 0.999 0.9999 0.9999 0.9999 0.9999
SEMA 0.99 0.999 0.999 0.999 0.999 0.999 0.9999 0.999 0.9999 0.9999 0.999 0.999

Table A2: Momentum coefficient α in EMA and SEMA for regression (Reg.), video prediction
(VP), language processing (LP), text classification (Cls.), and language modeling (LM) tasks.

Dataset RCFMNIST AgeDB IMDB-WIKI MMNIST Penn TreeBank Yelp Review WikiText-103
Task Reg. Reg. Reg. VP LP Cls. LM
EMA 0.999 0.999 0.999 0.999 0.9999 0.9999 0.9999
SEMA 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Table A3: Ingredients and hyper-parameters used for ImageNet-1K training settings with various op-
timizers. Note that the settings of PyTorch (Simonyan & Zisserman, 2014), RSB A2 and A3 (Wight-
man et al., 2021), and LARS (Ginsburg et al., 2018) take ResNet-50 as the examples, DeiT (Touvron
et al., 2021) and Adan (Xie et al., 2023) settings take DeiT-S as the example, and the ConvNeXt (Liu
et al., 2022b) setting is a variant of the DeiT setting for ConvNeXt and Swin Transformer.

Procedure PyTorch DeiT ConvNeXt RSB A2 RSB A3 Adan LARS
Train Resolution 224 224 224 224 160 224 160
Test Resolution 224 224 224 224 224 224 224
Test crop ratio 0.875 0.875 0.875 0.95 0.95 0.85 0.95
Epochs 100 300 300 300 100 150 100
Batch size 256 1024 4096 2048 2048 2048 2048
Optimizer SGD AdamW AdamW LAMB LAMB Adan LARS
Learning rate 0.1 1× 10−3 4× 10−3 5× 10−3 8× 10−3 1.6× 10−2 8× 10−3

Optimizer Momentum 0.9 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.98, 0.92, 0.99 0.9
LR decay Cosine Cosine Cosine Cosine Cosine Cosine Cosine
Weight decay 10−4 0.05 0.05 0.02 0.02 0.02 0.02
Warmup epochs 7 5 20 5 5 60 5
Label smoothing ε 7 0.1 0.1 7 7 0.1 7
Dropout 7 7 7 7 7 7 7
Stochastic Depth 7 0.1 0.1 0.05 7 0.1 7
Repeated Augmentation 7 3 3 3 7 7 7
Gradient Clip. 7 5.0 7 7 7 5.0 7
Horizontal flip 3 3 3 3 3 3 3
RandomResizedCrop 3 3 3 3 3 3 3
Rand Augment 7 9/0.5 9/0.5 7/0.5 6/0.5 7/0.5 6/0.5
Auto Augment 7 7 7 7 7 7 7
Mixup α 7 0.8 0.8 0.1 0.1 0.8 0.1
Cutmix α 7 1.0 1.0 1.0 1.0 1.0 1.0
Erasing probability 7 0.25 0.25 7 7 0.25 7
ColorJitter 7 7 7 7 7 7 7
EMA 7 3 3 7 7 7 7
CE loss 3 3 3 7 7 3 7
BCE loss 7 7 7 3 3 7 3

B.1 IMAGE CLASSIFICATION

We evaluate popular weight average (WA) and optimization methods with image classification tasks
based on various optimizers and network architectures on CIFAR-100 (Krizhevsky et al., 2009) and
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Table A4: Ingredients and hyper-parameters used for pre-training on ImageNet-1K various SSL
methods. Note that CL methods require complex augmentations proposed in SimCLR (SimCLR
Aug.) and evaluated by Linear probing, while MIM methods use fine-tuning (FT) protocols.
Configuration SimCLR MoCo.V2 BYOL Barlow Twins MoCo.V3 MAE SimMIM/A2MIM
Pre-training resolution 224× 224 224× 224 224× 224 224× 224 224× 224 224× 224 224× 224
Encoder ResNet ResNet ResNet ResNet ViT ViT ViT
Augmentations SimCLR Aug. SimCLR Aug. SimCLR Aug. SimCLR Aug. SimCLR Aug. RandomResizedCrop RandomResizedCrop
Mask patch size 7 7 7 7 7 16× 16 32× 32
Mask ratio 7 7 7 7 7 75% 60%
Projector / Decoder 2-MLP 2-MLP 2-MLP 3-MLP 2-MLP ViT Decoder FC
Optimizer SGD LARS LARS LARS AdamW AdamW AdamW
Base learning rate 4.8 3× 10−2 4.8 1.6 2.4× 10−3 1.2× 10−3 4× 10−4

Weight decay 1× 10−4 1× 10−6 1× 10−6 1× 10−6 0.1 0.05 0.05
Optimizer momentum 0.9 0.9 0.9 0.9 0.9, 0.95 0.9, 0.999 0.9, 0.999
Batch size 4096 256 4096 2048 4096 2048 2048
Learning rate schedule Cosine Cosine Cosine Cosine Cosine Cosine Step / Cosine
Warmup epochs 10 7 10 10 40 10 10
Gradient Clipping 7 7 7 7 max norm= 5 max norm= 5 max norm= 5
Evaluation Linear Linear Linear Linear Linear FT FT

ImageNet-1K (Deng et al., 2009). Experiments are implemented on OpenMixup (Li et al., 2022)
codebase with 1 or 8 Nvidia A100 GPUs.

ImageNet-1K. We perform regular ImageNet-1K classification experiments following the widely
used training settings with various optimizers and backbone architectures, as shown in Table A3.
We consider popular backbone models, including ResNet (He et al., 2016), DeiT (Vision Trans-
former) (Dosovitskiy et al., 2020; Touvron et al., 2021), Swin Transformer (Liu et al., 2021), Con-
vNeXt (Liu et al., 2022b), and MogaNet (Li et al., 2024c). For all models, the default input image
resolution is 2242 for training from scratch on 1.28M training images and testing on 50k validation
images. ConvNeXt and Swin share the same training settings. As for augmentation and regular-
ization techniques, we adopt most of the data augmentation and regularization strategies applied in
DeiT training settings, including Random Resized Crop (RRC) and Horizontal flip (Szegedy et al.,
2015), RandAugment (Cubuk et al., 2020), Mixup (Zhang et al., 2018), CutMix (Yun et al., 2019),
random erasing (Zhong et al., 2020), ColorJitter (He et al., 2016), stochastic depth (Huang et al.,
2016), and label smoothing (Szegedy et al., 2016). Note that EMA (Polyak & Juditsky, 1992) with
the momentum coefficient of 0.9999 is basically adopted in DeiT and ConvNeXt training, but re-
move it as the baseline in Table 2. We also remove additional augmentation strategies (Cubuk et al.,
2019; Liu et al., 2022d; Li et al., 2021; Liu et al., 2022c), e.g., PCA lighting (Krizhevsky et al.,
2012) and AutoAugment (Cubuk et al., 2019).

CIFAR-100. We use different training settings for a fair comparison of classical CNNs and modern
Transformers on CIFAR-100, which contains 50k training images and 10k testing images of 322 res-
olutions. As for classical CNNs with bottleneck structures, including ResNet variants, ResNeXt (Xie
et al., 2017), Wide-ResNet (Zagoruyko & Komodakis, 2016), and DenseNet (Huang et al., 2017),
we use 322 resolutions with the CIFAR version of network architectures, i.e., downsampling the
input size to 1

2 in the stem module instead of 1
8 on ImageNet-1K. Meanwhile, we train three modern

architectures for 200 epochs from the stretch. We resize the raw images to 2242 resolutions for DeiT-
S and Swin-T while modifying the stem network as the CIFAR version of ResNet for ConvNeXt-T
with 322 resolutions.

B.2 SELF-SUPERVISED LEARNING

We consider two categories of popular self-supervised learning (SSL) on CIFAR-100, STL-
10 (Coates et al., 2011), and ImageNet-1K: contrastive learning (CL) for discriminative represen-
tation and masked image modeling (MIM) for more generalizable representation. Experiments are
implemented on OpenMixup codebase with 4 Tesla V100 GPUs.

Contrastive Learning. To verify the effectiveness of WA methods with CL methods with both
self-teaching or non-teaching frameworks, we evaluate five classical CL methods on CIFAR-100,
STL-10, and ImageNet-1K datasets, including SimCLR (Chen et al., 2020a), MoCo.V2 (Chen et al.,
2020b), BYOL (Grill et al., 2020), Barlow Twins (Zbontar et al., 2021), and MoCo.V3 (Chen et al.,
2020b). STL-10 is a widely used dataset for SSL or semi-supervised tasks, consisting of 5K labeled
training images for 10 classes and 100K unlabelled training images, and a test set of 8K images in
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962 resolutions. The pre-training settings are borrowed from their original papers on ImageNet-1K,
as shown in Table A4. As for the SimCLR augmentations, the recipes include RandomResizedCrop
with the scale in [0.08, 1.0] and RandomHorizontalFlip, color augmentations of ColorJitter with
{brightness, contrast, saturation, hue} strength of {0.4, 0.4, 0.4, 0.1} with an applying probability
of 0.8 and RandomGrayscale with an applying probability of 0.2, and blurring augmentations of a
Gaussian kernel of size 23 × 23 with a standard deviation uniformly sampled in [0.1, 2.0]. We use
the same setting on CIFAR-100 and STL-10, where the input resolution of CIFAR-100 is resized to
2242. The pre-training epoch on CIFAR-100 and STL-10 is 1000, while it is set to the official setup
on ImageNet-1K, as shown in Table 5. As for the evaluation protocol, we follow MoCo.V2 and
MoCo.V3 to conduct linear probing upon pre-trained representations. Note that MoCo.V2, BYOL,
and MoCo.V3 require EMA with the momentum of 0.999, 0.99996, and 0.99996 as the teacher
model, while SimCLR and Barlow Twins do not need WA methods by default.

Masked Image Modeling. As for generative pre-training with MIM methods (He et al., 2022; Li
et al., 2023b), we choose SimMIM (Xie et al., 2022) and A2MIM (Li et al., 2023a) to perform pre-
training and fine-tuning with ViT (Dosovitskiy et al., 2020) on CIFAR-100, STL-10, and ImageNet-
1K. Similarly, two MIM methods utilize their official pre-training setting on ImageNet-1K for three
datasets, as shown in Table A4. CIFAR-100 and STL-10 use 2242 and 962 resolutions to pre-train
DeiT-S for 1000 epochs, while ImageNet-1K uses 2242 resolutions to pre-training ViT-B for 800
epochs. The fine-tuning evaluation protocols are also adopted as their original recipes, fine-tuning
100 epochs with a layer decay ratio of 0.65 with the AdamW optimizer. Note that both the MIM
methods do not require WA techniques during pre-training.

B.3 OBJECT DETECTION AND INSTANCE SEGMENTATION

Following Swin Transformers (Liu et al., 2021), we evaluate objection detection and instance seg-
mentation tasks as the representative vision downstream tasks (Xiao et al., 2018; Li et al., 2020;
2024b) on COCO (Lin et al., 2014) dataset, which include 118K training images (train2017) and
5K validation images (val2017). Experiments of COCO detection and segmentations are imple-
mented on MMDetection (Chen et al., 2019) codebase and run on 4 Tesla V100 GPUs.

Fine-tuning. Taking ImageNet pre-trained ResNet-50 and Swin-T as the backbone encoders, we
adopt RetinaNet (Lin et al., 2017), Mask R-CNN (He et al., 2017), and Cascade Mask R-CNN (Cai &
Vasconcelos, 2019) as the standard detectors. As for ResNet-50, we employ the SGD optimizer for
training 2× (24 epochs) and 3× (36 epochs) settings with a basic learning rate of 2× 10−2, a batch
size of 16, and a fixed step learning rate scheduler. Since MMDetection uses repeat augmentation
for Cascade Mask R-CNN, its training 1× and 3× with multi-scale (MS) resolution and advanced
data augmentations equals training 3× and 9×, which can investigate the regularization capacities
of WA techniques. As for Swin-T, we employ AdamW (Loshchilov & Hutter, 2019) optimizer for
training 1× schedulers (12 epochs) with a basic learning rate of 1 × 10−4 and a batch size of 16.
During training, the shorter side of training images is resized to 800 pixels, and the longer side is
resized to not more than 1333 pixels. We calculate the FLOPs of compared models at 800 × 1280
resolutions. The momentum of EMA and SEMA is 0.9999 and 0.999.

Training from Scratch. For the YoloX (Ge et al., 2021) detector, we follow its training settings
with randomly initialized YoloX-S encoders (the modified version of CSPDarkNet). The detector is
trained 300 epochs by SGD optimizer with a basic learning rate of 1× 10−2, a batch size of 64, and
a cosine annealing scheduler. During training, input images are resized to 640×640 resolutions and
applied complex augmentations like Mosaic and Mixup (Zhang et al., 2018; Qin et al., 2024). The
momentum of EMA and SEMA is 0.9999 and 0.999.

B.4 IMAGE GENERATION

Following DDPM (Ho et al., 2020), we evaluated image generation tasks based on CIFAR-
10 (Krizhevsky et al., 2009), which includes 5K training images and 1K testing images (a total
of 6K images). The training was conducted with a batch size of 128, performing 1000 training steps
per second and using a learning rate of 2 × 10−4. The DDPM-torch codebase was utilized to im-
plement the DDPM image generation experiments executed on 4 Tesla V100 GPUs. Similarly, for
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the CelebA dataset (Liu et al., 2015), which includes 162,770 training images, 19,867 validation im-
ages, and 19,962 testing images (a total of 202,599 images), image generation tasks were performed
with a batch size of 128. The training was conducted with 1000 training steps per second, and the
learning rate was set to 2e-5. The ddpm-torch1 codebase was employed for implementing the
DDPM image generation experiments, which were executed on 4 Tesla V100 GPUs. For the two
datasets, the models utilized EMA and SEMA, with an ema decay factor set to the default value
of 0.9999. The total number of epochs required for training the CIFAR-10 model is 2000 and 600
CelebA, optimized by Adam (Kingma & Ba, 2014) and a batch size of 128. In the final experiment,
the model was trained once, and checkpoints were saved at regular intervals (every 50 epochs for
CIFAR-10 and every 20 epochs for CelebA). Then, using 4 GPUs and the DDIM (Song et al., 2021)
sampler, 50,000 samples were generated in parallel for each checkpoint. Finally, the FID score (Si-
monyan & Zisserman, 2014) was computed using the codebase to evaluate the 50,000 generated
samples and record the results.

B.5 VIDEO PREDICTION

Following SimVP (Gao et al., 2022) and OpenSTL (Tan et al., 2023), we verify WA methods
with video prediction methods on Moving MNIST (Srivastava et al., 2015). We evaluate various
Metaformer architectures (Yu et al., 2022) and MogaNet with video prediction tasks on Moving
MNIST (MMNIST) (Lin et al., 2014) based on SimVP (Gao et al., 2022). Notice that the hidden
translator of SimVP is a 2D network module to learn spatiotemporal representation, which any 2D
architecture can replace. Therefore, we can benchmark various architectures based on the SimVP
framework. In MMNIST (Srivastava et al., 2015), each video is randomly generated with 20 frames
containing two digits in 64 × 64 resolutions, and the model takes 10 frames as the input to predict
the next 10 frames. Video predictions are evaluated by Mean Square Error (MSE), Mean Absolute
Error (MAE), and Structural Similarity Index (SSIM). All models are trained on MMNIST from
scratch for 200 or 2000 epochs with Adam optimizer, a batch size of 16, a OneCycle learning rate
scheduler, an initial learning rate selected in {1×10−2, 5×10−3, 1×10−3, 5×10−4}. Experiments
of video prediction are implemented on OpenSTL codebase (Tan et al., 2023) and run on a single
NVIDIA Tesla V100 GPU.

B.6 VISUAL ATTRIBUTE REGRESSION

As for regression tasks, we conducted age regression experiments on two datasets: IMDB-
WIKI (Rothe et al., 2018) and AgeDB (Moschoglou et al., 2017). AgeDB comprises images of
various celebrities, encompassing actors, writers, scientists, and politicians, with annotations for
identity, age, and gender attributes. The IMDB-WIKI dataset comprises approximately 167,562
face images, each associated with an age and gender label. The age range of the two datasets is from
1 to 101. In age regression tasks, our objective is to extract human features that enable the model
to predict age as a continuous real value. Meanwhile, we also consider a rotation angle regression
task on RCF-MNIST (Yao et al., 2022) dataset, which incorporates a more complex background
inspired by CIFAR-10 to resemble natural images closely. This task allows the model to regress the
rotation angle of the foreground object. We adopted the same experimental settings as described in
SemiReward (Li et al., 2024a) and C-Mixup (Yao et al., 2022). In particular, we used ConvNeXt-
T, ResNet-18, and ResNet-50 as backbone models, in addition to using a variety of methods for
comparison. The input resolutions were set to 2242 for AgeDB and IMDB-WIKI and 322 for RCF-
MNIST. Models are optimized with `1 loss and the AdamW optimizer for 400 or 800 epochs for
AgeDB/IMDB-WIKI or RCF-MNIST datasets. MAE and RMSE are used as evaluation metrics.

B.7 LANGUAGE PROCESSING

Penn TreeBank with LSTM. Following Adablief (Zhuang et al., 2020), the language processing
experiment with LSTM (Ma et al., 2015) is conducted with Penn TreeBank dataset (Marcus et al.,
1993) (with 887,521 training tokens, 70,390 validation tokens, 78,669 test tokens, vocab of 10,000,
and 4.8% OoV) on LSTM with Adan as the baseline, utilizing its default weight decay (0.02) and
betas (β1 = 0.02, β2 = 0.08, β3 = 0.01), and a learning rate of 0.01. We applied EMA and SEMA
for comparison, and momentum defaults to 0.999 and 0.9999. We fully adhere to the experimental

1https://github.com/tqch/ddpm-torch/
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settings in Adablief and use its codebase, applying the default settings for all other hyperparame-
ters provided by Adablief (weight decay=1.2e-6, eps=1e-8, batch size=80, a total of 8000 epochs
for single training). We use Perplexity as the primary evaluation metric for observing the training
situation of SEMA.

Text Classification with Yelp Review. Second, for the Yelp review task in USB (Wang et al.,
2022), we use the pre-trained BERT (Devlin et al., 2018) and experiment on the Yelp review dataset
(Yel). The dataset contains a large number of user reviews and is made up of five classes (scores),
each containing 130,000 training samples and 10,000 test samples. For BERT under USB, we adopt
the Adam optimizer with a weight decay of 1e-4, a learning rate of 5e-5, and a layer decay ratio of
0.75, and the Momentum default values for SEMA and EMA are the same as before. We also fully
adhere to and utilize its fully-supervised setting.

Language Modeling with WikiText-103. We also conducted language modeling experiments
on WikiText-103 (Ott et al., 2019) (with 103,227,021 training tokens, 217,646 validation tokens,
245,569 test tokens, and a vocabulary of 267,735). In the comprehensive experimental, the sequence
length was set to 512, and the experiment settings followed the specifications of fairseq (weight de-
cay was 0.01, using the Adam optimizer, and learning rate of 0.0005). The default Momentum
values for EMA and SEMA were maintained for training and evaluation, and the final comparison
was based on Perplexity.

C EMPRICAL EXPERIMENTS

Loss Landscape. The 1D linear interpolation method (Goodfellow et al., 2015) assesses the loss
value along the direction between two minimizers of the same network loss function (Li et al.,
2017). We visualize the 1d loss landscape 2b of the model guided by SEMA, using CNNs and
Vits as backbones and SEMA showed sharper precision and loss lines compared to the baseline
model, EMA and SAM, indicating better performance. To plot the 2d loss landscape 3, we select
two random directions and normalize them in the same way as in the 1D plot. By observing the
different trajectories of the two models from the same initial point and their final positions relative
to the local minimum, we can effectively compare them. SEMA ultimately converges rapidly to
the position closest to the local minimum, while EMA remains trapped in a flat local basin. This
effectively demonstrates that SEMA can converge faster and more efficiently.

Figure A2: Illustration of the baseline, EMA, and SEMA
on Two Moons Dataset with 50 labeled samples (trian-
gle red/yellow points) with others as testing samples (grey
points) in training a 2-layer MLP classifier. We evalu-
ate the performance by computing top-1 accuracy, decision
boundary width, and prediction calibration.

Decision Boundary. We trained a 2-
layer MLP classifier using the SGD
optimizer with a fixed learning rate of
0.01 on a binary classification dataset
from sklearn (Pedregosa et al., 2011).
The dataset consisted of circular and
moon-shaped data points, with 50 la-
beled samples represented by red or
yellow triangles and the remaining
samples as grey circles for testing
purposes. We compared the perfor-
mance of the baseline model, EMA,
and SEMA. When plotting the deci-
sion boundaries (He et al., 2018), we
used smooth, solid lines to represent the boundaries ( 4, A2). Each algorithm was distinguished by
using distinct colors. The transition of the test samples from blue to grey represented the confidence
of the network predictions. Furthermore, SEMA can be further compared and evaluated according
to the evaluation indicators. One is accuracy, that is, the ability to divide test samples; the other is
Calibration, the closer the decision boundary, the less trustworthy it will be, and the lower the clas-
sification accuracy will be; the third is the width of the decision boundary, the wider the decision
boundary, the more robust it will be. According to the intuitive comparison, SEMA can achieve
the most accurate classification and is superior to EMA and the baseline model in all evaluation
indicators, effectively indicating that SEMA has higher performance and robustness.
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D EXTENSIVE RELATED WORK

D.1 OPTIMIZERS

With the advent of BP (Rumelhart et al., 1986) and SGD (Sinha & Griscik, 1971) with mini-batch
training (Bishop, 2006), optimizers have become an indispensable component in the training process
of DNNs. Various mainstream optimizers leverage momentum techniques (Sutskever et al., 2013)
to accumulate gradient statistics, which are crucial for improving the convergence and performance
of DNNs. In addition, adaptive learning rates such as those found in Adam variants (Kingma & Ba,
2014; Liu et al., 2020) and acceleration schemes (Kobayashi, 2020) have been used to enhance these
capabilities further. SAM method (Foret et al., 2021) works by searching for a flatter region where
the training losses in the estimated neighborhood are minimized through min-max optimizations. Its
variants aim to improve training efficiency from various perspectives, such as gradient decomposi-
tion (Zhuang et al., 2022) and training costs (Du et al., 2021; 2022) (Liu et al., 2022a). To expedite
training, large-batch optimizers like LARS (Ginsburg et al., 2018) for SGD and LAMB (You et al.,
2020) for AdamW (Loshchilov & Hutter, 2019) have been proposed. These optimizers adaptively
adjust the learning rate based on the gradient norm to facilitate faster training. Adan (Xie et al., 2023)
introduces Nesterov descending to AdamW, bringing improvements across popular computer vision
and natural language processing applications. Moreover, a new line of research has proposed plug-
and-play optimizers such as Lookahead (Zhang et al., 2019; Zhou et al., 2021) and Ranger (Wright,
2019). These optimizers can be combined with existing inner-loop optimizers (Zhou et al., 2021),
acting as the outer-loop optimization to improve generalization and performance while allowing for
faster convergence.

D.2 WEIGHT AVERAGING

In stark contrast to gradient momentum updates in optimizers, weight averaging (WA) techniques
such as SWA (Izmailov et al., 2018) and EMA (Polyak & Juditsky, 1992) are commonly employed
during DNN training to enhance model performance further. Test-time WA strategies, including
SWA variants (Maddox et al., 2019) and FGE variants (Guo et al., 2023; Garipov et al., 2018), em-
ploy the heuristic of ensembling different models from multiple iterations (Granziol et al., 2021)
to achieve flat local minima and thereby improve generalization capabilities. Notably, TWA (Li
et al., 2023c) has improved upon SWA by implementing a trainable ensemble. Another important
weighted averaging technique targeted explicitly at large models is Model Soup (Wortsman et al.,
2022), which leverages solutions obtained from different fine-tuning configurations. Greedy Soup
improves model performance by sequentially greedily adding weights. When applied during the
training phase, the EMA update can significantly improve the performance and stability of existing
optimizers across various domains. EMA is an integral part of certain learning paradigms, includ-
ing popular semi-supervised learning methods such as FixMatch variants (Sohn et al., 2020), and
self-supervised learning (SSL) methods like MoCo variants (He et al., 2020; Chen et al., 2021), and
BYOL variants (Grill et al., 2020). These methods utilize a self-teaching framework, where the
teacher model parameters are the EMA version of student model parameters. In the field of rein-
forcement learning, A3C (Mnih et al., 2016) employs EMA to update policy parameters, thereby
stabilizing the training process. Furthermore, in generative models like diffusion (Karras et al.,
2023), EMA significantly contributes to the stability and output distribution. Recent efforts such as
LAWA (Kaddour, 2022) and PSWA (Guo et al., 2022) have explored the application of EMA or SWA
directly during the training process. However, they found that while using WA during training can
accelerate convergence, it does not necessarily guarantee final performance gains. SASAM (Kad-
dour et al., 2022) combines the complementary merits of SWA and SAM to achieve local flatness
better. Despite these developments, the universal applicability and ease of migration of these WA
techniques make them a crucial focus for ongoing innovation. This paper aims to improve upon
EMA by harnessing the historical exploration of a single configuration and prioritizing training effi-
ciency to achieve faster convergence.

D.3 REGULARIZATIONS

In addition to the optimizers, various regularization techniques have been proposed to enhance the
generalization and performance of DNNs. Techniques such as weight decay (Andriushchenko et al.,
2023) and dropout variants (Srivastava et al., 2014; Huang et al., 2016) are designed to control the
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complexity of the network parameters and prevent overfitting, which have been effective in improv-
ing model generalization. These techniques, including EMA, fall under network parameter regular-
izations. Specifically, the EMA has shown to effectively regularize Transformer (Devlin et al., 2018;
Touvron et al., 2021) training across both computer vision and natural language processing scenar-
ios (Liu et al., 2022b; Wightman et al., 2021). Another set of regularization techniques aims to im-
prove generalizations by modifying the data distributions. These include label regularizers (Szegedy
et al., 2016) and data augmentations (DeVries & Taylor, 2017). Data-dependent augmentations like
Mixup variants (Zhang et al., 2018; Yun et al., 2019; Liu et al., 2022d) and data-independent methods
such as RandAugment variants (Cubuk et al., 2019; 2020) increase data capacities and diversities.
These methods have achieved significant performance gains while introducing negligible additional
computational overhead. Most regularization methods, including our proposed SEMA, provide ’free
lunch’ solutions. They can effectively improve performance as a pluggable module without incur-
ring extra costs. In particular, SEMA enhances generalization abilities as a plug-and-play step for
various application scenarios.
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