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ABSTRACT

Recent studies show the promising results of using online RL methods in the offline
setting. However, such a learning diagram may suffer from an overtraining issue,
that is, the performance of the policy degrades significantly as the training process
continues when the dataset is not sufficiently large and diverse. In this work, we
propose an alternative approach to alleviate and avoid the overtraining issue: we
explicitly take the learning stability into account in the policy learning objective,
and adaptively select a good policy before the overtraining issue happens. To do so,
we develop an Uncertainty Regularized Policy Learning (URPL) method. URPL
adds an uncertainty regularization term in the policy learning objective to enforce
to learn a more stable policy under the offline setting. Moreover, we further use
the uncertainty regularization term as a surrogate metric indicating the potential
performance of a policy. Based on the low-valued region of the uncertainty term, we
can select a good policy with considerable good performance and low computation
requirements. On standard offline RL benchmark D4RL, URPL achieves much
better final performance over existing state-of-the-art baselines.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton & Barto, 2011) aims to build an agent that interacts with an
online environment or simulator and learns from its own collected experience while offline RL try
to learn purly from the logged dataset without the environment requirement (Fujimoto et al., 2019).
However, offline RL scheme faces some new challenges, e.g., the extrapolation error or distribution
mismatch (Fujimoto et al., 2019; Kumar et al., 2019). Existing offline RL methods try to alleviate
these issues either by using the conservative or pessimistic update that learns a conservative Q function
(Kumar et al., 2020; He & Hou, 2020) or by combining imitation learning to make the learned policy
close to the behavior policy (Fujimoto et al., 2019; Chen et al., 2020; Rashidinejad et al., 2021).
However, pessimistic update limits the final performance gain, while the imitation-learning based
methods do not perform well when the data is collected by different behavior policies.

Recently, (Agarwal et al., 2020) propose an optimistic perspective on using online RL methods in the
offline setting. That is, trained by sufficiently large and diverse offline datasets, online RL algorithms
can achieve high quality policies without active interactions with the environment. However, sufficient
datasets are not always available in practice. Moreover, it is also observed an performance drop issue
based on our motivation example and the Figure 8-Hopper-v1 in (Agarwal et al., 2020) even when
sufficient dataset is available. That is, the performance of the policy starts to degrade significantly as
the training process goes through several epochs. Such an issue is more obvious on the complicated
task where the trajectory length, state or action space is in high dimension.

The overtraining issue can be explained by the Ockham’s Razor. Existing RL methods aim to
achieve a stable learning process and simultaneously yield a good policy until the learning converges.
However, it has been shown that, even in a linear situation, the learning process of Q-learning
diversifies (Baird, 1995). The Deadly Triad introduced in (Sutton & Barto, 2011) also states that the
danger of instability and divergence arises when one exploits function approximation, bootstrapping
and off-policy training in the policy learning. The contradiction deteriorates when the online RL
methods are directly applied to the offline setting.

In this paper, we follow the idea of using online RL methods in the offline setting from a better
performance and further propose to handle the overtraining issue arised from Sutton & Barto (2011).
Considering that the overtraining issue naturally exists when the offline dataset is not always suffi-
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ciently large and diverse, we try the best to alleviate and avoid it instead of eliminating it. To alleviate,
we explicitly take the stability as an intrinsic part of the learning objective. To avoid, different
from previous offline RL methods that adopts the policy at the final learning step, we are dedicated
to selecting a good policy before the overtraining happens. To do so, we propose an Uncertainty
Regularized Policy Learning (URPL) method that can learn a performance predictable policy with
the offline training, while maintain the online RL’s high sample efficiency without conservative or
pessimistic constraint. Specifically, we add an simple uncertainty regularization term in the policy
update. The aim of the uncertainty regularization term is to regularize a policy with low variance
so that it explicitly enforces the policy learning stable. It is worth noting that such a regularization
term is for stabilizing the learning process instead of avoiding the distribution mismatch introduced
in offline RL literature. Meanwhile, we also use the uncertainty regularization term as a surrogate
metric indicating the potential performance of a policy for policy selection. By identifying the region
of uncertainty regularization with low values, we can select the policy with a considerable good
potential performance that may locate at any point/region of the learning process. On the other hand,
even though we don’t require the offline dataset to be sufficiently large and diverse, if the dataset
only consists of very few different distributions, our method would not work well for such a case. In
another word, we focus on an intermediate situation which is the most cases in practice.

We empirically demonstrate the efficiency of our approach on standard offline RL benchmark D4RL
(Fu et al., 2020). In our experiments, we test URPL on the challenging tasks with small and mixed
data, where previously offline RL methods are typically known to perform poorly (Fu et al., 2020).
The results show that URPL outperforms existing state-of-the-art methods on these challenging tasks
with respect to the final average return obtained by the learned policy. Moreover, we also investigate
the connection of our proposed uncertainty regularization term with the policy performance, and
we obtain that the small-valued uncertainty regions indeed correspond to high-valued performance
regions. This demonstrates that the proposed uncertainty regularization term is an effective surrogate
metric indicating the potential performance of a policy.

2 PRELIMINARIES

Online reinforcement learning. Here, online RL mainly focus on conventional off-policy RL which
can learn from logged data from different behavior policies to some extent. A Markov decision
process (MDP) (Sutton & Barto, 2011) can be defined by a tuple (S,A, R, P, γ) with a state space
S, an action space A, a stochastic reward function R(s, a), transition dynamics P

(
s′ | s, a

)
and a

discount factor γ ∈ [0, 1). A stochastic policy π(· | s) maps each state s ∈ S to a distribution over
actions. For an agent following the policy π, the action-value function, denoted Qπ(s, a), is defined
as the expectation of cumulative discounted future rewards, i.e.,

Qπ(s, a) := E

 ∞∑
t=0

γtR (st, at)

 s0 = s, a0 = a, st ∼ P
(
· | st−1, at−1

)
, at ∼ π

(
· | st

)
The goal of RL is to find an optimal policy π∗ maximizing the expected return with Qπ

∗
(s, a) ≥

Qπ(s, a) for all π, s, a. The Bellman equations characterize the optimal policy in terms of the optimal
Q values, denoted Q∗ = Qπ

∗
, via:

Q∗(s, a) = ER(s, a) + γEs′∼P max
a′∈A

Q∗
(
s′, a′

)
For complex tasks, such as high dimensional state-action space or long time horizon, Q functions
are usually approximated by neural networks. Suppose the approximator is represented by Qφ(s, a),
with parameters φ, and we have the dataset D of transitions

(
s, a, r, s′, d

)
, where d indicates a

terminal state. Then, we can use the mean-squared Bellman error(MSBE) to improve the Q function
iteratively:

L(φ,D) = E
(s,a,r,s′,d)∼D

(Qφ(s, a)− (r + γ(1− d)max
a′

Qφ
(
s′, a′

)))2


Entropy-Regularized Reinforcement Learning Some state-of-the-art RL methods (Haarnoja et al.,
2018; Chen et al., 2021) employ the entropy term to regularize the policy learning for a better
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exploration and stability. Entropy is a quantity representing the uncertainty of a random variable
(Wehrl, 1978). Suppose x is a random variable with the probability mass or density function P (x).
Then, the entropy of x is computed from its distribution P (x) according to

H(P ) = E
x∼P

[− logP (x)]

In entropy-regularized reinforcement learning, the policy gets a reward and the entropy of the policy
at each time step. This reformulates the RL objective to:

π∗ = argmax
π

E
τ∼π

 ∞∑
t=0

γt
(
R (st, at, st+1) + αH

(
π
(
· | st

)))
where α > 0 is the trade-off coefficient.

Offline Reinforcement Learning. The methods mentioned above are mainly considered as online
RL as they alternate between updating a policy and using that policy to collect more data through
interacting the environment. In contrast, offline RL optimizes the policy using logged data without
any further interaction with the environment. Consequently, offline RL setting removes design choices
related to the replay buffer and exploration. However, it is generally considered challenging due to
the distribution mismatch between the learned policy and the policy from collected data, i.e., behavior
policy. When the sampled action is beyond the distribution of the behavior policy, conventional
off-policy RL methods usually yield overestimated Q-values (Fujimoto et al., 2019), and some offline
RL methods (Kumar et al., 2020; Agarwal et al., 2020) aim to solve such issues.

3 RELATED WORKS

Offline RL. Previous model-free offline RL methods can be classified into two classes: policy
regularization and critic penalty. Policy regularization methods attempt to solve the distribution
mismatch by constraining the learned policy to be close to the behavior policy as measured by some
distance metrics, e.g., KL-divergence (Fujimoto et al., 2019), Wasserstein distance (Wu et al., 2019),
and MMD (Kumar et al., 2019). BAIL (Chen et al., 2020) and ABM (Siegel et al., 2020) constrain
the policy to learn from the better trajectories instead of all data. Generally, the above methods try to
combine the limitation learning with reinforcement learning to some extent. In terms of critic penalty,
CQL (Kumar et al., 2020) aims to learn a conservative Q-function such that the expected value of a
policy under this Q-function lower bounds its true value. POPO (He & Hou, 2020) learns a pessimistic
value function to get a strong policy. REM (Agarwal et al., 2020) utilizes an ensemble Q functions for
robust offline learning. It has been proved to be effective on Atari 2600 games (Bellemare et al., 2015).
Different from these works, our method focus on those more challenging tasks with scarce or mixed
data, where these existing offline RL methods perform poorly. Moreover, we do not regularize the
learned policy stay close to the behavior policy or learn a conservative/pessimistic values functions,
which makes our method is less conservative and capable of achieving a better performance.

Offline policy selection/Off-policy evaluation. We further discuss the connection of our method
with offline policy selection (OPS) or off-policy evaluation (OPE) (Yang et al., 2020; Voloshin et al.,
2019). These methods usually employ the Bayesian posterior or importance sampling techniques to
evaluate the value of the policy (Precup et al., 2000; 2001; Zhang et al., 2020; Gelada & Bellemare,
2019; Hallak & Mannor, 2017; Levine et al., 2020), which bring extra computational overhead.
When the number of policies for selection/evaluation is huge, these methods may be impractical. In
contrast, our method does not have such problems as URPL builds a connection between the policy
performance and its uncertainty. We don not need to explicitly evaluate the policy. Instead, each
policy’s performance can be defined by the SLA metric without any extra computing. Moreover, the
main purpose of our method is to learn a good policy with the performance as high as possible under
the offline setting, rather than to evaluate a policy.

Uncertainty estimation. Uncertainty estimation in deep reinforcement learning have generally
been used to encourage exploration (Azizzadenesheli et al., 2018; O’Donoghue et al., 2018). Other
methods have examined approximating the Bayesian posterior of the value function(Touati et al.,
2019; Osband et al., 2018), again using the variance to encourage exploration to unseen regions of
the state space. In model-based reinforcement learning, uncertainty has been used for exploration,
but also for the opposite effect–to push the policy towards regions of certainty in the model. This is
used to combat the well-known problems with compounding model errors, and is presented in policy
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search methods (Yu et al., 2020; Kidambi et al., 2020; Xu et al., 2019), combined with trajectory
optimization (Chua et al., 2018) or value-based methods (Buckman et al., 2018). In our work, we
employ an uncertainty regularization term to stabilize the policy learning. We build a connection
between the uncertainty of a policy and its performance, that can be used for the final policy selection.

4 UNCERTAINTY REGULARIZED POLICY LEARNING(URPL)

Figure 1: REDQ’s training curve on D4RL mixed
walker2d dataset.

In this section, we introduce our proposed method
in details. To start, we firstly introduce an illustra-
tive example to demonstrate the issue of using online
RL methods (off-policy) in the offline setting. Fig-
ure 1 shows the performance of a state-of-the-art
online algorithm REDQ (Chen et al., 2021), which
uses an ensemble Q functions, on a mixed dataset.
Herein, a mixed dataset contains data from diverse
behavior policies collected previously. As can be
seen, its performance grows up quickly but deterio-
rates drastically as training process continues. This
is so-called over-training issue. Obviously, taking the
policy at the last step as the final target policy is not
a wise choice, however, this is the conventional solu-
tion adopted by most of existing offline RL methods.
Moreover, we also observe that, even if we can select
the best performance achieved by REDQ, which is located around 1e5 time steps, it is lower than
the performance of the best trajectory contained in the mixed data, i.e., 1900 as indicated by the
orange dotted line in Figure 1. As Agarwal et al. (2020) claimed when dataset is sufficiently diverse
and large, off-policy RL can learn effectively compared with offline RL methods, to this end, the
underlying reason may be the dataset is not sufficiently diverse and large. For the diverse dataset, the
OOD issue (Kumar et al., 2020) may be not important for off-policy RL.

Based on these observations, our method has two main purposes. Firstly, we aim to yield a policy
whose performance is as good as that of the best trajectory in the mixed data or better than it when
diverse data is available. Secondly, we want to adaptively select a good policy that may locate at
any point/region of the whole learning process to avoid the over-training issue. To achieve the two
purposes, we propose our method: Uncertainty Regularized Policy Learning (URPL).

Uncertainty Regularized Policy Update. The key idea of URPL is to explicitly take the stability
into account in each step of policy learning. In each step of policy update, we reduce the uncertainty
of the learned policy as much as possible. Specifically, we take advantage of the ensemble double
q-learning: REDQ (Chen et al., 2021). URPL uses N Q functions. When compute a target for Q,
URPL follows a similar step as REDQ, that is, it randomly samples a setM from N , and computes
the Q target y with the following equation:

y = r + γ

(
min
i∈M

Qφtarg,i

(
s′, ã′

)
− α log πθ

(
ã′ | s′

))
, ã′ ∼ πθ

(
· | s′

)
, (1)

Then, every Qi function parameters is updated by gradient descent using:

∇φ
1

|B|
∑

(s,a,r,s′)∈B

(
Qφi(s, a)− y

)2
. (2)

However, when updating the policy, we use:

∇θ
1

|B|
∑
s∈B

 1

N

N∑
i=1

Qφi

(
s, ãθ(s)

)
− α log πθ

(
ãθ(s) | s

)
− βσ

({
Qθi(s, a)

}N
i=1

) (3)

where σ is the standard deviation across the ensemble Q functions, α and β are weighted hyper-
parameters. As can be seen, the second (the entropy term) and the third (the variance term) terms
play a role as the uncertainty regularization on the learned policy. By doing so, the policy not only
maximizes the the mean value of Q as the conventional online RL methods do, but also minimizes its
uncertainty explicitly. Note that the major difference of URPL from REDQ is on the policy update
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Algorithm 1: Uncertainty Regularized Policy Learning
1 Initialization: Initialize policy parameters θ,N Q-function parameters φi, i = 1, . . . , N , replay

buffer D. Set target parameters φtarg,i ← φi, for i = 1, 2, . . . , N , evaluation steps T , empty
uncertainty list L

2 for each time steps t do
3 Sample a mini-batch B =

{(
s, a, r, s′

)}
from D

4 Sample a setM of M distinct indices from {1, 2, . . . , N}
5 Compute the Q target y (same for all of the N Q-functions) using equation 1
6 Update Q using equation 2
7 Update target networks with φtarg,i ← ρφtarg,i + (1− ρ)φi
8 Update policy parameters θ with gradient ascent using equation 3
9 Calculate the uncertainty Ut using equation 4

10 Append the Ut to L
11 Calculate the mean uncertainty value every T steps: U = sum(L)/T
12 Empty L
13 end

step, where the former considers both the entropy of the policy and variance of the Q functions while
the latter only considers the entropy term. As empirically demonstrated by the experimental results,
URPL significantly outperforms REDQ with respect to the best performance that can be achieved.

Adaptive Policy Selection. To avoid using the final policy of the last step that suffers from the
over-training issue, we need to propose a surrogate metric indicating the potential performance of a
policy to guide the policy selection. In this work, we propose to use the uncertainty term used in the
policy update as the surrogate metric:

U = H(π) + εσ(Q(s, π(s))) (4)

where ε is a hyperprameter that weight the Qs’ standard deviation. H is the stochastic policy π’s
entropy defined by H(π(·|s)) = E

a∼π
[− log π(a|s)]. The intuition behind such a metric is simple:

a random policy will not have a high performance anyway. When the policy achieves a high
performance, it should have a relatively low uncertainty. In the experiments, we explicitly analyze
how the performance varies with respect to the individual entropy term and the individual variance
term. We find that the connection of the performance with the entropy term is more steady and
organized than the connection of the performance with the variance term. Therefore, we suggest
using a small ε or directly use the individual entropy term in the surrogate metric. Moreover, the
proposed surrogate metric can be applicable to other existing RL methods for the policy selection.
We have also verified its effectiveness on the REDQ and CQL, in addition to our URPL. Note that the
second term, i.e., the variance term, does not exist for some RL methods as it is specific to methods
using multiple Q functions. In this case, we can directly use the entropy term as the surrogate metric.

Clearly, the relationship between the performance and the uncertainty is not monotonic. Thus, we are
more interested in a region instead of a certain point. When U stays at a relatively low and stable
level, we define it: Stable Learning Area(SLA), the policy tends to keep increasing its performance.
When the policy leaves that area, the policy’s performance begins to degrade. As a result, we can
utilize the SLA as a final criterion to gain a high performance final policy and avoid the overtraining
issue. In practice, the uncertainty term is usually calculated by the recent average value for a stable
estimation.

When we have such a connection, there are many methods to help us find a better final policy with
high-possibility in practice. For instance, we can use the policy before the turning point as the final
policy, if there is a clear surge point. However, there might be no clear turning point for some tasks
where U only slowly go up, in such case, we can use the policy around the end position of the lowest
SLA as the selected policy. The pseudocode of our method’s training process is presented in details
in algorithm 1.
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Environment Max time horizon State dimension Action dimension Data set size

Walker2d Infinite 17 6 100930
Hopper Infinite 11 3 401598

Halfcheetah finite 17 6 101000

Table 1: Complexity for each tasks. max time horizon means the maximum steps when the task terminates.
From this table, we can see the walker2d is the most complicated while HalfCheetah is the least one.

(a) Walker2d-mixed (b) Hopper-mixed (c) Halfcheetah-mixed

Figure 2: Comparative performance of different methods on benchmark D4RL’s mixed data set, averaged over 4
seeds. The purple dotted line is the best trajectory in the data.

5 EXPERIMENTS

In this section, we conduct empirical evaluation to (1) verify the performance superiority of our
method compared other state-of-the-art offline methods, and (2) analyze if the uncertainty concerns
in our policy loss is effective or not to build the performance connection.

5.1 EXPERIMENT SETUP

All the evaluations are done on the continuous control task: Mujoco (Todorov et al., 2012), and
we use the commonly used offline dataset D4RL(Fu et al., 2020) for training which is under the
Apache License 2.0 license. As we focus on the diverse dataset, we only use the mixed data for our
experiments. Only 3 tasks meet the requirement, namely Walker2d-medium-replay, Hopper-medium-
replay and HalfCheetah-medium-replay which consists of recording all samples in the replay buffer
observed during training until the policy reaches the "medium" level performance. We call them
Walker2d-mixed, Hopper-mixed, and Halfcheetah-mixed for short. The description of the three tasks
are is shown in Table 1. In practice, all above tasks take 1000 time steps as their max horizon. As can
be seen, walker-2d is the most complicated task with all large volumes on Max time horizon, state
dimension and action dimension.

As the authors of D4RL claimed that there is a bug on the Hopper-mixed-v0 dataset1, we use the
fixed version Hopper-mixed-v2 instead of the Hopper-mixed-v0. However, we still use the v0 version
data of Walker2d and HalfCheetah tasks for backwards compatibility with other baselines. For a fair
comparison, we re-run BCQ and CQL for all three tasks. We use their official code from their papers,
and follow the default hyper-parameter settings. In the experiments, we set the evaluation step T as
3000, the number of Q function N as 5. All experiments results are averaged over 4 seeds, and we
run it on a PC with an NVIDIA RTX 2060 GPU and 16 cores CPU.

5.2 COMPARATIVE EVALUATION

We firstly compared our method with two offline RL baselines: BCQ (Fujimoto et al., 2019) and
CQL (Kumar et al., 2020). We also compared with a state-of-the-art online method REDQ (Chen
et al., 2021) under the offline setting. To give a comprehensive comparison, we include the evaluation
results tested by the D4RL authors (Fu et al., 2020). All methods’score are reported against the
number of their training steps.

1D4RL: github.com/rail-berkeley/d4rl
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Environment BT BC SAC-off BEAR BRAC-p BRAC-v AWR URPL(ours) REDQ BCQ CQL

walker2d-mixd 1956 518 87 883 -11.5 44.5 712 463 711 688 1123
hopper-mixd 3189 364 93 1076 0.5 -0.8 904 3322 384 989 3271

halfcheetah-mixd 4830 4492 -581 4517 5208 4926 4727 5964 5856 4463 5301

Table 2: 1 million time-steps training or gradient steps for URPL, REDQ-off, BCQ and CQL. BC means behavior
cloning. The performance are represented by the last iteration average return (raw, un-normalized scores). BT
means the best trajectories(BT) return from the offline data. The scores for BC/SAC-off/BEAR/BRAC-p/BEAC-
v/AWR are directly taken from the paper D4RL (Fu, Kumar, Nachum, Tucker, and Levine, 2020).

Environment BT URPLw REDQw CQLw URPLwo REDQwo BCQwo CQLwo
walker2d-mixd 1956 2924 968 1203 463 711 688 1123
hopper-mixd 3189 3289 2975 3062 3322 384 989 3271

halfcheetah-mixd 4830 5578 5390 5201 5964 5856 4463 5301
Average 3328 3930 3111 3155 3249 2317 2047 3232

Table 3: 1 million time-steps training or gradient steps. The performance are reported as the average return
obtained using SLA. "w" means with the SLA metric in our experiments.

The learning curves for different methods are shown in Figure 2. As can be seen, almost all methods
perform stable on the simplest task: HalfCheetah, and gain a better or comparable final performance
than the BT. On the contrary, all methods perform unstable on the most complicated task: Walker2d,
and the over-training issue is most obvious on this task. As can be seen, BCQ generally fails to gain a
better performance than BT because it constrains its policy close to the behavior policy. In contrast,
less conservative methods such as CQL, URPL or REDQ can achieve a better or comparable final
performance than BT on the tasks Hopper-mixed and Halfcheetah-mixed.

In details, Table 2 describe the last iteration policy’s performance for all methods including the results
taken from D4RL, which are also commonly used offline RL baselines. It is clear that all methods
got a poor final policy on the complicated task: Walker2d, while most methods can gain a good
performance on the simple task HalfCheetah.

We further conduct two sets of empirical comparisons: one uses policy at the last step of the learning
process without the SLA metric(methods with the subscript "wo"), and another uses the policy
obtained with our adaptive policy selection (methods with the subscript "w"). Note that we use the
entropy alone as the surrogate metric for the policy selection in this experiment. More comparisons
on using the entropy and the variance for policy selection can be found in the next section. The
comparison results of "wo" and "w" set are shown in Table 3. BT results are also listed as references.
Moreover, if the result of a method beats the BT, we highlight it using bold. We highlight the winner
in each task using red.

From Table 3, we can see that URPLwo achieves better results than BT on hopper-mixed and
halfcheetah-mixed tasks, but yields much worse results than BT on the most complicated task
walker2d-mixed. The results of other baselines, REDQwo, BCQwo and CQLwo, are even more
inferior. In average, all methods that without SLA achieves worse results than BT, while URPLwo
and CQLwo are comparable. This is due to either the overtraining issue or the conservative update
that limits the performance gain. URPL can alleviate these issues in some extent, but still fails in the
complicated task.

When using the adaptive policy selection, we can see that almost all the baselines improve their
performance compared with the wo version in average. Note that BCQ does not use stochastic
policy so that we exclude it. Specifically, we observe a significant improvement of URPLw on the
task walker2d-mixed. URPLw sweeps BT on all the three tasks, and achieves much better average
performance. For the other two baselines, REDQw also achieves significant improvement while
CQLw only obtains comparable results. These results verify the effectiveness of our proposed
adaptive policy selection strategy, especially on the complicated tasks.

5.3 STABLE LEARNING AREA

In this section, we try to verify whether SLA can really find a policy with high performance or not.
To do so, we plot both the performance curves and the uncertainty curves, e.g., policy entropy and the
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(a) Walker2d-mixed-URPL (b) Hopper-mixed-URPL (c) Halfcheetah-mixed-URPL

(d) Walker2d-mixed-REDQ (e) Hopper-mixed-REDQ (f) Halfcheetah-mixed-REDQ

(g) Walker2d-mixed-CQL (h) Hopper-mixed-CQL (i) Halfcheetah-mixed-CQL

Figure 3: The policy’s entropy vs. policy’s performance.

(a) Walker2d-mixed-URPL (b) Hopper-mixed-URPL (c) Halfcheetah-mixed-URPL

(d) Walker2d-mixed-REDQ (e) Hopper-mixed-REDQ (f) Halfcheetah-mixed-REDQ

Figure 4: The Q’s std/variance vs. policy’s performance.

variance of Q values among URPL, REDQ and CQL(BCQ do not use stochastic policy and ensemble
Q functions so that we exclude it). We record every time step or update step’s uncertainty(the CQL
policy’s uncertainty is represented by policy’s entropy only, as there is no ensemble Q functions for
CQL.), and report the average value for every 3000 steps. We test the policy’s performance every
1000 steps and report its average value every 3000 steps.
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Environment BT URPLwE REDQwE URPLwV REDQwV
walker2d-mixd 1956 2924 968 1108 959
hopper-mixd 3189 3289 2975 3267 2890

halfcheetah-mixd 4830 5578 5390 5359 5231
Average 3328 3930 3111 3245 3027

Table 4: One million time-steps training or gradient steps. The performance are reported as the average return.

Figures 3 and 4 shows the performance vs. the entropy and the variance, respectively. The red dotted
line indicates the final obtained SLA. Herein, we use the simple method to define the SLA, that is, we
artificially select the area with the low and stable uncertainty. It is worth noting that the uncertainty
in the beginning of the learning has the low uncertainty value, but it is unstable as it surges up rapidly.
Thus, we exclude such areas in the selection. Specially, we use the mean performance of all the
policies in SLA to represent the performance of SLA. In practice, we can also take the final policy in
SLA or the middle policy in SLA as the final policy. The size of SLA area is 3e4 steps that is the
same for all tasks.

More specifically, for the simplest task HalfCheetah, we can see all three methods can learn a stable
curves. Even the online method REDQ achieves a better performance than the offline method CQL,
and the performance grows up slowly and the whole learning process is stable. As the policy’s
performance grow up slowly, the policy’s entropy and variance also grow up slowly. However, for
the complicated task, the overtraining issue becomes more serious as the performance curves drops
significantly, for instance, in the task Walker2d-mixed. When utilize the SLA, we can see that almost
all methods can select a better or comparable policy using much less time steps training.

Furthermore, when compared Figure 3 and Figure 4, we can see that using the entropy can achieve a
better SLA than using the variance, especially in the more complicated task Walker2d-mixed. We also
list out the final performance obtained by using these two metrics as shown in Table 4. The methods
with the subscript "wE" is using the entropy to define SLA, while the methods with the subscript
"wV" is using the Qs’ variance to define SLA. As can be seen, methods using the entropy for policy
selection generally achieve better results than the corresponding alternatives using the variance for
policy selection. The suppository is more significant in the first walker2d-mixed task. This suggests
us to weight the entropy more as the surrogate metric, especially in the complicated tasks.

It is worth noting that all methods equipped with the SLA (defined by entropy or Q std) gained a
better or comparable policy than the original one. That is to say, when we have the SLA, it is effective
to avoid the over-training issue, which can save computational resources and achieve a better policy
than simply take the policy at the last iteration.

6 CONCLUSION

In this paper, we aim to solve the overtraining issue when applying off-policy RL to offline learning.
Particularly, we focus on a intermediate case where the offline dataset distribution is not sufficient
diverse and not identical either. We develop an Uncertainty Regularized Policy Learning (URPL)
method that explicitly takes the learning stability into account in the policy learning objective, and
then propose an adaptive policy selection strategy that can select a good policy before the overtraining
issue happens. Our approach is tested on a range of mixed dataset in D4RL, and show that our method
can achieve much better final policy over existing state-of-the-art baselines. Furthermore, we analyze
how the performance varies with different surrogate metrics, including the policy’s entropy and the
variance of Q functions. Experimental results show the superiority of using the policy’s entropy as
the surrogate metric in the complicated tasks. However, if the data comes from single policy, such as
expert policy or medium, our method is not suitable for such tasks. Imitation learning (Rashidinejad
et al., 2021) have been proved its efficiency on such tasks. Hence, for such tasks, imitation learning
or its variant may be a better alternate choice. In terms of the potential negative societal impacts,
even though offline RL can help pre-train a policy, we should still be careful before employing such
policy to the real environment, especially for the high-risk environment, such as medical treatment or
automatic driving. One single mistake in such environment could lead to serious consequence. One
way to alleviate such risks is employing a safety supervisor.
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