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Reproducibility Summary1

Scope of Reproducibility2

A series of 2D (and 3D) keypoint estimation tasks are built upon heatmap coordinate representation, i.e. a probability3

map that allows for learnable and spatially aware encoding and decoding of keypoint coordinates on grids, even allowing4

for sub-pixel coordinate accuracy. In this report, we aim to reproduce the findings of DARK [1] that investigated the 2D5

heatmap representation by highlighting the importance of the encoding of the ground truth heatmap and the decoding of6

the predicted heatmap to keypoint coordinates. The authors claim that a) a more principled distribution-aware coordinate7

decoding method overcomes the limitations of the standard techniques widely used in the literature, and b), that the8

reconstruction of heatmaps from ground-truth coordinates by generating accurate and continuous (non-quantized)9

heatmap distributions lead to unbiased model training, contrary to the standard coordinate encoding process that10

quantizes the keypoint coordinates on the resolution of the input image grid.11

Methodology12

To reproduce DARK, we thoroughly studied and followed the official implementation provided by the authors. We13

partially used the publicly available code and integrated it to a model development kit to accelerate the implementation14

and execution of our experiments. We conducted the experiments on a recent human pose and depth dataset aiming to15

validate the claimed concepts on different a different setting than the one originally used and assessed. Our experiments16

were conducted on an Nvidia 2080 Ti 12 GB GPU with an average training time of 20 hours.17

Results18

We were able to reproduce the findings of the original work. The proposed distribution-aware sub-pixel coordinate19

decoding improves the keypoint estimation performance, outperforming existing, standard decoding techniques. The20

elimination of coordinate quantization after re-scaling to the down-scaled input image resolution before the coordinate21

encoding (heatmap reconstruction), indeed leads to unbiased model training. Going a step beyond, we assess the22

performance of other sub-pixel decoding approaches, such as Center of Mass [2, 3], which also show increased23

performance.24

What was easy25

The DARK paper is well-structured and -presented aiding reproducibility. Further, the official code of the paper is26

publicly available, ensuring that the method and its results are reproducible. Given that DARK serves as a model-27

agnostic head that relies on post-inference processing only during testing, it is overall straightforward to implement and28

verify its effectiveness.29

What was difficult30

A potential issue has to do with the availability of new datasets, beyond the ones used in the paper, that provide31

coordinates in higher resolutions.32

Communication with original authors33

No communication was required, as the implementation was openly available and the verification is straightforward.34
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1 Introduction35

Keypoint coordinate estimation in N−dimensional grids is a common task related to a variety of computer vision36

domains such as human and object pose estimation, face tracking, crowd scene analysis and beyond. For modern37

data-driven methods, the heatmap representation, i.e. a N -dimensional probability distribution (Gaussian in most cases)38

centred at each keypoint coordinates, is considered the de facto coordinate representation for keypoint estimation.39

Heatmap representations enable the use of efficient fully N -dimensional convolutional networks, learning dense spatial40

features around the ground-truth location, and lending to a more natural way of estimation coordinates.41

Despite the popularity of heatmap coordinate representation, DARK is the first research work that investigates heatmaps42

in depth, meaning that the authors explore and assess the standard coordinate-to-heatmap encoding and the heatmap-to-43

coordinate decoding techniques present in the literature, and formulate and assess a novel approach for distribution-aware44

coordinate representation.45

2 Scope of reproducibility46

We aim to reproduce the Distribution-Aware coordinate Representation of Keypoints (DARK) [1] method to assess its47

benefits in keypoint coordinate estimation. In particular, we reproduce and assess DARK in 2D human pose estimation48

with the use of state-of-the-art fully convolutional networks, such as Stacked Hourglass [4] and HRNet [5], similarly to49

the original work. A recent dataset, HUMAN4D [6], including multi-view depth data and 3D poses captured with the50

use of a high-quality VICON Motion Capture [6] setup, is used to train our models from scratch.51

In a nutshell, the main claims of DARK paper, and those that we seek to validate, are summarised below:52

• Claim #1: Efficient Taylor-expansion based coordinate decoding improves coordinate estimation accuracy.53

• Claim #2: Unbiased sub-pixel centred coordinate encoding results in optimal supervision and upgraded model54

performance.55

3 Methodology56

Our approach in reproducing the work was to carefully re-implement every single step of the approach, following the57

presented methodology as well as studying the code of the official repository of the authors1. Beyond that, the code that58

we used as is from the authors’ implementation is the Taylor-expansion based coordinate decoding. The rest of the59

implementation for all our experiments was developed in a model development kit [7], oriented towards reproduction.60

The code and its documentation are submitted and published along with this report.61

3.1 Models62

Following the original paper, we selected and used the following models for predicting coordinate heatmap distributions63

in images:64

• Stacked Hourglass (SH) [4]; with feature maps of 128 width and 4 stages and 18 output heatmap layers.65

• HRNet [5]; with feature maps of 32 width and 4 stages and 18 output heatmap layers. The 2nd, 3rd and 4th66

stages contain 1 exchange block containing 4 residual units each.67

3.2 Coordinate representation68

3.2.1 Coordinate decoding69

We consider a heatmap Hj that encodes the coordinates of each j−joint 2D position as predicted by our trained models.70

In our experiments, we decode the coordinate from Hj with 4 different decoding methods. In the following description,71

Nu and Nv are the width and height of the heatmap, and p ∈ Ω represents a pixel coordinate in the heatmap domain Ω.72

• ArgMax; by directly using the maximal activation location m by:73

m = (u, v)j = arg max
p∈Ω

(Hj(p)) (1)

1https://github.com/ilovepose/DarkPose/tree/612fad594eddd022b8a162a2c7274f9ee8d06d2c
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• Standard; by slightly shifting (sub-pixel shifting) the estimated coordinates between the maximal m and74

second maximal s activation by:75

p = (u, v)j = m+ 0.25 · s−m
||s−m||2

(2)

This method constitutes one of the standard coordinate decoding techniques that predicts the maximal activation76

with a greedy sub-pixel shifting (0.25 pixels) towards the second maximal activation in the heatmap space Ω.77

• Taylor-expansion (DARK); exploring the distribution structure of the predicted heatmap to infer the underlying78

maximum activation assuming the predicted heatmap signal follows a 2D Gaussian distribution, similarly to79

the ground-truth heatmap during supervision by:80

µ = (u, v)j = m− (D′′(m))−1D′(m) (3)

where D′(m) and D′′(m) denote the first and second derivative (i.e. Hessian) of the predicted heatmap after81

applying logarithmic transformation.82

• CoM; considering heatmap Hj as a 2D grid of point masses determined by the corresponding heatmap pixel83

values, we calculate one single 2D point whose mass is the total mass of the grid by:84

c = (u, v)j = (
1

Nu
,

1

Nv
) ◦

∑
p∈Ω

Hj(p) · p (4)

where ◦ denotes element-wise multiplication. CoM constitutes by nature a sub-pixel coordinate decoding85

method that is not evaluated in the original paper.86

3.2.2 Coordinate encoding87

The second claim is about coordinate encoding where the existing standard methods down-sample the original input88

images into the model input resolution, quantizing the keypoint coordinates accordingly (w/ quant). Thus, the ground-89

truth heatmaps reconstructed based on the quantized coordinates are erroneous leading to sub-optimal supervision and90

degraded model performance.91

Instead, DARK authors propose the heatmap generation placing the heatmap centre at the unbiased, non-quantized92

keypoint coordinate (w/o quant), claiming that, independently of the network architecture and the coordinate decoding93

method, the models perform consistently better.94

3.3 Datasets95

3.3.1 HUMAN4D96

We investigate the benefits that DARK introduces in heatmap-based keypoint estimation by conducting our experiments97

on a recent dataset, HUMAN4D, that contains, among other data, pose annotated depth maps captured with the use of98

recent consumer-grade depth sensing devices. Beyond the experimentation on a dataset different from the ones used in99

the original work, the rationale behind this selection is twofold:100

• The dataset provides the original 3D poses allowing for their projection as non-quantized 2D coordinates on101

the 2D depth map grids and, thereby, enabling the comparison between w/ quant and w/o quant coordinate102

encoding.103

• The training and evaluation of baseline pose estimation data-driven models on depth data which are relatively104

limited in comparison with models trained on color data.105

The activities included are the following: running, jumping_jack, bending, punching_n_kicking, basketball_dribbling,106

laying_down, sitting_down, sitting_on_a_stool, talking, object_dropping_n_picking, stretching_n_talking, walk-107

ing_n_talking, watching_scary_movie and in-flight_safety_announcement.108

3.3.2 Preparation109

With the use of HUMAN4D 3D poses, we project the joint 3D positions to the 2D depth map grids to obtain the 2D110

non-quantized poses. Using the single-person part of the HUMAN4D dataset, clipping the first 100 frames from each111

sequence (to exclude T-Pose calibration frames) and sub-sampling the remaining part of the sequence, we create a set of112

98, 864 single-view samples from 14 single-person activities, including all 4 depth maps per multi-view frame.113
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We use the data of the first three subjects performing all the activities for training, while we split the activities performed114

by the fourth subject (unseen) in two halves for validation and testing. We decide to split the data that way in order115

to assess the models on an unseen subject with different body structure, also keeping different activities between the116

validation and testing sets to provide fair conclusions with respect to the models’ performance. The training, validation117

and testing data sets consist of 73, 248, 12, 236 and 13, 380 samples, respectively.118

Finally, beyond the application of center cropping on depth maps from 320× 180 to 320× 160 (10px from top and119

bottom) to better fit to the multi-stage models, no further pre-processing steps were applied on the original data of the120

dataset.121

3.4 Hyperparameters122

All the models are trained for 30 epochs, picking for testing the best performing ones based on validation metrics across123

the epochs. Given that our aim is to assess the heatmap coordinate representation, not purely the effectiveness of the124

models in pose estimation, we use constant and common training hyperparameters for the various models, without125

further investigation for finetuning. To this end, both for SH and HRNet, we used the Adam optimizer with a learning126

rate of 2e − 3, betas of values 0.9 and 0.999, without weight decay. The seed remained constant during all models’127

training, equal to 1314, ensuring reproducibility. We used simple MSE loss as in the original work that easily drove all128

models to convergence.129

Figure 1: Interactive plots depicting the progress of the models’ training and the validation metrics in the form of a
local web page can be found in the supplementary material of the report.

3.5 Experimental setup and code130

As already noted, carefully following the authors’ description and code, we built our implementation upon moai131

[7], a PyTorch Model Development Kit for rapid development of Deep Learning workflows2. In this framework,132

we implemented our models as well as the heatmap coordinate encoding and decoding operations with the use of a133

configuration file that allows for the definition and configuration of the various components and hyperparameters.134

Similarly to DARK paper, we report the following standard pose estimation metrics:135

RMSE: represents the square root of the squared differences between estimated and ground truth keypoint coordinates136

in pixels.137

PCKh: considers an estimated keypoint location correct only if the euclidean distance error is lower than a percentage138

threshold α of the euclidean distance between the head body part segment, i.e. from neck to head joint positions. In our139

experiments, we use PCKh-0.1 and PCKh-0.5 with α = 10% and α = 50%, respectively.140

2https://github.com/ai-in-motion/moai

4

https://github.com/ai-in-motion/moai


3.6 Computational requirements141

The training of the models was executed on a workstation machine with the hardware specifications figured in Table 1.142

Table 1: Hardware Specifications

OS Windows Microsoft Pro (x64)
Storage 3TB Toshiba HDD

CPU Intel i9-7900X (4.30 GHz)
GPU GeForce RTX 2080 Ti (12 GB)
RAM 4 x 16 GB Kingston (2666 MHz)

4 Results143

Our experimental results validate both claims of DARK [1], as presented in Table 2. In particular, w/o quant models144

outperform the corresponding w/ quant ones, while DARK coordinate decoding method shows the best performance145

compared to the other competitive decoding methods.146

4.1 Results reproducing original paper147

The results presented in Table 2 support both claims of the paper, allowing the reader to easily study and relatively148

assess the coordinate decoding and encoding achievements of each method.149

Table 2: The overall PCKh-0.1, PCKh-0.5 and RMSE results of SH_4S and HRNet_4S on HUMAN4D trained w/
quant and w/o quant coordinate encoding methods. The final keypoint estimation is assessed with the use of various
coordinate decoding methods.

Model + Coordinate Decoding PCKh-0.1 ↑ PCKh-0.5 ↑ RMSE ↓
SH_4S (w/ quant) + ArgMax 35.38 68.14 4.12
SH_4S (w/o quant) + ArgMax 39.80 68.78 3.75

SH_4S (w/ quant) + Standard 36.37 68.36 4.07
SH_4S (w/o quant) + Standard 41.18 69.05 3.69

SH_4S (w/ quant) + CoM 37.77 70.35 3.87
SH_4S (w/o quant) + CoM 44.24 71.45 3.33
SH_4S (w/ quant) + DARK 39.54 70.75 3.87
SH_4S (w/o quant) + DARK 45.17 71.65 3.47

HRNet_4S (w/ quant) + ArgMax 37.29 68.10 3.93
HRNet_4S (w/o quant) + ArgMax 39.19 68.60 3.85

HRNet_4S (w/ quant) + Standard 38.48 68.35 3.87
HRNet_4S (w/o quant) + Standard 40.50 68.90 3.79

HRNet_4S (w/ quant) + CoM 33.95 68.38 3.94
HRNet_4S (w/o quant) + CoM 36.77 70.21 3.79

HRNet_4S (w/ quant) + DARK 41.73 70.29 3.65
HRNet_4S (w/o quant) + DARK 44.83 71.52 3.55

As mentioned above, our main aim is to highlight the effectiveness of the distribution-aware heatmap representation,150

instead of assessing the performance and comparison between the models. Nevertheless, in our experiments, a general151

comment could be that SH_4S performs better than HRNet_4S almost in all combinations.152

4.1.1 Taylor-expansion coordinate decoding - Claim #1153

Assessing the various coordinate decoding methods we implemented and evaluated, as presented in Sec. 3.2.1, Claim #1154

is fully supported since the Taylor-expansion coordinate decoding does improve the coordinate estimation performance.155

Considering the predicted heatmap as a Gaussian heatmap and applying Taylor-expansion coordinate decoding shows156
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remarkable results against the rest of the methods. In particular, as shown in Table 2, DARK decoding performs better in157

all experiments for all metrics, with the only exception the RMSE error in “SH_4S (w/o quant) + CoM" experiment. In158

that case, DARK is more accurate than CoM, but CoM exhibits a smaller average error. This means that DARK suffers159

from larger outliers than CoM, a partly reasonable case given their nature. CoM uses the entire heatmap to reach a160

consensus about the coordinate, while DARK uses local heatmap statistics around the maximum activation, but is more161

susceptible to heatmap noise. When applying DARK, a low-pass Gaussian filter is first used, which is standard practise162

before the application of derivative extraction, in order to suppress noise and capture only the signal’s high frequency163

information. However, this might not always be the case in out-of-distribution data predictions. When the predictions164

follow the underlying assumptions of DARK, namely a 2D Gaussian distribution, its finer-grained localisation will165

be effective. In the case of distribution noise, the globalised nature of CoM will be more robust. Evidently, the SH166

experiment is one such case, but nonetheless, DARK’s accuracy indicates that it still offers favourable behaviour.167

4.1.2 Non-quantized coordinate encoding - Claim #2168

Observing again the results in Table 2 from another perspective, we can assess the validity of Claim #2, i.e. that the169

coordinate quantization before heatmap generation results in inaccurate and biased ground-truth signals that reduce the170

model performance. Indeed, for both architectures, SH and HRNet, and for every coordinate decoding method, w/o171

quant models show higher PCKh accuracy and lower RMSE errors, totally supporting the second claim of the authors.172

Figure 2: Pose estimation qualitative results with the use of DARK heatmap decoding on HUMAN4D testing dataset
(unseen subject). Cyan and red colours indicate the ground-truth and the predicted poses, respectively.

4.2 Results beyond original paper173

An experiment we conducted, beyond the experiments of the present paper, is the comparison between DARK and174

spatial coordinate regression methods for keypoint estimation, such as Center of Mass (CoM) [2, 3].175
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4.2.1 DARK against Center of Mass176

Observing Table 2, DARK obviously outperforms CoM almost in all experiments. Nevertheless, it is worth-noting177

that focusing on the results of the best performing model, as shown in Table 3, CoM demonstrates comparably to178

DARK. Especially in RMSE, which is a continuous metric, CoM presents lower errors than DARK, while, generally, its179

performance is higher when decoding heatmaps predicted by SH_4S.180

Table 3: PCKh-0.1, PCKh-0.5 and RMSE results of best performing model (SH_4S (w/o quant)) with the use of DARK
and CoM coordinate decoding methods.

Model + Coordinate Decoding PCKh-0.1 ↑ PCKh-0.5 ↑ RMSE ↓
SH_4S (w/o quant) + CoM 44.24 71.45 3.33
SH_4S (w/o quant) + DARK 45.17 71.65 3.47

5 Discussion181

Summarizing the present reproduction study, we conclude that the DARK paper introduces a novel, simple, lightweight182

and highly effective method for heatmap coordinate encoding/decoding that boosts the keypoint estimation accuracy.183

DARK outperforms standard greedy sub-pixel coordinate decoding methods. Furthermore, it shows higher accuracy184

than spatial coordinate regression methods, such as CoM, which also shows lower erroneous predictions than standard185

methods. On top of those, DARK can be considered a significant improvement for multi-person pose estimation. That186

is due to the fact that spatial coordinate regression methods, though highly effective and fully differentiable, struggle in187

the regression of more than one keypoint location when more than one heatmap in the same heatmap layer, i.e. specific188

joint, are present in the same predicted layer, a common case in multi-person datasets.189

With regards to identified gaps in the present heatmap representation study, we believe that spatial coordinate regression190

methods, such as CoM or MoM (median of mass) [8], should have been taken into account, benchmarked and reported191

in this paper. Several recent heatmap-based keypoint estimation data-driven methods have been developed with the use192

of spatial coordinate regression, which beyond its effectiveness, allows the design of end-to-end, fully differentiable193

architectures with direct supervision on the actual task of keypoint estimation, i.e. the coordinate distance error between194

the predictions and ground-truth.195

5.1 What was easy196

Implementing most of the code was straightforward as authors provide their source code on GitHub. Apart from that,197

past GitHub issues were another source of retrieving information, clarifying parts of the paper when needed.198

5.2 What was difficult199

All and all, this reproduction study was smooth without bottlenecks, delays or other barriers. A potential difficulty200

that can be considered was the availability of human pose datasets, beyond the ones used in the paper, that provide201

coordinates in higher resolutions, in order to further investigate the quantization error effects.202

5.3 Communication with original authors203

As implementing the code of the paper was straightforward and the ideas presented in the paper are clear and well-204

defined, we did not communicate with the authors.205
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