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Abstract

The Neural Tangent Kernel (NTK) offers a powerful tool to study the functional dynamics of neural
networks. In the so-called lazy, or kernel regime, the NTK remains static during training and
the network function is linear in the static neural tangents feature space. The evolution of the
NTK during training is necessary for feature learning, a key ingredient of the success of deep
learning. The study of the dynamics of the NTK has led to several critical discoveries in recent
years, in generalization and scaling behaviours. However, this body of work has been limited to
the single task setting, where the data distribution is assumed constant over time. In this work, we
present a comprehensive empirical analysis of NTK dynamics in continual learning, where the data
distribution shifts over time. Our findings highlight continual learning as a rich and underutilized
testbed for probing the dynamics of neural training. At the same time, they challenge the validity
of static-kernel approximations in theoretical treatments of continual learning, even at large scale.

1. Introduction

Continual learning is central to real-world applications where models must adapt to a sequence of
tasks without forgetting previous ones. While architectural and algorithmic advances have been
proposed to tackle this problem, its underlying learning dynamics remain underexplored.

Recent advances in deep learning theory, particularly the introduction of the Neural Tangent
Kernel (NTK) framework [7], offer a powerful lens for analyzing training behavior. Jacot et al. [7]
showed that infinitely wide neural networks evolve like kernel machines, with learning dynamics
governed by a kernel matrix fixed at initialization. However, in most practical settings the NTK
evolves during training, allowing for features to adapt to the data distribution. The NTK framework
gave rise to a dichotomy between two distinct training regimes: the lazy (or kernel) regime, where
the network’s internal representations remain largely fixed and learning occurs primarily through
adjustments to final-layer weights; the rich (or feature learning) regime, where the network’s
representations evolve substantially during training, allowing more expressive modeling.

Fort et al. [6] analyzed the empirical evolution of the NTK across width and depth and found
that in practical networks, the NTK changes substantially during training, correlating with improved
performance and stronger feature learning. Other studies have focused on the structure of kernel
evolution. A prominent phenomenon is the kernel alignment: the tendency for NTK eigenvectors
to align with task-relevant directions over time, enhancing generalization and learning efficiency
[1, 12]. In parallel, works on loss landscape geometry have revealed additional dynamics linked
to NTK behavior. The phenomenon of progressive sharpening —an increase in the curvature of
the loss landscape during early training—has been observed in both deep and wide networks [3, 8].
These sharpness dynamics correspond with periods of high NTK change due to the relation between
the NTK and Hessian spectra.
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These analyses rely on the assumption of stationarity—that training data is sampled from a fixed
distribution throughout. This assumption breaks down in continual learning settings, where tasks
arrive sequentially and data distributions shift over time. This raises a fundamental and largely open
question:

How do learning dynamics—particularly those captured by the NTK—respond to dis-
tributional shifts across tasks?

Some recent theoretical efforts have developed models of continual learning performance in the
lazy regime. For example, Bennani et al. [2], Doan et al. [5], Karakida and Akaho [9] study learning
curves in continual settings within a static-kernel approximation. While analytically tractable, such
models implicitly assume that NTKs remain nearly constant—even in finite-width networks—thus
failing to capture the full richness of learning dynamics observed in practice. This disconnect high-
lights a critical gap between theory and practice in continual learning.

1.1. Contributions

This work provides a systematic, empirical investigation of Neural Tangent Kernel (NTK) dynam-
ics in the context of continual learning—a setting that challenges the conventional assumption of
stationary data distributions. Our contributions are as follows:

1. We evaluate how NTK dynamics respond to changes in network width, learning rate, training
duration, and—critically—task similarity, across single and multiple task switches.

2. We demonstrate that task transitions consistently trigger abrupt shifts in the NTK, even in
wide networks typically associated with lazy learning, revealing a reactivation of feature dy-
namics at each task boundary.

3. Through controlled experiments, we distinguish between different types of distributional
shifts, showing that the introduction of semantically novel classes leads to significantly greater
NTK change.

By systematically characterizing how NTKSs evolve in non-stationary regimes, our results high-
light continual learning as a promising and underexplored testbed for studying training dynamics.

2. Experiments and Results
2.1. NTK Metrics

We review the definition and some fundamental ideas related to the Neural Tangent Kernel in Ap-
pendix A. Here, we introduce the main metrics used in our experiments. The experiments presented
consist in image classification tasks on CIFAR and ImageNet for several seeds. More training details
can be found in Appendix B.

Kernel Spectral Norm It is equivalent to the max eigenvalue of NTK. We show in Appendix A.1
that the NTK spectral norm controls the convergence rate in certain eigenmodes.

Kernel Distance In line with Fort et al. [6], we define the kernel distance based on Centered
Kernel Alignment CKA(+, -) ([4],[10], see definition in the Appendix A) as:

S5(0,0') 21— CKA(©,0) (1)
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Kernel Velocity The kernel velocity v(¢) quantifies the rate of change of NTKs at time ¢:

v(t) £ 5(O¢, Opar) /dt 2)

Kernel Alignment The kernel alignment A(¢)[4] at time ¢ measures the similarity between the

NTK and the target label kernel yy | (where y is the label vector):
At) £ CKA(Or,yy ") (3)

2.2. Task Shifts Reactivate Learning Dynamics
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Figure 1: Comparison of NTK Max Eigenvalue (Column 1), Kernel Distance (Column 2), and Ker-
nel Alignment (Column 3) across different widths (Row 1: fix 1r=0.0001) and learning
rates (Row 2: fix width=2048) during a single task switch with 5 classes in each task.

Scaling up neural networks—along with appropriate learning rate rescaling [13]—is known to
induce the lazy regime, in which training occurs in a nearly linear function space and the network’s
internal features remain effectively static. This regime has become especially attractive in continual
learning due to its analytical tractability. In our experiments, we confirm this trend: as model width
increases, NTK dynamics become increasingly lazy, as indicated by reduced kernel distance and
velocity during training (Figure 1b; Appendix Figure 9). However, at the moment of task switch,
we observe a clear and consistent spike in kernel velocity, signaling a temporary departure from
the lazy regime. The network briefly enters a dynamic phase of feature adaptation before quickly
returning to stability. We refer to this phenomenon as the re-activation of feature learning.

This reactivation is accompanied by a sharp drop in the NTK norm at the onset of the new task,
followed by a gradual recovery. This creates a distinctive asymmetric V-shape or “check-mark” tra-
jectory in the NTK norm—observed consistently across all model widths. The timing of this drop
aligns with the spike in velocity, suggesting a rapid reconfiguration of the network’s functional rep-
resentation in response to the new task. Similar patterns are observed in Kernel Alignment (Figlc,f),
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indicating that the NTK rapidly changes direction at the task switch and begins evolving along a new
direction. This directional shift is much more slower for under-converged phase. We also find that
these patterns persist across multiple task switches, as shown in Figure 7 in the appendix.

We find that the behavior at task switch critically depends on the degree to which the network
has been trained. By changing the learning rate, we approximately categorize training phases at
the task switch as, respectively, under-converged, converged, and over-converged, corresponding to
Ir = {0.00001,0.0001, 0.001}, based on the accuracy curves shown in Figure 5a.

Notably, the speed of the drop in NTK norm varies among configurations: in the over-converged
phase the network takes the longest time to recover from the disruption introduced by the task
switch.

2.3. Task Similarity Controls NTK Dynamics

Section 2.2 described the reactivation phenomenon in learning dynamics during task switches. In
this section we dissect the phenomenon further, looking into the nature of the task switch. A task
switch introduces a shift in the data distribution, which cause the reactivation of feature learning.
However, “distribution shift” is a generic term which can be mapped to many different scenarios. In
particular, we consider two specific cases of distribution shift in this work: the introduction of new
classes, and the change of the relative frequencies of a set of known classes.

In the first case, for each experiment F;, the network is trained on distribution Dy in task 1 and
D; in task 2, where Dy, denotes a uniform mixture over 10 classes {k,k + 1,...,k + 9}. Thus the
similarity between Dy and D; can be measured as the overlap between the classes:

‘,DO N Dz‘
‘,DO U Dz‘

By varying i € [0, 1], we sweep the similarity between 1 (identical tasks) and O (no class overlap,
a typical benchmark for continual learning).

In the second case, we define two disjoint class subsets Dy and Dl, and interpolate between

them with mixtures: D, = (1 — )Dy + aD;. For each experiment F,, the network is trained on
Dy.1 in task 1 and D, in task 2, varying a € [0.1,0.9]. The similarity metric is linear:

Similarity(Dg, D;) =

Similarity(Dy, Dg) = 1 — o — f).

When the new task introduces new concepts (experiments Fj ..., E1g), there is a direct rela-
tionship between the number of new classes and the amount of change in the NTK, as confirmed in
the measurement of NTK norm, velocity and kernel distance (Figure 2). We observe the character-
istic check-mark shape in all but the Ej case, where no distributional change occurs (Figure 2a-c).
The drop in NTK norm becomes progressively smaller as class overlap increases, revealing a clear
monotonic relationship between task similarity and the magnitude of NTK disruption.

Again, the NTK norm recovers gradually after the drop, consistent across all levels of simi-
larity (Figure 2b). A similar trend is observed in the kernel distance (Figure 2d-e), where larger
distribution shifts cause more pronounced deviations from the previous NTK state. The trend is
neatly ordered by task similarity, suggesting the existence of an underlying law governing the NTK
spectral evolution, parametrized by the task similarity. Further, the kernel velocity (Figure 2a) con-
firms that most of the feature learning occurs immediately following the task switch, after which the
network appears to settle back into a more stable regime within a few epochs.
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Figure 2: NTK Dynamics with concept-based distribution shift.

We also note a diminishing return effect: the introduction of the first few new classes causes dis-
proportionately large changes in NTK, while later additions have more incremental impact—suggesting
a sublinear relationship between the number of new concepts and NTK disruption.

The picture is very different if the new task does not introduce new classes, as in the experiments
E, with a € [0, 1]. Figure 3 shows that NTK changes in this case are significantly smaller than
in Experiment 1. The NTK norm (Figure 3a) evolves smoothly without any sharp discontinuity
at the task switch. Likewise, the kernel velocity (Figure 3c) remains low, indicating that feature
reactivation does not occur in response to proportion shifts alone. Although some monotonic trends

are still visible in the NTK eigenvalues (Figure 3b), their scale is minor.
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Figure 3: NTK Dynamics with frequency-based distribution shift.

3. Conclusion

This work unveils the learning dynamics in continual learning through the lens of empirical NTK
evolution. Our findings are consistent with prior observations in stationary settings and further
reveal that distribution shifts across tasks induce significant changes in NTK behavior. These results
highlight the transition from lazy to feature learning as new tasks arrive, and we hope they inspire
further theoretical and empirical investigation into learning dynamics in continual learning.
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Appendix A. The NTK Framework and NTK Spectrum

Consider a dataset {x;}}" ; with real targets {y;}” ; and loss function ¢. Let f; := f(6;) be the
neural network at time ¢, with parameters 6. By gradlent descent, in continuous time, the parameters
evolve as:

- or O fr (x4
K(t) = —Vol = Z afi(xi) J:;(Ht )

Hence, by chain rule the network function space is determined by the Neural Tangent Kernel

O(xi,%x;j) = Vo fi(x:) " Vo fi(x;):

4

Oft o

O fi(x) = 99, Oty = —*Z@t X, Xz)aft(xl) )

A.1. Eigenvalues of NTK

Define the function output on dataset as f = [f(x1), f(X2), ..., f(xn)] " and define the residuals as
e = f — y. For squared loss, the evolution of f and e at each time step is:

err1 = (I—nOy)et, (6)
We diagonalize the NTK as © = QAQ " and project e onto the eigenbasis Q:
€1 = (I—nA)éy, é§+1 = (1 —n\;)é for each eigenmode i (7

Thus, the error in each eigenmode decays at a rate determined by the corresponding eigenvalue A;,
indicating that the NTK governs the learning speed of each mode based on its eigenvalue. An higher
NTK norm thus corresponds to faster convergence in some eigenmodes.

Appendix B. Experiment details

B.1. Task shifts experiments

To analyze learning dynamics in a continual learning setting, we train a simple Convolutional Neural
Network (CNN) consisting of three convolutional layers, three pooling layers, and a fully connected
layer with ReLU activation functions for image classification on CIFAR and ImageNet. All exper-
iments use the SGD optimizer and cross-entropy loss. Neural Tangent Kernel (NTK) matrices are
computed based on Yang [13], using a batch size of 32 random samples.

The classification problem on CIFAR-10 is split into two tasks, each containing five classes.
We explore various settings, including CNN widths (64, 128, 256, 512, 1024, 2048), learning rates
(1e-3, le-4, 1e-5), and training epochs (10, 20, 40, 80, 160). Here, the width of the CNN refers to
the number of channels in the convolutional layers.

B.2. Task Similarity Experiments

Experiment 1: Gradual Shift with New Class Introduced. We define a family of input distribu-
tions D; = {i,i+1,...,i+9}, where each D; is a uniform mixture over 10 consecutive CIFAR-100
classes. In experiment E;, we construct a two-task continual learning scenario: Task 1 trains on Dy
and Task 2 trains on D; for ¢ = 0, ..., 10. The similarity between Dy and D; is defined as:

|D0 ﬂD1|

Similarity(Dg, D;) = Do UD;|°
(A
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Experiment 2: Gradual Shift within Fixed Class Support. Define two disjoint sets of classes
Do ={0,1,2,3,4} and D; = {5,6,7,8,9}, and construct a family of mixed distributions:

D, = (1—a)Dy+aD;, «ac{0.1,0.2,...,0.9}.

Here for each experiment Ea, Task 1 is fixed to learn from 250,1, and Task 2 learns from f)a.

Appendix C. Complementary Results
C.1. Comprehensive Metrics Visualization for CIFAR10 Two-Task Learning

In Figures 4, 5, and 6, we show various metrics calculated during the CIFAR10 experiment as
described in B.1.
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Figure 4: Comparison of different metrics across network widths for CNN trained on CIFARI10
with learning rate 0.001. The number of epochs per task is set to 160. (a) Test accuracy,
(b) Alignment, (c) Kernel distance, (d) Maximum eigenvalue of NTK, (e) Kernel velocity
with dt=10.

C.2. Metrics Visualization for Multiple Task Switches

To investigate whether the patterns persist during different task switches, we also perform experi-
ments on 5 sequential tasks with 2 classes in each task on CIFAR-10 shown in Figure 7.

C.3. Experiments on ImageNet100

To further support our conclusions, we analyzed the evolution of the NTK spectrum on a larger
dataset, ImageNet100. In Figure 8, we compare the effects of varying network width and the number
of epochs per task on the NTK spectrum.
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Figure 5: Comparison of different metrics across network widths for CNN trained on CIFARI10
with learning rate 0.0001. The number of epochs per task is set to 160. (a) Test accuracy,
(b) Alignment, (c) Kernel distance, (d) Maximum eigenvalue of NTK, (e) Kernel velocity

with dt=10.

All experiments use a learning rate of 1 x 102 and SGD as the optimizer. Comparisons are
made relative to the base setting: width 250 and 10 epochs per task.

C.4. Standard Parametrization Results

In order to guarantee stability as we scale the model width we adopt the standard parametrization us-
ing Kaiming Normal initialization and scale the learning rate with respect to width with 0.1 /width
to ensure stable training [11].The addition results presented in Figure 9 demonstrate that as the net-
work width increases exponentially from 64 to 2048, the magnitude of changes in test accuracy (a),
alignment (b), kernel distance (c), and the maximum eigenvalue of the NTK (d) decreases during
task transitions in continual learning.

10
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racy, (b) Alignment, (c) Kernel distance, (d) Maximum eigenvalue of NTK, (e) Kernel

velocity with dt=10.
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REACTIVATION: EMPIRICAL NTK DYNAMICS UNDER TASK SHIFTS
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Figure 8: The effect of width and number of epochs per task on NTK spectrum on ImageNet100.
The first row, left to right width 250, 500 and 1000 respectively, the second row, left to
right epoch number per task 20, 50 and 100 respectively.
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Figure 9: Additional metrics across network widths for CNN trained on CIFAR10 The number of
epochs per task is set to 160. (a) Test accuracy, (b)) Kernel velocity with dt=10.
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