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Abstract—We investigate sampling numbers for essentially
arbitrary star-shaped model classes. Although sampling numbers
have been determined for a wide-variety of concrete model classes,
to the best of our knowledge, abstract characterizations have
not received much attention. We employ techniques developed in
the context of nonparametric regression and empirical-process
theory to derive novel upper bounds on the averaged sampling
numbers for general model classes relying only on the knowledge
of their entropy numbers. Our formulation provides an abstract
characterization for upper bounds of these sampling numbers.
Moreover, we show that any interpolator of the data that lies in
the model class achieves this bound.

Index Terms—Rademacher complexity, metric entropy, optimal
recovery, sampling numbers.

I. INTRODUCTION

Sampling numbers are fundamental objects in approximation
theory, numerical analysis, information-based complexity, and
machine learning. The determination of such numbers has
become a very active area of research, especially in recent
years [6], [10], [12], [15]. This has been motivated, in part, by
the recent observation in overparameterized machine learning
that learning functions that interpolate the training data can
still generalize well [3], [4], [5].

Sampling numbers measure the minimal worst-case error
(measured in some suitable norm) that can be achieved from a
set of n noiseless samples. Conversely, in nonparametric regres-
sion and empirical-process theory there has been substantial
focus on characterizing the minimax rate for a model class F .
Here, one assumes noisy data with a fixed and non-negligible
variance σ2 and studies the best possible error in terms of σ as
n grows. Abstract characterization of minimax rates have been
developed, notably by Yang and Barron [23]. Those results
employ techniques such as metric entropy.

The research communities interested in sampling numbers
and minimax rates are quite disjoint. A by-product of this is
that a disjoint set of mathematical tools have been developed
to study very similar problems. In this paper we aim to bridge
the gap between these two areas/tools. Specifically, we make
novel use of tools such as metric entropy to develop new upper
bounds on averaged L2

µ(Ω)-sampling numbers for essentially
arbitrary model classes F with data sites drawn i.i.d. from some

probability measure µ on some bounded domain Ω ⊂ Rd.1 By
specializing our results to Sobolev model classes, we show
that the averaged L2

µ(Ω)-sampling numbers are no worse than
the L2

µ(Ω)-minimax rates (see Section IV). Furthermore, the
algorithm that achieves our predicted rates simply corresponds
to finding a minimum-norm interpolator from the model class.

A. Main Contributions

Let F be a model class that satisfies the compact embedding
F ⊂⊂ C(Ω) (the Banach space of continuous functions on F ),
f0 ∈ F be a ground-truth function and consider the noiseless
observations

yi = f0(xi), i = 1, . . . , n, (1)

where {xi}ni=1 are drawn i.i.d. from µ. The averaged sampling
number is defined as

saven (F)L2
µ
:= saven (F ;µ)L2

µ
:= inf

f̂
sup
f0∈F

E∥f0 − f̂∥L2
µ
, (2)

where the inf is taken over all deterministic (measurable)
functions of the data {(xi, yi)}ni=1 ⊂ Ω× R.

Let Nε(F)L∞ denote the L∞-covering number of F . Then,
the (dyadic) L∞-entropy number of F is given by

εn(F)L∞ = inf{ε > 0 : Nε(F)L∞ ≤ 2n}. (3)

This quantity captures how precisely elements of F can be
specified with n bits. The notion of entropy of a compact set
was introduced by Kolmogorov [13] as a way to quantify its
compactness. The main result of this paper is summarized in
the following theorem, which we prove in Section III-A.

Theorem 1. Let F ⊂⊂ C(Ω) be a star-shaped model class
and suppose that its L∞-entropy number scales as

εn(F)L∞ ≍ n−α (4)

for some α > 0. Then, the averaged sampling number is upper
bounded by

saven (F)L2
µ
≲ n− α

2α+1 , n
1

2α+1 ≳ log log n
α

2α+1 . (5)

Moreover, this upper bound is attained by any interpolant
f̂ ∈ F of the data (1).

1We assume that the boundary of Ω is sufficiently regular, e.g., Lipschitz.



This theorem provides an abstract characterization for upper
bounds on saven (F)L2

µ
. We immediately have the following

corollary.

Corollary 2. When F = U(X ) is the unit ball of some Banach
space (X , ∥·∥X ) then (5) is achieved by the solution to the
minimum-norm interpolation problem

min
f∈X

∥f∥X s.t. f(xi) = yi, i = 1, . . . , n. (6)

Remark 3. We show in Section III that the optimization
problem (6) is well-posed, i.e., always admits a minimizer.

Remark 4. We present Theorem 1 with the entropy numbers
decaying as in (4) for ease of presentation. The results readily
generalize for other decay rates.

B. Relation to Existing Work

As noted, sampling numbers are widely-studied in optimal
recovery and information-based complexity [6], [10], [12], [15].
Differing from sampling numbers, in nonparametric regression
one considers noisy data

yi = f0(xi) + σηi, i = 1, . . . , n, (7)

where the noise ηi ∼i.i.d. N (0, 1) and is independent of the
data sites xi. The minimax risk is then defined as

mn(F ;σ)L2
µ
:= inf

f̂
sup
f0∈F

E∥f0 − f̂∥L2
µ
, (8)

where the inf is taken over all deterministic (measurable)
functions of the noisy data {(xi, yi)}ni=1 ⊂ Ω × R and the
expectation E is with respect to the noise {ηi}ni=1 and, typically,
the sample points {xi}ni=1.

In this setting, the noise level σ is assumed to be fixed and
strictly positive. Abstract characterizations of the minimax rate
for various model classes have been developed (see, e.g., the
work of Yang and Barron [23]). These results are typically of
the form (n/σ2)−α, where α is related to the complexity of
the model class. Unfortunately, these kinds of results cannot
handle the low-noise or zero-noise regimes since the limit as
σ → 0 as the limiting quantity to 0, which is certainly not true
for any finite number of data n. However, this is precisely the
regime of interest in this paper, since the averaged sampling
number (2) corresponds precisely to the scenario in which the
noise level tends to 0 in nonparametric regression. Therefore,
knowledge of the minimax rate of a model class does not
provide a method to bound saven (F)L2

µ
. We also note that

recent work [9] characterizes the noise-level-aware minimax
rates for Besov model classes that simultaneously captures
both the usual minimax rate (σ > 0) and the optimal recovery
rate (σ → 0) as a function of both n and σ.

In this paper, we provide an upper bound on sampling number
for model class F in terms of their L∞(Ω) entropy numbers.
While sampling numbers have been determined for a wide-
variety of model classes (including Sobolev and Besov balls),
to the best of our knowledge, there does not exist an abstract
characterization based on complexity measures of model classes
such as their entropy numbers. Therefore, the main contribution

of this paper is to provide a bound for essentially arbitrary
model classes based on their entropy numbers (Theorem 1).

Remarkably, by specializing our results to specific model
classes (such as Sobolev balls), we are also able to show
that the sampling numbers are no worse than the minimax
rates seen in nonparametric regression. We also remark that
the proofs of our main results are based on developments in
empirical-process theory, which are typically not used to derive
sampling numbers or other approximation-theoretic quantities.
Thus, another contribution of this paper is to link ideas from
empirical-process theory and approximation theory.

II. PRELIMINARIES

The focus of this paper is on star-shaped model classes F
that satisfy the compact embedding F ⊂⊂ C(Ω), where C(Ω)
denotes the Banach space of continuous functions defined on
a bounded domain Ω ⊂ Rd. This assumption guarantees, in
particular, that (i) point evaluations of f ∈ F are well-defined
and (ii) F is uniformly bounded, i.e.,

b := bF := sup
f∈F

∥f∥L∞(Ω) := sup
f∈F

(
sup
x∈Ω

|f(x)|
)

< ∞. (9)

Let µ denote a probability measure on Ω and define the
usual L2

µ(Ω)-norm of a (measurable) function f : Ω → R as

∥f∥L2
µ(Ω) :=

(∫
Rd

|f(x)|2 dµ(x)
)1/2

. (10)

Consequently, we write f ∈ L2
µ(Ω) whenever this norm is

finite. Observe that, by assumption, we have F ⊂ L2
µ(Ω). We

therefore use the L2
µ(Ω)-norm to measure the error of our

estimate of the data-generating function.
Given n samples {xi}ni=1 ⊂ Ω drawn i.i.d. from µ, consider

the empirical measure

µn :=
1

n

n∑
i=1

δxi
, (11)

where δxi denotes the Dirac measure centered at xi. This
measure induces the empirical L2-norm

∥f∥n := ∥f∥L2
µn

(Ω) =

(
1

n

n∑
i=1

|f(xi)|2
)1/2

, (12)

which is well-defined for any continuous function f ∈ C(Ω),
for instance. To that end, we refer to the L2

µ(Ω)-norm as the
population L2-norm.

Crucial to our analysis is the quantification of the deviation
between the population and the empirical L2-norm with respect
to the number of samples n. This is a well-studied problem in
empirical-process theory. To that end, let

Rn(δ;F) := E

 sup
f∈F

∥f∥L2
µ(Ω)≤δ

∣∣∣∣ 1n
n∑

i=1

εif(xi)

∣∣∣∣
 (13)



denote the localized Rademacher complexity of F and

R̂n(δ;F) := Eε

 sup
f∈F

∥f∥n≤δ

∣∣∣∣ 1n
n∑

i=1

εif(xi)

∣∣∣∣
 (14)

denote the empirical localized Rademacher complexity (which
is a random variable) (see [2], [14] as well as [22, Chapter 14]).
In (13) and (14), {εi}ni=1 are i.i.d. Rademacher random
variables, E denotes the expectation operator, Eε denotes the
conditional expectation E[ · | {xi}ni=1]. The following classical
result from empirical-process theory will play a key role in
our analysis.

Proposition 5 (adapted from [22, Theorem 14.1 and (14.8)]).
Suppose that F is a star-shaped model class that satisfies
the compact embedding F ⊂⊂ C(Ω). Let δn be any positive
solution to either of the inequalities

Rn(δ;F) ≤ δ2

b
or R̂n(δ;F) ≤ δ2

b
, (15)

where b is as in (9). There exist universal constants
c0, c1, c2, c3 > 0 such that if nδ2n ≥ 2

c1
log(4 log(1/δn)), then∣∣∣∥f∥n − ∥f∥L2

µ(Ω)

∣∣∣ ≤ c0δn, for all f ∈ F , (16)

with probability at least 1− c2e
−c3nδ

2
n/b

2

.

III. MAIN RESULTS

In this section, we will bound sµ(F)L2
µ

for model classes
that satisfy the compact embedding F ⊂⊂ C(Ω) in terms of
their L∞(Ω) entropy numbers, which are guaranteed to be
well-defined thanks to the compact embedding.

Given the L∞-covering number Nε(F)L∞ recall that the
(dyadic) L∞-entropy number of F is given by

εn(F)L∞ = inf{ε > 0 : Nε(F)L∞ ≤ 2n}. (17)

Entropy numbers are well-studied objects in approximation
theory. Metric entropies are a related object often studied in
empirical-process theory. The L∞-metric entropy of F is given
by the log covering number, i.e., logNε(F)L∞ . Observe that
these quantities are “dual” to each other in the sense that

εn(F)L∞ ≍ n−α ⇔ logNε(F)L∞ ≍
(
1

ε

) 1
α

. (18)

To upper bound sµ(F)L2
µ

, it suffices to upper bound the
expected error for one particular (deterministic) algorithm that
constructs an approximation to the data-generating function.
More specifically, recall that, given a ground-truth function f0 ∈
F , we are interested in the construction of an approximation
to f0 from the (noiseless) observations

yi = f0(xi), i = 1, . . . , n, (19)

where {xi}ni=1 are draw i.i.d. from µ. We shall consider the
very simple (deterministic) algorithm of least-squares, which
is specified by

min
f∈F

1

n

n∑
i=1

|yi − f(xi)|2. (20)

Observe that this problem is well-posed in the sense that
minimizers exist. Indeed, since the embedding of F into C(Ω)
is compact, F is compact with respect to the C(Ω)-topology.
Then, since the point-evaluation functional is continuous on
C(Ω), this is the minimization of a C(Ω)-continous function
over a C(Ω)-compact set and so a minimizer exists. Further-
more, it is clear that f0 is always a minimizer (since the
objective evaluated at f0 is 0). This reveals that the solution
set to (20) can be equivalently characterized by

S = {f ∈ F : f(xi) = yi, i = 1, . . . , n} (21)

and is generally not singleton. For our purposes it suffices to
consider any minimizer in (21).

When F = U(X ), the unit ball of some Banach space
(X , ∥·∥X ), an alternative, but compatible, approach to construct-
ing an approximation to f0 is to consider the minimum-norm
interpolation problem

min
f∈X

∥f∥X s.t. f(xi) = yi, i = 1, . . . , n. (22)

Indeed, any solution to (22) lies in S. This is the typical
formulation for learning from data in modern (overparame-
terized and high-dimensional) settings. Indeed, it has been
shown in various scenarios that interpolating functions can still
generalize well [3], [4], [5]. Thus, there has been a line of
work investigating interpolation learning, which is precisely
the formulation of the present paper.

Before stating and proving our main theorem (Theorem 1),
we first state and prove the following lemma, which is based
on tools from empirical-process theory.

Lemma 6. Any δ that satisfies

64√
n

∫ δ

δ2

2b

√
logNε(F)L∞ dε ≤ δ2

b
(23)

satisfies the second inequality in (15).

Proof. Given {xi}ni=1 ⊂ Ω drawn i.i.d. from µ and the
associated empirical measure µn (see (11)), observe that it
is always the case that ∥·∥n = ∥·∥L2

µn
≤ ∥·∥L∞ . Therefore,

for any closed—with respect to the topology inherited from
C(Ω)—subset S ⊂ F , we have that

logNε(S)L2
µn

≤ logNε(S)L∞ ≤ logNε(F)L∞ . (24)

Next, consider Bn(δ) := {f ∈ F : ∥f∥n ≤ δ} ⊂ F . By [22,
Corollary 14.3], any positive solution to inequality

64√
n

∫ δ

δ2

2b

√
logNε(Bn(δ))L2

µn
dε ≤ δ2

b
(25)

satisfies the inequality

R̂n(δ;F) ≤ δ2

b
, (26)

From (24), we see that any positive solution to (23) (which
is deterministic) satisfies (26) uniformly over realizations of
{xi}ni=1, which completes the proof.



A. Proof of Theorem 1

Proof. Let f0 ∈ F and suppose that we observe

yi = f0(xi), i = 1, . . . , n, (27)

with {xi}Ni=1 drawn i.i.d. from µ. Any solution f to the
least-squares problem (20) or the minimum-norm interpolation
problem (22) satisfies f(xi) = yi, i = 1, . . . , n. Therefore,
∥f − f0∥n = 0 (almost surely). Therefore, by Proposition 5,
for universal constants cj > 0, j = 0, 1, 2, 3, we have, for
nδ2n ≥ 2

c1
log(4 log(1/δn)), that

∥f − f0∥L2
µ
≤ c0δn (28)

with probability at least 1 − c2e
−c3nδ

2
n/b

2

, where δn is any
positive solution to either inequality in (15). By Lemma 6 it
suffices to choose δn such that it satisfies

64√
n

∫ δ

δ2

2b

ε−
1
2α dε ≤ δ2

b
. (29)

This inequality is equivalent to

64√
n
· 2α

2α− 1

(
δ

2α−1
2α − δ

2α−1
2α

(2b)
2α−1
2α

)
≤ δ2

b
. (30)

Any δ > 0 that satisfies (30) would also satisfy

64√
n
· 2α

2α− 1
· δ

2α−1
2α ≤ δ2

b
. (31)

In which case, this implies that

64b√
n
· 2α

2α− 1
≤ δ

2α+1
2α (32)

and so

δ ≥
(

128bα

2α− 1

)− 2α
2α+1

n− α
2α+1 . (33)

Thus, we can choose δn as the right-hand side of (33). For

n
1

2α+1 ≳ log log n
α

2α+1 , (34)

we have that (28) holds. By integrating the tail probability and
observing that the bound is uniform over f0 ∈ F , the theorem
is proven.

IV. DISCUSSION AND APPLICATIONS

The Birman-Solomyak theorem [7] says that for Sobolev
spaces that satisfy the compact embedding Ws,p(Ω) ⊂⊂ C(Ω),
i.e., s > d/p, their unit balls satisfy

εn(U(Ws,p(Ω)))L∞ ≍ εn(U(Ws,p(Ω)))L2 ≍ n−s/d, (35)

where we note that since Ws,p(Ω) ⊂⊂ C(Ω), it is necessarily
the case that Ws,p(Ω) ⊂⊂ L2(Ω).

The application of Theorem 1 to these model classes, reveals
that saven (U(Ws,p(Ω)))L2

µ
≲ n− s

2s+d , for any probability
measure µ on Ω, and in particular for the uniform measure.
In that case L2

µ-norm is a constant scaling of the L2-norm in
which case we have that

saven (U(Ws,p(Ω)))L2 ≲ n− s
2s+d , (36)

for n sufficiently large. On the other hand, for the problem
of nonparametric regression, the L2-entropy number (35)
combined with the abstract characterization of Yang and
Barron [23, Proposition 1] reveals that the minimax rate (when
µ is the uniform measure) scales as

mn(U(Ws,p(Ω));σ)L2 ≍
(

n

σ2

)− s
2s+d

, (37)

for sufficiently large n.
Thus, we see that the averaged sampling number is no

worse than the minimax rate. Furthermore, by Corollary 2, the
interpolant that achieves (36) can be found by computing the
minimum-Sobolev-norm interpolator of the data.

Theorem 1 also can be readily applied to neural network
model classes such as the ReLUk variation spaces on a bounded
domain Ω ⊂ Rd [1], [16], [17], [11], [20], which have garnered
interest in recent years. In particular, by [19, Theorem 3]
combined with a variant of Carl’s inequality [8] (see [21,
Theorem 10] for the particular variant), the unit ball Uk of the
ReLUk variation spaces satisfies

n− 1
2−

2k+1
2d ≲ εn(Uk)L∞ ≲ Õ(n− 1

2−
2k+1
2d ), (38)

where Õ(·) hides log factors. Therefore, we have that

saven (Uk)L2
µ
≲ Õ(n− 2k+d+1

2(2k+2d+1) ) (39)

for any probability measure µ. This rate (i) improves the
recently reported rate of n−1/4 for these model classes in [6,
p. 34] and (ii) is no worse than the minimax rates for these
model classes in the case when µ is the uniform measure [18].
Furthermore, to the best of our knowledge, these are the fastest
known upper bounds on the averaged sampling numbers for
these model classes.

V. CONCLUSION AND FUTURE WORK

In this paper, we have investigated the averaged L2
µ(Ω)-

sampling numbers for general star-shaped model classes. We
have abstractly characterized an upper bound on these sampling
numbers from knowledge of the L∞-entropy number of the
model class. Our techniques draw on tools developed in the
context of minimax rates, which are typically interested in
approximating functions from noisy data. Our formulation
provides a new link between the tools developed for minimax
estimation and the determination of sampling numbers.

This opens the door for a number of follow-up research
directions using tools at the intersection of nonparametric
regression/empirical-process theory and optimal recovery, fur-
ther bridging the gap between these two fields. In particular,
it would be interesting to understand when the upper bound
in Theorem 1 is sharp. In the case of Sobolev model classes
with µ as the uniform probability measure on Ω, it has been
shown in the recent work of [15] that

saven (U(Ws,p(Ω)))L2 ≍ n
− s

d+(
1
p−

1
q )+ , (40)

which reveals that in that case our upper bound is not sharp.
Further understanding this gap is a direction of future work.
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