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Abstract

Though modern neural networks have achieved impressive performance in both
vision and language tasks, we know little about the functions that they implement.
One possibility is that neural networks implicitly break down complex tasks into
subroutines, implement modular solutions to these subroutines, and compose them
into an overall solution to a task — a property we term structural compositionality.
Another possibility is that they may simply learn to match new inputs to learned
templates, eliding task decomposition entirely. Here, we leverage model pruning
techniques to investigate this question in both vision and language across a variety
of architectures, tasks, and pretraining regimens. Our results demonstrate that
models often implement solutions to subroutines via modular subnetworks, which
can be ablated while maintaining the functionality of other subnetworks. This
suggests that neural networks may be able to learn compositionality, obviating the
need for specialized symbolic mechanisms.

1 Introduction

Though neural networks have come to dominate most subfields of AI, much remains unknown
about the functions that they learn to implement. In particular, there is debate over the role of
compositionality. Compositionality has long been touted as a key property of human cognition,
enabling humans to exhibit flexible and abstract language processing and visual processing, among
other cognitive processes (Marcus, 2003; Piantadosi et al., 2016; Lake et al., 2017; Smolensky et al.,
2022). According to common definitions (Quilty-Dunn et al., 2022; Fodor & Lepore, 2002), a
representational system is compositional if it implements a set of discrete constituent functions that
exhibit some degree of modularity. That is, blue circle is represented compositionally if a system is
able to entertain the concept blue independently of circle, and vice-versa.

It is an open question whether neural networks require explicit symbolic mechanisms to implement
compositional solutions, or whether they implicitly learn to implement compositional solutions during
training. Historically, artificial neural networks have been considered non-compositional systems,
instead solving tasks by matching new inputs to learned templates (Marcus, 2003; Quilty-Dunn et al.,
2022). Neural networks’ apparent lack of compositionality has served as a key point in favor of
integrating explicit symbolic mechanisms into contemporary artificial intelligence systems (Andreas
et al., 2016; Koh et al., 2020; Ellis et al., 2023; Lake et al., 2017). However, modern neural networks,
with no explicit inductive bias towards compositionality, have demonstrated successes on increasingly
complex tasks. This raises the question: are these models succeeding by implementing compositional
solutions under the hood (Mandelbaum et al., 2022)?
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Contributions and Novelty:

1. We introduce the concept of structural compositionality, which characterizes the extent
to which neural networks decompose compositional tasks into subroutines and implement
them modularly. We test for structural compositionality in several different models across
both language and vision2.

2. We discover that, surprisingly, there is substantial evidence that many models implement
subroutines in modular subnetworks, though most do not exhibit perfect task decomposition.

3. We characterize the effect of unsupervised pretraining on structural compositionality in
fine-tuned networks and find that pretraining leads to a more consistently compositional
structure in language models.

This study contributes to the emerging body of work on “mechanistic interpretability” (Olah, 2022;
Cammarata et al., 2020; Ganguli et al., 2021; Henighan et al., 2023) which seeks to explain the
algorithms that neural networks implicitly implement within their weights. We make use of techniques
from model pruning in order to gain insight into these algorithms. While earlier versions of these
techniques have been applied to study modularity in a multitask setting (Csordás et al., 2021), our
work is novel in that it applies the method to more complex language and vision models, studies more
complex compositional tasks, and connects the results to a broader discussion about defining and
measuring compositionality within neural networks.

2 Structural Compositionality

Most prior work on compositionality in neural networks has focused on whether they generalize in
accordance with the compositional properties of data (Ettinger et al., 2018; Kim & Linzen, 2020;
Hupkes et al., 2020). Such work has mostly yielded negative results – i.e., evidence that neural
networks fail to generalize compositionally. This work is important for understanding how current
models will behave in practice. However, generalization studies alone permit only limited conclusions
about how models work.

As discussed above, leading definitions of compositionality are defined in terms of a system’s
representations, not its behavior. That is, definitions contrast compositional systems (which implement
modular constituents) with noncompositional systems (which might, e.g., rely on learned templates).
Poor performance on generalization studies does not differentiate these two types of systems, since
even a definitionally compositional system might fail at these generalization tasks. For example, a
Bayesian network that explicitly represents and composes distinct shape and color properties might
nonetheless classify a blue circle as a red circle if it has a low prior for predicting the color blue and a
high prior for predicting the color red.

Thus, in this work, we focus on evaluating the extent to which a model’s representations are structured
compositionally. Consider the task described in Figure 1. In this task, a network learns to select
the “odd-one-out” among four images. Three of them follow a compositional rule (they all contain
two shapes, one of which is inside and in contact with the other). One of them breaks this rule.
There are at least two ways that a network might learn to solve this type of compositional task. (1) A
network might compare new inputs to prototypes or iconic representations of previously-seen inputs,
avoiding any decomposition of these prototypes into constituent parts (i.e., it might implement a
non-compositional solution). (2) A network might implicitly break the task down into subroutines,
implement solutions to each, and compose these results into a solution (i.e., it might implement a
compositional solution). In this case, the subroutines consist of a (+/- Inside) detector and a (+/-
Contact) detector.

If a model trained on this task exhibits structural compositionality, then we would expect to find a
subnetwork that implements each subroutine within the parameters of that model. This subnetwork
should compute one subroutine, and not the other (Figure 1, Bottom Right; “Subnetwork”), and
it should be modular with respect to the rest of the network — it should be possible to ablate
this subnetwork, harming the model’s ability to compute one subroutine while leaving the other
subroutine largely intact (Figure 1, Bottom Right; “Ablation”). However, if a model does not exhibit
structural compositionality, then it has only learned the conjunction of the subroutines rather than

2Our code is publicly available at https://github.com/mlepori1/Compositional_Subnetworks.
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Figure 1: (Left) An illustration of the tasks used to study structural compositionality. Stimuli are
generated via the composition of two subroutines: (+/- Inside) and (+/- Contact). These stimuli are
used to construct odd-one-out tasks, where the model is tasked with identifying the image that does
not follow a rule from a set of four samples. Here, two objects must be in contact, and one must
be inside the other. Rule following images correspond to the upper right quadrant. A model may
solve this task in two ways. (Middle) It may implement a non-compositional solution, e.g., storing
learned template that encodes only the conjunction of the two subroutines. In this case, one should
not be able to find a subnetwork that implements one subroutine and does not implement the other.
Concretely, there should be no difference in the subnetwork’s performance on examples that depend
on computing one subroutine vs. another. Ablating this subnetwork should harm the computation
of both subroutines equally. In other words, there should be no difference in accuracy between
examples that depend on different subroutines. (Right) A model may implement a compositional
solution, which computes each subroutine in modular subnetworks and combines them. In this
case, one should find a subnetwork that implements, say, (+/- Inside), and this subnetwork should
achieve high accuracy on examples that require computing (+/- Inside) and low performance on
examples that require computing (+/- Contact). In other words, the difference in accuracies between
the (+/- Inside) and (+/- Contact) examples should be positive. Likewise, one should be able to
ablate this subnetwork and maintain performance on (+/- Contact) while compromising performance
on (+/- Inside), and so the difference in performance should be negative. Hypothetical results are
represented as differences in performance between both types of examples.

their composition. It should not be possible to find a subnetwork that implements one subroutine
and not the other, and ablating one subnetwork should hurt accuracy on both subroutines equally
(Figure 1, Bottom Center). This definition is related to prior work on modularity in neural networks
(Csordás et al., 2021; Hod et al., 2022), but here we specifically focus on modular representations of
compositional tasks.

3 Experimental Design

3.1 Preliminaries

Here we define terms used in the rest of the paper. Subroutine: A binary rule. The ith subroutine
is denoted SRi. Compositional Rule: A binary rule that maps input to output according to
C = SR1&SR2, where SRi is a subroutine. Compositional rules are denoted C. Base Model: A
model that is trained to solve a task defined by a compositional rule. Denoted MC . Subnetwork: A
subset of the parameters of a base model, which implements one subroutine. The subnetwork that
implements SRi is denoted Subi. This is implemented as a binary mask, mi, over the parameters
of the base model, θ, such that Subi = MC;θ⊙mi

, where ⊙ refers to elementwise multiplication.

3



A) Train Base Model Train/Test

Inside & Contact


B) Find Subroutine
Subnetwork

Train

Inside vs. Outside
 Test Target SR
 Test Other SR


Expect Success Expect Failure

C) Ablation Ablate
 Test Target SR
 Test Other SR


Expect Failure Expect Success

Figure 2: Illustration of the experimental design. For brevity, we denote “subroutine” as SR in the
diagram. (A) First, we train a neural network on a compositional task (Inside-Contact), ensuring
that it can achieve high accuracy on the task. (B) We then optimize a binary mask over weights, such
that the resulting subnetwork can compute one subroutine (+/- Inside) while ignoring the other (+/-
Contact). We evaluate this subnetwork on datasets that require computing the target subroutine (+/-
Inside). We also evaluate this subnetwork on datasets that require computing the other subroutine
(+/- Contact). We expect success on the first evaluation and failure on the second if the model
exhibits structural compositionality. (C) We invert the binary mask learned in (B), ablating the
subnetwork. We evaluate this on the same two datasets, expecting performance to be harmed on the
target subroutine and performance to be high for the other subroutine.

Ablated Model: The complement set of parameters of a particular subnetwork. After ablating Subi,
we denote the ablated model Mablatei .

3.2 Experimental Logic

Consider a compositional rule, C, such as the “Inside-Contact” rule described in Figures 1 and 2.
The rule is composed of two subroutines, SR1 (+/- Inside) and SR2 (+/- Contact). We define an
odd-one-out task on C, as described in Section 2. See Figure 1 for three demonstrative examples using
the “Inside-Contact” compositional rule. For a given architecture and compositional rule, C, we train
a base model, MC , such that MC solves the odd-one-out task to greater than 90% accuracy3 (Figure 2,
Panel A). We wish to characterize the extent to which MC exhibits structural compositionality. Does
MC learn only the conjunction (effectively entangling the two subroutines), or does MC implement
SR1 and SR2 in modular subnetworks?

3This threshold was selected arbitrarily, but our results do not depend on it. All models end up achieving >
99% accuracy (See Appendix A).
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To investigate this question, we will learn a binary mask mi over the weights θ of MC for each SRi,
resulting in a subnetwork Subi. Without loss of generality, assume Sub1 computes (+/- Inside) and
Sub2 computes (+/- Contact), and consider investigating Sub1. We can evaluate this subnetwork
on two partitions of the training set: (1) Test Target Subroutine – Cases where a model must
compute the target subroutine to determine the odd-one-out (e.g., cases where an image exhibits
(- Inside, + Contact)) and (2) Test Other Subroutine – Cases where a model must compute the
other subroutine to determine the odd-one-out (e.g., cases where the odd-one-out exhibits (+ Inside,
- Contact)).

Following prior work (Csordás et al., 2021), we assess structural compositionality based on the sub-
network’s performance on these datasets, as well as the base model’s performance after ablating the
subnetwork4. If MC exhibits structural compositionality, then Sub1 should only be able to compute
the target subroutine (+/- Inside), and thus it should perform better on Test Target Subroutine
than on Test Other Subroutine. If MC entangles the subroutines, then Sub1 will implement both
subroutines and will perform equally on both partitions. See Figure 2, Panel B.

To determine modularity, we ablate the Sub1 from the base model and observe the behavior of the
resulting model, Mablate1 . If MC exhibits structural compositionality, we expect the two subroutines
to be modular, such that ablating Sub1 has more impact on Mablate1’s ability to compute (+/-
Inside) than (+/- Contact). Thus, we would expect Mablate1 to perform better on Test Other
Subroutine than Test Target Subroutine. See Figure 2, Panel C. However, if MC implemented a
non-compositional solution, then ablating Sub1 should hurt performance on both partitions equally,
as the two subroutines are entangled. Thus, performance on both partitions would be approximately
equal.

Expected Results: For each model and task, our main results are the differences in performance
between Test Target Subroutine and Test Other Subroutine for each subnetwork and ablated
model. If a model exhibits structural compositionality, we expect the subnetwork to produce a
positive difference in performance (Test Target Subroutine > Test Other Subroutine), and the
corresponding ablated model to produce a negative difference in performance. Otherwise, we expect
no differences in performance. See Figure 1 for hypothetical results.

4 Discovering Subnetworks

Consider a frozen model MC(·;w) trained on an odd-one-out task defined using the compositional
rule C. Within the weights of this model, we wish to discover a subnetwork that implements SRi

5.
We further require that the discovered subnetwork should be as small as possible, such that if the
model exhibits structural compositionality, it can be ablated with little damage to the remainder of
the network. Thus, we wish to learn a binary mask over the weights of a trained neural network while
employing L0 regularization

Most prior work that relies on learning binary masks over network parameters (Cao et al., 2021;
Csordás et al., 2021; Zhang et al., 2021; Guo et al., 2021; De Cao et al., 2020, 2022) relies on stochastic
approaches, introduced in Louizos et al. (2018). Savarese et al. (2020) introduced continuous
sparsification as a deterministic alternative to these stochastic approaches and demonstrated that it
achieves superior pruning performance, both in terms of sparsity and subnetwork performance. Thus,
we use continuous sparsification to discover subnetworks within our models. See Appendix B for
details.

5 Vision Experiments

Tasks: We extend the collection of datasets introduced in Zerroug et al. (2022), generating several
tightly controlled datasets that implement compositions of the following subroutines: contact, inside,
and number. From these three basic subroutines, we define three compositional rules: Inside-
Contact, Number-Contact, and Inside-Number. We will describe the Inside-Contact tasks in
detail, as the same principles apply to the other two compositional rules (See Appendix E). This

4This is similar to Csordás et al. (2021)’s PSpecialize metric.
5Over all networks, we only mask weight parameters, leaving bias parameters untouched.
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Figure 3: Three Inside-Contact stimuli. The odd-one-out is always the bottom-right image in these
examples. (Right) An example from the task used to train the base model. (Middle) An example
from the task used to discover the +/- Inside Subroutine. (Left) An example from the task used to
discover the +/- Contact Subroutine.

task contains four types of images, each containing two shapes. In these images, one shape is either
inside and in contact with the other (+ Inside, + Contact), not inside of but in contact with the other
(- Inside, + Contact), inside of but not in contact with the other (+ Inside, - Contact), or neither
(- Inside, - Contact). An example is defined as a collection of four images, three of which follow a
rule and one of which does not. We train our base model to predict the odd-one-out on a task defined
by a compositional rule over contact and inside: images of the type (+ Inside, + Contact) follow the
rule, and any other image type is considered the odd-one-out. See Figure 3 (Left).

In order to discover a subnetwork that implements each subroutine, we define one odd-one-out task
per subroutine. To discover the +/- Inside Subroutine, we define (+ Inside) to be rule-following
(irrespective of contact) and (- Inside) to be the odd-one-out. Similarly for the +/- Contact Subroutine.
See Figure 3 (Middle and Right, respectively). The base model has only seen data where (+ Inside,
+ Contact) images are rule-following. In order to align our evaluations with the base model’s training
data, we create two more datasets that probe each subroutine. For both, all rule-following images
are (+ Inside, + Contact). To probe for (+/- Inside), the odd-one-out for one dataset is always a
(- Inside, + Contact) image. This dataset is Test Target Subroutine, with respect to the subnetwork
that implements (+/- Inside). Similarly, to probe for (+/- Contact), the odd-one-out is always a
(+ Inside, - Contact) image. This dataset is Test Other Subroutine, with respect to the subnetwork
that implements (+/- Inside).

Methods: Our models consist of a backbone followed by a 2-layer MLP6, which produces em-
beddings of each of the four images in an example. Following Zerroug et al. (2022) we compute
the dot product between each of the four embeddings to produce a pairwise similarity metric. The
least similar embedding is predicted to be the “odd-one-out”. We use cross-entropy loss over the
four images. During mask training, we use L0 regularization to encourage sparsity. We investigate
3 backbone architectures: Resnet50 7 (He et al., 2016), Wide Resnet50 (Zagoruyko & Komodakis,
2016), and ViT (Dosovitskiy et al., 2020). We perform a hyperparameter search over batch size and
learning rate to find settings that allow each model to achieve near-perfect performance. We then
train 3 models with different random seeds in order to probe for structural compositionality.8

After training our base models, MC , we perform a hyperparameter search over continuous sparsifi-
cation parameters for each subroutine (See Appendix C). One hyperparameter to note is the mask
configuration: the layer of the network in which to start masking. After finding the best continuous
sparsification parameters, we run the algorithm three times per model, per subroutine, and evaluate on

6Hidden Size: 2048, Output Size: 128
7We replace all BatchNorm layers with InstanceNorm layers. BatchNorm statistics learned during training

the base model do not apply to the subnetworks, and because the batch statistics vary across the different data
partitions that we evaluate on.

8All models are trained using the Adam optimizer (Kingma & Ba, 2014) with early stopping for a maximum
of 100 epochs (patience set to 75 epochs). We evaluate using a held-out validation set after every epoch and take
the model that minimizes loss on the validation set. We train without dropout, as dropout increases a model’s
robustness to ablating subnetworks. We train without weight decay, as we will apply L0 regularization during
mask training.
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Test Target Subroutine and Test Other Subroutine. Finally, for each subnetwork, Subi, we create
Mablatei = MC − Subi and evaluate it on Test Target Subroutine and Test Other Subroutine9.

6 Language Experiments

Tasks: We use a subset of the data introduced in Marvin & Linzen (2019) to construct odd-one-out
tasks for language data. Analogous to the vision domain, odd-one-out tasks consist of four sentences,
three of which follow a rule and one of which does not. We construct rules based on two forms of
syntactic agreement: Subject-Verb Agreement and Reflexive Anaphora agreement10. In both cases,
the agreement takes the form of long-distance coordination of the syntactic number of two words in a
sentence. First, consider the subject-verb agreement, the phenomenon that renders the house near the
fields is on fire grammatical, and the house near the fields are on fire not grammatical.

Accordingly, we define the following sentence types for Subject-Verb agreement: ({Singular/Plural}
Subject, {Singular/Plural} Verb). Because both (Singular Subject, Singular Verb) and (Plural
Subject, Plural Verb) result in a grammatical sentence, we partition the Subject-Verb Agreement
dataset into two subsets, one that targets singular sentences and one that targets plural sentences11.
For the Singular Subject-Verb Agreement dataset, base models are trained on a compositional rule
that defines (Singular Subject, Singular Verb) sentences to be rule-following, and (Plural Subject,
Singular Verb) and (Singular Subject, Plural Verb) sentences to be the odd-one-out. Thus, an
odd-one-out example might look like: the picture by the ministers interest people. All other tasks
are constructed analogously to those used in the vision experiments (See Section 5). The Reflexive
Anaphora dataset is constructed simlarly (See Appendix F).

Methods: The language experiments proceed analogously to the vision experiments. The only
difference in the procedure is that we take the representation of the [CLS] token to be the embedding
of the sentence and omit the MLP. We study one architecture, BERT-Small (Bhargava et al., 2021;
Turc et al., 2019), which is a BERT architecture with 4 hidden layers (Devlin et al., 2018).

7 Results

Most base models perform near perfectly, with the exception of ViT, which failed to achieve >90%
performance on any of the tasks with any configuration of hyperparameters12. Thus, we exclude ViT
from all subsequent analyses. See Appendix D for these results. If the base models exhibit structural
compositionality, we expect subnetworks to achieve greater accuracy13 on Test Target Subroutine
than on Test Other Subroutine (difference in accuracies > 0). After ablating subnetworks, we
expect the ablated model to achieve greater accuracy on Test Other than Test Target (difference in
accuracies < 0). Across the board, we see the expected pattern. Subnetwork and ablated accuracy
differences for Resnet50 and BERT are visualized in Figure 4 (Subnetwork in Blue, Ablated Models
in Red). See Appendix A for Wide Resnet50 results, which largely reproduce the results using
Resnet50.

For some architecture/task combinations, the pattern of ablated model results is statistically signifi-
cantly in favor of structural compositionality. See Figure 4 (C, D), where all base models seem to
implement both subroutines in a modular fashion. We analyze the layerwise overlap between subnet-
works found within one of these models in Appendix K. This analysis shows that there is relatively
high overlap between subnetworks for the same subroutine, and low overlap between subroutines.
Other results are mixed, such as those found in Resnet50 models trained on Number-Contact. Here,

9We used NVIDIA GeForce RTX 3090 GPUs for all experiments. Every experiment can be run on a
single GPU, in approximately 1 GPU-hour. After performing a hyperparameter search, our main results took
approximately 300 GPU-hours.

10Note that we are interested only in discovering some evidence of modularity within the model rather than
looking for some more profound syntactic phenomenon.

11See Appendix F for more details
12See Table 2 in Appendix A for each base model’s performance on the relevant compositional task.
13All accuracy values are clamped to the range [0.25, 1.0] before differences are computed. 0.25 is chance

accuracy. Constraining values to this range prevents false trends from arising in the difference data due to models
performing below chance.
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Figure 4: Results from Subnetwork and Ablation studies. For each compositional task, we learn
binary masks that result in subnetworks for each subroutine. Resnet50 results in the top row, BERT-
Small results in the bottom row. Gray markers indicate that the corresponding base model did not
achieve > 90% accuracy on the compositional task. (Blue) The difference between subnetwork
performance on Test Target Subroutine and Test Other Subroutine. If a model exhibits structural
compositionality, we expect that a subnetwork will achieve greater performance on the subroutine
that it was trained to implement, resulting in values > 0. (Red) After ablating the subnetwork, we
evaluate on the same datasets and plot the difference again. We expect that the ablated model will
achieve lower performance on the subroutine that the (ablated) subnetwork was trained to implement
and higher performance on the other subroutine dataset, resulting in values < 0. Across the board,
we find that our results are largely significantly different from 0, despite the small number of samples.
** indicates significance at p = .01, *** indicates significance at p = .001 See Appendix A for details
of this statistical analysis.

we see strong evidence of structural compositionality in Figure 4 (E), but little evidence for it in
Figure 4 (F). In this case, it appears that the network is implementing the (+/- Contact) subroutine in
a small, modular subnetwork, whereas the (+/- Number) subroutine is implemented more diffusely.
We perform control experiments using randomly initialized models in Appendix I, which show that
the pattern of results in (A), (B) and (F) are not significantly different from a random model, while all
other results are significantly different.

8 Effect of Pretraining on Structural Compositionality

We compare structural compositionality in models trained from scratch to those that were initialized
with pretrained weights. For Resnet50, we pretrain a model on our data using SimCLR (See
Appendix G for details).

For BERT-Small, we use the pretrained weights provided by Turc et al. (2019). We rerun the same
procedure described in Sections 5 and 6. See Appendix A for each base model’s performance. Figure 5
contains the results of the language experiments. Across all language tasks, the ablation results
indicate that models initialized with pretrained weights more reliably produce modular subnetworks
than randomly initialized models. Results on vision tasks are found in Appendix A and do not suggest
any benefit of pretraining.
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Figure 5: Performance differences between Test Target Subroutine and Test Other Subroutine for
both models trained from scratch and pretrained models. Across the board, we see that pretraining
produces more modular subnetworks (i.e., reveal a greater disparity in performance between datasets).
Pretraining also appears to make our subnetwork-discovery algorithm more robust to random seeds.

9 Related Work

This work casts a new lens on the study of compositionality in neural networks. Most prior work
has focused on compositional generalization of standard neural models (Yu & Ettinger, 2020; Kim
& Linzen, 2020; Kim et al., 2022; Dankers et al., 2022), though some has attempted to induce
an inductive bias toward compositional generalization from data (Lake, 2019; Qiu et al., 2021;
Zhu et al., 2021). Recent efforts have attempted to attribute causality to specific components of
neural networks’ internal representations (Ravfogel et al., 2020; Bau et al., 2019; Wu et al., 2022;
Tucker et al., 2021; Lovering & Pavlick, 2022; Elazar et al., 2021; Cao et al., 2021). In contrast to
these earlier studies, our method does not require any assumptions about where in the network the
subroutine is implemented and does not rely on auxiliary classifiers, which can confound the causal
interpretation. Finally, Dziri et al. (2023) performs extensive behavioral studies characterizing the
ability of autoregressive language models to solve compositional tasks, and finds them lacking. In
contrast, our work studies the structure of internal representations and sets aside problems that might
be specific to autoregressive training objectives.

More directly related to the present study is the burgeoning field of mechanistic interpretability, which
aims to reverse engineer neural networks in order to better understand how they function (Olah, 2022;
Cammarata et al., 2020; Black et al., 2022; Henighan et al., 2023; Ganguli et al., 2021; Merrill et al.,
2023). Notably, Chughtai et al. (2023) recovers universal mechanisms for performing group-theoretic
compositions. Though group-theoretic composition is different from the compositionality discussed
in the present article, this work sheds light on generic strategies that models may use to solve tasks
that require symbolically combining multiple input features.

Some recent work has attempted to characterize modularity within particular neural networks (Hod
et al., 2022). Csordás et al. (2021) also analyzes modularity within neural networks using learned
binary masks. Their study finds evidence of modular subnetworks within a multitask network: Within
a network trained to perform both addition and multiplication, different subnetworks arise for each
operation. Csordás et al. (2021) also investigates whether the subnetworks are reused in a variety
of contexts, and find that they are not. In particular, they demonstrate that subnetworks that solve
particular partitions of compositional datasets (SCAN (Lake & Baroni, 2018) and the Mathematics
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Dataset (Saxton et al., 2018)), oftentimes do not generalize to other partitions. From this, they
conclude that neural networks do not flexibly combine subroutines in a manner that would enable
full compositional generalization. However, their work did not attempt to uncover subnetworks
that implement specific compositional subroutines within these compositional tasks. For example,
they did not attempt to find a subnetwork that implements a general "repeat" operation for SCAN,
transforming "jump twice" into "JUMP JUMP". Our work finds such compositional subroutines in
language and vision tasks, and localizes them into modular subnetworks. This finding extends Csordás
et al. (2021)’s result on a simple multitask setting to more complex compositional vision and language
settings, and probes for subroutines that represent intermediate subroutines in a compositional task
(i.e. "inside" is a subroutine when computing "Inside-Contact").

10 Discussion

Across a variety of architectures, tasks, and training regimens, we demonstrated that models often
exhibit structural compositionality. Without any explicit encouragement to do so, neural networks
appear to decompose tasks into subroutines and implement solutions to (at least some of) these
subroutines in modular subnetworks. Furthermore, we demonstrate that self-supervised pretraining
can lead to more consistent structural compositionality, at least in the domain of language. These
results bear on the longstanding debate over the need for explicit symbolic mechanisms in AI systems.
Much work is focusing on integrating symbolic and neural systems (Ellis et al., 2023; Nye et al.,
2020). However, our results suggest that some simple pseudo-symbolic computations might be
learned directly from data using standard gradient-based optimization techniques.

We view our approach as a tool for understanding when and how compositionality arises in neural
networks, and plan to further investigate the conditions that encourage structural compositionality.
One promising direction would be to investigate the relationship between structural compositionality
and recent theoretical work on compositionality and sparse neural networks (Mhaskar & Poggio,
2016; Poggio, 2022). Specifically, this theoretical work suggests that neural networks optimized to
solve compositional tasks naturally implement sparse solutions. This may serve as a starting point for
developing a formal theory of structural compositionality in neural networks. Another direction might
be to investigate the structural compositionality of networks trained using iterated learning procedures
(Ren et al., 2019; Vani et al., 2020). Iterated learning simulates the cultural evolution of language by
jointly training two communicating agents (Kirby et al., 2008). Prior work has demonstrated that
iterated learning paradigms give rise to simple compositional languages. Quantifying the relationship
between structural compositionality within the agents and the compositionality of the language that
they produce would be an exciting avenue for understanding the relationship between representation
and behavior.

One limit of our technical approach is that one must specify which subroutines to look for in advance.
Future work might address this by discovering functional subnetworks using unsupervised methods.
Additionally, our approach requires us to use causal ablations and control models to properly interpret
our results. Future work might try to uncover subnetworks that are necessarily causally implicated in
model behavior. Finally, future work must clarify the relationship between structural compositionality
and compositional generalization.
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COMP. TASK MODEL SR INTERCEPT Z LINEAR HYPOTHESIS χ2

IN. CONT. RN50 INSIDE 50.13*** 1.42
IN. CONT. RN50 CONTACT 3.00** 0.94
IN. CONT. WRN50 INSIDE 6.66*** 0.87
IN. CONT. WRN50 CONTACT 72.44*** 4.49*
IN. NUM. RN50 INSIDE 11.13*** 29.20***
IN. NUM. RN50 NUMBER 18.35*** 21.73***
IN. NUM. WRN50 INSIDE 14.86*** 2.95.
IN. NUM. WRN50 NUMBER 5.21*** 2.50
CONT. NUM. RN50 CONTACT 6.45*** 40.26***
CONT. NUM. RN50 NUMBER 7.12*** 0.42
CONT. NUM. WRN50 CONTACT 6.19*** 296.96***
CONT. NUM. WRN50 NUMBER 9.388*** 1.32

SV AGR BERT SUBJ. 4.53*** 14.72***
SV AGR BERT VERB 3.73*** 1.70
ANAPHORA BERT PRONOUN 6.06*** 5.60*
ANAPHORA BERT ANTECEDENT 2.60** 17.83***

Table 1: Statistics from one factor GLM with robust clustered standard errors. . indicates significance
at p = .1, * indicates significance at p = .05, ** indicates significance at p = .01, *** indicates
significance at p = .001

A Full Results

In this section, we provide the following results:

1. Base Model Performance on Compositional Tasks: Table 2

2. Pretrained + Finetuned Model Performance on Compositional Tasks: Table 3

3. Wide Resnet50 Subnetwork Results: Figure 6

4. Vision Pretraining vs. Random Initialization Heatmap: Figure 7

5. Absolute Accuracy for every subnetwork and ablated model on each task, for each model:
Figures 8-12.

See Table 2 for the performance of all base models on each compositional task. See Table 3 for the
performance of all pretrained base models on each compositional task. See Figure 6 for subnetwork
and ablation results on Wide Resnet50. See Figure 7 for Vision Model pretraining results.

A.1 Statistical Analysis of Main Results

In order to assess the significance of our main results, we fit a generalized linear model (GLM)
with robust clustered standard errors for each combination of model architecture, compositional
task, and subroutine. This GLM includes a dummy variable indicating whether the results are
from a subnetwork or an ablated model, and it clusters observations by base model. For language
experiments, we collapse across singular and plural instances of the same subroutine. The intercept
term in this model assesses whether the performance of the discovered subnetworks are significantly
different from 0. From this model, we can also perform a linear hypothesis test to assess whether
ablated model performance is significantly different from 0. Table 1 provides the relevant statistics.
Across the board, we see that there is always a significant difference between subnetwork performance
and 0, and often a significant difference between ablated model performance and 0, even with a small
sample size.
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VISION CONT.-
INSIDE

CONT.-
NUMBER

INSIDE-
NUMBER

RN50-1 100% 99.4% 99.8%
RN50-2 100% 99.4% 99.8%
RN50-3 75.9% 99.7% 99.9%

WRN50-1 99.9% 99.6% 99.7%
WRN50-2 99.8% 99.8% 99.6%
WRN50-3 99.9% 99.4% 99.8%

LANGUAGE SV
SING.

SV
PLUR.

ANAPH.
SING.

ANAPH.
PLUR.

BERT-SM-1 99.7% 100% 100% 100%
BERT-SM-2 100% 100% 100% 100%
BERT-SM-3 100% 100% 100% 100%

Table 2: Test classification accuracy for each base model for each task. Every entry corresponds to a
unique model.

VISION CONT.-
INSIDE

CONT.-
NUMBER

INSIDE-
NUMBER

RN50-SC-1 100% 99.7% 100%
RN50-SC-2 100% 99.6% 99.8%
RN50-SC-3 100% 99.5% 99.9%

LANGUAGE SV
SING.

SV
PLUR.

ANAPH.
SING.

ANAPH.
PLUR.

BERT-LM-1 100% 100% 100% 100%
BERT-LM-2 100% 100% 65.5% 100%
BERT-LM-3 100% 100% 63.5% 100%

Table 3: Test classification accuracy for each pretrained base model for each task. Every entry
corresponds to a unique model.

Wide Resnet50 (Test Target - Test Other)

*** *** ****** *** **** . ***

Figure 6: Wide Resnet50 Subnetwork and Ablation Results. Broadly, they mimic those found in
Figure 4. . indicates significance at p = .1, * indicates significance at p = .05, ** indicates significance
at p = .01, *** indicates significance at p = .001.
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Figure 7: Vision Model Pretraining vs. Random Initialization. We observe no obvious trend
differentiating the two conditions.

Figure 8: Resnet50 absolute performance across all conditions.

B Continuous Sparsification: Extended Discussion

Continuous sparsification attempts to optimize a binary mask that minmizes the following loss
function:

min
mi∈{0,1}d

LSRi
(MC(·;w ⊙mi)) + λ||mi||1 (1)
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Figure 9: Wide Resnet50 absolute performance across all conditions

Figure 10: Resnet50 + SimCLR absolute performance across all conditions.

The first term describes the standard loss function given by an odd-one-out task where the rule is
defined by SRi. The second term corresponds to the L0 penalty, which encourages entries in the
binary mask to be 0. However, optimizing such a binary mask is intractable, given the combinatorial
nature of a discrete binary mask over a large parameter space. Instead, continuous sparsification
reparameterizes the loss function by introducing another variable, s ∈ Rd:

min
si∈Rd

LSRi(MC(·;w ⊙ σ(β · si)) + λ||σ(β · si)||1 (2)

In Equation 2, σ is the sigmoid function, applied elementwise, and β is a temperature parameter.
During training β is increased after each epoch according to an exponential schedule to a large value
βmax. Note that, as β −→ ∞, σ(β · si) −→ H(si), where H(si) is the heaviside function.
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Figure 11: BERT-Small absolute performance across all conditions

H(s) =

{
0, s < 0
1, s > 0

}
(3)

Thus, during training, we interpolate between a soft mask (σ) and a discrete mask (H). During
inference, we simply substitute σ(βmax · si)) for H(si). Notably, we apply continuous sparsification
to a frozen model in an attempt to reveal the internal structure of this model, whereas the original
work introduced continuous sparsification in the context of model pruning, and jointly trained w and
s.

Following Savarese et al. (2020), we fix βmax = 200, λ = 10−8, and train for 90 epochs. We train
the mask parameters using the Adam optimizer with a batch size of 64 and search over learning rates.

C Mask Hyperparameter Search Details

We search over learning rates {.01, .0001}, mask parameter initializations {0.1, 0.05, 0.0, -0.05}, and
mask configurations. For Resnet models, we search over mask configurations by starting masking at
different stages. We try either (1) masking the whole network, (2) beginning masking at the third (of
four) stages), and (3) beginning masking at the fourth stage. For transformer models, we search over
mask configurations based on layers. We try either (1) masking the whole networks, (2) beginning
masking at the third (of four) layers, (3) beginning masking at the fourth layer.

We perform this search independently for each trained model and each subroutine. The best hy-
perparameter configuration is determined based on the following criteria: The subnetwork must
achieve at least 90% accuracy on the task it was trained on. This is to ensure that mask optimization
succeeded. Then, it was scored on its degree of structural compositionality using the validation sets
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Figure 12: BERT-Small + LM absolute performance across all conditions.

of Test Target Subroutine and Test Other Subroutine If a subnetwork is trained to implement SR1,
then its compostionality score is calculated using Mablate1 = MC − Sub1. The score is simply the
difference in accuracy that Mablate1 achieves on Test Other Subroutine (which the ablated model
should perform well on) and Test Target Subroutine (which the ablated model should fail on). All
accuracies are clamped in the range [.25, 1], as .25 is chance accuracy. The hyperparameters that
maximize this score are returned.

Note that this process is fairly computationally expensive, as it requires training many separate masks.
We used NVIDIA GeForce RTX 3090 GPUs for all experiments. Every experiment can be run on a
single GPU, in approximately 1 GPU-hour. The entire hyperparameter search takes approximately
2448 GPU-hours. This number was computed as follows: 1 GPU-hour * 3 model seeds * 2 learning
rates * 4 initializations * 3 mask configurations * (6 Resnet50 subroutines + 6 pretrained Resnet50
subroutines + 6 Wide Resnet50 subroutines + 8 BERT subroutines + 8 pretrained BERT subroutines).
Each mask has a parameter count comparable to its base model. Future work could improve upon the
methodology presented here by reducing the number of hyperparameters that one must search over.

D ViT Hyperparameter Search Results

See Table 4 for the results of our hyperparameter search on ViT models. We tried several batch sizes
and learning rates on both a 6 and 12 layer ViT, all with a 2 layer MLP head. The MLP had a hidden
layer of dimensionality 2048, and an output dimensionality of 128, similar to the Resnet50 and Wide
Resnet50. Note that all models fall short of solving any of the tasks.
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# LAYERS BATCH SIZE LEARNING RATE CONT.-INSIDE CONT.-NUMBER INSIDE-NUMBER

6 32 0.01 31% 27% 28%
6 64 0.01 28% 29% 27%
6 32 0.001 29% 27% 28%
6 64 0.001 32% 27% 26%
6 32 0.0001 25% 32% 30%
6 64 0.0001 31% 49% 32%
6 32 0.00001 42% 85% 47%
6 64 0.00001 46% 83% 54%

12 32 0.01 36% 25% 28%
12 64 0.01 27% 26% 25%
12 32 0.001 39% 31% 27%
12 64 0.001 37% 25% 22%
12 32 0.0001 41% 36% 33%
12 64 0.0001 31% 28% 31%
12 32 0.00001 40% 86% 49%
12 64 0.00001 42% 84% 51%

Table 4: Results of ViT hyperparameter search. All accuracies are rounded to the nearest % and are
computed on the validation set for the relevant dataset.

E Vision Stimuli

In this section, we provide examples from all vision datasets that we use in this work. First, we
describe the +/- Number subroutine. This subroutine operates as follows: for each training/test
example, let N be an integer. All image types that exhibit (+ Number) will contain N shapes,
whereas image types that exhibit (- Number) will contain M shapes, M ̸= N . For a description of
the other subroutines, refer back to Section 5.

F Language Data Details

As noted in the main text, our language data is generated using the templates provided by Marvin &
Linzen (2019). For the subject-verb agreement datasets, we omit templates that position the noun
of interest inside either a sentential complement or an object relative clause. Thus, all of our nouns
of interest are the subject of the full sentence. This is done in order to render the (Singular/Plural
Subject) subroutine unambiguous across different sentence templates. We do the same for the
Reflexive Anaphora datasets, removing the template that positions the antecedent inside a sentential
complement.

These exclusions mean that the nouns of interest are always the second word of the sentence. This
makes the (Singular/Plural Subject) subroutine amenable to a simple heuristic: check the syntactic
number of the second word in the sentence, rather than first needing to identify the subject of a
sentence. However, we are unconcerned about this heuristic: the present work makes no claims
about how a neural network implements any particular subroutine, instead caring about how several
subroutines are organized in the network’s weights (i.e. are they represented compositionally, or in
an entangled fashion?).

Specifically, the subroutines we examine are those that compute the syntactic number of specific
words in a sentence (either subject and verb, or antecedent and pronoun). Our goal is to find
subnetworks that implement these subroutines. Consider the case of subject verb agreement. If
we were to partition our data precisely analogously to the vision datasets, we would arrive at a
compositional dataset where rule-following data points exhibit, say, (Singular Subject, Singular
Verb), and rule breaking examples might exhibit any of (Plural Subject, Singular Verb), (Singular
Subject, Plural Verb), or (Plural Subject, Plural Verb). However, one might expect that a pretrained
network would implement syntactic number subroutines in service of another salient computation:
discerning whether a sentence is grammatical or not. In this case, a pretrained model would need to
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Figure 13: Examples from tasks defined over the Inside-Contact compositional rule. From top to
bottom, we see one example from each of the following tasks: (1) The task used to train base models
(2) The task used to train a +/- Contact subnetwork (3) The task used to train a +/- Inside subnetwork
(4) The evaluation task used to probe for +/- Contact (5) The evaluation task used to probe for +/-
Inside.

unlearn this grammaticality computation, forcing two grammatical sentences apart in its embedding
space. In order to avoid this potential complication, we split up our datasets into singular and plural
partitions, such that only rule-following examples are grammatical (and all rule-breaking examples
are ungrammatical) in each compositional dataset and subroutine test set.

Note that these datasets are smaller than those used for the vision experiments. Using the Marvin &
Linzen (2019) templates and their provided vocabulary, and discarding the templates noted above, we
arrive at the following dataset statistics (which are identical for the singular and plural instances of
each dataset). For each, we provide on singular example and one plural example. The odd one out is
always the fourth sentence.

• Subject-Verb Agreement: Compositional Dataset: 9500 (Train), 500 (Validation), 1000
(Test)
Singular

1. the farmer near the parent is old
2. the surgeon that the architects hate laughs
3. the novel that the dancer likes is new
4. the senator to the side of the parents are young

Plural
1. the farmers the taxi drivers love are short
2. the songs the dancers admire are unpopular
3. the surgeons that admire the executives are young
4. the officers that love the assistant is short
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Figure 14: Examples from tasks defined over the Inside-Number compositional rule. From top
to bottom, we see one example from each of the following tasks: (1) The task used to train base
models (2) The task used to train a +/- Inside subnetwork (3) The task used to train a +/- Number
subnetwork (4) The evaluation task used to probe for +/- Inside (5) The evaluation task used to probe
for +/- Number.

• Subject-Verb Agreement: (Singular/Plural Subject) Dataset: 9500 (Train), 500 (Valida-
tion), 1000 (Test)
Singular

1. the farmer that the taxi driver hates smile
2. the consultant the guards hate is young
3. the poem that the assistant likes brings joy to people
4. the customers that the chefs like is tall

Plural
1. the novels the guard hates are good
2. the teachers across from the parent is young
3. the shows that the taxi driver likes are unpopular
4. the manager across from the parent smile

• Subject-Verb Agreement: (Singular/Plural Verb) Dataset: 9500 (Train), 500 (Validation),
1000 (Test)
Singular

1. the game the executives admire is unpopular
2. the surgeon to the side of the taxi drivers smiles
3. the consultants the dancer likes swims
4. the painting that the chefs love are unpopular

Plural
1. the customer the assistant loves swim
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Figure 15: Examples from tasks defined over the Number-Contact compositional rule. From top
to bottom, we see one example from each of the following tasks: (1) The task used to train base
models (2) The task used to train a +/- Contact subnetwork (3) The task used to train a +/- Number
subnetwork (4) The evaluation task used to probe for +/- Contact (5) The evaluation task used to
probe for +/- Number.

2. the surgeons that the executive likes are short
3. the authors that love the chef swim
4. the officers that like the assistant swims

• Subject-Verb Agreement: Test (Singular/Plural Subject) Dataset: 300 (Validation), 300
(Test)
Singular

1. the teacher to the side of the taxi driver swims
2. the farmer that the chef likes is young
3. the novel the ministers admire is bad
4. the customers in front of the dancers is old

Plural
1. the pictures by the skater interest people
2. the movies the skater admires are bad
3. the pilots in front of the taxi driver are tall
4. the consultant that the dancer likes are old

• Subject-Verb Agreement: Test (Singular/Plural Verb) Dataset: 300 (Validation), 300
(Test)
Singular

1. the senator the taxi drivers admire is young
2. the pilot to the side of the dancer smiles
3. the farmer the assistant admires is young

24



4. the pilot that loves the minister are tall

Plural
1. the poems that the chefs hate are bad
2. the surgeons in front of the dancer laugh
3. the surgeons near the taxi drivers smile
4. the farmers behind the architects is short

• Reflexive Anaphora: Compositional Dataset: 2500 (Train), 200 (Validation), 200 (Test)
Singular

1. the consultant that the chef loves disguised himself
2. the manager that the architects hate congratulated herself
3. the pilot that the architects admire hurt herself
4. the surgeon that the executives like congratulated themselves

Plural
1. the consultants that the guards love injured themselves
2. the senators that the minister admires embarrassed themselves
3. the officers that the assistant likes embarrassed themselves
4. the teacher that the dancer loves embarrassed themselves

• Reflexive Anaphora: (Singular/Plural Antecedent) Dataset: 2500 (Train), 200 (Valida-
tion), 200 (Test)
Singular

1. the officer that the taxi driver likes doubted herself
2. the author that the architect loves hated himself
3. the manager that the executives love disguised herself
4. the customers that the parent likes disguised himself

Plural
1. the authors that the skater hates doubted himself
2. the surgeons that the parents admire hurt themselves
3. the officers that the taxi driver hates injured himself
4. the pilot that the assistant loves hurt themselves

• Reflexive Anaphora: (Singular/Plural Pronoun) Dataset: 2500 (Train), 200 (Validation),
200 (Test)
Singular

1. the customer that the ministers hate congratulated herself
2. the surgeons that the dancers like embarrassed himself
3. the authors that the taxi driver hates embarrassed himself
4. the author that the architect admires doubted themselves

Plural
1. the officer that the skaters admire embarrassed themselves
2. the senator that the guard likes embarrassed themselves
3. the customer that the ministers love doubted themselves
4. the managers that the guard admires injured herself

• Reflexive Anaphora: Test (Singular/Plural Antecedent) Dataset: 200 (Validation), 200
(Test)
Singular

1. the customer that the skater admires hurt herself
2. the consultant that the executive loves disguised herself
3. the manager that the skaters like embarrassed herself
4. the senators that the guard admires injured himself

25



Plural
1. the senators that the architects like embarrassed themselves
2. the authors that the executives admire disguised themselves
3. the surgeons that the taxi driver admires doubted themselves
4. the officer that the parents like congratulated themselves

• Reflexive Anaphora: Test (Singular/Plural Pronoun) Dataset: 200 (Validation), 200
(Test)
Singular

1. the pilot that the chefs hate hurt himself
2. the teacher that the taxi drivers love hated herself
3. the senator that the assistant loves embarrassed herself
4. the pilot that the skaters admire embarrassed themselves

Plural
1. the authors that the parents admire congratulated themselves
2. the pilots that the chef hates hurt themselves
3. the authors that the parents like congratulated themselves
4. the farmers that the ministers admire injured herself

G Vision Pretraining Details

We pretrain a Resnet50 model and MLP using SimCLR, a contrastive self-supervised learning
algorithm (Chen et al., 2020). This algorithm generates two views of an image using random
data augmentations, then maximizes the agreement between representations of these views using a
contrastive loss function. We use a temperature of 0.07 for this loss.

Our data augmentations include horizontal flips, affine transformations, color jitters, rotations, and
grayscaling. We train for 100 epochs, using a learning rate of .0005 (which is decayed according
to a consine annealing schedule) and a batch size of 256. Images are drawn randomly from the
three compositional training sets (Inside-Contact, Number-Contact, Inside-Number). For every
rule-following image that is selected, a rule-breaking image from that same dataset is also selected.

We evaluate the Top-5 Accuracy on a held-out validation set after every epoch, and save the weights
of the best performing model. Following Chen et al. (2020), we discard the MLP after pretraining,
only using the Resnet50 weights to initialize our pretrained models in Section 8.

We adapted the implementation found in Lippe (2022) to implement SimCLR pretraining.

H Subnetwork Sparsity Data

In this section, we provide the raw sparsity statistics for each subnetwork trained in this paper. For
every subnetwork, we indicate what stage we started masking (0, 3, or 4), provide the number of Act.
Param. in the subnetwork (i.e. the number of 1’s in the binary mask), and include the total number of
parameters that we mask over (i.e. the number of entries in the binary mask), which is determined by
the mask stage.

I Control Experiment: Random Models

Recent work has demonstrated several surprising properties of masks trained on randomly-intialized
networks (Ramanujan et al., 2020; Zhou et al., 2019; Wortsman et al., 2020). One might wonder
whether the results demonstrated here could be obtained by training a binary mask over randomly-
initialized network. If so, this would pose a serious problem for our interpretation of the data:
producing the same results in a randomly-initialized network would decouple the behavior of the
discovered subnetworks from the representations learned by the underlying base model.

We carry out this experiment as a control. Specifically, we run the exact same mask training procedure
used to generate the results in Section 7, except we use randomly-initialized models rather than
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TASK SR MODEL # MASK # STAGE ACT. PARAM. TOT. PARAM.

NUMBER-CONTACT CONTACT 1 1 4 8059720 19398656
NUMBER-CONTACT CONTACT 1 2 4 8200381 19398656
NUMBER-CONTACT CONTACT 1 3 4 8199621 19398656
NUMBER-CONTACT NUMBER 1 1 0 259611 27911360
NUMBER-CONTACT NUMBER 1 2 0 264197 27911360
NUMBER-CONTACT NUMBER 1 3 0 438332 27911360
NUMBER-CONTACT CONTACT 2 1 3 996278 26476544
NUMBER-CONTACT CONTACT 2 2 3 1010779 26476544
NUMBER-CONTACT CONTACT 2 3 3 970624 26476544
NUMBER-CONTACT NUMBER 2 1 4 1831379 19398656
NUMBER-CONTACT NUMBER 2 2 4 1822564 19398656
NUMBER-CONTACT NUMBER 2 3 4 1814451 19398656
NUMBER-CONTACT CONTACT 3 1 4 6044544 19398656
NUMBER-CONTACT CONTACT 3 2 4 6111795 19398656
NUMBER-CONTACT CONTACT 3 3 4 6258924 19398656
NUMBER-CONTACT NUMBER 3 1 0 225866 27911360
NUMBER-CONTACT NUMBER 3 2 0 685279 27911360
NUMBER-CONTACT NUMBER 3 3 0 219003 27911360

INSIDE-CONTACT INSIDE 1 1 4 2418223 19398656
INSIDE-CONTACT INSIDE 1 2 4 2384556 19398656
INSIDE-CONTACT INSIDE 1 3 4 2307045 19398656
INSIDE-CONTACT CONTACT 1 1 4 1029149 19398656
INSIDE-CONTACT CONTACT 1 2 4 1057758 19398656
INSIDE-CONTACT CONTACT 1 3 4 938794 19398656
INSIDE-CONTACT INSIDE 2 1 3 189266 26476544
INSIDE-CONTACT INSIDE 2 2 3 140762 26476544
INSIDE-CONTACT INSIDE 2 3 3 184485 26476544
INSIDE-CONTACT CONTACT 2 1 3 1266369 26476544
INSIDE-CONTACT CONTACT 2 2 3 1333968 26476544
INSIDE-CONTACT CONTACT 2 3 3 1078198 26476544
INSIDE-CONTACT INSIDE 3 1 3 94253 26476544
INSIDE-CONTACT INSIDE 3 2 3 159807 26476544
INSIDE-CONTACT INSIDE 3 3 3 231113 26476544
INSIDE-CONTACT CONTACT 3 1 3 1681559 26476544
INSIDE-CONTACT CONTACT 3 2 3 1684466 26476544
INSIDE-CONTACT CONTACT 3 3 3 1682888 26476544

INSIDE-NUMBER INSIDE 1 1 4 7004974 19398656
INSIDE-NUMBER INSIDE 1 2 4 7077554 19398656
INSIDE-NUMBER INSIDE 1 3 4 7077890 19398656
INSIDE-NUMBER NUMBER 1 1 3 3190833 26476544
INSIDE-NUMBER NUMBER 1 2 3 3291780 26476544
INSIDE-NUMBER NUMBER 1 3 3 3559092 26476544
INSIDE-NUMBER INSIDE 2 1 4 5255315 19398656
INSIDE-NUMBER INSIDE 2 2 4 5253035 19398656
INSIDE-NUMBER INSIDE 2 3 4 5151024 19398656
INSIDE-NUMBER NUMBER 2 1 4 3149872 19398656
INSIDE-NUMBER NUMBER 2 2 4 2765010 19398656
INSIDE-NUMBER NUMBER 2 3 4 2675994 19398656
INSIDE-NUMBER INSIDE 3 1 3 920241 26476544
INSIDE-NUMBER INSIDE 3 2 3 853147 26476544
INSIDE-NUMBER INSIDE 3 3 3 974109 26476544
INSIDE-NUMBER NUMBER 3 1 4 5046083 19398656
INSIDE-NUMBER NUMBER 3 2 4 5033831 19398656
INSIDE-NUMBER NUMBER 3 3 4 5086233 19398656

Table 5: Resnet50 subnetwork sparsity statistics. Act. Param. is the number of active parameters in a
subnetwork. Tot. Param. is the total number of parameters in the masked layers.
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TASK SR MODEL # MASK # STAGE ACT. PARAM. TOT. PARAM.

NUMBER-CONTACT CONTACT 1 1 3 1184224 26476544
NUMBER-CONTACT CONTACT 1 2 3 875632 26476544
NUMBER-CONTACT CONTACT 1 3 3 960475 26476544
NUMBER-CONTACT NUMBER 1 1 4 703485 19398656
NUMBER-CONTACT NUMBER 1 2 4 682724 19398656
NUMBER-CONTACT NUMBER 1 3 4 684961 19398656
NUMBER-CONTACT CONTACT 2 1 3 833083 26476544
NUMBER-CONTACT CONTACT 2 2 3 935644 26476544
NUMBER-CONTACT CONTACT 2 3 3 903822 26476544
NUMBER-CONTACT NUMBER 2 1 4 682249 19398656
NUMBER-CONTACT NUMBER 2 2 4 660732 19398656
NUMBER-CONTACT NUMBER 2 3 4 611524 19398656
NUMBER-CONTACT CONTACT 3 1 3 898919 26476544
NUMBER-CONTACT CONTACT 3 2 3 1129741 26476544
NUMBER-CONTACT CONTACT 3 3 3 765665 26476544
NUMBER-CONTACT NUMBER 3 1 4 8734131 19398656
NUMBER-CONTACT NUMBER 3 2 4 8880893 19398656
NUMBER-CONTACT NUMBER 3 3 4 8900554 19398656

INSIDE-CONTACT INSIDE 1 1 4 138289 19398656
INSIDE-CONTACT INSIDE 1 2 4 102788 19398656
INSIDE-CONTACT INSIDE 1 3 4 64056 19398656
INSIDE-CONTACT CONTACT 1 1 4 687037 19398656
INSIDE-CONTACT CONTACT 1 2 4 730767 19398656
INSIDE-CONTACT CONTACT 1 3 4 594200 19398656
INSIDE-CONTACT INSIDE 2 1 4 119585 19398656
INSIDE-CONTACT INSIDE 2 2 4 153621 19398656
INSIDE-CONTACT INSIDE 2 3 4 141847 19398656
INSIDE-CONTACT CONTACT 2 1 4 880968 19398656
INSIDE-CONTACT CONTACT 2 2 4 582672 19398656
INSIDE-CONTACT CONTACT 2 3 4 549542 19398656
INSIDE-CONTACT INSIDE 3 1 4 444801 19398656
INSIDE-CONTACT INSIDE 3 2 4 404687 19398656
INSIDE-CONTACT INSIDE 3 3 4 388647 19398656
INSIDE-CONTACT CONTACT 3 1 4 2726236 19398656
INSIDE-CONTACT CONTACT 3 2 4 2712782 19398656
INSIDE-CONTACT CONTACT 3 3 4 2704681 19398656

INSIDE-NUMBER INSIDE 1 1 3 811096 26476544
INSIDE-NUMBER INSIDE 1 2 3 849964 26476544
INSIDE-NUMBER INSIDE 1 3 3 781551 26476544
INSIDE-NUMBER NUMBER 1 1 0 14878394 27911360
INSIDE-NUMBER NUMBER 1 2 0 14739139 27911360
INSIDE-NUMBER NUMBER 1 3 0 14919954 27911360
INSIDE-NUMBER INSIDE 2 1 4 375073 19398656
INSIDE-NUMBER INSIDE 2 2 4 306550 19398656
INSIDE-NUMBER INSIDE 2 3 4 314610 19398656
INSIDE-NUMBER NUMBER 2 1 3 2468331 26476544
INSIDE-NUMBER NUMBER 2 2 3 3106382 26476544
INSIDE-NUMBER NUMBER 2 3 3 3122791 26476544
INSIDE-NUMBER INSIDE 3 1 0 660344 27911360
INSIDE-NUMBER INSIDE 3 2 0 714676 27911360
INSIDE-NUMBER INSIDE 3 3 0 692889 27911360
INSIDE-NUMBER NUMBER 3 1 3 3369673 26476544
INSIDE-NUMBER NUMBER 3 2 3 3661479 26476544
INSIDE-NUMBER NUMBER 3 3 3 3278225 26476544

Table 6: Resnet50 + SimCLR Subnetwork sparsity statistics. Act. Param. is the number of active
parameters in a subnetwork. Tot. Param. is the total number of parameters in the masked layers.
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TASK SR MODEL # MASK # STAGE ACT. PARAM. TOT. PARAM.

NUMBER-CONTACT CONTACT 1 1 4 12415313 46399488
NUMBER-CONTACT CONTACT 1 2 4 11886093 46399488
NUMBER-CONTACT CONTACT 1 3 4 11994752 46399488
NUMBER-CONTACT NUMBER 1 1 0 364048 71222464
NUMBER-CONTACT NUMBER 1 2 0 356776 71222464
NUMBER-CONTACT NUMBER 1 3 0 430018 71222464
NUMBER-CONTACT CONTACT 2 1 4 8156499 46399488
NUMBER-CONTACT CONTACT 2 2 4 8188321 46399488
NUMBER-CONTACT CONTACT 2 3 4 8730014 46399488
NUMBER-CONTACT NUMBER 2 1 0 489546 71222464
NUMBER-CONTACT NUMBER 2 2 0 479722 71222464
NUMBER-CONTACT NUMBER 2 3 0 405563 71222464
NUMBER-CONTACT CONTACT 3 1 4 11238193 46399488
NUMBER-CONTACT CONTACT 3 2 4 11246123 46399488
NUMBER-CONTACT CONTACT 3 3 4 11084672 46399488
NUMBER-CONTACT NUMBER 3 1 4 792483 46399488
NUMBER-CONTACT NUMBER 3 2 4 681226 46399488
NUMBER-CONTACT NUMBER 3 3 4 834326 46399488

INSIDE-CONTACT INSIDE 1 1 3 177339 67108864
INSIDE-CONTACT INSIDE 1 2 3 147071 67108864
INSIDE-CONTACT INSIDE 1 3 3 232306 67108864
INSIDE-CONTACT CONTACT 1 1 3 1100205 67108864
INSIDE-CONTACT CONTACT 1 2 3 966156 67108864
INSIDE-CONTACT CONTACT 1 3 3 1043718 67108864
INSIDE-CONTACT INSIDE 2 1 0 875532 71222464
INSIDE-CONTACT INSIDE 2 2 0 493009 71222464
INSIDE-CONTACT INSIDE 2 3 0 619362 71222464
INSIDE-CONTACT CONTACT 2 1 3 5898635 67108864
INSIDE-CONTACT CONTACT 2 2 3 6213208 67108864
INSIDE-CONTACT CONTACT 2 3 3 5909038 67108864
INSIDE-CONTACT INSIDE 3 1 3 557265 67108864
INSIDE-CONTACT INSIDE 3 2 3 330289 67108864
INSIDE-CONTACT INSIDE 3 3 3 710769 67108864
INSIDE-CONTACT CONTACT 3 1 3 4632439 67108864
INSIDE-CONTACT CONTACT 3 2 3 4376935 67108864
INSIDE-CONTACT CONTACT 3 3 3 4964646 67108864

INSIDE-NUMBER INSIDE 1 1 3 2081068 67108864
INSIDE-NUMBER INSIDE 1 2 3 2106222 67108864
INSIDE-NUMBER INSIDE 1 3 3 2007091 67108864
INSIDE-NUMBER NUMBER 1 1 4 3541726 46399488
INSIDE-NUMBER NUMBER 1 2 4 3560812 46399488
INSIDE-NUMBER NUMBER 1 3 4 3583605 46399488
INSIDE-NUMBER INSIDE 2 1 0 2242819 71222464
INSIDE-NUMBER INSIDE 2 2 0 1963701 71222464
INSIDE-NUMBER INSIDE 2 3 0 1330134 71222464
INSIDE-NUMBER NUMBER 2 1 3 5749408 67108864
INSIDE-NUMBER NUMBER 2 2 3 5511381 67108864
INSIDE-NUMBER NUMBER 2 3 3 5472792 67108864
INSIDE-NUMBER INSIDE 3 1 0 808884 71222464
INSIDE-NUMBER INSIDE 3 2 0 851288 71222464
INSIDE-NUMBER INSIDE 3 3 0 731729 71222464
INSIDE-NUMBER NUMBER 3 1 0 3487441 71222464
INSIDE-NUMBER NUMBER 3 2 0 3528010 71222464
INSIDE-NUMBER NUMBER 3 3 0 4330284 71222464

Table 7: Wide Resnet50 Subnetwork sparsity statistics. Act. Param. is the number of active
parameters in a subnetwork. Tot. Param. is the total number of parameters in the masked layers.
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TASK SR MODEL # MASK # STAGE ACT. PARAM. TOT. PARAM.

(S) SV AGREEMENT SUBJECT 1 1 0 1246922 12845056
(S) SV AGREEMENT SUBJECT 1 2 0 1242347 12845056
(S) SV AGREEMENT SUBJECT 1 3 0 2128824 12845056
(S) SV AGREEMENT VERB 1 1 0 1668369 12845056
(S) SV AGREEMENT VERB 1 2 0 2600240 12845056
(S) SV AGREEMENT VERB 1 3 0 3353398 12845056
(S) SV AGREEMENT SUBJECT 2 1 0 2728632 12845056
(S) SV AGREEMENT SUBJECT 2 2 0 2663842 12845056
(S) SV AGREEMENT SUBJECT 2 3 0 2681724 12845056
(S) SV AGREEMENT VERB 2 1 0 951132 12845056
(S) SV AGREEMENT VERB 2 2 0 1044003 12845056
(S) SV AGREEMENT VERB 2 3 0 1084848 12845056
(S) SV AGREEMENT SUBJECT 3 1 0 328484 12845056
(S) SV AGREEMENT SUBJECT 3 2 0 720899 12845056
(S) SV AGREEMENT SUBJECT 3 3 0 323764 12845056
(S) SV AGREEMENT VERB 3 1 3 1794939 6553600
(S) SV AGREEMENT VERB 3 2 3 1702597 6553600
(S) SV AGREEMENT VERB 3 3 3 1567156 6553600

(P) SV AGREEMENT SUBJECT 1 1 0 69748 12845056
(P) SV AGREEMENT SUBJECT 1 2 0 68641 12845056
(P) SV AGREEMENT SUBJECT 1 3 0 52336 12845056
(P) SV AGREEMENT VERB 1 1 3 640889 6553600
(P) SV AGREEMENT VERB 1 2 3 477101 6553600
(P) SV AGREEMENT VERB 1 3 3 656202 6553600
(P) SV AGREEMENT SUBJECT 2 1 0 119037 12845056
(P) SV AGREEMENT SUBJECT 2 2 0 125594 12845056
(P) SV AGREEMENT SUBJECT 2 3 0 122828 12845056
(P) SV AGREEMENT VERB 2 1 0 215555 12845056
(P) SV AGREEMENT VERB 2 2 0 202185 12845056
(P) SV AGREEMENT VERB 2 3 0 56134 12845056
(P) SV AGREEMENT SUBJECT 3 1 0 86084 12845056
(P) SV AGREEMENT SUBJECT 3 2 0 49694 12845056
(P) SV AGREEMENT SUBJECT 3 3 0 166614 12845056
(P) SV AGREEMENT VERB 3 1 0 149398 12845056
(P) SV AGREEMENT VERB 3 2 0 221074 12845056
(P) SV AGREEMENT VERB 3 3 0 133149 12845056

Table 8: BERT Subject-Verb Agreement Subnetwork sparsity statistics. Act. Param. is the number
of active parameters in a subnetwork. Tot. Param. is the total number of parameters in the masked
layers.

models trained on compositional tasks. In Section 7, each (model, subroutine) pair had its own set of
masking hyperparameters. We use these same hyperparameters for each (randomly-intialized model,
subroutine) pair in order to make the results as comparable as possible.

In Figure 16 and 17, we observe that masking random networks produces distinctly different patterns
of results than we presented in Section 7. Though it is possible find a subnetwork that computes
a target subroutine and not the other subroutine, the ablation results do not follow the pattern that
one would expect of a compositional model. This accords with Ramanujan et al. (2020), which
demonstrates that training a binary mask over a randomly-weighted network can still produce
performant subnetworks. The ablation results indicate that these subnetworks are not causally
implicated in model behavior. In the case of Resnet50 (Figure 16, Bottom) we observe that ablating
the learned subnetworks collapses performance to chance for all tasks. In the case of BERT-Small
(Figure 17, Bottom), we observe that ablating the learned subnetworks oftentimes yields high
performance on Test Target Subroutine and low performance on Test Other Subroutine, which is
the opposite of the expected trend for a compositional model. Thus, we can be more confident that
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TASK SR MODEL # MASK # STAGE ACT. PARAM. TOT. PARAM.

(S) ANAPHORA PRONOUN 1 1 0 370568 12845056
(S) ANAPHORA PRONOUN 1 2 0 372203 12845056
(S) ANAPHORA PRONOUN 1 3 0 369123 12845056
(S) ANAPHORA ANTECEDENT 1 1 0 169120 12845056
(S) ANAPHORA ANTECEDENT 1 2 0 150554 12845056
(S) ANAPHORA ANTECEDENT 1 3 0 231819 12845056
(S) ANAPHORA PRONOUN 2 1 0 968021 12845056
(S) ANAPHORA PRONOUN 2 2 0 971063 12845056
(S) ANAPHORA PRONOUN 2 3 0 970910 12845056
(S) ANAPHORA ANTECEDENT 2 1 0 108544 12845056
(S) ANAPHORA ANTECEDENT 2 2 0 110871 12845056
(S) ANAPHORA ANTECEDENT 2 3 0 108347 12845056
(S) ANAPHORA PRONOUN 3 1 0 79069 12845056
(S) ANAPHORA PRONOUN 3 2 0 79031 12845056
(S) ANAPHORA PRONOUN 3 3 0 82788 12845056
(S) ANAPHORA ANTECEDENT 3 1 0 1854552 12845056
(S) ANAPHORA ANTECEDENT 3 2 0 1848327 12845056
(S) ANAPHORA ANTECEDENT 3 3 0 1874968 12845056

(P) ANAPHORA PRONOUN 1 1 0 325597 12845056
(P) ANAPHORA PRONOUN 1 2 0 417498 12845056
(P) ANAPHORA PRONOUN 1 3 0 642805 12845056
(P) ANAPHORA ANTECEDENT 1 1 0 286739 12845056
(P) ANAPHORA ANTECEDENT 1 2 0 336572 12845056
(P) ANAPHORA ANTECEDENT 1 3 0 405887 12845056
(P) ANAPHORA PRONOUN 2 1 0 24818 12845056
(P) ANAPHORA PRONOUN 2 2 0 24805 12845056
(P) ANAPHORA PRONOUN 2 3 0 24855 12845056
(P) ANAPHORA ANTECEDENT 2 1 3 1154161 6553600
(P) ANAPHORA ANTECEDENT 2 2 3 1183436 6553600
(P) ANAPHORA ANTECEDENT 2 3 3 1159462 6553600
(P) ANAPHORA PRONOUN 3 1 0 144186 12845056
(P) ANAPHORA PRONOUN 3 2 0 151531 12845056
(P) ANAPHORA PRONOUN 3 3 0 153897 12845056
(P) ANAPHORA ANTECEDENT 3 1 0 4606842 12845056
(P) ANAPHORA ANTECEDENT 3 2 0 5134758 12845056
(P) ANAPHORA ANTECEDENT 3 3 0 5041888 12845056

Table 9: BERT Anaphora Subnetwork sparsity statistics. Act. Param. is the number of active
parameters in a subnetwork. Tot. Param. is the total number of parameters in the masked layers.

the main results presented in Section 7 reflect the internal mechanisms of trained models, and are not
epiphenomenal artifacts of training binary masks over networks.

I.1 Statistical Analysis of Main Results vs. Random Results

In order to assess whether the results given by random models are significantly different from our
main results, we fit a generalized linear model (GLM) with robust clustered standard errors for each
combination of model architecture, compositional task, and subroutine. This GLM includes a dummy
variable indicating whether the results are from a subnetwork or an ablated model, a dummy variable
indicating whether the base model is trained or random, and it clusters observations by base model.
For language experiments, we collapse across singular and plural instances of the same subroutine.
The coefficient of the Trained vs. Random dummy variable in this model assesses whether the
performance of the discovered subnetworks are significantly different in the trained and random
conditions. From this model, we can also perform a linear hypothesis test to assess whether ablated
model performance is significantly different between the trained and random conditions. Table 12
provides the relevant statistics. Across the board, we see that there is often a significant difference
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TASK SR MODEL # MASK # STAGE ACT. PARAM. TOT. PARAM.

(S) SV AGREEMENT SUBJECT 1 1 0 59736 12845056
(S) SV AGREEMENT SUBJECT 1 2 0 839770 12845056
(S) SV AGREEMENT SUBJECT 1 3 0 620869 12845056
(S) SV AGREEMENT VERB 1 1 3 65229 6553600
(S) SV AGREEMENT VERB 1 2 3 65356 6553600
(S) SV AGREEMENT VERB 1 3 3 65220 6553600
(S) SV AGREEMENT SUBJECT 2 1 0 511359 12845056
(S) SV AGREEMENT SUBJECT 2 2 0 70725 12845056
(S) SV AGREEMENT SUBJECT 2 3 0 555174 12845056
(S) SV AGREEMENT VERB 2 1 0 16940 12845056
(S) SV AGREEMENT VERB 2 2 0 39218 12845056
(S) SV AGREEMENT VERB 2 3 0 19321 12845056
(S) SV AGREEMENT SUBJECT 3 1 0 8514 12845056
(S) SV AGREEMENT SUBJECT 3 2 0 8613 12845056
(S) SV AGREEMENT SUBJECT 3 3 0 8593 12845056
(S) SV AGREEMENT VERB 3 1 3 64969 6553600
(S) SV AGREEMENT VERB 3 2 3 65098 6553600
(S) SV AGREEMENT VERB 3 3 3 64955 6553600

(P) SV AGREEMENT SUBJECT 1 1 0 45792 12845056
(P) SV AGREEMENT SUBJECT 1 2 0 45527 12845056
(P) SV AGREEMENT SUBJECT 1 3 0 45616 12845056
(P) SV AGREEMENT VERB 1 1 0 16800 12845056
(P) SV AGREEMENT VERB 1 2 0 24013 12845056
(P) SV AGREEMENT VERB 1 3 0 23988 12845056
(P) SV AGREEMENT SUBJECT 2 1 0 47651 12845056
(P) SV AGREEMENT SUBJECT 2 2 0 47502 12845056
(P) SV AGREEMENT SUBJECT 2 3 0 47811 12845056
(P) SV AGREEMENT VERB 2 1 3 100005 6553600
(P) SV AGREEMENT VERB 2 2 3 100100 6553600
(P) SV AGREEMENT VERB 2 3 3 100029 6553600
(P) SV AGREEMENT SUBJECT 3 1 3 81133 6553600
(P) SV AGREEMENT SUBJECT 3 2 3 81203 6553600
(P) SV AGREEMENT SUBJECT 3 3 3 81218 6553600
(P) SV AGREEMENT VERB 3 1 0 15302 12845056
(P) SV AGREEMENT VERB 3 2 0 9423 12845056
(P) SV AGREEMENT VERB 3 3 0 15900 12845056

Table 10: BERT + LM Subject-Verb Agreement Subnetwork sparsity statistics. Act. Param. is the
number of active parameters in a subnetwork. Tot. Param. is the total number of parameters in the
masked layers.

between ablating the discovered subnetworks in random vs. trained models, even with a small sample
size.

J Pruned Model Analysis

In this section, we analyze the structural compositionality of models after they have been pruned. We
analyze the impact of pruning on structural compositionality on Resnet50 models trained on Number-
Contact. We use continuous sparsification to train binary masks over the three Number-Contact
Resnet50 models analyzed in the main paper, resulting in three sparse models that perform well on
the Number-Contact task. We search over mask initialization and learning rate hyperparameters to
find the best pruning configuration for each model. Then, we run the same structural compositionality
analysis described in the main paper. We see from Figure 18 that the results on the pruned Resnet50
models closely resemble those from the full Resnet50 models.
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TASK SR MODEL # MASK # STAGE ACT. PARAM. TOT. PARAM.

(S) ANAPHORA PRONOUN 1 1 0 6590452 12845056
(S) ANAPHORA PRONOUN 1 2 0 6702195 12845056
(S) ANAPHORA PRONOUN 1 3 0 6519670 12845056
(S) ANAPHORA ANTECEDENT 1 1 0 832044 12845056
(S) ANAPHORA ANTECEDENT 1 2 0 833149 12845056
(S) ANAPHORA ANTECEDENT 1 3 0 835278 12845056
(S) ANAPHORA PRONOUN 2 1 3 193677 6553600
(S) ANAPHORA PRONOUN 2 2 3 198612 6553600
(S) ANAPHORA PRONOUN 2 3 3 198956 6553600
(S) ANAPHORA ANTECEDENT 2 1 0 39355 12845056
(S) ANAPHORA ANTECEDENT 2 2 0 27784 12845056
(S) ANAPHORA ANTECEDENT 2 3 0 34674 12845056
(S) ANAPHORA PRONOUN 3 1 0 36495 12845056
(S) ANAPHORA PRONOUN 3 2 0 1458843 12845056
(S) ANAPHORA PRONOUN 3 3 0 75100 12845056
(S) ANAPHORA ANTECEDENT 3 1 0 648936 12845056
(S) ANAPHORA ANTECEDENT 3 2 0 680218 12845056
(S) ANAPHORA ANTECEDENT 3 3 0 760770 12845056

(P) ANAPHORA PRONOUN 1 1 0 11374 12845056
(P) ANAPHORA PRONOUN 1 2 0 11251 12845056
(P) ANAPHORA PRONOUN 1 3 0 11369 12845056
(P) ANAPHORA ANTECEDENT 1 1 0 1152444 12845056
(P) ANAPHORA ANTECEDENT 1 2 0 1152518 12845056
(P) ANAPHORA ANTECEDENT 1 3 0 1149693 12845056
(P) ANAPHORA PRONOUN 2 1 0 11327 12845056
(P) ANAPHORA PRONOUN 2 2 0 11321 12845056
(P) ANAPHORA PRONOUN 2 3 0 11275 12845056
(P) ANAPHORA ANTECEDENT 2 1 0 43274 12845056
(P) ANAPHORA ANTECEDENT 2 2 0 44220 12845056
(P) ANAPHORA ANTECEDENT 2 3 0 45632 12845056
(P) ANAPHORA PRONOUN 3 1 0 28866 12845056
(P) ANAPHORA PRONOUN 3 2 0 28887 12845056
(P) ANAPHORA PRONOUN 3 3 0 29101 12845056
(P) ANAPHORA ANTECEDENT 3 1 0 4292104 12845056
(P) ANAPHORA ANTECEDENT 3 2 0 4350952 12845056
(P) ANAPHORA ANTECEDENT 3 3 0 4048117 12845056

Table 11: BERT + LM Anaphora Subnetwork sparsity statistics. Act. Param. is the number of active
parameters in a subnetwork. Tot. Param. is the total number of parameters in the masked layers.

COMP. TASK MODEL SR RANDOM COEF. Z LINEAR HYPOTHESIS χ2

IN. CONT. RN50 INSIDE -1.36 2.44
IN. CONT. RN50 CONTACT -1.73. 1.17
IN. NUM. RN50 INSIDE -1.92. 29.20***
IN. NUM. RN50 NUMBER -1.41 48.95***
CONT. NUM. RN50 CONTACT -0.51 57.47***
CONT. NUM. RN50 NUMBER -0.26 0.54

SV AGR BERT SUBJ. 2.13* 19.17***
SV AGR BERT VERB 2.61** 70.08***
ANAPHORA BERT PRONOUN 2.46* 122.64***
ANAPHORA BERT ANTECEDENT 0.24 17.87***

Table 12: Statistics from two factor GLM with robust clustered standard errors. . indicates significance
at p = .1, * indicates significance at p = .05, ** indicates significance at p = .01, *** indicates
significance at p = .001
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Figure 16: Results from training masks over a randomly-initialized Resnet50. (Top) Plots displaying
differences in performance. (Middle) Plots displaying subnetwork performance on each task. (Bottom)
Plots displaying ablated model performance on each task. Across the board, we see that masks
over random networks can produce subnetworks that achieve better accuracy on on Test Target
Subroutine than on Test Other Subroutine, but that ablating these subnetworks results in (equally)
poor performance on both of these datasets.

K Subnetwork Overlap Analysis

In this section, we analyze the overlap in the subnetworks that were discovered within the same
base model. We perform this analysis on one model, a Resnet50 trained on the Inside-Number task.
From Figure 4, we see that this model appears to exhibit structural compositionality. We analyze this
model because subnetwork masking started at the same layer for both subroutines, which allows for a
straightforward comparison of the overlap between subnetworks. All results are shown in Figure 19.

Following previous work (Csordás et al., 2021), we compute the per-layer intersection over union
(IoU) to quanitify subnetwork overlap. First, we do this for each of the three subnetworks discovered
for the Inside subroutine. See these results in Table 13. Next, we compute the same for the three
subnetworks discovered for the Number subroutine. See these results in Table 14. The Inside
subroutine gives near ceiling agreement, while the Number task exhibits much lower agreement. This
indicates that the subnetworks we uncover are somewhat noisy for the Number subroutine, but not for
the Inside subroutine. Finally, we compute the intersection of each set of subnetworks, and compute
the per-layer intersection over union between tasks. See Table 15. We see very low agreement
between tasks, especially before the final MLP. Notably, this between-task agreement is consistently
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Figure 17: Results from training masks over a randomly-initialized BERT-Small. (Top) Plots
displaying differences in performance. (Middle) Plots displaying subnetwork performance on each
task. (Bottom) Plots displaying ablated model performance on each task. Across the board, we see
that masks over random networks can produce subnetworks that achieve better accuracy on on Test
Target Subroutine than on Test Other Subroutine. Surprisingly, ablating these subnetworks still
results in better accuracy on on Test Target Subroutine than on Test Other Subroutine.

lower than both within-task agreement values for each layer. This reinforces our interpretation that
these subnetworks are organized in a modular fashion within the base models.
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LAYER IOU

BACKBONE.LAYER4.0.CONV1 0.974
BACKBONE.LAYER4.0.CONV2 0.963
BACKBONE.LAYER4.0.CONV3 0.971
BACKBONE.LAYER4.0.DOWNSAMPLE.0 0.971
BACKBONE.LAYER4.1.CONV1 0.970
BACKBONE.LAYER4.1.CONV2 0.960
BACKBONE.LAYER4.1.CONV3 0.969
BACKBONE.LAYER4.2.CONV1 0.975
BACKBONE.LAYER4.2.CONV2 0.971
BACKBONE.LAYER4.2.CONV3 0.970
MLP.MODEL.0 0.994
MLP.MODEL.2 0.989

Table 13: IoU computed over the three discovered subnetworks in for the Inside subroutine

LAYER IOU

BACKBONE.LAYER4.0.CONV1 0.370
BACKBONE.LAYER4.0.CONV2 0.236
BACKBONE.LAYER4.0.CONV3 0.264
BACKBONE.LAYER4.0.DOWNSAMPLE.0 0.257
BACKBONE.LAYER4.1.CONV1 0.287
BACKBONE.LAYER4.1.CONV2 0.208
BACKBONE.LAYER4.1.CONV3 0.218
BACKBONE.LAYER4.2.CONV1 0.197
BACKBONE.LAYER4.2.CONV2 0.129
BACKBONE.LAYER4.2.CONV3 0.162
MLP.MODEL.0 0.516
MLP.MODEL.2 0.411

Table 14: IoU computed over the three discovered subnetworks in for the Number subroutine

LAYER IOU

BACKBONE.LAYER4.0.CONV1 0.122
BACKBONE.LAYER4.0.CONV2 0.062
BACKBONE.LAYER4.0.CONV3 0.087
BACKBONE.LAYER4.0.DOWNSAMPLE.0 0.057
BACKBONE.LAYER4.1.CONV1 0.070
BACKBONE.LAYER4.1.CONV2 0.054
BACKBONE.LAYER4.1.CONV3 0.076
BACKBONE.LAYER4.2.CONV1 0.034
BACKBONE.LAYER4.2.CONV2 0.027
BACKBONE.LAYER4.2.CONV3 0.055
MLP.MODEL.0 0.237
MLP.MODEL.2 0.321

Table 15: IoU computed over the intersections of the subnetworks discovered for each task.
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Pruned Resnet50 (Test Target - Test Other)

Figure 18: Structural compositionality analysis using pruned Resnet50 models on the Number-
Contact task. We see that these results closely match those found in the main paper.
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Figure 19: The results of subnetwork overlap analysis for one base model trained on the Inside-
Number task. These results show that within-task subnetwork overlap is substantially higher than
between-task subnetwork overlap, measured by intersection over union (IoU). Within a task, we are
computing the IoU between 3 subnetworks trained for that task. Between tasks, we first take the
intersection of all 3 subnetworks trained for each task, and then compute the IoU of the intersections.
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