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ABSTRACT

The expansion of Transformers and the collection of high-quality multimodal
datasets have propelled deep neural networks to achieve unprecedented perfor-
mance in vision and language tasks. However, applying these advances is non-
trivial in real-world applications. The extensive number of parameters compli-
cates model updates, and real-world data often features a long-tailed distribution
along with noisy labels. To address the above issues, we propose to explore the
internal structure of the neural network for learning with sample relationships,
rather than just increasing the number of model parameters. Specifically, we
introduce RetFormer, a model enhanced with a multimodal knowledge base for
storing world knowledge, and a retrieval cross-fusion module designed to es-
tablish robust multimodal sample relationships by leveraging content from the
knowledge base. RetFormer establishes a robust relationship between image and
text modalities by integrating information from external knowledge bases into the
model’s decision-making process, thus overcoming the limitations of traditional
approaches on model size and datasets. Our experiments demonstrate the benefits
of integrating large-scale image-text datasets into vision tasks and exemplify the
importance of modeling the relationship between image and text modalities. We
have evaluated our approach on the task of long-tailed recognition and learning
with noisy labels and have shown that it achieves state-of-the-art accuracies.

1 INTRODUCTION

The conjunction of large-scale Transformers with extensive pre-trained datasets has met with sig-
nificant success in both vision and NLP domains. Large language models such as the PaLM se-
ries(Chowdhery et al., 2023; Anil et al., 2023), GPT series(Brown et al., 2020; Ouyang et al.,
2022), and LLaMA series(Touvron et al., 2023a;b), along with multimodal large language mod-
els like Gemini(Team et al., 2023), GPT-4(Achiam et al., 2023), and Claude 3(Anthropic, 2024),
have demonstrated state-of-the-art performance across various downstream tasks, owing to their ro-
bust capabilities in understanding, reasoning, and generation. According to the scaling law(Kaplan
et al., 2020), extensive multimodal and multilingual datasets such as WIT(Srinivasan et al., 2021),
LAION(Schuhmann et al., 2022), and DataComp(Gadre et al., 2024) have the same importance as
large Transformers. Nevertheless, this approach is critically dependent on the collection of large-
scale training data samples and the increase of model parameters, which turns out to be non-trivial
in real-world applications.

In the training of large-scale Transformers, world knowledge is implicitly encoded within the
vast number of model parameters, which can exacerbate certain challenges inherent in the cur-
rent machine-learning paradigm. These challenges include difficulties in model updating, limited
interpretability, and scalability issues. Furthermore, real-world datasets invariably encounter two
principal problems: (a) noisy labels resulting from the ambiguity of the data itself and annotator
errors, (b) class imbalance arising from natural phenomena. These issues often occur simultane-
ously, complicating the estimation of the true distribution of the dataset. The quest for robust deep
representation learning through the exploration of sample relationships in scenarios of data scarcity
or interference from noisy labels has garnered significant interest from the research community, par-
ticularly for tasks where there is a lack of high-quality training data to ensure generalization, such as
learning with noisy labels and long-tailed recognition. While previous research(Zhang et al., 2023;
Wei et al., 2021) efforts aimed at addressing these challenges have made significant contributions,
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An indigo bunting with light blue 
feathers and brown wings.

A blue grosbeak, a type of bird.

.... The beak is short and conical.

Low-Level / Concrete / Posteriori High-Level / Abstract / Priori

Backbone

Backbone

Retrival
Cross-fusion 

Module

Image Image

ClassClass

(a) Previous Methods (b) ours

Figure 1: Compare previous methods with ours and the knowledge contained in the different
retrieved content. (a) Previous methods focus only on image modalities and have a large number
of model parameters, while (b) our method retrieves multimodal information from knowledge base.
(c) and (d) give intuitive explanations for the correlations and differences between the image and
text modalities. (e) describes useful knowledge that can be retrieved from the knowledge base.

most of them have been limited to image-centered solutions(Chawla et al., 2002; Khan et al., 2017;
Wang et al., 2017), and the integration of retrieval-augmented into the field of vision recognition
also remains an underexplored area. It remains a formidable challenge to devise a unified, flexible,
and potent approach that can investigate the relationships among samples for robust representation
learning without resorting to the simplistic strategy of merely increasing the number of model pa-
rameters.

As illustrated in Figure 1 (c)(d)(e), we search for images and the corresponding description text
related to the query image. When we search for samples of the same class, the image modality
presents concrete low-level invariant features (e.g., shape, color, texture), and the textual modality
usually contains much high-level and abstractly relevant information. When we search for different
classes of samples, there may be shared knowledge transfer in the image and text modalities with
the query image. There may also be optional semantic information in the textual modality when
we search for noise labels. In addition, textual descriptions are a priori knowledge that can be
summarized by experts, which may be useful when there are not enough images to learn a general
class representation for recognition.

To address the aforementioned issues, we propose an alternative perspective based on the above
insight. As shown in Figure 1 (b), instead of statically compiling world knowledge into model
weights, we construct an external image-text pair knowledge base for storing world knowledge
and then utilize a retrieval module to identify and obtain relevant knowledge from a predefined
knowledge base, modeling the effective relationships between image and text modalities, which
is then used to enhance the model’s predictive power. We overcome the limitations of traditional
methods on model size and training datasets by seamlessly integrating information from external
databases into the model’s decision-making process. This semi-parametric approach enables the
model to incorporate external knowledge to improve its understanding and predictive capabilities.

To evaluate our approach, we focus on long-tailed recognition and learning with noisy labels, which
are challenging and meaningful tasks. We conduct extensive experiments on three datasets: CIFAR-
100-LT(Cao et al., 2019b), ImageNet-LT(Liu et al., 2019b), and a real-world noisy dataset WebVi-
sion(Li et al., 2017).

In conclusion, our primary contributions are fourfold:

(1) We analyze and highlight the interplay and distinctions between image and text modalities within
the context of retrieval augmentation in vision, noting that the text modality can complement re-
trieval content, which aids in long-tailed recognition and learning with noisy labels.

(2) We introduce a new image-text retrieval-augmented framework called RetFormer, which uti-
lizes a small external knowledge base to model the relationship between text and image knowledge,
thereby enhancing the performance of the model without incurring significant computational over-
head.
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(3) We validate RetFormer through extensive experimentation on CIFAR-100-LT, ImageNet-LT, and
WebVision, demonstrating its superior performance over existing state-of-the-art methods.

(4) We provide an intuitive explanation for the effectiveness of this approach from a theoretical
perspective based on gradient propagation.

2 RELATED WORK

Data Scarcity Learning. Learning with imperfect training data has proven to be a very challenging
task and has been explored in a variety of data-scarce tasks. Long-tailed recognition is one of
the key problems. Most of the solutions are variants of the core idea of “adjustment” (e.g., re-
sampling(Chawla et al., 2002; Han et al., 2005; He & Garcia, 2009), re-weighting(Cui et al., 2019;
Zhong et al., 2021)). Learning with noisy labels is another important task. The main methods
revolve around filtering noisy labels, including but not limited to correcting wrong labels(Liu et al.,
2022), reweighting examples(Ren et al., 2018), and selecting confident examples(Patel & Sastry,
2023; Wang et al., 2022). Some methods combine multiple techniques, e.g., DivideMix(Li et al.,
2020) and Sel-CL+(Li et al., 2022).

Sample Relationship. There are diverse and tight relationships between different samples, and these
relationships are widely used through various types of strategies.Mixup(Zhang et al., 2017) intro-
duces prior knowledge to the model by performing simple linear mixing between training samples.
Some approaches via investigating sample/class relationships to conduct transductive inference, e.g.,
transductive few-shot classification(Liu et al., 2018), and meta embedding(Liu et al., 2019a; Zhu &
Yang, 2020). BatchFormer(Hou et al., 2022) applied a vanilla Transformer encoder into the batch
dimension of each mini-batch to implicitly explore sample relationships during training.

Retrieval augmented in computer vision Recent approaches in computer vision perform various
tasks by retrieving from external memory. Nakata et al. (2022) store feature maps from the training
set in the memory, and perform k-NN for classification. RDM(Blattmann et al., 2022) retrieves
nearest neighbors from a memory for generative vision models. RAC(Long et al., 2022) uses only
the training dataset itself as an external source of information and extracts embeddings of relevant
text segments with the pre-trained CLIP model. MAM(Iscen et al., 2023) considers texts to be of
different importance from each other and introduces an additional dataset.

Our work is different in that we consider that both image and text modalities possess exploitable
knowledge. Therefore, we propose to make the neural network itself capable of learning multimodal
sample relationships based on the maximum inner product search algorithm. Experiments show
better robustness of our novel framework across multiple tasks.

3 METHOD

3.1 PRELIMINARIES

We consider a supervised classification problem. The model has access to an imbalanced set of N
training samples S = (xi, yi)

N
i=1, where N is the sample size, xi denotes the i-th instance and its

label yi ∈ RC , where C is the number of classes. Let the number of training data belonging to k-th
class be nk. Without loss of generality, we suppose that the classes are sorted in decreasing order,
based on the number of training data in each class, i.e., n1 ≥ ... ≥ nK . Afterward, all classes can
be recognized into two parts: head classes (referred as Gh) and tail classes (referred as Gt).

As shown in Figure 1 (a), in previous approaches, the model uses a vision encoder to map the input
image xi to a d-dimensional vector zi. The vector zi is usually converted to the class logits by a
classifier. The output of the model can be defined as:

f(xi) = h(εvis(xi)) = h(zi), (1)

The model parameters are trained by minimizing supervised loss function, such as cross-entropy, or
LACE(Cao et al., 2019a) loss when the training data is imbalanced.
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Figure 2: Overall architecture of RetFormer First, the image encoder will map the query image
to an embedding. The image embedding will go through two branches, in the first branch the em-
bedding goes through a simple MLP, in the second branch the image embedding first retrieves the
relevant information from the knowledge base and then the contribution of each part is calculated by
the retrieval cross-fusion module. The outputs of both branches are merged and trained by the same
loss function.

3.2 RETFORMER

Retrieving from an external knowledge base enables RetFormer to incorporate external knowledge
to enhance its performance. We describe the retrieval augmented classification and each of Ret-
Former’s components in detail in this section.

3.2.1 RETRIEVAL AUGMENTED CLASSIFICATION

Typically, a classification model is trained in a downstream task to make predictions considering
only the image xi in the dataset. The image xi is passed through the vision encoder to produce
image representations and ultimately output class logits by the classifier.

Retrieval augmented classification aims to train more robust and accurate models by utilizing rel-
evant information from the external knowledge base. We introduce an additional knowledge base
D = {(Ii, Ti)}Li=1, consisting of images xi and corresponding labels yi in the dataset. More specif-
ically, in addition to xi, the model prediction now depends on D. Note that D is independent of S,
which means that D is a database containing additional world knowledge, so we do not assume that
D contains the class labels of S.

For predicting the logits of a given image xi, we construct a subset of D that is most relevant to
xi for improving the performance of the network. Then, two frozen encoders εI and εT act on the
image and text in D to convert them into embeddings as Eqn. 2, where εI is vision encoder and εT
is text encoder:

EI
i = εI(Ii), E

T
i = εT (Ti), (2)

Let VD = {(EI
i , E

T
i )}Li=1 be the set of feature embeddings of each pair of instances in D. We com-

pute the cosine similarity between zi and each embedding EI ∈ VD to find the k-nearest neighbors.
The top-k ranked embeddings and query image embedding are then used for the output logits:

f(xi) =
τ

2
(LI + LR) =

τ

2
(MLP (zi) + h(r(zi, VNN(zi;VD)))), (3)

Here, LI and LR are the logits based on the query image and retrieval module, respectively. MLP (·)
denotes two linear layers with a ReLU in the middle. r(·, ·) is a retrieval module and will be dis-
cussed in Section 3.2.2. VNN(zi;VD) denotes top-k ranked embeddings of zi from VD.
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3.2.2 RETRIEVAL CROSS-FUSION MODULE

The vectors in VNN are multi-classes and multi-modal, so it is important to model the relationship
between each vector in the VNN and the query vector. We propose to compute the attentional weights
between the query vector zi and the retrieved VNN to represent the above relationship. These vectors
are mapped from the CLIP encoders into the same feature space to learn the contribution of each
vector in the VNN .

First, we concatenate the vector zi with the vectors in the VNN to get image embeddings EI
NN ∈

RP×D and text embeddingsET
NN ∈ RP×D (note that the text embedding corresponding to zi is

replaced with a 0 vector to prevent data leakage). The image embeddings EI
NN is mapped to three

image matrices: query matrix QI , key matrix KI and value matrix VI by three linear transforma-
tions. The text embeddings ET

NN is mapped to three image matrices: query matrix QT , key matrix
KT and value matrix VT by three linear transformations:

QI = EI
NNWQ1,KI = EI

NNWK1, VI = EI
NNWV 1,

QT = ET
NNWQ2,KT = ET

NNWK2, VT = ET
NNWV 2,

(4)

where WQ1, WQ2, WK1, WK2, WV 1 and WV 2 ∈ RD×D.

The outputs of retrieval cross-fusion module are represented as follows:

Att(Q,K, V ) = σ(
QKT

√
d

)V,

r(zi, VNN(zi;VD)) = Att(QT ,KI , VI) + EI
NN , Att(QI ,KT , VT ) + ET

NN ,

(5)

where σ(·) denotes Softmax function. 1√
d

is the scaling factor for appropriate normalization to
prevent extremely small gradients.

Note that Eq (5) can be repeated L times, i.e. L layers.Let EI
1 , E

T
1 = r(zi, VNN(zi;VD)) denote the

output of the first layer.The output after L layers can be computed as:

EI
L = Att(QT

L−1,K
I
L−1, V

I
L−1) + EI

L−1,

ET
L = Att(QI

L−1,K
T
L−1, V

T
L−1) + ET

L−1,
(6)

In addition, we add Position embedding and class token references to ViT’s(Dosovitskiy et al., 2020)
setting prior to the input. Similar attention mechanisms are used for different purposes, such as
feature fusion(Chen et al., 2021). Our experiments show that this attention mechanism is a good
choice for retrieval augmented, significantly outperforming other baselines.

3.2.3 KNOWLEDGE BASE

The knowledge base is an important factor in the performance of the retrieval module, and we will
now describe in more detail the datasets that make up the knowledge base. The impact of different
choices on performance will be evaluated.

Downstream dataset. Building a knowledge base directly using the downstream dataset is the
most straightforward option. This guarantees that for each query image, there will exist at least one
instance of the same class. The disadvantage of this choice is that most downstream datasets are not
rich enough in textual descriptions and may contain only the labels of the images.

DataComp. DataComp(Gadre et al., 2024) is a testbed for dataset experiments centered around a
new candidate pool of 12.8 billion image-text pairs from Common Crawl. We use the subset of
DataComp, which is the output of the Image-based and CLIP score baseline filter at the xlarge scale
of DataComp and comprised of 1.4B samples.

All. To integrate world knowledge, we combined all of the above datasets, and there are about 1.4
billion image-text pairs in the knowledge base.

Vectorize Knowledge base. To extract features and compress storage, We initialize the encoder
using the parameters of the CILP(Radford et al., 2021) pre-trained on DataComp-1B(Gadre et al.,
2024) and freeze the parameters to the vectorize knowledge base prior to training and validation.
This choice saves significant overhead and allows us to efficiently use in-memory datasets with up
to 1B images. We will calculate the complexity of RetFormer in detail in Section 3.2.4.
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Figure 3: Explaining RetFormer in terms of gradient propagation. Blue dashed lines represent
new gradient propagation among samples.

3.2.4 RETRIEVAL COMPLEXITY

Time complexity. We use the HNSW(Malkov & Yashunin, 2018) algorithm from the Faiss(Johnson
et al., 2019) library to perform approximate k-NN searches in our experiments. It has sub-linear
complexity, which means that for an in-memory dataset of N elements, it takes O(logN). In fact, the
time consumed for querying in a 1B-element knowledge base is on the order of milliseconds. Since
the encoder parameters are frozen, the results of one precomputation can be reused in subsequent
training and validation, which also saves a lot of computation.

Spatial complexity. We use a fixed vision encoder in our experiments, so we pre-calculated and
saved the results for all k-NN, thus saving storage space. For example, ImageNet-LT contains
115.8K images from 1000 categories. In our experiments, you need about 30GB of extra space
for training.

3.2.5 A GRADIENT VIEW OF RETFORMER

To better understand how RetFormer helps representation learning by exploring sample relation-
ships, we also provide an intuitive explanation from the perspective of gradient propagation. Intu-
itively, without the retrieval module, all losses would only propagate gradients over the correspond-
ing samples and categories, i.e., one-to-one. Whereas, in our approach, there are gradients on other
samples in the retrieval module, as shown in Figure 3. Specifically, given a sample x0 with a re-
trieval subset DNN = {(I2i−1, T2i)}ki=1 of size k and corresponding losses L0, L1, Li, ..., L2×k,
we have:

∂L0

∂x0
:=

∂L0

∂x0
+

2k∑
i=1

∂Li

∂x0
. (7)

That is, the retrieval module brings in new gradient terms ∂Li

∂x0
. From a perspective of gradi-

ent optimization, Li also optimizes the network according to samples (I2i−1, T2i)}ki=1, which
is significantly different compared to the model without the retrieval module. In other words,
(I2i−1, T2i)}ki=1 can be thought of as virtual samples of yi, where yi is the label of xi. We be-
lieve that the retrieval module can be considered as a data-dependent augmentation. The retrieval
module implicitly extracts virtual samples and models multimodal inter-sample relationships by
means of samples in their neighborhood distributions. From this perspective, the retrieval module
implicitly adds virtual samples for each label yi by modeling the relationship between samples in
a k-NN search. Virtual samples are useful for tail classes because these classes lack samples. Pre-
vious approaches(Balaji et al., 2018; Zhu et al., 2018) have shown that data augmentation helps in
long-tailed recognition and learning with noisy labels.

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION DETAILS

We focus on two different image classification tasks: long-tailed recognition and learning with noisy
labels. We now describe the downstream datasets we used for each task.

6
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Table 1: Test top-1 accuracy (%) on CIFAR-100-LT with varying imbalance ratios. Retformer
outperforms prior arts when using a similar backbone network. Pre-trained model from ImageNet-
21K has several classes related to CIFAR-100(Krizhevsky et al., 2009), which potentially leads to
data leakage.

Method Extra Data Backbone imbalance ratio
100 50 10

Training from scratch

BCL(Zhu et al., 2022) × ResNeXt-50 51.93 56.59 64.87
GLMC(Du et al., 2023) × ResNeXt-50 55.88 61.08 70.74
SURE(Li et al., 2024) × ResNet32 51.60 58.57 71.13

Fine-tuning pre-trained model

LiVT(Xu et al., 2023) × ViT-B/16 58.2 82.0 69.2
BALLAD(Ma et al., 2021) ✓ ViT-B/16 77.8 - -

PEL(Shi et al., 2023) ✓ ViT-B/16 80.3 82.0 83.8
Ours ✓ ViT-B/16 81.4 83.0 84.5

Fine-tuning pre-trained model from ImageNet-21K

LPT(Dong et al., 2022) ✓ ViT-B/16 89.1 90.0 91.0
PEL(Shi et al., 2023) ✓ ViT-B/16 89.1 90.2 91.3

Long-tailed Learning. We use two datasets for Long-tailed learning: CIFAR-100-LT and
ImageNet-LT. The CIFAR-100-LT is derived from the CIFAR-100(Krizhevsky et al., 2009) with
constructed imbalance ratios including 10, 50, and 100. ImageNet-LT has 1000 classes, each with a
number of training images ranging from 5 to 1280. It is created by acquiring a subset of the original
ImageNet dataset, so the number of images per class follows a long-tailed distribution.

Learning with noisy labels. For Learning with noisy labels. We trained RetFormer on WebVision
and tested on the WebVision and ILSVRC12 validation set. WebVision contains 2.4 million images
crawled from the website using the 1000 concepts shared with ImageNet ILSVRC12. Following the
“mini” setting in (Ma et al., 2020), we take the first 50 classes of the Google resized image subset.
We then test the trained network on the same 50 classes of the WebVision and ILSVRC12 validation
set.

Implementation details. To avoid data leakage, we initialized the vision encoder using the ViT-
B/16 parameters of CILP pre-trained on DataComp-1B instead of ImageNet-21K. Unless otherwise
stated, training lasted for 25 epochs with a learning rate of 0.0005 and batch size of 256. the learning
rate followed a 1-epoch warm-up schedule and then decreased at each epoch using a cosine decay
schedule. We use the Adam optimizer(Kingma & Ba, 2014) with a weight decay of 0.1. we also
use label smoothing(Szegedy et al., 2016) and Mixup(Zhang et al., 2017) during training to prevent
overfitting and improve model generalization. For the attention module, we use L = 4. We retrieve
k = 32examples from memory unless otherwise stated.

4.2 RESULTS ON CIFAR-100-LT

Table 1 shows the results for CIFAR-100-LT. The results clearly show that RetFormer outperforms
other methods including PEL, LiVT, BALLAD, and various ab initio training methods. Our method
is the best among all methods that use extra data, demonstrating the potential of retrieval-augmented
in vision tasks. The advantage of our method is more obvious when the dataset is unbalanced, which
is due to the fact that the retrieval module makes the model focus on the tail classes appropriately.
In addition, we do not compare models using ViT pre-trained on the ImageNet-21K dataset due to
data leakage that would introduce unfair comparisons.

4.3 RESULTS ON IMAGENET-LT

We compare our method with the state-of-the-art methods on ImageNet-LT. Table 2 illustrates the
top-1 accuracy of existing methods on ImageNet-LT. Note that the pre-training of ViT-B/16 is dif-
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Table 2: Test top-1 accuracy (%) on ImageNet-LT. The best rusults are in bold for comparison.
Partial numerical results come from Iscen et al. (2023).

Method Extra Data Backbone Many-shot Med-shot Few-shot All

Training from scratch

PaCo(Cui et al., 2021) × ResNext-101 68.2 58.7 41.0 60.0
LiVT(Xu et al., 2023) × ViT-B/16 73.6 56.4 41.0 60.9

Fine-tuning pre-trained model

BALLAD(Ma et al., 2021) × ViT-B/16 79.1 74.5 69.8 75.7
VL-LTR(Tian et al., 2022) ✓ ViT-B/16 84.5 74.6 59.3 77.2

PEL(Shi et al., 2023) ✓ ViT-B/16 81.3 77.4 73.4 78.3
RAC(Long et al., 2022) ✓ ViT-B/16 80.9 76.0 67.5 76.7
MAM(Iscen et al., 2023) ✓ ViT-B/16 80.6 77.5 74.5 78.3

Ours ✓ ViT-B/16 85.0 80.9 76.8 81.9

Table 3: Top-1 and top-5 test accuracy on WebVision and ImageNet validation sets. Partial numeri-
cal results come from Zhang et al. (2023).

Train mini-WebVision
Validate WebVision ILSVRC12
Method Top1 (%) Top5 (%) Top1 (%) Top5 (%)

HAR(Cao et al., 2020) 75.5 90.7 70.3 90.0
RoLT+(Wei et al., 2021) 77.64 92.44 74.64 92.48
NGC(Wu et al., 2021) 79.16 91.84 74.44 91.04

RCAL+(Zhang et al., 2023) 79.56 93.36 76.32 93.68
Sel-CL+(Li et al., 2022) 79.96 92.64 76.84 93.04

Dynamic Loss(Jiang et al., 2023) 80.12 93.64 74.76 93.08
Ours 81.7 94.1 77.3 93.2

ferent between the methods. RAC and MAM use the ViT-B/16 vision encoder pre-trained on the
JFT-3B(Zhai et al., 2022) and WebLI(Chen et al., 2022). BALLAD, VL-LTR, and PEL use the same
ViT-B/16 pre-trained with CLIP as our method.

We see that VL-LTR achieved the high accuracy in Many-shot. However, our method achieved the
overall highest accuracy due to the proper focus on the tailed classes. Our method outperforms other
methods that also utilize extra data. RAC and MAM use retrieval-augmented as well, but they only
consider the relationships between image modalities, which leads to suboptimal performance.

4.4 RESULTS ON WEBVISION

Table 3 shows the results on WebVision. It can be seen that our method achieves the best results on
the top 1 accuracies on both the WebVision validation set and the ImageNet ILSVRC 12 validation
set compared to other state-of-the-art methods. RCAL uses representations learned from unsuper-
vised comparative learning, restores the underlying representation distribution, and then samples
data points to balance the classifier.RCAL+ combines semi-supervised learning algorithms, result-
ing in slightly higher top5 accuracy on ImageNet than our approach.

4.5 ABLATION STUDY

In this section, we provide an in-depth analysis of RetFormer, where we compare the cross-fusion
module with different baselines in order to demonstrate the advantages of the cross-fusion module.
Unless otherwise stated, all settings are the same as in Section 4.1.

Baseline settings. We report the accuracy of the following baselines. CLIP zero-shot indicates the
zero-shot performance of CLIP on the dataset. CLIP full FT means fine-tuning all the parameters of
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Table 4: Comparing top-1 accuracy (%) with baselines on ImageNet-LT
Method Many-shot Med-shot Few-shot All

CLIP zero-shot 69.2 67.6 67.7 68.3
CLIP full FT 84.3 73.1 52.9 74.6

CLIP classifier FT 77.3 73.3 64.2 73.6
Ours w/o text 81.3 74.8 65.9 76.0

Ours w/o image 83.1 76.9 68.4 78.1
Ours w/ FE 79.3 79.0 74.6 78.6

Ours 85.0 80.9 76.8 81.9
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Figure 4: Ablation study on ImageNet-LT. Left: We show the effect of different k on RetFormer.
Right: We show the impact of building a knowledge base with different datasets, we set k = 32 in
this experiment.

CLIP directly on the training set. CLIP classifier FT means fine-tuning only the parameters of the
classifier. Ours w/o text will retrieve only similar images and ignore the corresponding descriptive
text. Ours w/o image will retrieve only similar images but input only the corresponding descrip-
tive text. In these two settings, our cross-fusion module will degenerate into a vanilla transformer
encoder. Ours w/ FE means that the parameters of the image encoder are frozen during training.

Table 4 demonstrates the results of the ablation study. The results show that our retrieval module can
effectively improve the accuracy of the tail class. This can be proved by the performance of CLIP
full FT. On the other hand, retrieving the image alone gives a small performance improvement, while
retrieving the text corresponding to the image improves the overall accuracy. The performance of
Ours w/ FE is explained in Section 3.2.5.

Effect of k. The impact of k on model performance cannot be ignored. This hyperparameter controls
the number of samples retrieved from the knowledge base. As illustrated in Figure 4 (left), we see
that the performance gradually increases up to k = 32 and stabilizes thereafter. The performance
of Many-shot decreases instead as k increases, which may be due to the fact that the sample size of
Many-shot is sufficient for the model to find the decision boundary, and the noise labels introduced
by too large k reduces the performance instead. The sample size of Few-shot is gradually stabilized
as k increases, which is consistent with our theoretical analysis in Section 3.2.5.

Impact of Knowledge base. We will continue to analyze the impact of selecting different datasets to
build a knowledge base on model performance. Figure 4 (right) shows the performance of building
a knowledge base using different datasets. In this experiment, we set k = 32. we see that the
performance of the model gradually increases as the size of the knowledge base increases. Among
them, the rise of the Few-shot accuracy is greater, which is in line with our theoretical analysis.

Index ablations. We examine the effect of the index type and recall on RetFormer’s performance
and speed in Table 5. To quantify error induced by an approximate index, we include the accuracy
on the index content itself in addition to the validation accuracy. We observe that the drop in ac-
curacy due to use of an approximate (HNSW) instead of exact k-NN is also minor, but comes with
a significant (3×) speedup on large index’s. In summary, the choice of HNSW becomes critical to
ensure lookup time does not bottleneck training.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Index ablations on ImageNet-LT. Recall represents the recall rate of the approximate
k-NN algorithm under different settings. QT indicates Query Time.

Index Type Distance Recall Many-shot Med-shot Few-shot All QT (ms/sample)

Exact Cosine 1.00 85.0 80.9 76.8 81.9 23.34
HNSW Cosine 0.97 85.1 80.7 76.5 81.8 7.69
HNSW Cosine 0.91 84.8 79.9 74.9 81.1 5.29
HNSW Cosine 0.82 84.2 79.0 73.1 80.2 3.47
HNSW Cosine 0.65 83.1 77.7 69.7 78.7 2.41
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Figure 5: Qualitative Example. We visually demonstrate how the retrival cross-fusion module
copes with tailed classes. Query images of tailed classes are shown on the left. The k-NN images
from the knowledge base are shown on the right and sorted from left to right. We display the
attention weight assigned to each k-NN above the corresponding image.

Qualitative examples. We present some of the qualitative examples in Figure 5. We observed
that our method assigns higher attention weights to both relevant images and text in the k-NN list,
indicating that RetFormer can capture effective relationships from two different modalities. We
found that even in the absence of any relevant images, our method still benefits from related shared
knowledge.

5 CONCLUSION

In this work, we introduce RetFormer, a new multimodal retrieval-augmented vision language
framework for long-tailed recognition and learning with noisy labels. We emphasize that the image
and text modality of retrieved instances have implicit intrinsic relationships, and propose to enable
deep neural networks themselves with the ability to explore these sample relationships. We propose
a simple, but effective, retrieval cross-fusion module that learns multimodal sample relationships
and computes their contributions. Extensive experiments on a variety of long-tailed recognition and
learning with noisy labels benchmarks validate that our approach works better than well-designed
vision-based methods.
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