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Abstract

This paper considers online convex optimization with hard constraints and analyzes
achievable regret and cumulative hard constraint violation (violation for short). The
problem distinguishes itself from online convex optimization with soft constraints,
where a violation at one round can be compensated/cancelled by a conservative
decision at a different round. We propose a RECtified Online Optimization al-
gorithm (RECOO) and consider two settings: fixed constraints and adversarial
constraints. Both settings have been considered in the literature. Compared with
existing results, RECOO achieves the best of two worlds and beyond. For the
fixed-constraints setting, RECOO achieves O

`
?
T
˘

regret and Op1q violation,
where T is the learning horizon. The best known results in this case are Op

?
T q

regret and O
`

T 1{4
˘

violation. For the adversarial-constraints setting, it guarantees
Op
?
T q regret and OpT 3{4q violation, which match the best existing results. When

the loss function is strongly convex, RECOO can guarantee Oplog T q regret and
Op1q violation for fixed constraints, and Oplog T q regret and Op

?
T log T q viola-

tion for adversarial constraints. Both these results are order-wise better than the
existing bounds. The regret and violation bounds mentioned above use the best
fixed decision in hindsight as the baseline. This paper further considers a dynamic
baseline where the comparator sequence is time-varying. This paper shows that
RECOO not only improves the existing bounds for the fixed-constraints setting
but also for the first time, establishes dynamic regret and violation bounds for
the adversarial-constraints setting. Our experiment results confirm that RECOO
outperforms several existing algorithms for both fixed and adversarial constraints.

1 Introduction

Online convex optimization (OCO) is a general framework for modelling and studying online decision-
making in uncertain environments [24, 10, 21], where the learner adapts its decisions to minimize a
loss function or to maximize a utility function when interacting with the environment in real-time.
OCO has a broad range of applications such as online advertising [18, 3], resource allocation in
network systems [9, 2, 33], load balancing in queueing systems [13, 15], and personalized healthcare
[36, 26], etc. Specifically, given an unknown convex loss function ftp¨q, the learner makes decision
xt at each round to minimize the total loss over T rounds, i.e. minxPX

řT
t“1 ftpxtq, where the loss
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of decision xt is revealed after xt is executed. In practice, the decisions are often subject to a variety
of operational constraints. For example, in online advertisement systems, users, who submit bids to
advertise their items in order to maximize their click-through-rates, often have a weekly or monthly
budget; and in a patient onboarding system, the hospital assigns an incoming patient to a medical
unit to optimize the quality of treatment subject to personnel and medical resource constraints. To
consider these applications, we study constrained online convex optimization (COCO) with gtp¨q
being a convex constraint function and gtpxtq ď 0 being the constraint at round t. In COCO, the
learner aims at minimizing the total loss while keeping the constraint violation to its minimum.

One possible method to satisfy the constraints is to project the decision xt into the feasible set
at each round [10]. However, such projection may not be possible when the constraints gtp¨q are
adversarial and unknown before hand. Even if gtp¨q is known before hand, projection-based methods
(e.g., projected online gradient descent) may require heavy computation when gtp¨q is a complicated
function because it is equivalent to solving a constrained quadratic optimization problem [12, 17, 34].
This has motivated projection-free online learning methods such as the online Frank-Wolfe algorithm
[12] where the projection operator at each round is by a linear programming with the exact same
constraint functions. Recently, a sequence of studies have considered COCO with soft constraints,
where the constraints are allowed to be violated at some rounds as long as they are satisfied in the
long term [17, 14, 20, 32, 25, 5, 4, 34, 27] (in other words, the severity of constraint violation is
evaluated based on

ř

t gtpxtq). We call them soft constraints because the constraint violation at one
round could be compensated in a different round. In other words, a decision sequence might have
zero constraint violation based on the metric despite violating the constraint(s) at almost every round.
For example, consider a decision sequence such that tgtpxtqu “ t´1000, 1, 1, 1, . . . , 1, 1u with 1000
ones. For such a sequence, we have

řτ
t“1 gtpxtq ď 0 for all τ ď T, but the constraint is violated at

all rounds except the first round. While some constraints such as budget or fairness constraints are
naturally soft constraints, stronger notions of constraint and constraint violation are needed for other
applications, in particular, for safety-critical applications. In this paper, we consider a stronger notion
of constraint violation as in [35, 30, 31]

VpT q :“
T
ÿ

t“1

g`t pxtq, (1)

where that the operator p¨q` “ maxp¨, 0q is imposed at every round and all violations during the
decision process are added up. We call this hard constraint and the metric cumulative hard constraint
violation. If a decision sequence has a small VpT q, it implies the constraints are satisfied most of the
time during the learning. For example, consider the same example, VpT q “ 1000 instead of 0 under
this stronger notion of constraint violation. In this paper, we consider the following two settings:

• Fixed constraints gtpxq “ gpxq,@t, where the constraint function remains the same over time
but is not necessarily known to the learner. Note the setting of known and fixed constraints in
[14, 17, 30, 34] is a special case of ours.

• Adversarial constraints gtpxq, where the constraint function gtpxq is unknown when making
decision at round t and can be arbitrarily and adversarially chosen, as in [25, 20, 31].

We will show that RECOO is a unifying algorithm that achieves small regret and violation in both
settings. Next, we summarize our main contributions and compare them with the most related works.

1.1 Main contributions

Algorithm: This paper develops a RECtified Online Optimization algorithm, called RECOO, for
COCO-Hard (COCO with hard constraints). RECOO is a unifying algorithm for both fixed and
adversarial constraints. By introducing rectifiers in both “decision-making" and “penalty update"
components, RECOO maintains a minimum penalty price for constraint violation and encourages
conservative/pessimistic decisions, which is the key to minimizing the cumulative hard constraint
violation.

Regret and violation bounds: We first consider the best fixed decision in hindsight as the baseline
(also called the static baseline). The main theoretical results are summarized below.

• For fixed constraints, RECOO achieves Op
?
T q regret and Op1q violation for convex loss

functions, and Oplog T q regret and Op1q violations for strongly-convex loss functions.
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• For adversarial constraints, RECOO achieves Op
?
T q regret and OpT 3{4q violation for con-

vex loss functions, and Oplog T q regret and Op
?
T log T q violation for strongly convex loss

functions.

We then consider a dynamic baseline where the comparator is time-varying with path length PT and
establish the following results.

• For fixed constraints, RECOO achieves Op
?
PTT q regret and Oplog T q violation, where PT is

the path length of the feasible comparator sequence defined by PT “
řT´1
t“1 }yt`1 ´ yt} with

gtpytq ď 0,@t P rT s as in [37, 30].

• For adversarial constraints, RECOO achieves O
`

PT
?
T
˘

regret and OpT 3{4q violation.

The comparison with most related works are summarized in Tables 1 and 2, from which we can see
that RECOO achieves and improves the state-of-the-art results for both settings (“N/A" means no
results to the best of our knowledge). Below are a few highlights we would like to mention:

• For fixed constraints and the static baseline, RECOO not only improves the results in [30] but
also answers a conjecture in [30] that Op1q violation may be achievable under Slater’s condition
(the condition holds when there exist a positive ε ą 0 and x P X such that gtpxq ď ´ε,@t P rT s).
We proved that the conjecture is true even without Slater’s condition.

• For adversarial constraints, the static baseline, and strongly convex loss functions, RECOO
reduces the OpT cq regret and OpT 1´c{2q violation in [31] to Oplog T q and Op

?
T log T q,

respectively.

• For fixed constraints and the dynamic baseline, RECOO improves the violation from Op
?
T q in

[30] to Oplog T q, while maintaining the same regret bound.

• For adversarial constraints and the dynamic baseline, RECOO achieves O
`

PT
?
T
˘

regret and
OpT 3{4q violation, which are the first regret and violation bounds in this setting.

Reference Loss Function Regret, Violation Dynamic Regret, Violation
[35] Op

?
T q, OpT 3{4q N/A

[30] Op
?
T q, OpT 1{4q Op

?
PTT q, Op

?
T q

RECOO
Convex

Op
?
T q, Op1q Op

?
PTT q, Oplog T q

[35] Oplog T q, Op
?
T log T q N/A

[30] Oplog T q, Oplog T q Op
?
PTT q, Op

?
T q

RECOO
Strongly Convex

Oplog T q, Op1q Op
?
PTT q, Oplog T q

Table 1: Our results and related work for fixed constraints.

Reference Loss Function Regret , Violation Dynamic Regret , Violation
[31] Op

?
T q , OpT 3{4q N/A

RECOO Convex
Op
?
T q , OpT 3{4q OpPT

?
T q , OpT 3{4q

[31] OpT c{2q , OpT 1´c{2q N/A
RECOO Strongly Convex

Oplog T q , Op
?
T log T q OpPT

?
T q , Op

?
T log T q

Table 2: Our results and related work for adversarial constraints.

Analysis: The key idea behind these results is the rectified penalty imposed when making decisions,
which enable us to develop a simple yet effective self-bounding relation that quantifies the trade-off
between the regret and the cumulative hard constraints. The analysis is tailored for the cumulative
hard constraints and is different from the drift-plus-penalty method used in [30, 31, 34], where the
constraint violations have been established by bounding the dual variables (also called virtual queues).

1.2 Related work

COCO has been studied in the literature [17, 25, 20, 16, 6, 22, 35, 30, 31]. We have already presented
a detailed comparison with the existing results on COCO-Hard. We next review some of recent
results on COCO-Soft, COCO with soft constraints.
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COCO-Soft with fixed constraints: [17] studies COCO-Soft and proposed an algorithm that
achieves Op

?
T q regret and OpT 3{4q violation. This result has been extended in [14] to charac-

terize the regret-violation tradeoff, in particular, the proposed algorithm achieves OpTmaxtc,1´cuq

regret and OpT 1´c{2q violation, where c controls the trade-off. Assuming Slater’s condition holds,
the algorithm in [34] achieves Op

?
T q regret and Op1q violation and is designed based on a powerful

“drift-plus-penalty” method, which inspires some of the design in RECOO.

COCO-Soft with adversarial constraints: Adversarial constraints are more difficult to satisfy but
have been considered in the literature [25, 20, 16, 6, 22]. For COCO-Soft with adversarial constraints,
the authors in [25] developed an online mirrored descent type algorithm that achieves Op

?
T q regret

and OpT 3{4q violation. Later, [6, 16] generalized the baseline in [25] and still achieve Op
?
T q regret

and OpT 3{4q violation. With Slater’s condition, [20] presents an online gradient descent algorithm
based on the drift-plus-penalty method [19], which achieves Op

?
T q regret and Op

?
T q violation.

[22] extended the result to an online optimization with sub-modular losses. Note the key to reducing
the constraint violation in these works is a refined bound on virtual queues (or dual variables) using
the Lyapunov drift method under Slater’s condition. It remains open that whether OpT 3{4q violation
can be reduced with adversarial constraints (soft or hard) while keeping Op

?
T q regret without

Slater’s condition.

2 COCO-Hard

In this section, we formally define COCO-Hard. Consider the following online convex optimization
problem: At each round t P rT s, the learner makes decision xt and then observes the loss ftpxtq
and constraint function gtp¨q after the decision is executed. The goal of the learner is to generate
a decision sequence tx1, x2, . . . , xT´1, xT u to minimize the total loss

řT
t“1 ftpxtq and the hard

constraint violation
řT
t“1 g

`
t pxtq.

To quantify the performance of an online convex optimization algorithm for COCO-Hard, we will
first compare it with a static baseline, called the best fixed decision in hindsight, which is the solution
to the following offline COCO.

Offline COCO The offline COCO is formulated as follows

min
xPX

T
ÿ

t“1

ftpxq subject to: gtpxq ď 0,@1 ď t ď T, (2)

where X is a “simple” convex set (e.g., positive quadrant or probability simplex), tftp¨qut are convex
loss functions and tgtp¨qut are convex constraint functions. The optimal solution x˚ to offline COCO
is called the best single decision in hindsight, a widely used baseline for COCO [10, 17, 25, 32].

Based on offline COCO, the regret and constraint violation of an online algorithm are defined below.

Regret and cumulative hard constraint violation (or violation for short)

RpT q :“
T
ÿ

t“1

ftpxtq ´
T
ÿ

t“1

ftpx
˚q, (3)

VpT q :“
T
ÿ

t“1

g`t pxtq. (4)

3 RECOO: A rectified online optimization algorithm

We present RECOO, an online optimization algorithm with the rectified decision and penalty update.

RECOO — A Rectified Online Optimization Algorithm

Initialization: x0 P X , Qp0q “ 0, f0pxq “ g0pxq “ 0, @x P X and learning rates αt, ηt, γt.

For t “ 1, ¨ ¨ ¨ , T,
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• Set: ĝ`t´1pxq “ γt´1g
`
t´1pxq.

• Rectified decision: find the optimal solution of xt by solving:

xt “ arg min
xPX

x∇ft´1pxt´1q, x´ xt´1y `Qpt´ 1qĝ`t´1pxq ` αt´1}x´ xt´1}
2

• Observe: value ∇ftpxtq and constraint function gtp¨q.
• Rectified penalty update: update the estimates of penalty variables Qptq as follows:

Qptq “ max
`

Qpt´ 1q ` ĝ`t pxtq, ηt
˘

.

In RECOO, the learning rates αt, ηt, γt are chosen differently depending on whether the loss function
is convex or strongly convex, but are oblivious to the type of constraints (fixed or adversarial). The
choices of learning rates can be found in the theorem statements.

We explain the intuition behind RECOO and the importance of the “rectifiers”. The Lagrange function
of the offline optimization problem (2) is defined to be

Lpλ, xq :“
T
ÿ

t“1

Ltpλt, xq :“
T
ÿ

t“1

ftpxq ` λtgtpxq,

where tλtu are the dual variables associated with the constraints in (2).

Since we have no prior knowledge of ftp¨qwhen making decision xt,we estimate it with the first-order
approximation at xt´1 based on the historical information as follows

f̂tpxq “ ft´1pxt´1q ` x∇ft´1pxt´1q, x´ xt´1y.

Moreover, we replace the original constraint function gtp¨q with ĝ`t´1p¨q and the dual variables λt
with Qpt´ 1q such that Qpt´ 1qĝ`t´1pxq is a rectified approximator of λtgtpxq. We also added the
the regularization (or smooth) term αt}x´ xt}

2 that helps the stability of the algorithm. Note this
design is related to penalty-based proximal optimization where we aim to minimize an approximated
ftpxq w.r.t. proximal operator on the “old” rectified function ĝ`t´1pxq.

In the penalty update of Qptq, we first rectify the original constraint function gtp¨q with ĝ`t p¨q and add
it toQpt´1q such that penalty increases when violation occurs in each round. Further we rectifyQptq
with a round-dependent constant ηt to impose a “minimum” penalty price. The design of rectified
penalty update induces conservative decisions in the decision-making step to minimize constraint
violation. Note that it is different with the traditional primal-dual algorithm that does not rectify
the constraint violation and impose a minimum penalty price, and when the price (dual variable)
is zero, the algorithm can take very aggressive decisions that lead to large hard violation. This is
not a problem when primal-dual algorithm is used as a numerical method for solving a constrained
optimization problem, but leads to overly aggressive decisions and large violation when applying it to
COCO. For a similar reason, RECOO rectifies the amount of violation gtpxq in the decision-making
step so the violation does not become negative to prevent overly optimistic decisions. We will see
that the rectifiers in both decision-making and penalty update leads to an upper bound on “regret +
violation” as a whole (Lemma 1), which further leads separate upper bounds on regret and (hard)
constraint violation. This approach is different from the primal-dual optimization that quantifies the
constraint violation indirectly by bounding the dual variables/virtual queues.

Finally, we comment that our algorithm only needs to solve an “almost” unconstrained optimization
problem (X is usually a simple set like the box constraints). Therefore, we might find its close-form
with the inverse operation of the function by taking “gradient “ zero” or gradient-based methods
are sufficient to find the minimizer. For example, we could use the accelerated proximal-gradient
method in [23] to find the minimizer with a linear and dimension-free converge rate. Our algorithm
is more efficient than the projection online gradient descent algorithm [38] and online Frank-Wolfe
algorithm [12], and has similar complexity with [30, 34]. Moreover, our algorithm does not assume
any information on the type of constraints apriori and projection-based methods are only feasible
when the constraint set is available beforehand.

We next analyze the regret and violation of RECOO as defined in (3) and (4) based on the following
standard technical assumptions on the feasible set, loss and constraint functions.
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Assumption 1 The feasible set X is convex with diameter D such that }x´ x1} ď D,@x, x1 P X .

Assumption 2 The loss function is convex and Lipschitz continuous with Lipschitz constant F such
that |ftpxq ´ ftpx1q| ď F }x´ x1},@x, x1 P X ,@t.
Assumption 3 The constraint function is convex and Lipschitz continuous with Lipschitz constant G
such that |gtpxq ´ gtpx1q| ď G}x´ x1},@x, x1 P X ,@t. For ease of exposition, assume g1p0q ď 0.

Note Assumption 1 implies the feasible set X is bounded. Assumptions 2 and 3 mean the loss and
constraint functions have bounded gradients. With these assumptions, we are ready to present our
main result of RECOO for both fixed and adversarial constraints.
Theorem 1 Choose αt “

?
t, ηt “

?
t, and γt “ t

1
2`ε, where ε ą 0. Under Assumptions 1-3,

RECOO algorithm achieves the following regret and constraint violation bounds:

RpT q ď
ˆ

F 2

4
`D2

˙

?
T (fixed or adversarial constraints),

VpT q ďF 2 ` FD

ˆ

1`
1

ε

˙

`D2 (fixed constraints), and

VpT q ď
ˆ

F 2 `
G2

4
` FD

ˆ

5`
1

ε

˙

` 2D2

˙

T
3
4 (adversarial constraints).

Remark 1 For fixed constraints, Theorem 1 establishes the optimal order-wise results of Op
?
T q

regret and Op1q violation since Ωp
?
T q regret is the well-known lower bound for OCO with general

convex loss and Op1q is the best one can have. For adversarial constraints, by carefully choosing the
learning rates in RECOO, we can establish a trade-off of OpT cq regret and OpT 1´c{2q cumulative
violation where c P r1{2, 1q (see details of Corollary 1 in Appendix C). Moreover, Theorem 1 suggests
that a large ε may imply small upper bounds of constraint violation. Our experiment results in Section
4 show that a small ε (e.g., 0.01 or 0.1) is sufficient to keep the violation small.

Next, we show Theorem 1 can be further improved when the loss function is strongly convex.
Assumption 4 The loss functions ftp¨q,@t, are µ-strongly convex in X for µ ą 0, i.e. ftpx1q ě
ftpxq ` xx

1 ´ x,∇ftpxqy ` µ
2 }x´ x

1}2, @x, x1 P X ,@t.

With Assumption 4, we are able to establish a Oplog T q regret whiling keeping the violation bounds
at the same or a smaller order.
Theorem 2 Choose the learning rates to be αt “ µt

2 , ηt “
?
t, γt “ t

1
2`ε,@t P rT s, where ε ą 0.

Under Assumptions 1-4, RECOO achieves the following regret and violation bounds:

RpT q ďF
2

2µ
p1` log T q (fixed or adversarial constraints),

VpT q ďF
2

µ
` FD

ˆ

1`
1

ε

˙

(fixed constraints), and

VpT q ď
ˆ

F 2

µ
`
G2

4
` FD

ˆ

1`
1

ε
`

4

µ

˙

`D2

˙

a

T p1` log T q (adversarial constraints).

Remark 2 The Oplog T q regret is a well-known result in OCO (unconstrained) for a strongly convex
loss function [11]. Therefore, for fixed constraints, our results are order-wise sharp because Op1q
violation is the best one can achieve.

Extension to a dynamic baseline

So far, the main results are against a static baseline x˚t “ x˚,@t. We next analyze the performance
of RECOO against a dynamic baseline as in [37, 30], where x˚t`1 could be different from x˚t but
with limited variation such that

řT´1
t“1 }x

˚
t`1 ´ x

˚
t } ď PT . We define the regret against the dynamic

baseline to be RdynamicpT q :“
řT
t“1 ftpxtq´

řT
t“1 ftpx

˚
t q. Without any modifications, we show that

RECOO algorithm can achieve Op
?
T p1`PT qq regret and Op1q violation in the following theorem.
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Theorem 3 Under Assumptions 1-3, let the learning rates be αt “
?
t, ηt “

?
t, γt “ t

1
2`ε,@t P

rT s, where ε ą 0. Let tx˚t u be the optimal solution to (2) with an additional constraint that
řT´1
t“1 }xt`1 ´ xt} ď PT . RECOO achieves the following bounds on the regret and cumulative

constraint violations:

RdynamicpT q ď

ˆ

F 2

2
`D2 ` 2DPT

˙

?
T ` 1 (fixed or adversarial constraints),

VpT q ďF 2 ` FD

ˆ

1`
1

ε

˙

`D2 (fixed constraints), and

VpT q ď
ˆ

F 2 `
G2

4
` FD

ˆ

5`
1

ε

˙

` 2D2

˙

T
3
4 (adversarial constraints).

Remark 3 RECOO achieves O
`

PT
?
T
˘

regret and Op1q violation for fixed constraints, which
improves O

`

PT
?
T
˘

regret and OpT 1{4q violation in [30]. Moreover, RECOO achieves O
`

PT
?
T
˘

regret andOpT 3{4q violation for adversarial constraints, which is a new result. As shown in Corollary
2 in Appendix F, combining RECOO with expert-tracking proposed in [37], we achieve O

`?
PTT

˘

regret and Oplog T q violation for fixed constraints, which improves O
`?
PTT

˘

regret and Op
?
T q

violation in [30].

Next, we provide the detailed analysis of Theorem 1. The proofs of Theorem 2 and Theorem 3 can
be found in Appendix.

3.1 Proof of Theorem 1

We first introduce a key lemma that establishes an upper bound on “regret plus violation” at each
round t, which we called self-bounding property.
Lemma 1 (Self-Bounding Property) Let x be any feasible solution to offline COCO (2) and xt be
the optimal solution returned by the RECOO algorithm. We have

ftpxtq ´ ftpxq `Qptqĝ
`
t pxt`1q ď

F 2

4αt
` αt}x´ xt}

2 ´ αt}x´ xt`1}
2 (5)

Define x˚ to be the optimal solution to offline COCO in (2) and let x “ x˚ in Lemma 1, we establish
the regret and the constant violation bounds in Theorem 1.

Proof of Theorem 1: fixed constraints

Note that Qptqĝ`t pxt`1q is nonnegative. Based on (5), we have

ftpxtq ´ ftpx
˚q ď

F 2

4αt
` αt}x

˚ ´ xt}
2 ´ αt}x

˚ ´ xt`1}
2, (6)

Qptqĝ`t pxt`1q ď
F 2

4αt
` |ftpxtq ´ ftpx

˚q| ` αt}x
˚ ´ xt}

2 ´ αt}x
˚ ´ xt`1}

2, (7)

which we will use next to establish the bounds on regret and violation.

Regret bound: We sum up inequality (6) for t “ 1, ¨ ¨ ¨ , T and have
T
ÿ

t“1

pftpxtq ´ ftpx
˚qq ď

F 2

4

T
ÿ

t“1

1

αt
`

T
ÿ

t“1

pαt ´ αt´1q}x
˚ ´ xt}

2

ď
F 2

4

T
ÿ

t“1

1

αt
`D2

T
ÿ

t“1

pαt ´ αt´1q

where the first inequality holds by dropping the last negative term and the last inequality holds by
Assumption 1. Choose αt “

?
t, we have

T
ÿ

t“1

pftpxtq ´ ftpx
˚qq ď

ˆ

F 2

2
`D2

˙

?
T .
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Violation bound: We substitute the definition of ĝ`t p¨q in (7) and have

g`t pxt`1q ď
F 2

4Qptqαtγt
`
|ftpxtq ´ ftpx

˚q|

Qptqγt
`

αt
Qptqγt

}xt ´ x
˚}2 ´

αt
Qptqγt

}xt`1 ´ x
˚}2

ď
F 2

4t
3
2`ε

`
|ftpxtq ´ ftpx

˚q|

t1`ε
`
}xt ´ x

˚}2 ´ }xt`1 ´ x
˚}2

t
1
2`ε

,

where the second inequality holds by Qptq ě ηt according to the rectified penalty update Qptq “
max

`

Qpt´ 1q ` ĝ`t pxtq, ηt
˘

. The inequality implies that

T
ÿ

t“1

g`t pxt`1q ď

T
ÿ

t“1

F 2

4t
3
2`ε

`

T
ÿ

t“1

|ftpxtq ´ ftpx
˚q|

t1`ε
`

T
ÿ

t“1

}xt ´ x
˚}2 ´ }xt`1 ´ x

˚}2

t
1
2`ε

ďF 2 ` FD `
FD

ε
`D2 (8)

where the second inequality holds by Lemma 6, which includes the detailed calculations of the three
terms above. Note that the left-hand-side of inequality (8) is not the violation because the index
mismatch (the violation at round t is g`t pxtq not g`t pxt`1q).

For fixed constraints, i.e. gtpxq “ gpxq, the inequality above implies that VpT q :“
řT
t“1 g

`pxtq ď

F 2 `FD
`

1` 1
ε

˘

`D2. We have proved the first part of Theorem 1 for the fixed constraints. Let us
continue with (8) to prove the second part of Theorem 1 for adversarial constraints.

Proof of Theorem 1: adversarial constraints

To quantify VpT q :“
řT
t“1 g

`
t pxtq for the adversarial constraints, we need to establish the rela-

tionship between g`t pxtq and g`t pxt`1q to address the index mismatch, which can be bounded by
}xt`1 ´ xt}

2 as shown in the following lemma.
Lemma 2 Under Assumptions 1-3, RECOO achieves for any β ą 0

g`t pxtq ´ g
`
t pxt`1q ď

G2

4β
` β}xt ´ xt`1}

2.

The next lemma further quantifies
řT
t“1 }xt`1 ´ xt}

2.

Lemma 3 Under Assumptions 1-3, RECOO achieves
T
ÿ

t“1

}xt`1 ´ xt}
2 ď 4FD

?
T `D2.

Take summation of this equality in Lemma 2 from t “ 1 to T, and we have
T
ÿ

t“1

`

g`t pxtq ´ g
`
t pxt`1q

˘

ď
G2T

4β
` β

T
ÿ

t“1

}xt ´ xt`1}
2

ď

ˆ

G2

4
` 4FD

˙

T 3{4 `D2T 1{4, (9)

where the last inequality holds by letting β “ T 1{4. Combining (8) and (9) completes the proof.

4 Experiments

In this section, we present synthetic and real dataset experiments for evaluating the performance of
RECOO with fixed and adversarial constraints. We compared RECOO with the algorithms in [35, 30]
for the fixed-constraints setting; with the algorithm in [31] for the adversarial-constraints setting; and
with the algorithms in [31, 32] for the real-dataset setting. All results are obtained by averaging over
500 trials and reported with 95% confidence interval.

Fixed constraints Similar to [30], we considered loss functions ftpxq “ xθptq, xy, where θptq is
time varying and unknown at round t; and the fixed constraint function Ax ď b, where x P R2,
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A P R3ˆ2 and b P R3. We chose the number of total rounds to be T “ 5, 000, and chose θptq “
rθ1ptq, θ2ptq, θ3ptqs, where θ1ptq „ Up´t1{10,`t1{10q; θ2ptq „ Up´1, 0q when t P r1, 1500s Y
r2000, 3500s Y r4000, 5000s and θ2ptq P Up0, 1q otherwise; and θ3ptq “ p´1qµptq where µptq is
a random permutation of vector r1 : 5000s. Let X “ tx|0 ď x1 ď 1, 0 ď x2 ď 1u, Ai,j „
Up0.1, 0.5q, 1 ď i ď 3, 1 ď j ď 2, and bi „ Up0, 0.3q, 1 ď i ď 3, respectively.

We compared RECOO with the algorithm in [35] and Algorithm 1 and Algorithm 2 in [30], where
the learning rates are summarized in Table 3 in Appendix G, which are the values suggested in [35]
and [30]. Figure 1a illustrates the trajectories of the cumulative loss

řT
t“1 ftpxtq, where we observe

that all algorithms have similar trends while RECOO achieves the best cumulative loss. Figure 1b
shows RECOO achieves the smallest cumulative violation. In particular, the (mean, variance) pair
of RECOO for loss and violation are p´510.23, 32.78q and p0.05, 0.008q at the end of the learning
horizon; that of Algorithm 1 in [30] are p´507.17, 36.46q and p0.23, 0.007q; that of Algorithm 2 in
[30] are p´509.09, 36.73q and p0.16, 0.008q; and that of Algorithm 1 in [35] are p´504.81, 36.82q
and p980.64, 10.49q. These results and Figure 1 confirm that RECOO outperforms the existing
algorithms w.r.t. both cumulative loss and violation.

(a) Loss (b) Cumulative Violation

Figure 1: Experiment with fixed constraints

(a) Loss (b) Cumulative Violation

Figure 2: Experiment with adversarial constraints

Experiment with adversarial constraints We considered an OCO with adversarial constraints
similar as the one in [31]. The loss function was chosen to be ftpxq “ 1

2}Hptq ¨ x ´ yptq}2 with
Hptq P R4ˆ10, x P R10 and yptq P R4 where Hi,jptq „ Up´1, 1q, 1 ď i ď 4, 1 ď j ď 10,

and yiptq “
ři,j
j“1Hi,jptq ` εi with εi being the standard normal random variable for any i. The

constraint functions were chosen to be gtpxq “ Aptqx ´ bptq with Aptq P R2ˆ10 and bptq P R2,
where Ai,jptq „ Up0, 2q,@i, j, t and biptq „ Up0, 1q,@i, t, respectively.

9



We compared RECOO with Algorithm 1 in [31], where the learning rates are summarized in Table
4 in Appendix G. Figure 2 includes the cumulative losses and violations. In particular, the (mean,
variance) pair of RECOO for loss and violation are p42510.14, 38.05q and p713.45, 1.60q at the
end of learning horizon, respectively while that of Algorithm 1 in [31] are p43011.29, 56.17q and
p1684.17, 2.85q. Therefore, RECOO performs better, especially in terms of the cumulative violation,
which further shows the “rectified” design reduces the cumulative hard constraint violation.

Experiment of online job scheduling in distributed data centers We also tested our algorithm for
online job scheduling in a distributed data center similar as in [32]. We considered a distributed
data center with server clusters located at different regions. The incoming jobs arrive at a front-end
load balancer and will be scheduled to different clusters to fulfill the service. The service capability
of a cluster is a function w.r.t. its energy consumption and the energy prices vary across locations
and times. The goal is to minimize the energy cost while guaranteeing real-time processing of
safety-critical jobs. This problem can be formulated as a constrained online convex optimization
problem and solved by our algorithm.

Specifically, we considered r “ 10 regions, each region has 10 clusters, and each time/round t has 5
minutes. Let xt P R100 be the energy allocation vector of all clusters at round t, where the ith entry
is the energy allocation of cluster i. Let ftpxtq “ xct, xty, where ct P R100 are the energy prices at
time t. Let gtpxtq “ λt ´

ř100
i“1 hipxt,iq, where λt is the number of job arrivals during time t and

hipxt,iq “ 4 logp1 ` 4xt,iq is the service capacity of cluster i at round t. The constraint violation
represents the number of delayed jobs (jobs not severed in real-time). In the experiment, we used
the electricity price trace (i.e., tctu) between 05{01{2017 and 05{10{2017 at 10 different regions in
New York city from NYISO [1]. We calibrated job arrivals of a realistic traffic pattern from [28] with
a non-stationary Poisson process tλtu to replace the stationary traffic studied in [32].

We compared our algorithm with [31] and [32], where learning rates are summarized in Table 5 in
Appendix G. We plotted average energy costs and constraint violations in Figure 3. It shows that our
algorithm achieves better performance on the loss and constraint violation (the number of delayed
jobs) compared to [31] and [32].

(a) Average Costs (b) Average Cumulative Violation

Figure 3: Experiment of online job scheduling in a distributed data center

5 Conclusions

In this paper, we studied online convex optimization with hard constraints (COCO-Hard) under two
settings: fixed constraints and adversarial constraints. We proposed a RECtified Online Optimization
algorithm (RECOO) and proved it achieves the best of two worlds and beyond. The algorithm
improves the best-known results for the fixed-constraints, matches the best results for the adversarial-
constraints, outperforms the state-of-art results when the loss functions are strongly-convex. The
experiments confirmed our theoretical results.
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