
Under review as a conference paper at ICLR 2023

INCREMENTAL PREDICTIVE CODING: A PARALLEL
AND FULLY AUTOMATIC LEARNING ALGORITHM

Anonymous authors
Paper under double-blind review

ABSTRACT

Neuroscience-inspired models, such as predictive coding, have the potential to
play an important role in the future of machine intelligence. However, they are
not yet used in industrial applications due to some limitations, one of them be-
ing the lack of efficiency. In this work, we address this by proposing incremental
predictive coding (iPC), a variation of the original framework derived from the
incremental expectation maximization algorithm, where every operation can be
performed in parallel without external control. We show both theoretically and
empirically that iPC is more efficient than the original algorithm by Rao and Bal-
lard 1999, while maintaining performance comparable to backpropagation in im-
age classification tasks. This work impacts several areas, has general applications
in computational neuroscience and machine learning, and specific applications
in scenarios where automatization and parallelization are important, such as dis-
tributed computing and implementations of deep learning models on analog and
neuromorphic chips.

1 INTRODUCTION

In recent years, deep learning has reached and surpassed human-level performance in a multitude of
tasks, such as game playing (Silver et al., 2017; 2016), image recognition (Krizhevsky et al., 2012;
He et al., 2016), natural language processing (Chen et al., 2020), and image generation (Ramesh
et al., 2022). These successes are achieved entirely using deep artificial neural networks trained via
backpropagation (BP), which is a learning algorithm that is often criticized for its biological implau-
sibilities (Grossberg, 1987; Crick, 1989; Abdelghani et al., 2008; Lillicrap et al., 2016; Roelfsema
& Holtmaat, 2018; Whittington & Bogacz, 2019), such as lacking local plasticity and autonomy. In
fact, backpropagation requires a global control signal required to trigger computations, since gradi-
ents must be sequentially computed backwards through the computation graph. These properties are
not only important for biological plausibility: parallelization, locality, and automation are key to
build efficient models that can be trained end-to-end on non Von-Neumann machines, such as analog
chips (Kendall et al., 2020). A learning algorithm with most of the above properties is predictive
coding (PC).

PC is an influential theory of information processing in the brain (Mumford, 1992; Friston, 2005),
where learning happens by minimizing the prediction error of every neuron. PC can be shown to
approximate backpropagation in layered networks (Whittington & Bogacz, 2017), as well as on any
other model (Millidge et al., 2020), and can exactly replicate its weight update if some external
control is added (Salvatori et al., 2022b). Also the differences with BP are interesting, as PC allows
for a much more flexible training and testing (Salvatori et al., 2022a), has a rich mathematical
formulation (Friston, 2005; Millidge et al., 2022), and is an energy-based model (Bogacz, 2017).
This makes PC unique, as it is the only model that jointly allows training on neuromorphic chips,
is an implementation of influential models of cortical functioning in the brain, and can match the
performance of backpropagation in different tasks. Its main drawback, however, is the efficiency, as
it is slower than BP. In this work, we address this problem by proposing a variation of PC that is
much more efficient than the original one.

Simply put, PC is based on the assumption that brains implement an internal generative model of
the world, needed to predict incoming stimuli (or data) (Friston et al., 2006; Friston, 2010; Friston
et al., 2016). When presented with a stimulus that differs from the prediction, learning happens by

1

Under review as a conference paper at ICLR 2023

updating internal neural activities and synapses to minimize the prediction error. In computational
models, this is done via multiple expectation-maximization (EM) (Dempster et al., 1977) steps on the
variational free energy, in this case a function of the total error of the generative model. During the E-
step, internal neural activities are updated in parallel until convergence; during the M-step, a weight
update to further minimize the same energy function is performed. This approach results in two
limitations: first, the E-step is slow, as it can require dozens of iterations before convergence; second,
an external control signal is needed to switch from the E to M step. In this paper, we show how to
address both of these problems by considering a variation of the EM algorithm, called incremental
expectation-maximization (iEM), which performs both E and M steps in parallel (Neal & Hinton,
1998). This algorithm is provably faster, does not require a control signal to switch between the two
steps, and has solid convergence guarantees (Neal & Hinton, 1998; Karimi et al., 2019). What results
is a training algorithm that we call incremental predictive coding (iPC) that is a simple variation
of PC that addresses the main drawback of PC (namely, efficiency), with no drawbacks from the
learning perspective, as it has been formally proven to have equivalent convergence properties to
standard PC. Furthermore, we provide initial evidence that iPC is also potentially more efficient than
BP in the specific case of full-batch training. In fact, we theoretically show that, on an ideal parallel
machine, to complete one update of all weights on a network with L layers, the time complexity of
iPC is O(1), while that of BP is O(L). However, additional engineering efforts are needed to reach
this goal, which are beyond the focus of this work: our experiments are performed using PyTorch
(Paszke et al., 2017), which is not designed to parallelize computations across layers on GPUs.
We partially address this limitation by performing some experiments on CPUs, which empirically
confirm our claims about efficiency, as shown in Fig. 3.Our contributions are briefly as follows:

1. We first develop the update rule of iPC from the variational free energy of a hierarchical
generative model using the incremental EM approach. We then discuss the implications of
this change in terms of autonomy and convergence guarantees: it has in fact been proven
that iEM converges to a minimum of the loss function (Neal & Hinton, 1998; Karimi et al.,
2019), and hence this result naturally extends to iPC. We conclude by analyzing similarities
and differences between iPC, standard PC, and BP.

2. We empirically compare the efficiency of PC and iPC on generation tasks, by replicating
some experiments performed in (Salvatori et al., 2021), and classification tasks, by replicat-
ing experiments similar to those presented in (Whittington & Bogacz, 2017). In both cases,
iPC is by far more efficient than the original counterpart. Furthermore, we present initial
evidence that iPC can decrease the training loss faster than BP, assuming that a proper
parallelization is done.

3. We then test our model on a large number of image classification benchmarks, showing
that that iPC performs better than PC, on average, and similarly to BP. Then, we show that
iPC requires less parameters than BP to perform well on convolutional neural networks
(CNNs). Finally, we show that iPC follows the trends of energy-based models on training
robust classifiers (Grathwohl et al., 2019), and yields better calibrated outputs than BP on
the best performing models.

2 PRELIMINARIES

In this section, we introduce the original formulation of predictive coding (PC) as a generative model
proposed by Rao and Ballard 1999. Let us consider a generative model g : Rd×RD −→ Ro, where
x ∈ Rd is a vector of latent variables called causes, y ∈ Ro is the generated vector, and θ ∈ RD

is a set of parameters. We are interested in the following inverse problem: given a vector y and a
generative model g, we need the parameters θ that maximize the marginal likelihood

p(y, θ) =

∫
x

p(y | x, θ)p(x, θ)dx. (1)

Here, the first term inside the integral is the likelihood of the data given the causes, and the second is
a prior distribution over the causes. Solving the above problem is intractably expensive. Hence, we
need an algorithm that is divided in two phases: inference, where we infer the best causes x given
both θ and y, and learning, where we update the parameters θ based on the newly computed causes.
This algorithm is expectation-maximization (EM) (Dempster et al., 1977). The first step, which we
call inference or E-step, computes p(x | y, θ), that is the posterior distribution of the causes given

2

Under review as a conference paper at ICLR 2023

Weights update

Input layer (fixed)

Output layer (fixed)

Inference step

Number of iterations

Layer index

Hidden layer
(running inference)

PC

Z-IL
(BP)

iPC

(a) Generative Model (b) Differences between PC, Z-IL, and iPC

Figure 1: (a) An example of an hierarchical Gaussian generative model with three layers. (b) Com-
parison of the temporal training dynamics of PC, Z-IL, and iPC, where Z-IL is a variation of predic-
tive coding that is equivalent to BP, originally introduced in Song et al. (2020). We assume that we
train the networks on a dataset for supervised learning for a period of time T . Here, t is the time axis
during inference, which always starts at t = 0. The squares represent nodes in one layer, and pink
rounded rectangles indicate when the connection weights are modified: PC (1st row) first conducts
inference on the hidden layers, according to Eq. equation 6, until convergence, and then it updates
the weights via Eq. 7. Z-IL (2nd row) only updates the weights at specific inference moments de-
pending on which layer the weights belong to. To conclude, iPC updates the weights at every time
step t, while performing inference in parallel.

a generated vector y. Computing the posterior is, however, intractable (Friston, 2003). To this end,
we approximate the intractable posterior with a tractable probability distribution q(x, θ). To make
the approximation as good as possible, we want to minimize the KL-divergence between the two
probability distributions. Summarizing, to solve our learning problem, we need to (i) minimize a
KL-divergence, and (ii) maximize a likelihood. We do it by defining the following energy function,
also known as variational free-energy:

F (x, y,θ) = KL(q(x, θ) ∥ p(x | y, θ))− ln(p(y, θ)), (2)

where we have used the log-likelihood. This function is minimized by multiple iterations of the EM
algorithm as follows: {

Inference (E-step): x∗ = argmaxxF (x, y,θ),

Learning (M-step): θ∗ = argmaxθF (x, y,θ).
(3)

2.1 PREDICTIVE CODING

So far, we have only presented the general problem. To actually derive proper equations for learning
causes and update the parameters, and use them to train neural architectures, we need to specify the
generative function g(x, θ). Following the general literature, (Rao & Ballard, 1999; Friston, 2005),
we define the generative model as a hierarchical Gaussian generative model, where the causes x and
parameters θ are defined by a concatenation of the causes and weight matrices of all the layers, i.e.,
x = (x(0), . . . , x(L)), and θ = (θ(0), . . . ,θ(L−1)). Hence, we have a multilayer generative model,
where layer 0 is the one corresponding to the generated image y, and layer L the highest in the
hierarchy. The marginal probability of the causes is as follows:

p(x(0), . . . , x(L)) = p(x(L))

L−1∏
l

p(x(l−1) | x(l)) =

L∏
l

N (µ(l),Σ(l)), (4)

where µ(l) is the prediction of layer l according to the layer above, given by µ(l) = θ(l) · f(x(l+1)),
with f being a non-linear function and µ(L) = x(L). For simplicity, from now on, we consider
Gaussians with identity variance, i.e., Σ(l) = 1 for every layer l. With the above assumptions, the

3

Under review as a conference paper at ICLR 2023

Algorithm 1 Learning a dataset D = {yi} with iPC.

1: Require: For every i, x(0)
i is fixed to yi,

2: for t = 0 to T do
3: For every i and l, update x

(l)
i to minimize F via Eq.(6)

4: For every l, update each θ(l) to minimize F via Eq.(7)
5: end for

free-energy becomes

F =
∑
l

∥x(l) − µ(l)∥2. (5)

For a detailed formulation on how this energy function is derived from the variational free-energy
of Eq. 2, we refer to (Friston, 2005; Bogacz, 2017; Buckley et al., 2017), or to the supplementary
material. Note that this energy function is equivalent to the one proposed in the original formulation
of predictive coding (Rao & Ballard, 1999). A key aspect of this model is that both inference and
learning are achieved by optimizing the same energy function, which aims to minimize the prediction
error of the network. The prediction error of every layer is given by the difference between its real
value x(l) and its prediction µ(l). We denote the prediction error ε(l) = x(l)−µ(l). Thus, the problem
of learning the parameters that maximize the marginal likelihood given a data point y reduces to an
alternation of inference and weight update. During both phases, the values of the last layer are fixed
to the data point, i.e., x(0) = y for every t ≤ T .

Inference: During this phase, that corresponds to the E-step, the weight parameters θ(l) are fixed,
while the values x(l) are continuously updated via gradient descent.

∆x(l) = −γ
∂F

∂x(l)
= γ · (−ε(l) + f ′(x(l)) ∗ θ(l−1) T · ε(l−1)), (6)

where ∗ denotes element-wise multiplication, and l > 0. This process either runs until convergence,
or for a fixed number of iterations T .

Learning: During this phase, which corresponds to the M-step, the values x are fixed, and the
weights are updated once via gradient descent according to the following equation:

∆θ(l) = −α
∂F

∂θ(l)
= α · x(l+1)ε(l). (7)

Note that the above algorithm is not limited to generative tasks, but can also be used to solve super-
vised learning problems (Whittington & Bogacz, 2017). Assume that we are provided with a data
point yin with label yout. In this case, we treat the label as the vector y we need to generate, and the
data point as the prior on x(L). The inference and learning phases are identical, with the only differ-
ence that now we have two vectors fixed during the whole duration of the process: x(0) = yout, and
x(L) = yin. While this algorithm is able to obtain good results on small image image classification
tasks, it is much slower than BP due to the large number of inference steps T needed to let the causes
x converge.

3 INCREMENTAL PREDICTIVE CODING

One of the main drawbacks of energy based models such as PC and equilibrium propagation (Scellier
& Bengio, 2017), is their efficiency. In fact, these algorithms are much slower than BP due to the
inference phase, which requires multiple iterations to converge. The goal of this paper is to address
this problem for predictive coding, by developing a variation based from the incremental EM (iEM)
algorithm (Neal & Hinton, 1998), which was developed to address the lack of efficiency of the
original EM. This algorithm excels when dealing with multiple data points at the same time (Neal
& Hinton, 1998), a scenario that is almost always present in standard machine learning.

Let D = {yi}i<N be a dataset of cardinality N , and g(x, θ) be a generative model. Our goal is now
to minimize the global marginal likelihood, defined on the whole dataset, i.e.,

p(D, θ) =
∑
i

p(yi, θ). (8)

4

Under review as a conference paper at ICLR 2023

Tr
ai

n
Lo

ss

Non-parallel Multiplications

En
er

gy

En
er

gy

Iterations
Iterations

Tiny Imagenet CIFAR10

MNIST

FashionMNIST

(a) Generation (b) Classification

Te
st

 E
rr

or

Iterations

Figure 2: Left and centre: Decrease of the energy of generative models as a function of the number
of iterations performed from the beginning of the training process. Right: Training loss of different
classifiers trained using iPC, BP, and multiple parameterizations of PC as a function of the number
of non-parallel matrix multiplications performed from the beginning of the training process.

The same reasoning also applies to the global variational free energy, which will be the sum of the
free energies of every single data point. In this case, the iEM algorithm performs the E-step and
M-step in parallel, with no external control needed to switch between the two phases. In detail, both
the values x and the parameters θ are updated simultaneously at every time step t, until convergence
(or for a fixed number of iterations T), according to the same update rule defined in Eqs. 6 and 7, on
all the points of the dataset. No explicit forward and backward passes are necessary as each layer is
updated in parallel. To our knowledge, this is the first learning algorithm for deep neural networks
where every single operation is performed in parallel. Note that this increased speed does not harm
the final performance, as it has been formally proven that minimizing a free-energy function such
as ours (i.e., equivalent to the sum of independent free-energy functions) using iEM, also finds a
minimum of the global marginal likelihood of Eq.8 (Neal & Hinton, 1998; Karimi et al., 2019). We
actually provide empirical evidence that the model converges to better minima using iPC rather than
the original formulation of PC in Fig. 2 and Table 1. The pseudocode of iPC is given in Alg. 1.

Connections to BP: PC in general shares multiple similarities with BP in supervised learning tasks:
when the output error is small, the parameter update of PC is an approximation of that of BP (Mil-
lidge et al., 2020); when controlling which parameters have to be updated at which time step, the
two updates can even be made equivalent (Salvatori et al., 2022b). To make PC perform exactly the
same weight update of BP, every weight matrix θl must be updated only at t = l, which corresponds
to its position in the hierarchy (Song et al., 2020). That is, as soon as the output error reaches a spe-
cific layer. This is different from the standard formulation of PC, which updates the parameters only
when the energy representing the total error has converged. Unlike PC, iPC updates the parameters
at every time step t. Intuitively, it can hence be seen as a “continuous shift” between Z-IL and PC,
where Z-IL is a variation of PC that is equivalent to BP, originally introduced in Song et al. (2020)..
A graphical representation of the differences of all three algorithms is given in Fig. 1 (right), with
the pseudo-codes provided in the first section of the supplementary material.

Autonomy: Both PC and Z-IL lack full autonomy, as an external control signal is always needed to
switch between inference and learning: PC waits for the inference to converge (or, for T iterations),
while Z-IL updates the weights of specific layers at specific inference moments t = l. BP is con-
sidered to be less autonomous than PC and Z-IL: a control signal is required to forward signals as
well as backward errors, and additional places to store the backward errors are required. All of those
drawbacks are removed in iPC, which is able to learn a dataset without the control signals required
by the other algorithms: given a dataset D, iPC runs inference and weight updates simultaneously
until the energy F is minimized. As soon as the energy minimization has converged, training ends.

3.1 EFFICIENCY

In this section, we analyze the efficiency of iPC with respect to both the original formulation of
PC and BP. We only provide partial evidence of the increased efficiency against BP, as standard
deep learning frameworks, such as Pytorch, do not allow to parallelize operations in different layers.
While we leave the development of a framework able to perform every operation in parallel to future
work, we provide evidence that the speed up against BP in full batch training is theoretically possible
using iPC.

5

Under review as a conference paper at ICLR 2023

Comparison with PC: We now show how iPC is more efficient than the original formulation. To
do that, we have trained multiple models with iPC and PC on different tasks and datasets. First, we
have trained a generative model with 4 layers and 256 hidden neurons on a subset of 100 images
of the Tiny ImageNet and CIFAR10 datasets, as done in (Salvatori et al., 2021). A plot with the
energies as a function of the number of iterations is presented in Fig. 2 (left and centre). In both
cases, the network trained with iPC converges much faster than the networks trained with PC with
different values of T . Many more plots with different parameterizations are given in Fig. 7 in the
supplementary material.

To show that the above results hold in different set-ups as well, we have trained a classifier with 4
layers on a subset of 250 images of the FashionMNIST dataset, following the framework proposed in
(Whittington & Bogacz, 2017), and studied the training loss. As it is possible to train an equivalent
model using BP, we have done it using the same set-up and learning rate, and included it in the
plot. This, however, prevents us from using the number of iterations as an efficiency measure, as
one iteration of BP is more complex than one iteration of PC, and are hence not comparable. As
a metric, we have hence used the number of non-parallel matrix multiplications needed to perform
a weight update. This is a fair metric, as matrix multiplications are by far the most expensive
operation performed when training neural networks, and the ones with largest impact on the training
speed. One iteration of PC and iPC have the same speed, and consist of 2 non-parallel matrix
multiplications. One epoch of BP, consists of 2L non-parallel matrix multiplications. The results
are given in Fig. 2 (right). In all cases, iPC converges much faster than all the other methods. In
the supplementary material, we provide other plots obtained with different datasets, models, and
parameterizations, as well as a study on how the test error decreases during training. Again, many
more plots with different parameterizations are given in Fig. 8 in the supplementary material.

Comparison with BP: While the main goal of this work is simply to overcome the core limitation
of original PC — the slow inference phase — there is one scenario where iPC is potentially more
efficient than BP, which is full batch training. Particularly, we first prove this formally using the
number of non-parallel matrix multiplications needed to perform a weight update as a metric. To
complete one weight update, iPC requires two sets of non-parallel multiplications: the first uses
the values and weight parameters of every layer to compute the prediction of the layer below; the
second uses the error and transpose of the weights to propagate the error back to the layer above,
needed to update the values. BP, on the other hand, requires 2L sets of non-parallel multiplications
for a complete update of the parameters: L for a forward pass, and L for a backward one. These
operations cannot be parallelized. More formally, we prove a theorem that holds when training on
the whole dataset D in a full-batch regime. For details about the proof, and an extensive discussion
about time complexity of BP, PC, and iPC, we refer to the supplementary material.

Theorem 1 Let M and M ′ be two equivalent networks with L layers trained on the same dataset.
Let M be trained using BP, and M ′ be trained using iPC. Then, the time complexity needed to
perform one full update of the weights is O(1) for iPC and O(L) for BP.

3.2 CPU IMPLEMENTATION
 Hidden Dim.

8

16

32

64

128

256

512

1024

iP
C

 /
B

P

Figure 3: Ratio of the actual running time needed
to perform a single weight update between BP and
iPC on a CPU. Every dot represents a model, if
the model lies below the horizontal line with la-
bel 100, its weight update performed using iPC is
faster than one performed using BP.

To further provide evidence of the efficiency of
iPC with respect to BP, we have implmented the
parallelization of iPC on a CPU, and compared
it to BP, also implemented on CPU. We com-
pute the time in milliseconds (ms) needed to
perform one weight update of both on a ran-
domly generated datapoint. In Fig. 3, we have
plotted the ratio

ms of iPC / ms of BP

for architectures with different depths and
widths. The results show that our naive imple-
mentation adds a computational overhead given
by communication and synchronization across
threads that makes iPC slower than BP on small

6

Under review as a conference paper at ICLR 2023

Table 1: Final accuracy of BP, PC, and iPC on different architectures trained with different datasets.
BP/Z-IL PC iPC

MLP on MNIST 98.26%± 0.12% 98.55%± 0.14% 98.54%± 0.86%
MLP on FashionMNIST 88.54%± 0.64% 85.12%± 0.75% 89.13%± 0.86%
CNN on SVHN 95.35%± 1.53% 94.53%± 1.54% 96.45%± 1.04%
CNN on CIFAR-10 69.34%± 0.54% 70.84%± 0.64% 72.54%± 0.93%
AlexNet on CIFAR-10 75.64%± 0.64% 64.63%± 1.55% 72.42%± 0.53%

architectures (hidden dimension ≤ 64). How-
ever, this difference is inverted in large networks: in the most extreme case, one weight update on
a network with 32 hidden layers and 1024 parameters per layer using iPC is 10 times faster than
that using BP. This is still below the result of Theorem 1 due to the large overhead introduced in our
implementation.

4 CLASSIFICATION EXPERIMENTS

We now demonstrate that iPC shows a similar level of generalization quality compared to BP. We
test the performance of iPC on different benchmarks. Since we focus on generalization quality in
this section, all methods are run until convergence, and we have used early stopping to pick the best
performing model. These experiments were performed using multi-batch training. In this case, we
lose our advantage in efficiency over BP, as we need to recompute the error every time a new batch
is presented. However, the proposed algorithm is still much faster than the original formulation of
PC, and yields a better classification performance.

Setup of experiments: We investigate image classification benchmarks using PC, iPC, and BP. We
first trained a fully connected network with 2 hidden layers and 64 hidden neurons per layer on the
MNIST dataset (LeCun & Cortes, 2010). Then, we trained a mid-size CNN with three convolu-
tional layers with 64− 128− 64 kernels followed by two fully connected layers on FashionMNIST,
the Street View House Number (SVHN) dataset (Netzer et al., 2011), and CIFAR10 (Krizhevsky
et al., 2012) with no data augmentation. Finally, we trained AlexNet (Krizhevsky et al., 2012), a
large-scale CNN, on CIFAR10. To make sure that our results are not the consequence of a spe-
cific choice of hyperparameters, we performed a comprehensive grid-search on hyperparameters,
and reported the highest accuracy obtained. The search is further made robust by averaging over
5 seeds. Particularly, we tested over 8 learning rates (from 0.000001 to 0.01), 4 values of weight
decay (0.0001, 0.001, 0.01, 0.1), and 3 values of the integration step γ (0.1, 0.5, 1.0), and each com-
bination of hyperparameters are evaluated with 5 seeds with mean and standard error reported. To
conclude, we have used no data augmentation in the experiments.

Results: In Table 1, iPC outperforms BP in all the small- and medium-size architectures. For the
simplest framework (MNIST on a small MLP), PC outperforms all the other training methods, with
iPC following by a tiny margin (0.01%). However, PC fails to scale to more complex problems,
where it gets outperformed by all the other training methods. The performance of iPC, on the other
hand, is stable under changes in size, architecture, and dataset. In fact, iPC reaches a slightly better
accuracy than BP on most of the considered tasks.

Table 2: Change of final accuracy when increasing the width.
C 1 2 3 4 5 6 7 8 10 15 20

BP 67.92 71.23 71.65 72.64 73.35 73.71 74.19 74.51 74.62 75.08 75.51
iPC 70.61 74.12 74.91 75.88 76.61 77.04 77.48 77.41 76.51 76.55 76.12

Change of width: Table 1 shows that iPC performs better on a standard CNN than on AlexNet,
which has many more parameters and maxpooling layers. To investigate how iPC behaves when
adding max-pooling layers and increasing the width, we trained a CNN with three convolutional
layers (8, 16, 8) and maxpools, followed by a fully connected layer (128 hidden neurons) on CI-
FAR10. We have also replicated the experiment by increasing the width of the network by multi-

7

Under review as a conference paper at ICLR 2023

Figure 4: Robustness of BP and iPC under distribution shift (AlexNet on CIFAR10 under five dif-
ferent intensities of the corruptions rotation, Gaussian blur, Gaussian noise, hue, brightness, and
contrast). Left: Comparable decline of model accuracy between BP and iPC. Right: iPC maintains
model calibration significantly better than BP under distribution shift.

plying every hidden dimension by a constant C, (e.g., C = 3 means a network with 3 convolutional
layers (24, 48, 24), each followed by a maxpool, and a fully connected one (384 hidden neurons)).
The results in Table 2 show that iPC (i) outperforms BP under each parametrization, (ii) needs less
parameters to obtain good results, but (iii) sees its performance decrease, once it has reached a
specific parametrization. This is in contrast to BP, which is able to generalize well even when ex-
tremely overparametrized. This suggests that iPC is more efficient than BP in terms of the number
of parameters, but that finding the best parameters for iPC may need some extra tuning.

4.1 ROBUSTNESS AND CALIBRATION

Robustness and uncertainty quantification in deep learning have become a topic of increasing interest
in recent years. While neural networks trained via BP reach a strong model performance, their lack
of explainability and robustness has been widely studied (Abdar et al., 2021; Ovadia et al., 2019).
Recently, it has been noted that treating classifiers as generative energy-based models benefits the
robustness of the model (Grathwohl et al., 2019). As PC is precisely an energy-based classifier,
originally developed for generation tasks, we postulate that iPC possesses better robustness and cal-
ibration characteristics than BP. Calibration describes the degree to which predicted logits matches
the empirical distribution of observations given the prediction confidence. One may use a calibrated
model’s output to quantify the uncertainty in its predictions and interpret it as probability—not just
model confidence. Let P̂ be our random prediction vector indicating the model’s confidence that the
prediction Ŷ is correct. We say P̂ is well-calibrated, if the model confidence matches the model per-
formance, i.e., P(Ŷ = Y |P̂ = p) = p (Guo et al., 2017). We measure the deviation from calibration
using the adaptive expected calibration error (AdaECE), which estimates E[|P(Ŷ = Y |P̂ = p)−p|]
(Nguyen & O’Connor, 2015). In recent years, it has become well-known that neural networks
trained with BP tend to be overconfident in their predictions (Guo et al., 2017) and that miscali-
bration increases dramatically under distribution shift (Ovadia et al., 2019). More details on the
experiments are in the supplementary material.

Results: Our results are shown in Fig. 4. The boxplots indicate the distributions of accuracy (left)
and calibration error (right) over various forms of data corruption with equal levels of intensity. We
find that the discriminative performance of the BP and iPC models are comparable under distribution
shift. Both models keep a reasonable classification performance for mild corruptions, but show
accuracies going down to chance performance under extreme corruptions. The calibration of model
output, however, differs strongly: The iPC-trained model yields better calibrated outputs and is able
to signal its confidence a lot better. This is essential for using the model output as indication of
uncertainty. On in-distribution data, we observe that iPC yields an average calibration error of 0.05,
whereas BP yields 0.12. Moreover, we observe that the increase in calibration error is a lot weaker
for iPC: The median calibration error of the iPC model is lower across all levels of shift intensities
compared to that of BP for the mildest corruption. Furthermore, iPC displays better calibration up to
level 3 shifts than BP does on in-distribution data. This has potentially a strong impact of applying
either method in safety-critical applications.

8

Under review as a conference paper at ICLR 2023

5 RELATED WORKS

Several previous research efforts aim to achieve supervised learning in a biologically plausible way.
One is to explore how the error can be encoded differently than in BP where the error is not encoded
locally. One of the earliest works was to use a second set of “error” neurons that can act as the feed-
back variables (encoding error in BP) (Stork, 1989; Schwartz, 1993). Another promising assumption
is that the error can be represented in neurons’ dendrites (Körding & König, 2001; 2000; Richards
& Lillicrap, 2019; Sacramento et al., 2018). Such efforts are unified in (Lillicrap et al., 2020), with a
broad range of works (Pineda, 1987; 1988; O’Reilly, 1996; Ackley et al., 1985; Hinton et al., 1995;
Bengio, 2014; Lee et al., 2015) encoding the error term in activity differences.

Neuroscience-inspired algorithms have recently gained the attention of the machine learning com-
munity, due to interesting properties such as locality, autonomy and their energy-based formulation.
To this end, multiple works have used PC to tackle machine learning problems, from generation
tasks (Ororbia & Kifer, 2020), to image classification on complex datasets such as ImageNet (He
et al., 2016), associative memories (Salvatori et al., 2021), continual learning (Ororbia et al., 2020),
and NLP (Pinchetti et al., 2022). There is a more theoretical line of work that is related to the free
energy principle and active inference (Friston, 2008; 2010; Friston et al., 2006; 2016), which aims
to model learning, perception, and behavior as an imperative to minimize a free energy. While being
initially a theoretical framework, it has been used in multiple applications in fields such as control
theory (Baltieri & Buckley, 2019; Friston, 2011) and reinforcement learning (Friston et al., 2009).
To conclude, it is important to note that iEM is not the only formulation that improves the efficiency
of the original EM, as some other variations have been proposed, such as an online version (Cappé
& Moulines, 2009), a stochastic one (Chen et al., 2018), or a newer incremental version (Karimi
et al., 2019) inspired by the SAGA algorithm (Defazio et al., 2014).

6 DISCUSSION

In this paper, we have proposed a biologically inspired learning rule, called incremental predictive
coding (iPC) motivated by the incremental EM algorithm. iPC enables all the computations to be
executed simultaneously, locally, and autonomously, and has theoretical convergence guarantees in
non-asymptotic time (Karimi et al., 2019). This allows a solid gain in efficiency compared to the
original formulation of PC as well as BP in the full-batch case, as shown with extensive experiments,
with no drawbacks in the converging to a minimum of the loss. This is confirmed by the good
experimental results in terms of accuracy and robustness in classification tasks.

An interesting aspect worth discussing, is the time step that triggers the weight update in the three
variations of PC: the original formulation, Z-IL, and, now, iPC. The first method updates the pa-
rameters only in the last step of the inference, when the neural activities have converged. This
has interesting theoretical properties, as it has been shown to simulate how learning is performed
in multiple models of cortical circuits, as its credit assignment converges to an equilibrium called
prospective configuration (Song et al., 2022). The second, Z-IL, shows that it suffices to time the
updates at different levels of the hierarchy in different moments of the inference, to exactly replicate
the update given by BP on any possible neural network (Song et al., 2020; Salvatori et al., 2022b).
This is interesting, as it connects PC, a theory developed to model credit assignment in the brain, to
BP, a method developed to train deep learning models. Our newly proposed iPC, on the other hand,
updates the parameters continuously, resulting in great gains in terms of efficiency, and no apparent
loss in terms of performance. Future work will investigate whether there are better variations of iPC,
or whether the optimal update rule can be learned with respect to specific tasks and datasets. Again,
the answer may lie in some variations of the EM algorithm, such as dynamical EM (Anil Meera &
Wisse, 2021; Friston et al., 2008), or in an implementation of precision-weighted prediction errors,
as in (Jiang & Rao, 2022).

On a broader level, this work shrinks the gap between computational neuroscience and machine
intelligence by tackling the problem of the computational efficiency of neuroscience-inspired train-
ing algorithms. Advances in this direction are also interesting from the perspective of hardware
implementations of deep learning on energy-based chips, such as analog and quantum computers.
In this case, iPC is an interesting improvement, as it is still not known how external control can be
implemented on these chips, and hence algorithms able to train neural networks in a fully automatic
fashion may play an important role in the future.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad
Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U. Rajendra Acharya, Vladimir
Makarenkov, and Saeid Nahavandi. A review of uncertainty quantification in deep learning: Tech-
niques, applications and challenges. Information Fusion, 76:243–297, 2021.

Mohammed. Abdelghani, Timothy. Lillicrap, and Douglas Tweed. Sensitivity derivatives for flexible
sensorimotor learning. Neural Computation, 20(8):2085–2111, 2008.

David Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. A learning algorithm for boltzmann
machines. Cognitive Science, 9(1):147–169, 1985.

Ajith Anil Meera and Martijn Wisse. Dynamic expectation maximization algorithm for estimation
of linear systems with colored noise. Entropy, 23(10):1306, 2021.

Manuel Baltieri and Chris Buckley. PID control as a process of active inference with linear genera-
tive models. Entropy, 2019.

Yoshua Bengio. How auto-encoders could provide credit assignment in deep networks via target
propagation. arXiv:1407.7906, 2014.

Rafal Bogacz. A tutorial on the free-energy framework for modelling perception and learning.
Journal of Mathematical Psychology, 76:198–211, 2017.

Chris Buckley, Chang Kim, Simon McGregor, and Anil Seth. The free energy principle for action
and perception: A mathematical review. Journal of Mathematical Psychology, 2017.

Olivier Cappé and Eric Moulines. On-line expectation–maximization algorithm for latent data mod-
els. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(3):593–613,
2009.

Jianfei Chen, Jun Zhu, Yee Whye Teh, and Tong Zhang. Stochastic expectation maximization with
variance reduction. Advances in Neural Information Processing Systems, 31, 2018.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey Hinton. Big self-
supervised models are strong semi-supervised learners. 34th Conference on Neural Information
Processing Systems, NeurIPS, 2020.

Francis Crick. The recent excitement about neural networks. Nature, 337(6203):129–132, 1989.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. Advances in Neural Informa-
tion Processing Systems, 27, 2014.

Arthur Dempster, Nan Laird, and Donald B Rubin. Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):
1–22, 1977.

Karl Friston. Learning and inference in the brain. Neural Networks, 16(9):1325–1352, 2003.

Karl Friston. A theory of cortical responses. Philosophical Transactions of the Royal Society B:
Biological Sciences, 360(1456), 2005.

Karl. Friston. Hierarchical models in the brain. PLoS Computational Biology, 2008.

Karl Friston. The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11
(2):127–138, 2010.

Karl Friston. What is optimal about motor control? Neuron, 2011.

Karl Friston, James Kilner, and Lee Harrison. A free energy principle for the brain. Journal of
Physiology, 2006.

Karl Friston, Jean. Daunizeau, and Stephan. Kiebel. Reinforcement learning or active inference?
PloS One, 2009.

10

Under review as a conference paper at ICLR 2023

Karl Friston, Thomas FitzGerald, Francesco Rigoli, Philipp Schwartenbeck, Giovanni Pezzulo, et al.
Active inference and learning. Neuroscience & Biobehavioral Reviews, 68:862–879, 2016.

Karl J. Friston, N. Trujillo-Barreto, and Jean Daunizeau. DEM: A variational treatment of dynamic
systems. Neuroimage, 41(3):849–885, 2008.

Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi,
and Kevin Swersky. Your classifier is secretly an energy based model and you should treat it like
one. arXiv preprint arXiv:1912.03263, 2019.

Stephen Grossberg. Competitive learning: From interactive activation to adaptive resonance. Cog-
nitive Science, 11(1):23–63, 1987.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. ICML 2017, 3:2130–2143, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016.

Geoffrey E. Hinton, Peter Dayan, Brendan J. Frey, and Radford M. Neal. The” wake-sleep” algo-
rithm for unsupervised neural networks. Science, 268(5214):1158–1161, 1995.

Linxing Preston Jiang and Rajesh P. N. Rao. Dynamic predictive coding: A new model of hierar-
chical sequence learning and prediction in the cortex. bioRxiv, 2022.

Belhal Karimi, Hoi-To Wai, Eric Moulines, and Marc Lavielle. On the global convergence of (fast)
incremental expectation maximization methods. Advances in Neural Information Processing Sys-
tems, 32, 2019.

Jack Kendall, Ross Pantone, Kalpana Manickavasagam, Yoshua Bengio, and Benjamin Scel-
lier. Training end-to-end analog neural networks with equilibrium propagation. arXiv preprint
arXiv:2006.01981, 2020.

Konrad P. Körding and Peter König. Learning with two sites of synaptic integration. Network:
Computation in Neural Systems, 11, 2000.

Konrad P. Körding and Peter König. Supervised and unsupervised learning with two sites of synaptic
integration. Journal of Computational Neuroscience, 11(3):207–215, 2001.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with deep convo-
lutional neural networks. In 26th Annual Conference on Neural Information Processing Systems
(NIPS) 2012, 2012.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. The MNIST Database, 2010.
URL http://yann.lecun.com/exdb/mnist/.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation.
In Proc. ECMLPKDD, 2015.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic
feedback weights support error backpropagation for deep learning. Nature Communications, 7
(1):1–10, 2016.

Timothy P. Lillicrap, Adam Santoro, Luke Marris, Colin J. Akerman, and Geoffrey Hinton. Back-
propagation and the brain. Nature Reviews Neuroscience, 2020.

Beren Millidge, Alexander Tschantz, and Christopher L Buckley. Predictive coding approximates
backprop along arbitrary computation graphs. arXiv:2006.04182, 2020.

Beren Millidge, Tommaso Salvatori, Yuhang Song, Rafal Bogacz, and Thomas Lukasiewicz. Pre-
dictive coding: Towards a future of deep learning beyond backpropagation? arXiv preprint
arXiv:2202.09467, 2022.

11

http://yann.lecun.com/exdb/mnist/

Under review as a conference paper at ICLR 2023

David Mumford. On the computational architecture of the neocortex. Biological Cybernetics, 66
(3):241–251, 1992.

Radford M. Neal and Geoffrey E. Hinton. A view of the EM algorithm that justifies incremental,
sparse, and other variants. In Learning in graphical models, pp. 355–368. Springer, 1998.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Khanh Nguyen and Brendan T. O’Connor. Posterior calibration and exploratory analysis for natural
language processing models. In EMNLP, 2015.

Randall C O’Reilly. Biologically plausible error-driven learning using local activation differences:
The generalized recirculation algorithm. Neural Computation, 8(5):895–938, 1996.

Alex Ororbia and Daniel Kifer. The neural coding framework for learning generative models.
arXiv:2012.03405, 2020.

Alexander Ororbia, Ankur Mali, C. Lee Giles, and Daniel Kifer. Continual learning of recurrent
neural networks by locally aligning distributed representations. IEEE Transactions on Neural
Networks and Learning Systems, 31(10):4267–4278, 2020.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D Sculley, Sebastian Nowozin, Joshua V. Dil-
lon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty? eval-
uating predictive uncertainty under dataset shift. In Advances in Neural Information Processing
Systems, volume 32, 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Luca Pinchetti, Tommaso Salvatori, Beren Millidge, Yuhang Song, Yordan Yordanov, and Thomas
Lukasiewicz. Predictive coding beyond gaussian assumptions. 36th Conference on Neural Infor-
mation Processing Systems, 2022.

Fernando J. Pineda. Generalization of back-propagation to recurrent neural networks. Physical
Review Letters, 59(19):2229, 1987.

Fernando J. Pineda. Dynamics and architecture for neural computation. Journal of Complexity, 4
(3):216–245, 1988.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Rajesh P. N. Rao and Dana H. Ballard. Predictive coding in the visual cortex: A functional interpre-
tation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1):79–87, 1999.

Blake A. Richards and Timothy P. Lillicrap. Dendritic solutions to the credit assignment problem.
Current Opinion in Neurobiology, 54:28–36, 2019.

Pieter R. Roelfsema and Anthony Holtmaat. Control of synaptic plasticity in deep cortical networks.
Nature Reviews Neuroscience, 19(3):166, 2018.

João Sacramento, Rui Ponte Costa, Yoshua Bengio, and Walter Senn. Dendritic cortical microcir-
cuits approximate the backpropagation algorithm. In Advances in Neural Information Processing
Systems, pp. 8721–8732, 2018.

Tommaso Salvatori, Yuhang Song, Yujian Hong, Lei Sha, Simon Frieder, Zhenghua Xu, Rafal Bo-
gacz, and Thomas Lukasiewicz. Associative memories via predictive coding. In Advances in
Neural Information Processing Systems, volume 34, 2021.

Tommaso Salvatori, Luca Pinchetti, Beren Millidge, Yuhang Song, Tianyi Bao, Rafal Bogacz,
and Thomas Lukasiewicz. Learning on arbitrary graph topologies via predictive coding.
arXiv:2201.13180, 2022a.

12

Under review as a conference paper at ICLR 2023

Tommaso Salvatori, Yuhang Song, Zhenghua Xu, Thomas Lukasiewicz, and Rafal Bogacz. Reverse
differentiation via predictive coding. In Proceedings of the 36th AAAI Conference on Artificial
Intelligence. AAAI Press, 2022b.

Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between energy-
based models and backpropagation. Frontiers in Computational Neuroscience, 11:24, 2017.

Eric L. Schwartz. Computational Neuroscience. Mit Press, 1993.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with
deep neural networks and tree search. Nature, 529, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of Go without human knowledge. Nature, 550, 2017.

Yuhang Song, Thomas Lukasiewicz, Zhenghua Xu, and Rafal Bogacz. Can the brain do backpropa-
gation? — Exact implementation of backpropagation in predictive coding networks. In Advances
in Neural Information Processing Systems, volume 33, 2020.

Yuhang Song, Beren Gray Millidge, Tommaso Salvatori, Thomas Lukasiewicz, Zhenghua Xu, and
Rafal Bogacz. Inferring neural activity before plasticity: A foundation for learning beyond back-
propagation. bioRxiv, 2022.

David G. Stork. Is backpropagation biologically plausible. In International Joint Conference on
Neural Networks, volume 2, pp. 241–246. IEEE Washington, DC, 1989.

James C. R. Whittington and Rafal Bogacz. An approximation of the error backpropagation algo-
rithm in a predictive coding network with local Hebbian synaptic plasticity. Neural Computation,
29(5), 2017.

James C. R. Whittington and Rafal Bogacz. Theories of error back-propagation in the brain. Trends
in Cognitive Sciences, 2019.

13

Under review as a conference paper at ICLR 2023

Artificial Neural Network Biological Neural Network

(b)

D
endritic

l

Error Nodes

Interneurons

Synaptic Weights

Standard

Figure 5: Standard and dendritic neural implementation of predictive coding. The dendritic im-
plementation makes use of interneurons il = Wlxl (according to the notation used in the figure).
Both implementations have the same equations for all the updates, and are thus equivalent; however,
dendrites allow a neural implementation that does not take error nodes into account, improving the
biological plausibility of the model. Figure taken and adapted from (Whittington & Bogacz, 2019).

A A DISCUSSION ON BIOLOGICAL PLAUSIBILITY

In this section, we discuss the biological plausibility of the proposed algorithm, a topic overlooked
in the main body of this paper. In the literature, there is often a disagreement on whether a specific
algorithm is biologically plausible or not. Generally, it is assumed that an algorithm is biologically
plausible when it satisfies a list of properties that are also satisfied in the brain. Different works
consider different properties. In our case, we consider as list of minimal properties that include local
computations and lack of a global control signals to trigger the operations. Normally, predictive
coding networks take error nodes into account, often considered implausible from the biological
perspective (Sacramento et al., 2018). Even so, the biological plausibility of our model is not af-
fected by this: it is in fact possible to map PC on a different neural architecture, in which errors
are encoded in apical dendrites rather than separate neurons (Sacramento et al., 2018; Whittington
& Bogacz, 2019). Graphical representations of the differences between the two implementations
can be found in Fig. 5, taken (and adapted) from (Whittington & Bogacz, 2019). Furthermore, our
formulation is more plausible than the original formulation of PC, as it is able to learn without the
need of external control signals that trigger the weight update.

14

Under review as a conference paper at ICLR 2023

B PSEUDOCODES OF Z-IL AND PC

Algorithm 2 Learning a dataset D = {yi} with PC.

1: Require: For every i, x(0)
i is fixed to yi,

2: for t = 0 to T do
3: For every i and l, update x(l) to minimize F via Eq.(7)
4: if t = T then

For every l update each θ(l) to minimize F via Eq. (8)
5: end if
6: end for

Algorithm 3 Learning one training pair (sin, sout) with Z-IL
1: Require: xL

0 is fixed to sin, x0
0 is fixed to sout.

2: Require: x(l) = µ(l) for l∈{1, ..., L−1}, and t = 0.
3: for t = 0 to T do
4: for each level l do
5: Update x(l) to minimize F via Eq.(7)
6: if t = l then
7: Update θ(l) to minimize F via Eq.(8).
8: end if
9: end for

10: end for

15

Under review as a conference paper at ICLR 2023

Table 3: Theoretical Efficiency of PC, Z-IL, BP, and iPC.
One inference step PC Z-IL BP iPC

Number of MMs per weight update (2L− 1) (2L− 1)T (2L− 1)(L− 1) (2L− 1) (2L− 1)
Number of SMMs per weight update 2 2T 2(L− 1) (2L− 1) 2

C ON THE EFFICIENCY OF PC, BP, AND IPC

In this section, we discuss the time complexity and efficiency of PC, BP, Z-IL, and iPC. We now
start with the first three, and introduce a metric that we use to compute such complexity. This metric
is the number of simultaneous matrix multiplications (SMMs), i.e., the number of non-parallelizable
matrix multiplications needed to perform a single weight update. It is a reasonable approximation
of running time, as multiplications are by far the most complex operation (≈ O(N3)) performed by
the algorithm.

C.1 COMPLEXITY OF PC, BP, AND Z-IL

Serial Complexity: To complete a single update of all weights, PC and Z-IL run for T and (L− 1)
inference steps, respectively. To study the complexity of the inference steps we consider the number
of matrix multiplications (MMs) required for each algorithm: One inference step requires (2L− 1)
MMs: L for updating all the errors, and (L − 1) for updating all the value nodes (Eq. equation 6).
Thus, to complete one weight update, PC and Z-IL require (2L− 1)T and (2L− 1)(L− 1) MMs,
respectively. Note also that BP requires (2L − 1) MMs to complete a single weight update: L for
the forward, and (L − 1) for the backward pass. These numbers are summarized in the first row of
Table 3. According to this measure, BP is the most efficient algorithm, Z-IL ranks second, and PC
third, as in practice T is much larger than L. However, this measure only considers the total number
of matrix multiplications needed, without considering whether some of them can be performed in
parallel, which could significantly reduce the time complexity. We now address this problem.

Parallel complexity: The MMs performed during inference can be parallelized across layers. In
fact, computations in Eq. equation 6 are layer-wise independent, thus L MMs that update all the
error nodes take the time of only one MM if properly parallelized. Similarly, in Eq. equation 6,
(L− 1) MMs that update all the value nodes take the time of only one MM if properly parallelized.
As a result, one inference step only takes the time of 2 MMs if properly parallelized (since, as stated,
it consists of updating all errors and values via Eq. equation 6). Thus, one inference step takes 2
SMMs; one weight update with PC and Z-IL takes 2T and 2(L − 1) SMMs, respectively. Since
no MM can be parallelized in BP (the forward pass in the network and the backward pass of error
are both layer-dependent), before performing a single weight update, (2L− 1) SMMs are required.
These numbers are summarized in the second row of Table 3. Overall, measured over SMMs, BP
and Z-IL are equally efficient (up to a constant factor), and faster than PC.

C.2 COMPLEXITY OF IPC

To complete one weight update, iPC requires one inference step, thus (2L − 1) MMs or 2 SMMs,
as also demonstrated in the last column of Table 3. Compared to BP, iPC takes around L times less
SMMs per weight update, and should hence be significantly faster in deep networks. Intuitively, this
is because matrix multiplications in BP have to be done sequentially along layers, while the ones in
iPC can all be done in parallel across layers (Fig. 6). More formally, we have the following theorem,
which holds when performing full-batch training:

Theorem 1. Let M and M ′ be two equivalent networks with L layers trained on the same dataset.
Let M (resp., M ′) be trained using BP (resp., iPC). Then, the time complexity measured by SMMs
needed to perform one full update of the weights is O(1) and O(L) for iPC and BP, respectively.

Proof. Consider training on an MLP with L layers, and update weights for multiple times on a single
datapoint. Generalizations to multiple datapoints and multiple mini-batches are similar and will be
provided after. We first write the equations needed to be computed for iPC to produce one weight

16

Under review as a conference paper at ICLR 2023

update:

x
(L)
i,t = sini and x

(0)
i,t = souti

x̂
(l)
i,t =

nl−1∑
j=1

θ
(l+1)
i,j f(x

(l+1)
j,t) for l ∈ {1, . . . , L} (9)

ε
(l)
i,t = x

(l)
i,t − x̂

(l)
i,t for l ∈ {1, . . . , L}

x
(l)
i,t+1 = x

(l)
i,t + γ ·

−ε
(l)
i,t + x

(l)
i,t

n(l+1)∑
k=1

ε
(l+1)
k,t θ

(l)
k,i

 for l ∈ {1, . . . , L} (10)

θ
(l)
i,j,t+1 = θ

(l)
i,j,t − α · ε(l+1)

i,t f(x
(l)
j,t) for l ∈ {1, . . . , L}. (11)

We then write the three equations needed to be computed for BP to produce one weight update:

x0
i,t = sini

x
(l)
i,t =

nl−1∑
j=1

θ
(l+1)
i,j f(x

(l+1)
j,t) for l ∈ {1, . . . , L} (12)

ε
(L)
i,t = souti − x

(L)
i,t

ε
(l)
i,t = f ′

(
x
(l)
i,t

) n(l+1)∑
k=1

ε
(l+1)
k,t θ

(l)
k,i for l ∈ {L, . . . , 1} (13)

θ
(l)
i,j,t+1 = θ

(l)
i,j,t − α · ε(l+1)

i,t f(x
(l)
j,t) for l ∈ {1, . . . , L}.

First, we notice that the matrix multiplication (MM) is the most complex operation. Specifically, for
two adjacent layers with the size of nl and nl, the complexity of MM is O(nlnl), but the maximal
complexity of the other operations is O(maxnl, nl). In the above equations, only equations with
MM are numbered, which are the equations that we investigate in our complexity analysis.

Eq. equation 9 for iPC takes L MMs, but one SMM, since the the for-loop for l ∈ {1, . . . , L} can
run in parallel for different l. This is further because the variables on the right side of Eq. equation 9
are immediately available. Differently, Eq. equation 12 for iPC takes L MMs, and also L SMMs,
since the for-loop for l ∈ {1, . . . , L} has to be executed one after another, following the specified
order {2, . . . , L}. This is further because the qualities on the right side of Eq. equation 12 are
immediately available, but require to solve Eq. equation 12 again for another layer. That is, to get
x
(L)
i,t , Eq. equation 12 has to be solved recursively from l = 1 to l = L.

Similar sense applies to the comparison between Eqs. equation 10 and equation 13. Eq. equation 10
for iPC takes L − 1 MMs but 1 SMMs; Eq. equation 13 for BP takes L − 1 MMs and also L − 1
SMMs.

Overall, Eqs. equation 9 and equation 10 for iPC take 2L − 1 MMs but 2 SMMs; Eqs. equation 12
and equation 13 for BP take 2L − 1 MMs and also 2L − 1 SMMs. Then, the time complexity
measured by SMMs needed to perform one full update of the weights is O(1) and O(L) for iPC and
BP, respectively.

C.3 EFFICIENCY ON ONE DATA POINT

To make the difference more visible and provide more insights, we explain this in detail with a
sketch of this process on a small network in Fig. 6, where the horizontal axis of m is the time
step measured by simultaneous matrix multiplications (SMMs), i.e., within a single m, one can
perform one matrix multiplication or multiple ones in parallel; if two matrix multiplications have
to be executed in order (e.g., the second needs results from the first), they will need to be put into

17

Under review as a conference paper at ICLR 2023

Input neuron

Hidden neuron (error not
updated)

Hidden neuron (error
updated)

Weights
(not updated)

Weights
(updated)

Output neuron

m = 1
Backward SMMmm = 2 m = 3 m = 4 m = 5 m = 6m = 0

B
P

iP
C

Figure 6: Graphical PClustration of the efficiency over backward SMMs of BP and iPC on a 3-layer
network. iPC never clears the error (red neurons), while BP clears it after every update. This allows
iPC to perform 5 full and 2 partial updates of the weights in the first 6 SMMs. In the same time
frame, BP only performs 3 full updates. Note that the SMMs of forward passes are excluded for
simplicity, w.l.o.g., as the insight from this example generalizes to the SMMs of the forward pass.

two steps of m. Note that we only consider the matrix multiplications for the backward pass, i.e.,
the matrix multiplications that backpropagate the error of a layer from an adjacent layer for BP and
the inference of Eq. equation 6 for iPC, thus the horizontal axis m is strictly speaking “Backward
SMM”. The insight for the forward pass is similar as that of the backward pass. As it has been
said, for BP, backpropagating the error from one layer to an adjacent layer requires one matrix
multiplication; for iPC, one step of inference on one layer via Eq. equation 6 requires one matrix
multiplication. BP and iPC are presented in the first and second rows, respectively. Before both
methods are able to update weights in all layers, they need two matrix multiplications for spreading
the error through the network, i.e., a weights update of all layers occurs for the first time at m = 2 for
both methods. After m = 2, BP cleared all errors on all neurons, so at m = 3, BP backpropagates
the error from l = 0 to l = 1, and at m = 4, BP backpropagates the error from l = 1 to l = 2
after which it can make an update of weights at all layers again for the second time. Note that the
matrix multiplication that backpropagates errors from l = 1 to l = 2 at m = 4 cannot be put at
m = 3, as it requires the results of the matrix multiplication at m = 3, i.e., it requires the error to be
backpropagated to l = 1 from l = 0 at m = 3. However, this is different for iPC. After m = 2, iPC
does not reset xl

i,t to µl
i,t, i.e., the error signals are still held in εl

i,t. At m = 3, iPC performs two
matrix multiplications in parallel, corresponding to two inferences steps at two layers, l = 1 and
l = 2, updating xl

i,t, and hence the error signals are held in εl
i,t of these two layers. Note that the

above two matrix multiplications of two inference steps can run in parallel and be put into a single
m, as inference requires only locally and immediately available information. In this way, a weight
update in iPC is able to be performed at every m ever since the very first few steps of m.

D TRAINING DETAILS

We now list some additional details to reproduce our results.

D.1 EXPERIMENTS OF EFFICIENCY

The experiments for the efficiency of generative models were run on fully connected networks with
128, 256 or 512 hidden neurons, and L ∈ {4, 5}. Every network was trained on CIFAR10 or Tiny
Imagenet with learning rates α = 0.00005 and γ = 0.5, and T ∈ {8, 12, 16}. The experiments on
discriminative models are performed using networks with 64 hidden neurons, depth L ∈ {3, 4, 6},
and learning rates α = 0.0001 and γ = 0.5. The networks trained with BP have the same learning
rate α. All the plots for every combination of hyperparameters can be found in Figures 8 and 7.

18

Under review as a conference paper at ICLR 2023

D.2 EXPERIMENTS OF GENERALIZATION QUALITY

As already stated in the paper body, to make sure that our results are not the consequence of a
specific choice of hyperparameters, we performed a comprehensive grid search on hyperparameters,
and reported the highest accuracy obtained, and the search is further made robust by averaging
over 5 seeds. Particularly, we tested over 8 learning rates (from 0.000001 to 0.01), 4 values of
weight decay (0.0001, 0.001, 0.01, 0.1), and 3 values of the integration step γ (0.1, 0.5, 1.0). We
additionally verified that the optimized value of each hyperparameter lies within the searched range
of that hyperparameter. As for additional details, we used standard Pytorch initialization for the
parameters. For the hardware, we used a single Nvidia GeForce RTX 2080 GPU on an internal
cluster. Despite the large search, most of of the best results were obtained using the following
hyperparameters: γ = 0.5 (γ = 1 for Alexnet), α = 0.00005.

19

Under review as a conference paper at ICLR 2023

HD = 128 HD = 256 HD = 512

L = 4

L = 5

CIFAR10

HD = 128 HD = 256 HD = 512

L = 4

L = 5

Tiny Imagenet

Iterations

Iterations

Iterations

Iterations

Iterations Iterations

Iterations

Iterations

Iterations

IterationsIterations

Iterations

Figure 7: Efficiency of multiple generative networks trained with PC.

20

Under review as a conference paper at ICLR 2023

L = 3 L = 4 L = 6

Train
Loss

Test
Accuracy

MNIST

HD = 128 HD = 256 HD = 512

FashionMNIST

SMMs

SMMs

SMMs

SMMs

SMMs SMMs

SMMs

SMMs

SMMs

SMMsSMMs

SMMs

Train
Loss

Test
Accuracy

Figure 8: Efficiency of multiple discriminative networks trained with PC and BP.

21

	Introduction
	Preliminaries
	Predictive Coding

	Incremental Predictive Coding
	Efficiency
	CPU Implementation

	Classification Experiments
	Robustness and Calibration

	Related works
	Discussion
	A Discussion on Biological Plausibility
	Pseudocodes of Z-IL and PC
	On the efficiency of PC, BP, and iPC
	Complexity of PC, BP, and Z-IL
	Complexity of iPC
	Efficiency on One Data Point

	Training Details
	Experiments of Efficiency
	Experiments of Generalization Quality

