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Abstract

This paper proposes a new entity-aware001
lightweight metric for assessing accuracy of002
generated medical free-form text from AI mod-003
els. Our metric, termed as Radiological Re-004
port (Text) Evaluation (RaTEScore), is de-005
signed to focus on key medical entities, such as006
diagnostic outcomes, anatomies, while demon-007
strating robustness against complex medical008
synonyms and sensitivity to negation expres-009
sions. Technically, we establish a new large-010
scale medical NER dataset RaTE-NER and011
train an NER model on it. Leveraging it, we012
decompose complex radiological reports into013
medical entities. We define the final metric by014
comparing the similarity based on the entity em-015
beddings computed from language model and016
their corresponding types, forcing the metrics017
to focus on clinically critical statements. In ex-018
periments, our score demonstrates superior per-019
formance on aligning with human preference020
than other metrics, both on the existing public021
benchmarks and our new proposed RaTE-Eval022
benchmark.023

1 Introduction024

With the general advancement in nature language025

processing (NLP) (OpenAI, 2023; Anil et al., 2023;026

Qiu et al., 2024; Wu et al., 2024) and computer027

vision (CV) (Li et al., 2023; Alayrac et al., 2022;028

OpenAI; Zhang et al., 2023), developing generalist029

medical artificial intelligence has become increas-030

ingly appealing and promising (Moor et al., 2023;031

Wu et al., 2023; Tu et al., 2024). However, the032

complexity and specialized nature of clinical free-033

form texts, such as radiology reports and discharge034

summaries, pose great challenges for assessing the035

development of medical foundation models.036

In the literature, four main types of metrics have037

been adopted to assess the similarity between free-038

form texts in medical scenarios, as shown in Fig-039

ure 1. These include: (i) Metrics based on word040

Figure 1: Existing evaluation metrics. We illustrate
the limitations of current metrics. Blue boxes represent
ground-truth reports; red and yellow boxes indicate cor-
rect and incorrect generated reports, respectively. The
examples show that these metrics fail to identify oppo-
site meanings and synonyms in the reports and are often
disturbed by unrelated information.

overlaps, such as BLEU (Papineni et al., 2002) 041

and ROUGE (Lin, 2004). Although intuitive, these 042

metrics fail to capture negation or synonyms in 043

sentences, thereby neglecting the assessment of se- 044

mantic factuality; (ii) Metrics based on embedding 045

similarities, like BERTScore (Zhang et al., 2019). 046

While achieving better semantic awareness, they do 047

not focus on key medical terms, thus severely over- 048

looking the local correctness of crucial conclusions; 049

(iii) Metrics based on Named Entity Recognition 050

(NER), such as RadGraph F1 (Yu et al., 2023a) and 051

MEDCON (Yim et al., 2023). Although developed 052

specifically for the medical domain, these metrics 053

often fail to merge synonyms and predominantly 054

focus on Chest X-ray reports; (iv) Metrics relying 055

on large language models (LLMs), such as those 056

proposed by Wei et al.(Wei et al., 2024) and Liu et 057

al.(Liu et al., 2023). While these metrics are better 058
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aligned with human preferences, they suffer from059

potential subjective biases and are prohibitively060

expensive for large-scale evaluation.061

In this study, we aim to develop a metric that062

more focuses on key medical entities, such as di-063

agnostic outcomes, anatomies, while demonstrat-064

ing robustness against complex medical synonyms065

and sensitivity to negation expressions. Our work066

presents two major contributions. First, we intro-067

duce RaTEScore, a novel evaluation metric tailored068

for radiology reports. This metric focuses on entity-069

level assessments across a wide range of imaging070

modalities and body regions. Specifically, we start071

by identifying medical entities and their types (e.g.,072

anatomy, disease, etc.). This approach allows for073

targeted comparisons of specific elements, avoid-074

ing broader paragraph-level evaluations. To effec-075

tively manage the challenges posed by medical076

synonyms, we calculate entity embeddings using077

a synonym disambiguation module and determine078

their cosine similarities. RaTEScore then generates079

a final score using weighted similarities that reflect080

the importance of the entity types involved.081

Second, we develop a comprehensive medical082

named-entity recognition (NER) dataset, RaTE-083

NER, which encompasses 9 modalities and 22084

anatomical regions, derived from MIMIC-IV and085

Radiopaedia. Additionally, we introduce RaTE-086

Eval, a new benchmark for comparing metrics087

across diverse clinical texts, which consists of088

three sub-tasks: Sentence-level Human Counting,089

Paragraph-level Human Rating and Comparison090

of Simulated Reports, targeting on different chal-091

lenges. Both the RaTE-NER dataset and the RaTE-092

Eval benchmark will be made publicly available,093

contributing to the advancement of more effective094

evaluation metrics in medical informatics.095

Finally, we conducted extensive experiments096

to demonstrate the superiority of our proposed097

RaTEScore. Specifically, we first evaluate our met-098

ric on the public dataset ReXVal (Yu et al., 2023a)099

and achieve superior performance. However, since100

the ReXVal reports are limited to chest X-rays, we101

conducted experiments on the three subtasks of102

RaTE-Eval, significantly surpassing other existing103

metrics of the same scale. Lastly, we perform abla-104

tion studies on the modules of the pipeline.105

2 Methods106

In this section, we start by properly formulating107

the problem, and introduce the pipeline of our met-108

ric (Sec. 2.1). Then, we detail each of the module 109

developments in our metric, for example, medi- 110

cal named entity recognition (Sec. 2.2), synonym 111

disambiguation encoding (Sec. 2.3), and the final 112

scoring prodecure (Sec. 2.4). Lastly, we present 113

the details for training and evaluation at each stage. 114

2.1 General Pipeline 115

The key intuition of our proposed RaTEScore is to 116

compare two radiological reports at the entity level. 117

Given two radiological reports, one is the ground 118

truth for reference, denoting as x, and the other 119

candidate for evaluation as x̂. We aim to define a 120

new similarity metric S(x, x̂), better reflecting the 121

clinical consistency between the two. 122

As shown in Figure 2, our pipeline contains three 123

major components: namely, a medical entity recog- 124

nition module (ΦNER(·)), a synonym disambigua- 125

tion encoding module (ΦENC(·)), and a final scor- 126

ing module (ΦSIM(·)). First, we extract the medi- 127

cial entities from each piece of radiological text, 128

then encode each entity into embeddings that are 129

aware of medical synonym, formulated as: 130

F = ΦENC(ΦNER(x)), (1) 131

where F contains a set of an entity embeddings. 132

Similarly, we can get F̂ for x̂. Then, we can calcu- 133

late the final similarity on the entity embeddings 134

as: 135

S(x, x̂) = ΦSCO(F, F̂). (2) 136

In the following sections, we will detail each of the 137

components. 138

2.2 Medical Named Entity Recognition 139

In the medical named entity recognition module, 140

our goal is to decompose each radiological text by 141

identifying a set of entities: 142

ΦNER(x) = {e1, e2, . . . , eM} 143

= {(n1, t1), (n2, t2), . . . (nM , tM )}. 144

Similarly, we can also get ΦNER(x̂) = {ê1, ê2, . . . , 145

êN}, where M,N denote the total number of en- 146

tities extracted from each text respectively. Each 147

entity ei is defined as a tuple (ni, ti), where ni 148

is the name of the entity and ti denotes its corre- 149

sponding type. For instance, the tuple (‘pneumo- 150

nia’, ‘Disease’) represents the entity ‘pneumonia’ 151

categorized under the entity type ‘Disease’. We cat- 152

egorize entity types into five distinct groups within 153
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Figure 2: Illustration of the Computation of RaTEScore. Given a reference radiology report x, a candidate
radiology report x̂, we first extract the medical entity and the corresponding entity type. Then, we compute the
entity embedding and find the maximum cosine similarity. The RaTEScore is computed by the weighted similarity
scores that consider the pairwise entity types.

radiological contexts: {Anatomy, Abnormality, Dis-154

ease, Non-Abnormality, Non-Disease}. Specifi-155

cally, ‘Abnormality’ refers to notable radiological156

features such as masses, effusion, and edema. Con-157

versely, ‘Non-Abnormality’ denotes cases where158

such abnormalities are negated in the context, as159

illustrated by the classification of ‘pleural effusion’160

in the statement ‘No evidence of pleural effusion’.161

MIMIC-IV

Train Set Dev Set Test Set

Reports 10588 (1439) 1323 (184) 1324 (193)

# Anatomy 9034 (4314) 1188 (828) 1140 (765)

# Abnormality 5579 (4047) 760 (657) 605 (513)

# Non-Abnormaliy 4182 (1528) 479 (274) 514 (253)

# Disease 1675 (1220) 189 (169) 178 (164)

# Non-Disease 3482 (965) 424 (268) 457 (264)

Radiopaedia

Train Set Dev Set Test Set

Reports 30005 (15579) 3600 (1853) 3529 (1833)

# Anatomy 34110 (14051) 4145 (2629) 4471 (2889)

# Abnormality 33863 (23352) 4021 (3386) 4265 (3365)

# Non-Abnormaliy 3878 (2280) 473 (325) 605 (420)

# Disease 9639 (7385) 1118 (1044) 741 (659)

# Non-Disease 2467 (1540) 268 (220) 183 (142)

Total Reports 40593 (17018) 4923 (2037) 4853 (2026)

Total Entities 107909 (60682) 13065 (9800) 13159 (9434)

Table 1: RaTE-NER Dataset Statistics: The dataset consists
of two data sources: MIMIC-IV (Johnson et al., 2020) and
Radiopaedia (Rad; Wu et al., 2023). # represents specific types
of medical entities. For “Reports” line, the numbers in “()”
are number of source reports. For the "Entities" and # lines,
the numbers in “()” are counts of non-redundant entities.

RaTE-NER Dataset. To facilitate training our162

medical entity recognition module, we have con-163

structed the RaTE-NER dataset, a large-scale, ra-164

diological named entity recognition (NER) dataset.165

This dataset comprises 13,235 manually annotated166

sentences from 1,816 reports within the MIMIC-IV167

database, adhering to our predefined entity-labeling168

framework which spans 9 imaging modalities and 169

23 anatomical regions, ensuring broad coverage. 170

Given that reports in MIMIC-IV are more likely 171

to cover common diseases, and may not well rep- 172

resent rarer conditions, we further enriched the 173

dataset with 33,605 sentences from the 17432 re- 174

ports available on Radiopaedia (Rad), by leverag- 175

ing GPT-4 and other medical knowledge libraries to 176

capture intricacies and nuances of less common dis- 177

eases and abnormalities. More details can be found 178

in the Appendix A.2. We manually labeled 3,529 179

sentences to create a test set, as shown in Table 1, 180

the RaTE-NER dataset offers a level of granularity 181

not seen in previous datasets, with comprehensive 182

entity annotations within sentences. This enhanced 183

granularity enables to train models for medical en- 184

tity recognition within our analytical pipeline. 185

2.3 Synonym Disambiguation Encoding 186

Given the challenges of synonym disambigration 187

in the evaluation process, such as aligning terms 188

like “lung” and “pulmonary”, we have developed a 189

method to map each entity name into embedding 190

space, where synonyms are positioned closely to- 191

gether, utilizing a medical entity encoding module 192

trained with extensive medical knowledge. This 193

module, represented as: fi = ΦENC(ni), with fi 194

denotes the vector embedding for the entity name. 195

Consequently, we compile these into a set of en- 196

tity embeddings: F = {(f1, t1), (f2, t2), . . . }. A 197

similar set, F̂, is constructed for the candidate text. 198

For this encoding process, We adopt an off-shelf 199

retrieval model, namely, BioLORD (Remy et al., 200

2024), which is trained specifically on medical 201

entity-definition pairs and has proven effective in 202

measuring entity similarity. 203
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2.4 Scoring Procedure204

Upon obtaining the encoded entity set from each205

decomposed radiological text, we proceed to the fi-206

nal scoring procedure. We first define the similarity207

metric between a candidate entity and a reference208

report, that is established by selecting an entity209

from the referenced text based on the cosine simi-210

larity of their name embeddings:211

i∗ = argmax
i≤M

cos(fi, f̂j),212

where cos(fi, f̂j) measures the cosine similarity213

between two entity name embeddings. The entity214

ei∗ , which best matches êj from the candidate text,215

is chosen for further comparison. The overall simi-216

larity score, S(x, x̂), is then computed as follows:217

S(x, x̂) =

∑
j W (ti∗ , tj) · sim(ei∗ , êj)∑

j W (ti∗ , tj)
,218

Here, W is a learnable 5×5 affinity matrix between219

the five entity types, where W (ti, tj) represents an220

element of the matrix, and S(ei, êj) is an entity-221

wise similarity function, defined as:222

sim(ei, êj) =

{
p cos(fi, f̂j), if ti ̸= tj

cos(fi, f̂j), if ti = tj
,223

where we generally follow the cosine similarity224

on the name embedding, with a learnable penalty225

value p to punish the type mismatch. For ex-226

ample, when comparing entities with identical227

names but different types—such as (‘pleural effu-228

sion’, ‘Abnormality’) and (‘pleural effusion’, ‘Non-229

Abnormality’)—the penalty term p is applied to230

adjust the similarity score appropriately. Addition-231

ally, the similarity between different entity types232

may be weighted differently in medical scenarios233

due to their clinical significance. For example, the234

similarity between two ‘Abnormality’ entities is235

of much greater importance than the similarity be-236

tween two ‘Non-abnormality’ entities. This is be-237

cause all body parts are assumed to be normal in238

radiology reports by default, and minor expression239

errors in normal findings do not critically impact240

the report’s correctness. Therefore, we introduce241

W to account for this clinical relevance.242

Finally, due to the order of performing max in-243

dexing and mean pooling, the finial similarity met-244

ric S(x, x̂) does not comply with the commutative245

law. S(x, x̂) and S(x̂, x) can be analogous to pre-246

cision and recall respectively. Thus, to take care of247

both, our final RaTEScore is defined following the 248

classical F1-score format, as: 249

RaTEScore = 2× S(x, x̂)× S(x̂, x)

S(x, x̂) + S(x̂, x)
. (3) 250

2.5 Implementation Details 251

In this section, we introduce the implementation 252

details for the three key modules. First, for the 253

medical named entity recognition, we train a BERT- 254

liked model leveraging RaTE-NER dataset. We 255

have tried two main-stream NER training schemes, 256

i.e., Span-based and IOB-based. For the Span- 257

based method, we follow the setting of PURE (the 258

Princeton University Relation Extraction system) 259

entity model (Zhong and Chen, 2020) and for the 260

IOB-based method, we follow DeBERTa v3 (He 261

et al., 2021a,b). We show more detailed implemen- 262

tation parameters for the two training schemes in 263

Appendix A.9. Additionally, we also try to initial- 264

ize the NER model with different pre-trained BERT. 265

More comparison of the two training schemes and 266

different BERT initializations will be present in the 267

ablation study. Second, For the synonym disam- 268

biguation encoding, we directly use the off-shelf 269

BioLORD-2023-C model version. Ablation stud- 270

ies are also conducted in Section 4. Third, for the 271

final scoring module, we learn the affinity matrix 272

W and negative penalty factor p leveraging TPE 273

(Tree-structured Parzen Estimator) (Bergstra et al., 274

2011) with a small set of human rating data. 275

3 RaTE-Eval Benchmark 276

To effectively evaluate the alignment between auto- 277

matic evaluation metrics and radiologists’ assess- 278

ments in medical text generation tasks, we have 279

established a comprehensive benchmark that en- 280

compasses three tasks, each with its official test set 281

for fair comparison, as detailed below. 282

Sentences-level Human Rating. Existing studies 283

has predominantly utilized the ReXVal dataset (Yu 284

et al., 2023b), where errors are typically catego- 285

rized into six distinct types: 286

1. False prediction of finding; 287

2. Omission of finding; 288

3. Incorrect location/position of finding; 289

4. Incorrect severity of finding; 290

5. Mention of comparison that is not 291

present in the reference impression; 292

6. Omission of comparison describing a 293

change from a previous study. 294
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Number Type Scoring Principle Data Source Modality Anatomy

ReXVal Dataset 200 Sent. + Para. Error Count MIMIC_CXR 1 (X-ray) 1 (Chest)

Ours
Sent. level 2215 Sent. Error Count / Potential Errors

MIMIC_IV 9 22Para. level 1856 Para. 5-Point Scoring System
Sim. Report 847 Sent. Mistral 8*7B

Table 2: Comparison of RaTE-Eval Benchmark and existed radiology report evaluation Benchmark.

Building on this framework, we introduce two295

improvements to enhance the robustness and appli-296

cability of our benchmark: (1) normalization of297

error counts: recognizing that a simple count of298

errors may not fairly reflect the informational con-299

tent in sentences, we have adapted the scoring to300

annotate the number of potential errors. This ap-301

proach normalizes the counts, ensuring a more bal-302

anced assessment across varying report complexi-303

ties. (2) diversification of medical texts: Unlike304

existing benchmarks that are limited to chest X-305

rays from the MIMIC-CXR dataset (Johnson et al.,306

2019), our dataset includes 2215 reports spanning307

9 imaging modalities and 22 anatomies from the308

MIMIC-IV dataset (Johnson et al., 2020), involving309

imaging modalities and anatomies is listed in Ap-310

pendix A.3. Each sentence in these reports was an-311

notated by two experienced radiologists with over312

five years of clinical practice, providing a richer313

and more varied corpus for analysis. For parameter314

search (Sec. 2.5), we divided all reports into a train-315

ing set and a test set at an 8:2 ratio, to identify the316

most effective parameters that align with human317

scoring rules. Each case here is one sentence with318

a manual error counting score based on the former319

defined six error types.320

Paragraph-level Human Rating. Given that med-321

ical imaging interpretation commonly involves the322

evaluation of lengthy texts rather than isolated sen-323

tences, we have also incorporated paragraph-level324

assessments into our analysis of the MIMIC-IV325

reports. Specifically, we sampled 1856 reports326

from various anatomies and modalities to ensure a327

comprehensive and diverse evaluation. Following328

RadPEER (Goldberg-Stein et al., 2017), an inter-329

nationally recognized standard for radiologic peer330

review, we established a 5-point scoring system for331

our evaluations. The scores range from 5, denoting332

a perfectly accurate report, to 0, which indicates333

the report lacks any correct observations. Detailed334

scoring criteria are provided in Appendix A.4, guid-335

ing radiologists on how to assign scores at different336

levels. Similarly, for parameter search (Sec. 2.5),337

we also divide all reports into training set and a 338

test set at an 8:2 ratio. Each case in this dataset 339

is a paragraph with a single score, while, differ- 340

ing from sentence-level scoring, here, the score is 341

not a simple counting but a human rating based 342

on a previously introduced 5-point scoring system. 343

This approach is used because it is challenging 344

for humans to completely count all errors in long 345

paragraphs accurately. 346

Rating on Synthetic Reports. Here, we aim 347

to evaluate the sensitivity of our metric for han- 348

dling synonyms and negations using synthetic data. 349

Specifically, we employed Mixtral 8x7B (Jiang 350

et al., 2024), a sophisticated open-source Large 351

Language Model (LLM), to rewrite 847 reports 352

from the MIMIC-IV dataset. The rewriting was 353

guided by two tailored prompts: 354

You are a specialist in medical report writing, please
rewrite the sentence, you can potentially change the
entities into synonyms, but please keep the meaning
unchanged.

355

On the other hand, anonymous reports were gen- 356

erated with: 357

You are a specialist in medical report writing, please
rewrite the following medical report to express the
opposite meaning.

358

This process results in a test set comprising tri- 359

ads of reports: the original, a synonymous version, 360

and an anonymous version, detailed further in Ap- 361

pendix A.5. Ideally, effective evaluation metrics 362

should demonstrate higher scores for synonymous 363

reports compared to anonymous reports, thereby 364

more accurately reflecting the true semantic content 365

of the reports. 366

4 Experiments 367

In this section, we start by introducing the baseline 368

evaluation metrics. Later, we compare the differ- 369

ent metrics with our proposed RaTEScore on both 370

ReXVal and RaTE-Eval benchmarks. Lastly, we 371

present details for the ablation studies. 372
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RadGraphF1 (𝜏 = 0.44) BERTScore (𝜏 = 0.40)

BLEU (𝜏 = 0.27) CheXbert (𝜏 = 0.25)

RaTEScore  ( 𝜏 = 0.54)

ROUGE L (𝜏 = 0.34）METEOR (𝜏 = 0.39)

SPICE (𝜏 = 0.40)

Figure 3: Results in RaTE-Eval Benchmark: Correlation Coefficients with Radiologists Results ( sentence-
level ). our metric exhibits the highest Pearson correlation coefficient with the radiologists’ scoring. Note that the
scores on the horizontal axis are experts counting various types of errors normalized by the potential error types that
could occur in the given sentence, and subtracting this normalized score from 1 to achieve a positive correlation.

RadGraph F1 BERTScore CheXbert BLEU Ours

Kendall τ 0.515* 0.511* 0.499* 0.462* 0.527

Table 3: Results in ReXVal dataset: * denotes the result
report in (Yu et al., 2023a).

4.1 Baselines373

We use the following metrics as baseline compar-374

isons: BLEU (Papineni et al., 2002), ROUGE (Lin,375

2004), METEOR (Banerjee and Lavie, 2005),376

CheXbert (Smit et al., 2020; Yu et al., 2023a),377

BERTScore (Zhang et al., 2019), SPICE (Anderson378

et al., 2016) and RadGraph F1 (Yu et al., 2023a).379

Detailed explanations of these metrics can be found380

in the Appendix A.6.381

4.2 Results in ReXVal dataset382

Our initial evaluation uses the public ReXVal383

dataset, we calculated the Kendall correlation co-384

efficient to measure the agreement between our385

RaTEScore and the average number of errors iden-386

tified by six radiologists. Our analysis was con-387

ducted under identical conditions to those of base-388

line methods. Given that the reports in ReXVal389

vary significantly in length, predominantly featur-390

ing longer documents, we applied a type weight391

matrix with parameters specifically fine-tuned on392

our long-report benchmark training set. As detailed393

in Table 3, RaTEScore demonstrated a Kendall cor-394

relation coefficient of 0.527 with the error counts,395

surpassing all existing metrics. 396

While further examining instances with notable 397

deviations in Appendix A.7, a primary observa- 398

tion was that ReXVal’s protocol tends to count six 399

types of errors uniformly, without accounting for 400

variations in report length. This approach leads to 401

discrepancies where a single-sentence report with 402

one error type and a twenty-sentence report with 403

the same error count receive equivalent scores. To 404

address this issue, our RaTE-Eval benchmark can 405

be better suited to distinguish such variations, by 406

normalising the total error counts with potential 407

error counts. 408

4.3 Results in RaTE-Eval benchmark 409

On Sentence-level Rating. As illustrated in Fig- 410

ure 3, our model achieved a Pearson correlation 411

coefficient of 0.54 on the RaTE-Eval short sen- 412

tence benchmark, significantly outperforming the 413

second-best existing baselines. These results un- 414

derscore the inadequacy of methods that predomi- 415

nantly rely on term overlap for evaluations within 416

a medical context. While entity-based metrics like 417

RadGraph F1 show notable improvements, they 418

still do not reach the desired level of efficacy on an 419

extensive benchmark encompassing multi-modal, 420

multi-region reports. This shortfall is largely at- 421

tributable to the limited scope of the training vo- 422

cabulary inherent in these methods. 423

On Paragraph-level Rating. From the results in 424

Table 4, it can be observed that RaTEScore shows 425
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Paragraph-level Correlations Simulations
Pearson τ Kendall τ Spearman τ Acc

RadGraph 0.624 0.439 0.582 0.463
BERTScore 0.599 0.413 0.555 0.140

CheXbert 0.496 0.294 0.403 0.666
BLEU 0.409 0.289 0.404 0.119

ROUGE_L 0.572 0.396 0.567 0.117
SPICE 0.623 0.453 0.605 0.140

METEOR 0.599 0.422 0.567 0.168

Ours 0.653 0.462 0.608 0.670

Table 4: Results in RaTE-Eval Benchmark: Correlation
coefficients with radiologists and accuracy for whether
the synonym sentence can achieve higher scores than
the antonymous one on Synthetic Reports.

a significantly higher correlation with radiology426

experts compared to other non-composite metrics,427

across various measures of correlation. Metrics428

that focus on identifying key entities, such as Rad-429

Graph F1, SPICE, and ours, consistently demon-430

strate stronger correlations than those reliant on431

mere word overlap, thereby supporting our primary432

assertion that critical statements in medical reports433

are paramount. Furthermore, metrics that accom-434

modate synonyms, such as METEOR, outperform435

those that do not, such as BLEU and ROUGE.436

Significantly, RaTEScore benefits from a robust437

NER model trained on our comprehensive dataset,438

RaTE-NER, which spans multiple modalities and439

anatomical regions, not just chest X-rays, resulting440

in markedly higher correlations.441

Results on Synthetic Reports. To further show-442

case the effectiveness of our proposed RaTEScore,443

we examined its performance on the synthetic test444

set. This dataset, being synthesized, allows us445

to use accuracy (ACC) as a measure to evaluate446

performance. Specifically, we assess whether the447

synonymously simulated sentences received higher448

scores than their antonymous counterparts. The449

results, presented in Table 4, demonstrate that our450

model excels in managing synonym and antonym451

challenges, affirming its robustness in nuanced lan-452

guage processing within a medical context.453

4.4 Ablation Study454

In this ablation section, we investigate the pipeline455

from two aspects: namely, the design of NER456

model, the effect of different off-the-shelf synonym457

disambiguation encoding module.458

4.4.1 NER Module Discussion 459

Here, we discuss the performance of our NER mod- 460

ule in three parts: training schemes, initialization 461

models, and data composition. 462

Training Schemes. To select the most suitable 463

NER model for training, we compare IOB-based 464

and Span-based NER training schemes on the 465

whole RaTE-NER test set. As shown in Table 5, the 466

IOB scheme overall extracts more comprehensive 467

entities, but the recall is lower against the Span- 468

based approach. 469

Initialization Models. Additionally, as shown in 470

Table 5, we also try a sequential pre-trained BERT 471

model for initialization, i.e., DeBERTa_v3 (He 472

et al., 2021a), Medical-NER (Clinical-AI-Apollo, 473

2023), BioMedBERT (Chakraborty et al., 2020), 474

BlueBERT (Peng et al., 2019), MedCPT-Q- 475

Enc. (Jin et al., 2023), and BioLORD-2023- 476

C (Remy et al., 2024). Detailed introduction for 477

each model can be found in Appendix A.8. We 478

apply various models in different training schemes 479

based on their pre-training tasks. For example, 480

Medical-NER is pre-trained with IOB-based NER 481

tasks on other tasks thus we still finetune it in the 482

same setting. Comparing Medical-NER and De- 483

BERTa_v3, pretraining on other NER datasets does 484

not improve much. Different types of BERT also 485

perform fairly for the Span-based method. 486

Based on the results, our final scores are all based 487

on the IOB scheme with DeBERTa_v3. 488

Initialized BERT Pre Recall F1 Acc

IOB.
DeBERTa_v3 0.567 0.575 0.571 0.754
Medical-NER 0.559 0.572 0.565 0.759

Span.

BiomedBERT 0.556 0.676 0.610 0.730
SapBERT 0.560 0.658 0.605 0.731
BlueBERT 0.554 0.657 0.601 0.726
MedCPT-Q-Enc. 0.470 0.682 0.556 0.678
BioLORD-2023-C 0.555 0.664 0.605 0.727

Table 5: Ablation Study on NER Model Schemes.

Training Data Pre Recall F1 Acc

R. 0.525 0.558 0.541 0.727
M. 0.515 0.550 0.531 0.744

R. + M. 0.567 0.575 0.571 0.754

Table 6: Ablation Study on NER Training Data. R.
denotes data from Radiopaedia and M. denotes data
from MIMIC-IV.

Data Ablation. Our RaTE-NER data is composed 489
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of two distinct parts, and we conducted experi-490

ments to highlight the necessity of both. As shown491

in Table 6, ‘R.’ represents data from Radiopaedia,492

while ‘M.’ denotes data from MIMIC-IV. By com-493

bining these two parts (denoted as ‘R.+M.’), we494

observe a significant improvement in the final NER495

performance, with an increase of 0.030 in F1 and496

0.010 in ACC. This underscores the importance of497

incorporating each dataset component.498

4.4.2 Entity Encoding Module Discussion499

In our entity encoding evaluation, we compare500

two off-the-shelf entity encoding models on the501

sentence-level correlation task of RaTE-Eval. The502

first model, BioLORD-2023-C, is trained on503

medical entity-definition pairs, while the second,504

MedCPT-Query-Encoder, is trained on PubMed505

user click search logs. The models achieved Pear-506

son correlation coefficients of 0.54 and 0.52, re-507

spectively. BioLORD outperforms MedCPT with508

0.02 in Pearson Consistency, which is given that it509

is a more recent model. Based on these results, we510

selected BioLORD-2023-C as the base model for511

our Entity Encoding Module.512

5 Related Work513

5.1 General Text Evaluation Metric514

Automated scoring methods allow for a fair evalua-515

tion of the quality of generated text. BLEU (Pap-516

ineni et al., 2002), ROUGE (Lin, 2004) was origi-517

nally designed for machine translation tasks, focus-518

ing on word-level accuracy. METEOR (Banerjee519

and Lavie, 2005) adopts a similar design, taking520

into account synonym matching and word order.521

SPICE (Anderson et al., 2016) uses the key objects,522

attributes, and their relationships to compute the523

metric. BERTScore (Zhang et al., 2019), a model-524

based method, assigns scores to individual words525

and averages these scores to evaluate the text’s over-526

all quality, facilitating a more detailed analysis of527

each word’s contribution.528

5.2 Radiological Text Evaluation Metric529

With the advancement of medical image analy-530

sis, researchers have recognized the importance of531

evaluating the quality of radiology text generation.532

Metrics such as CheXbert F1 (Smit et al., 2020)533

and RadGraph F1 (Yu et al., 2023a) are based534

on medical entity extraction models. However,535

CheXbert can only annotate 14 chest abnormal-536

ities, and RadGraph F1 (Jain et al., 2021) is only537

trained on chest X-ray modality. MEDCON (Yim538

et al., 2023) expands the extraction range by Quick- 539

UMLS package (Soldaini and Goharian, 2016), 540

which relies on a string match algorithm that is 541

not flexible. RadCliQ (Yu et al., 2023a) performs 542

ensembling with BLEU, BERTScore, CheXbert 543

vector similarity, and RadGraph F1 for a compre- 544

hensive yet less interpretable evaluation. These 545

metrics calculate the overlap between reference 546

and candidate sentences while overlooking the is- 547

sue of synonymy. Recently, metrics using Large 548

Language Models (LLMs) such as GPT-4, such as 549

G-Eval (Liu et al., 2023), LLM-as-a-Judge (Zheng 550

et al., 2024), and LLM-RadJudge (Wang et al., 551

2024) have emerged, closely mimic human eval- 552

uation levels. However, these methods are unex- 553

plainable and may have potential subjective bias. 554

Besides, their high computational cost also limits 555

them for statistic robust large-scale evaluation. 556

5.3 Medical Named-Entity Recognition 557

The MedNER task targets extracting medical- 558

related entities from given contexts. Great efforts 559

have been made in this domain (Jin et al., 2023; 560

Monajatipoor et al., 2024; Keloth et al., 2024; Li 561

and Zhang, 2023; Chen et al., 2023). Inspired by 562

the success of this work, we believe MedNER mod- 563

els are strong enough to simplify complex clini- 564

cal texts, thus reducing the difficulty of automat- 565

ically comparing two clinical texts. The most re- 566

lated work to ours is RadGraph (Jain et al., 2021) 567

which trained an NER model for Chest X-ray re- 568

ports while we are targeting the general clinical 569

report regardless of their type. 570

6 Conclusion 571

In this work, we propose a new lightweight 572

explainable medical free-text evaluation metric, 573

RaTEScore, via comparing two medical reports on 574

the entity level. In detail, first, we build up a new 575

medical NER dataset, RaTE-NER targeting a wide 576

range of radiological report types and train a NER 577

model on it. Then, we adopt this model to simplify 578

the complex radiological reports and compare two 579

cases on the entity embedding level leveraging an 580

extra synonyms disambiguation encoding model, 581

thus getting rid of the confusion of complex med- 582

ical synonyms. Our final RaTEScore correlates 583

strongly with clinicians’ true preferences, signifi- 584

cantly outperforming previous metrics both on the 585

former existing benchmark and our new proposed 586

RaTE-Eval while maintaining computational effi- 587

ciency and interpretability. 588
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Limitations589

Although our proposed metric, RaTEScore, has590

performed well across various datasets, there are591

still some limitations. First, in the synonym disam-592

biguation module, we evaluated the performance593

of several existing models and directly ultilized594

them without fine-tuning specifically for the evalu-595

ation scenario, which could be enhanced in the596

future. Furthermore, while we expanded from597

single-modality radiological report evaluation to598

multimodal whole-body imaging, we still only con-599

sidered the issues within the radiological report600

scenario and did not extend to other medical con-601

texts beyond radiology, nor to the evaluation of602

other medical tasks, like medical QA, summarisa-603

tion task. These areas require ongoing research and604

exploration.605
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A Appendix846

A.1 Scoring Example847

Here is an example of how to calculate848

RaTEScore.Given a reference radiology case as:849

Referenced x: A Foley catheter is in situ.
Candidate x̂: A Foley catheter is not in
place.

850

For simplicity, we will only describe the cal-851

culation procedure for S(x, x̂) in text, and the852

calculation procedure for S(x̂, x) is similar. We853

first conduct Medical Named Entity Recognition854

to decompose the natural text into entities. For855

the reference report, the entities list is: {(“Foley856

catheter”, Anatomy), (“in situ”, Non-Abnormality)857

} and for the candidate report is {(“Foley catheter”,858

Anatomy), (“not in place”, Abnormality) }. Sub-859

sequently, these extracted entities are processed860

through the Synonym Disambiguation Encoding861

Module, which encodes the “Foley catheter” and862

“in situ” into feature embedding. Finally, during863

the Scoring Procedure, we pick out the most sim-864

ilar entity in the candidate report for each entity865

in the reference, i.e., “Foley catheter” paired with866

“Foley catheter” in the reference, and “in place”867

with “in situ”. Then, we get two cosine similarity868

scores based on the text embedding, 1.0 for “Foley869

catheter” and 0.83 for “in place”. The similarity870

score between (“in situ”, Non-Abnormality) and871

(“not in place”, Abnormality) will be further mul-872

tiplied with a penalty factor p as 0.37 while the873

other similarity will be maintained since they have874

the same entity type. At Last, we calculate the875

weighted combination of these two type groups,876

where the weights are derived from a learnable877

attribution matrix W corresponding to these type878

combinations, as 0.91 and 0.94 respectively. The879

calculation formulation is as follows:880

S(x, x̂) =
0.91× 1 + 0.94× 0.83× 0.36

0.91 + 0.94

= 0.644.
881

Similarly, we can get the other similarity:882

S(x̂, x) =
0.91× 1 + 0.83× 0.83× 0.36

0.91 + 0.83

= 0.666
883

Notably, the only difference between the two884

similarity scores in this case lies in the885

weight matrics W between (“in situ”, Non- 886

Abnormality) and (“not in place”, Abnormality). 887

In S(x, x̂), W (Non-Abnormality,Abnormality) 888

as 0.94 is adopted and in the other hand, 889

W (Abnormality,Non-Abnormality) as 0.83 is 890

adopted. The final score is computed as follows: 891

RaTEScore = 2× S(x, x̂)× S(x̂, x)

S(x, x̂) + S(x̂, x)
= 0.676. 892

A.2 Automatic Annotation Approach 893

Here, we introduce our automatic approach to con- 894

struct a part of our RaTE-NER dataset, sourced 895

from 19,263 original reports obtained from Ra- 896

diopaedia (Rad) and covering 9 modalities and 11 897

anatomies. As shown in Figure 4, leveraging the 898

latest LLM GPT-4 combined with other robust med- 899

ical knowledge bases, we develop a new automated 900

medical NER and relation extraction dataset con- 901

struction pipeline. 902

Specifically, we manually annotated several re- 903

ports at the required granularity and used few-shot 904

learning with GPT-4 to initially establish an NER 905

dataset. Following this, we built a robust medi- 906

cal entity library, integrating UMLS (Bodenreider, 907

2004), Snomed CT (Donnelly et al., 2006), ICD- 908

10 (ICD), and other knowledge bases, and com- 909

pared all extracted entities using the MedCPT (Jin 910

et al., 2023) model for similarity. Here, MedCPT is 911

a transformer model used for zero-shot biomedical 912

information retrieval, trained on PubMed’s (Canese 913

and Weis, 2013) retrieval data. During the compar- 914

ison process, entities with cosine similarity lower 915

than 0.83 were filtered out. Through practical ob- 916

servation, most entities below this threshold did not 917

meet our requirements. Subsequently, we removed 918

sentences with an entity annotation density lower 919

than 0.7 at the sentence level. Finally, we used 920

medspaCy (Eyre et al., 2021) and rule-based meth- 921

ods to determine the positive or negative polarity 922

of each word in the sentence. 923

A.3 Involving Anatomies and Modalities in 924

MIMIC-IV Data 925

In this section, we detail the imaging modalities 926

and anatomies involved in MIMIC-IV Dataset. 927

Anatomy List: NECK, TEETH, BRAIN, 928

HEAD, CHEST, PELVIS, ABDOMEN, CAR- 929

DIAC, HEAD-NECK, SOFT TISSUE, UP-EXT, 930

OB, EXT, HIP, BREAST, SPINE, MAMMO, 931

BRAIN-FACE-NECK, LOW-EXT, BONE, VAS- 932

CULAR, BLADDER. 933

12



Figure 4: Data Curation Procedure.

Modality List: CT, CTA, Fluoroscopy, Mammog-934

raphy, MRA, MRI, MRV, Ultrasound, X-Ray.935

A.4 Guidelines for Radiologists936

Referencing RadPEER (Goldberg-Stein et al.,937

2017), we set up a five-point scoring criteria, as938

shown in Table 7. During the annotation process,939

each report is compensated with $1 per report, with940

five reference reports separately.941

A.5 Example for Simulation Reports942

In this section, we give an example for the simula-943

tion report generation:944

GT: The appendix is well visualized and air-
filled.
REWRITE: The appendix is seen and con-
tains gas.
OPPOSITE: The appendix is poorly visual-
ized and not air-filled.

945

A.6 Baselines946

Herein, we will introduce the considered baselines:947

• BLEU (Papineni et al., 2002): measures the948

precision of generated text by comparing n-949

gram overlap between the generated report950

and reference reports.951

• ROUGE (Lin, 2004): focuses on recall by952

measuring the overlap of n-grams.953

• METEOR (Banerjee and Lavie, 2005): com- 954

bines precision, recall, and a penalty for frag- 955

mented alignments, while also considering 956

words order and synonyms through Word- 957

Net (Fellbaum, 2010). 958

• CheXbert (Smit et al., 2020; Yu et al., 959

2023a): computes the cosine similarity be- 960

tween CheXbert model embeddings of the ref- 961

erence report and candidate report. 962

• BERTScore (Zhang et al., 2019): utilizes pre- 963

trained model to calculate the similarity of 964

word embeddings between candidate and ref- 965

erence texts. 966

• SPICE (Anderson et al., 2016): extracts key 967

objects, attributes, and their relationships from 968

descriptions to build scene graph, and com- 969

pares the scene graph. 970

• RadGraph F1 (Yu et al., 2023a): extracts the 971

entities and relations that trained on Chest X- 972

rays modality and computes F1 score. 973

• RadCliQ (Yu et al., 2023a): is a combined 974

metrics that incorporates BLEU, BERTScore, 975

CheXbert. 976

A.7 Failure Cases in ReXVal Dataset 977

In this section, in order to better demonstrate the 978

drawbacks of ReXVal dataset, we will give a fail- 979

ure case where two reports with different lengths 980

achieve the same scores (Total number of errors). 981
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Score Meaning Explaination

5 Correct Most of the diagnosis results are correct. Most descriptions are the same. Some
wrong description unlikely to be clinically significant.

4 Almost Correct 75% of the diagnosis results are correct. Most descriptions are the same. Some
wrong description likely to be clinically significant.

3 Partly Correct 50% of the diagnosis results are correct.
2 Partly Incorrect 25% of the diagnosis results are correct
1 Major Errors Present Incorrect diagnosis. Maybe some negative descriptions are the same.
0 Total Different No overlap for the descripted information.

Table 7: 5-point scoring system For Radiologists to Rate in Paragraph-level Human Rating of RaTE-Eval Benchmark

Report Pair 1:982

GT: ET tube within 1 cm of the carina.
This was discussed with Dr. ___ at 4 p.m.
on ___ by Dr. ___ at time of interpretation.
Pred: ET tube terminates approximately 3 .
5 cm from the carina.
Total Errors: 1.33

983

Report Pair 2:984

GT: In comparison with the study of xxx,
there is again enlargement of the cardiac
silhouette with elevation of pulmonary ve-
nous pressure. Opacification at the right
base again is consistent with collapse of the
right middle and lower lobes RECOMMEN-
DATION(S): The tip of the right IJ catheter
is in the mid to lower SVC.
Pred: In comparison with the study xxx,
there is little change in the appearance of
the monitoring and support devices. Con-
tinued substantial enlargement of the car-
diac silhouette with relatively mild elevation
of pulmonary venous pressure. Opacifica-
tion at the right base silhouettes the hemidi-
aphragm and is consistent with collapse of
the right middle and lower lobes.
Total Errors: 1.33

985

As shown in the examples, it can be seen that the986

report with only two entity errors scores 1.3, and987

the report that describes more than ten different en-988

tity errors also scores 1.3. Moreover, reports length989

less than 10 words all had zero errors, whereas990

reports longer than 25 words had an average er-991

ror count greater than 3. Therefore, ignoring the992

correct count and directly using the total number993

as the basis for scoring conclusions is unreason-994

able. This approach would lead to longer sentences 995

scoring lower and shorter sentences scoring higher, 996

inflating the correlation. 997

A.8 Pretrained BERT Model Introduction 998

In this section, we will introduce our considered 999

pre-trained BERT models in detail: 1000

• DeBERTa_v3 (He et al., 2021a): is an ad- 1001

vanced version of the DeBERTa (He et al., 1002

2021b) model, which improves upon the 1003

BERT and RoBERTa models by incorporating 1004

disentangled attention mechanisms, enhanc- 1005

ing performance on a wide range of natural 1006

language processing tasks. 1007

• Medical-NER (Clinical-AI-Apollo, 2023): is 1008

a fine-tuned version of DeBERTa to recognize 1009

41 medical entities. The specific training data 1010

is not public available. 1011

• BioMedBERT (Chakraborty et al., 2020): pre- 1012

viously named "PubMedBERT", pretrained 1013

from scratch using abstracts and full-text arti- 1014

cles from PubMed (Canese and Weis, 2013). 1015

• BlueBERT (Peng et al., 2019): is a BERT 1016

model pre-trained on PubMed abstracts and 1017

clinical notes (MIMIC-III) (Johnson et al., 1018

2016). 1019

• MedCPT-Q-Enc. (Jin et al., 2023): is pre- 1020

trained by 255M query-article pairs from 1021

PubMed search logs, and achieve SOTA per- 1022

formance on several zero-shot biomedical IR 1023

datasets. 1024

• BioLORD-2023-C (Remy et al., 2024): is 1025

based on a sentence-transformers model and 1026

further finetuned on the entity-concept pairs. 1027

A.9 NER Module Implementation Details 1028

In the Medical Named Entity Recognition Mod- 1029

ule training scheme, We all train the model on one 1030
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NVIDIA GeForce GTX 3090 GPU with a batch1031

size of 96 for 10 epochs while with different learn-1032

ing rate for each training scheme. Regarding the1033

hyperparameters, for the Span-based method, we1034

follow the setting of PURE entity model (Zhong1035

and Chen, 2020), which uses a pre-trained BERT1036

model to obtain contextualized representations and1037

then fed into a feedforward network to predict the1038

probability distribution of the entity. It combines1039

a BERT (Devlin et al., 2018) model and a 3-layer1040

MLP with head hidden dimension of 3096 for span1041

classification. The span max length is 8. We use1042

different pre-trained BERT to initialize. In the train-1043

ing stage, we use a learning rate of 6e-6. For the1044

IOB-based method, each token is labeled as ’B-’1045

(beginning of an entity), ’I-’ (inside an entity), or1046

’O’ (outside of any entity). We directly fine-tune1047

the pre-trained BERT as a token classification task.1048

Specifically, we add a linear layer to the output1049

embedding of a BERT-liked model, which is fine-1050

tuned utilizing a corpus of annotated entity data1051

to predict the entity label for each token. In the1052

training stage, we use a learning rate of 1e-5.1053
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