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Abstract

This paper proposes a new entity-aware
lightweight metric for assessing accuracy of
generated medical free-form text from Al mod-
els. Our metric, termed as Radiological Re-
port (Text) Evaluation (RaTEScore), is de-
signed to focus on key medical entities, such as
diagnostic outcomes, anatomies, while demon-
strating robustness against complex medical
synonyms and sensitivity to negation expres-
sions. Technically, we establish a new large-
scale medical NER dataset RaTE-NER and
train an NER model on it. Leveraging it, we
decompose complex radiological reports into
medical entities. We define the final metric by
comparing the similarity based on the entity em-
beddings computed from language model and
their corresponding types, forcing the metrics
to focus on clinically critical statements. In ex-
periments, our score demonstrates superior per-
formance on aligning with human preference
than other metrics, both on the existing public
benchmarks and our new proposed RaTE-Eval
benchmark.

1 Introduction

With the general advancement in nature language
processing (NLP) (OpenAl, 2023; Anil et al., 2023;
Qiu et al., 2024; Wu et al., 2024) and computer
vision (CV) (Li et al., 2023; Alayrac et al., 2022;
OpenAl; Zhang et al., 2023), developing generalist
medical artificial intelligence has become increas-
ingly appealing and promising (Moor et al., 2023;
Wu et al., 2023; Tu et al., 2024). However, the
complexity and specialized nature of clinical free-
form texts, such as radiology reports and discharge
summaries, pose great challenges for assessing the
development of medical foundation models.

In the literature, four main types of metrics have
been adopted to assess the similarity between free-
form texts in medical scenarios, as shown in Fig-
ure 1. These include: (i) Metrics based on word
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Figure 1: Existing evaluation metrics. We illustrate
the limitations of current metrics. Blue boxes represent
ground-truth reports; red and yellow boxes indicate cor-
rect and incorrect generated reports, respectively. The
examples show that these metrics fail to identify oppo-
site meanings and synonyms in the reports and are often
disturbed by unrelated information.

overlaps, such as BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004). Although intuitive, these
metrics fail to capture negation or synonyms in
sentences, thereby neglecting the assessment of se-
mantic factuality; (ii) Metrics based on embedding
similarities, like BERTScore (Zhang et al., 2019).
While achieving better semantic awareness, they do
not focus on key medical terms, thus severely over-
looking the local correctness of crucial conclusions;
(iii) Metrics based on Named Entity Recognition
(NER), such as RadGraph F1 (Yu et al., 2023a) and
MEDCON (Yim et al., 2023). Although developed
specifically for the medical domain, these metrics
often fail to merge synonyms and predominantly
focus on Chest X-ray reports; (iv) Metrics relying
on large language models (LLMs), such as those
proposed by Wei et al.(Wei et al., 2024) and Liu et
al.(Liu et al., 2023). While these metrics are better



aligned with human preferences, they suffer from
potential subjective biases and are prohibitively
expensive for large-scale evaluation.

In this study, we aim to develop a metric that
more focuses on key medical entities, such as di-
agnostic outcomes, anatomies, while demonstrat-
ing robustness against complex medical synonyms
and sensitivity to negation expressions. Our work
presents two major contributions. First, we intro-
duce RaTEScore, a novel evaluation metric tailored
for radiology reports. This metric focuses on entity-
level assessments across a wide range of imaging
modalities and body regions. Specifically, we start
by identifying medical entities and their types (e.g.,
anatomy, disease, efc.). This approach allows for
targeted comparisons of specific elements, avoid-
ing broader paragraph-level evaluations. To effec-
tively manage the challenges posed by medical
synonyms, we calculate entity embeddings using
a synonym disambiguation module and determine
their cosine similarities. RaTEScore then generates
a final score using weighted similarities that reflect
the importance of the entity types involved.

Second, we develop a comprehensive medical
named-entity recognition (NER) dataset, RaTE-
NER, which encompasses 9 modalities and 22
anatomical regions, derived from MIMIC-IV and
Radiopaedia. Additionally, we introduce RaTE-
Eval, a new benchmark for comparing metrics
across diverse clinical texts, which consists of
three sub-tasks: Sentence-level Human Counting,
Paragraph-level Human Rating and Comparison
of Simulated Reports, targeting on different chal-
lenges. Both the RaTE-NER dataset and the RaTE-
Eval benchmark will be made publicly available,
contributing to the advancement of more effective
evaluation metrics in medical informatics.

Finally, we conducted extensive experiments
to demonstrate the superiority of our proposed
RaTEScore. Specifically, we first evaluate our met-
ric on the public dataset ReXVal (Yu et al., 2023a)
and achieve superior performance. However, since
the ReXVal reports are limited to chest X-rays, we
conducted experiments on the three subtasks of
RaTE-Eval, significantly surpassing other existing
metrics of the same scale. Lastly, we perform abla-
tion studies on the modules of the pipeline.

2 Methods

In this section, we start by properly formulating
the problem, and introduce the pipeline of our met-

ric (Sec. 2.1). Then, we detail each of the module
developments in our metric, for example, medi-
cal named entity recognition (Sec. 2.2), synonym
disambiguation encoding (Sec. 2.3), and the final
scoring prodecure (Sec. 2.4). Lastly, we present
the details for training and evaluation at each stage.

2.1 General Pipeline

The key intuition of our proposed RaTEScore is to
compare two radiological reports at the entity level.
Given two radiological reports, one is the ground
truth for reference, denoting as z, and the other
candidate for evaluation as . We aim to define a
new similarity metric S(x, Z), better reflecting the
clinical consistency between the two.

As shown in Figure 2, our pipeline contains three
major components: namely, a medical entity recog-
nition module (PNgr(+)), a synonym disambigua-
tion encoding module (Pgnc(+)), and a final scor-
ing module (Pspv(-)). First, we extract the medi-
cial entities from each piece of radiological text,
then encode each entity into embeddings that are
aware of medical synonym, formulated as:

F = ®pne(Pner(2)), (D

where F contains a set of an entity embeddings.
Similarly, we can get F' for &. Then, we can calcu-
late the final similarity on the entity embeddings
as:

S(xz, 1) = Bsco(F, F). ()

In the following sections, we will detail each of the
components.

2.2 Medical Named Entity Recognition

In the medical named entity recognition module,
our goal is to decompose each radiological text by
identifying a set of entities:

Oner (7) = {e1,e2,...,en}
= {(n1,t1), (n2,t2), ... (nar, tar) }-

Similarly, we can also get Pngr(Z) = {é1, €2, .. .,
én}, where M, N denote the total number of en-
tities extracted from each text respectively. Each
entity e; is defined as a tuple (n;,t;), where n;
is the name of the entity and ¢; denotes its corre-
sponding type. For instance, the tuple (‘pneumo-
nia’, ‘Disease’) represents the entity ‘pneumonia’
categorized under the entity type ‘Disease’. We cat-
egorize entity types into five distinct groups within
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Figure 2: Illustration of the Computation of RaTEScore. Given a reference radiology report =, a candidate
radiology report &, we first extract the medical entity and the corresponding entity type. Then, we compute the
entity embedding and find the maximum cosine similarity. The RaTEScore is computed by the weighted similarity

scores that consider the pairwise entity types.

radiological contexts: {Anatomy, Abnormality, Dis-
ease, Non-Abnormality, Non-Disease}. Specifi-
cally, ‘Abnormality’ refers to notable radiological
features such as masses, effusion, and edema. Con-
versely, ‘Non-Abnormality’ denotes cases where
such abnormalities are negated in the context, as
illustrated by the classification of ‘pleural effusion’
in the statement ‘No evidence of pleural effusion’.

MIMIC-IV
Train Set Dev Set Test Set
Reports 10588 (1439) 1323 (184) 1324 (193)
# Anatomy 9034 (4314) 1188 (828) 1140 (765)
# Abnormality 5579 (4047) 760 (657) 605 (513)
# Non-Abnormaliy 4182 (1528) 479 (274) 514 (253)
# Disease 1675 (1220) 189 (169) 178 (164)
# Non-Disease 3482 (965) 424 (268) 457 (264)
Radiopaedia
Train Set Dev Set Test Set
Reports 30005 (15579) 3600 (1853) 3529 (1833)
# Anatomy 34110 (14051) 4145 (2629) 4471 (2889)
# Abnormality 33863 (23352) 4021 (3386) 4265 (3365)
# Non-Abnormaliy 3878 (2280) 473 (325) 605 (420)
# Disease 9639 (7385) 1118 (1044) 741 (659)
# Non-Disease 2467 (1540) 268 (220) 183 (142)
Total Reports 40593 (17018) 4923 (2037) 4853 (2026)
Total Entities 107909 (60682) 13065 (9800) 13159 (9434)

Table 1: RaTE-NER Dataset Statistics: The dataset consists
of two data sources: MIMIC-IV (Johnson et al., 2020) and
Radiopaedia (Rad; Wu et al., 2023). # represents specific types
of medical entities. For “Reports” line, the numbers in “()”
are number of source reports. For the "Entities" and # lines,
the numbers in “()” are counts of non-redundant entities.

RaTE-NER Dataset. To facilitate training our
medical entity recognition module, we have con-
structed the RaTE-NER dataset, a large-scale, ra-
diological named entity recognition (NER) dataset.
This dataset comprises 13,235 manually annotated
sentences from 1,816 reports within the MIMIC-IV
database, adhering to our predefined entity-labeling

framework which spans 9 imaging modalities and
23 anatomical regions, ensuring broad coverage.
Given that reports in MIMIC-IV are more likely
to cover common diseases, and may not well rep-
resent rarer conditions, we further enriched the
dataset with 33,605 sentences from the 17432 re-
ports available on Radiopaedia (Rad), by leverag-
ing GPT-4 and other medical knowledge libraries to
capture intricacies and nuances of less common dis-
eases and abnormalities. More details can be found
in the Appendix A.2. We manually labeled 3,529
sentences to create a test set, as shown in Table 1,
the RaTE-NER dataset offers a level of granularity
not seen in previous datasets, with comprehensive
entity annotations within sentences. This enhanced
granularity enables to train models for medical en-
tity recognition within our analytical pipeline.

2.3 Synonym Disambiguation Encoding

Given the challenges of synonym disambigration
in the evaluation process, such as aligning terms
like “lung” and “pulmonary”, we have developed a
method to map each entity name into embedding
space, where synonyms are positioned closely to-
gether, utilizing a medical entity encoding module
trained with extensive medical knowledge. This
module, represented as: f; = ®Pgnc(n;), with f;
denotes the vector embedding for the entity name.
Consequently, we compile these into a set of en-
tity embeddings: F = {(f1,t1), (fo,t2),...}. A
similar set, F, is constructed for the candidate text.
For this encoding process, We adopt an off-shelf
retrieval model, namely, BioLORD (Remy et al.,
2024), which is trained specifically on medical
entity-definition pairs and has proven effective in
measuring entity similarity.



2.4 Scoring Procedure

Upon obtaining the encoded entity set from each
decomposed radiological text, we proceed to the fi-
nal scoring procedure. We first define the similarity
metric between a candidate entity and a reference
report, that is established by selecting an entity
from the referenced text based on the cosine simi-
larity of their name embeddings:

i* = arg 1721%2}\}4(008(]01‘, f])a

where cos( f;, f]) measures the cosine similarity
between two entity name embeddings. The entity
e;+, which best matches ¢; from the candidate text,
is chosen for further comparison. The overall simi-
larity score, S(x, Z), is then computed as follows:

_ Zj W(ti*,tj) : sim(ei*,éj)

Here, W is a learnable 5 x 5 affinity matrix between
the five entity types, where W (¢;, ¢;) represents an
element of the matrix, and S(e;, €;) is an entity-
wise similarity function, defined as:

peos(fi, fj), if ti#t
COS(fi,fj)a if ti:tj’

where we generally follow the cosine similarity
on the name embedding, with a learnable penalty
value p to punish the type mismatch. For ex-
ample, when comparing entities with identical
names but different types—such as (‘pleural effu-
sion’, ‘Abnormality’) and (“pleural effusion’, ‘Non-
Abnormality’)—the penalty term p is applied to
adjust the similarity score appropriately. Addition-
ally, the similarity between different entity types
may be weighted differently in medical scenarios
due to their clinical significance. For example, the
similarity between two ‘Abnormality’ entities is
of much greater importance than the similarity be-
tween two ‘Non-abnormality’ entities. This is be-
cause all body parts are assumed to be normal in
radiology reports by default, and minor expression
errors in normal findings do not critically impact
the report’s correctness. Therefore, we introduce
W to account for this clinical relevance.

Finally, due to the order of performing max in-
dexing and mean pooling, the finial similarity met-
ric S(z, &) does not comply with the commutative
law. S(z, ) and S(Z, z) can be analogous to pre-
cision and recall respectively. Thus, to take care of

S(z, &)

sim(ei, éj) = {

both, our final RaTEScore is defined following the
classical F;-score format, as:

S(z, &) x S(&,x)
S(x, &)+ S(&,z)

RaTEScore = 2 X 3)

2.5 Implementation Details

In this section, we introduce the implementation
details for the three key modules. First, for the
medical named entity recognition, we train a BERT-
liked model leveraging RaTE-NER dataset. We
have tried two main-stream NER training schemes,
i.e., Span-based and I0OB-based. For the Span-
based method, we follow the setting of PURE (the
Princeton University Relation Extraction system)
entity model (Zhong and Chen, 2020) and for the
1I0OB-based method, we follow DeBERTa v3 (He
et al., 2021a,b). We show more detailed implemen-
tation parameters for the two training schemes in
Appendix A.9. Additionally, we also try to initial-
ize the NER model with different pre-trained BERT.
More comparison of the two training schemes and
different BERT initializations will be present in the
ablation study. Second, For the synonym disam-
biguation encoding, we directly use the off-shelf
BioLORD-2023-C model version. Ablation stud-
ies are also conducted in Section 4. Third, for the
final scoring module, we learn the affinity matrix
W and negative penalty factor p leveraging TPE
(Tree-structured Parzen Estimator) (Bergstra et al.,
2011) with a small set of human rating data.

3 RaTE-Eval Benchmark

To effectively evaluate the alignment between auto-
matic evaluation metrics and radiologists’ assess-
ments in medical text generation tasks, we have
established a comprehensive benchmark that en-
compasses three tasks, each with its official test set
for fair comparison, as detailed below.

Sentences-level Human Rating. Existing studies
has predominantly utilized the ReXVal dataset (Yu
et al., 2023b), where errors are typically catego-
rized into six distinct types:

1. False prediction of finding;

2. Omission of finding;

3. Incorrect location/position of finding;

4. Incorrect severity of finding;

5. Mention of comparison that is not

present in the reference impression;

6. Omission of comparison describing a

change from a previous study.



Number Type Scoring Principle Data Source  Modality Anatomy
ReXVal Dataset 200 Sent. + Para. Error Count MIMIC_CXR 1 (X-ray) 1 (Chest)
Sent. level 2215 Sent. Error Count / Potential Errors
Ours Para. level 1856 Para. 5-Point Scoring System MIMIC_IV 9 22
Sim. Report 847 Sent. Mistral 8*7B

Table 2: Comparison of RaTE-Eval Benchmark and existed radiology report evaluation Benchmark.

Building on this framework, we introduce two
improvements to enhance the robustness and appli-
cability of our benchmark: (1) normalization of
error counts: recognizing that a simple count of
errors may not fairly reflect the informational con-
tent in sentences, we have adapted the scoring to
annotate the number of potential errors. This ap-
proach normalizes the counts, ensuring a more bal-
anced assessment across varying report complexi-
ties. (2) diversification of medical texts: Unlike
existing benchmarks that are limited to chest X-
rays from the MIMIC-CXR dataset (Johnson et al.,
2019), our dataset includes 2215 reports spanning
9 imaging modalities and 22 anatomies from the
MIMIC-IV dataset (Johnson et al., 2020), involving
imaging modalities and anatomies is listed in Ap-
pendix A.3. Each sentence in these reports was an-
notated by two experienced radiologists with over
five years of clinical practice, providing a richer
and more varied corpus for analysis. For parameter
search (Sec. 2.5), we divided all reports into a train-
ing set and a test set at an 8:2 ratio, to identify the
most effective parameters that align with human
scoring rules. Each case here is one sentence with
a manual error counting score based on the former
defined six error types.

Paragraph-level Human Rating. Given that med-
ical imaging interpretation commonly involves the
evaluation of lengthy texts rather than isolated sen-
tences, we have also incorporated paragraph-level
assessments into our analysis of the MIMIC-IV
reports. Specifically, we sampled 1856 reports
from various anatomies and modalities to ensure a
comprehensive and diverse evaluation. Following
RadPEER (Goldberg-Stein et al., 2017), an inter-
nationally recognized standard for radiologic peer
review, we established a 5-point scoring system for
our evaluations. The scores range from 5, denoting
a perfectly accurate report, to 0, which indicates
the report lacks any correct observations. Detailed
scoring criteria are provided in Appendix A.4, guid-
ing radiologists on how to assign scores at different
levels. Similarly, for parameter search (Sec. 2.5),

we also divide all reports into training set and a
test set at an 8:2 ratio. Each case in this dataset
is a paragraph with a single score, while, differ-
ing from sentence-level scoring, here, the score is
not a simple counting but a human rating based
on a previously introduced 5-point scoring system.
This approach is used because it is challenging
for humans to completely count all errors in long
paragraphs accurately.

Rating on Synthetic Reports. Here, we aim
to evaluate the sensitivity of our metric for han-
dling synonyms and negations using synthetic data.
Specifically, we employed Mixtral 8x7B (Jiang
et al., 2024), a sophisticated open-source Large
Language Model (LLM), to rewrite 847 reports
from the MIMIC-IV dataset. The rewriting was
guided by two tailored prompts:

You are a specialist in medical report writing, please
rewrite the sentence, you can potentially change the
entities into synonyms, but please keep the meaning
unchanged.

On the other hand, anonymous reports were gen-
erated with:

You are a specialist in medical report writing, please
rewrite the following medical report to express the
opposite meaning.

This process results in a test set comprising tri-
ads of reports: the original, a synonymous version,
and an anonymous version, detailed further in Ap-
pendix A.5. Ideally, effective evaluation metrics
should demonstrate higher scores for synonymous
reports compared to anonymous reports, thereby
more accurately reflecting the true semantic content
of the reports.

4 Experiments

In this section, we start by introducing the baseline
evaluation metrics. Later, we compare the differ-
ent metrics with our proposed RaTEScore on both
ReXVal and RaTE-Eval benchmarks. Lastly, we
present details for the ablation studies.
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Figure 3: Results in RaTE-Eval Benchmark: Correlation Coefficients with Radiologists Results ( sentence-
level ). our metric exhibits the highest Pearson correlation coefficient with the radiologists’ scoring. Note that the
scores on the horizontal axis are experts counting various types of errors normalized by the potential error types that
could occur in the given sentence, and subtracting this normalized score from 1 to achieve a positive correlation.

RadGraph F1 BERTScore CheXbert BLEU Ours

Kendall 7 0.515% 0.511* 0.499*%  0.462* 0.527

Table 3: Results in ReXVal dataset: * denotes the result
report in (Yu et al., 2023a).

4.1 Baselines

We use the following metrics as baseline compar-
isons: BLEU (Papineni et al., 2002), ROUGE (Lin,
2004), METEOR (Banerjee and Lavie, 2005),
CheXbert (Smit et al., 2020; Yu et al., 2023a),
BERTScore (Zhang et al., 2019), SPICE (Anderson
et al., 2016) and RadGraph F1 (Yu et al., 2023a).
Detailed explanations of these metrics can be found
in the Appendix A.6.

4.2 Results in ReXVal dataset

Our initial evaluation uses the public ReXVal
dataset, we calculated the Kendall correlation co-
efficient to measure the agreement between our
RaTEScore and the average number of errors iden-
tified by six radiologists. Our analysis was con-
ducted under identical conditions to those of base-
line methods. Given that the reports in ReXVal
vary significantly in length, predominantly featur-
ing longer documents, we applied a type weight
matrix with parameters specifically fine-tuned on
our long-report benchmark training set. As detailed
in Table 3, RaTEScore demonstrated a Kendall cor-
relation coefficient of 0.527 with the error counts,

surpassing all existing metrics.

While further examining instances with notable
deviations in Appendix A.7, a primary observa-
tion was that ReXVal’s protocol tends to count six
types of errors uniformly, without accounting for
variations in report length. This approach leads to
discrepancies where a single-sentence report with
one error type and a twenty-sentence report with
the same error count receive equivalent scores. To
address this issue, our RaTE-Eval benchmark can
be better suited to distinguish such variations, by
normalising the total error counts with potential
error counts.

4.3 Results in RaTE-Eval benchmark

On Sentence-level Rating. As illustrated in Fig-
ure 3, our model achieved a Pearson correlation
coefficient of 0.54 on the RaTE-Eval short sen-
tence benchmark, significantly outperforming the
second-best existing baselines. These results un-
derscore the inadequacy of methods that predomi-
nantly rely on term overlap for evaluations within
a medical context. While entity-based metrics like
RadGraph F1 show notable improvements, they
still do not reach the desired level of efficacy on an
extensive benchmark encompassing multi-modal,
multi-region reports. This shortfall is largely at-
tributable to the limited scope of the training vo-
cabulary inherent in these methods.

On Paragraph-level Rating. From the results in
Table 4, it can be observed that RaTEScore shows



Paragraph-level Correlations Simulations
Pearson 7 Kendall - Spearman 7 Acc
RadGraph ~ 0.624 0.439 0.582 0.463
BERTScore  0.599 0.413 0.555 0.140
CheXbert  0.496 0.294 0.403 0.666
BLEU  0.409 0.289 0.404 0.119
ROUGE_L  0.572 0.396 0.567 0.117
SPICE  0.623 0.453 0.605 0.140
METEOR  0.599 0.422 0.567 0.168
Ours  0.653 0.462 0.608 0.670

Table 4: Results in RaTE-Eval Benchmark: Correlation
coefficients with radiologists and accuracy for whether
the synonym sentence can achieve higher scores than
the antonymous one on Synthetic Reports.

a significantly higher correlation with radiology
experts compared to other non-composite metrics,
across various measures of correlation. Metrics
that focus on identifying key entities, such as Rad-
Graph F1, SPICE, and ours, consistently demon-
strate stronger correlations than those reliant on
mere word overlap, thereby supporting our primary
assertion that critical statements in medical reports
are paramount. Furthermore, metrics that accom-
modate synonyms, such as METEOR, outperform
those that do not, such as BLEU and ROUGE.
Significantly, RaTEScore benefits from a robust
NER model trained on our comprehensive dataset,
RaTE-NER, which spans multiple modalities and
anatomical regions, not just chest X-rays, resulting
in markedly higher correlations.

Results on Synthetic Reports. To further show-
case the effectiveness of our proposed RaTEScore,
we examined its performance on the synthetic test
set. This dataset, being synthesized, allows us
to use accuracy (ACC) as a measure to evaluate
performance. Specifically, we assess whether the
synonymously simulated sentences received higher
scores than their antonymous counterparts. The
results, presented in Table 4, demonstrate that our
model excels in managing synonym and antonym
challenges, affirming its robustness in nuanced lan-
guage processing within a medical context.

4.4 Ablation Study

In this ablation section, we investigate the pipeline
from two aspects: namely, the design of NER
model, the effect of different off-the-shelf synonym
disambiguation encoding module.

4.4.1 NER Module Discussion

Here, we discuss the performance of our NER mod-
ule in three parts: training schemes, initialization
models, and data composition.

Training Schemes. To select the most suitable
NER model for training, we compare IOB-based
and Span-based NER training schemes on the
whole RaTE-NER test set. As shown in Table 5, the
IOB scheme overall extracts more comprehensive
entities, but the recall is lower against the Span-
based approach.

Initialization Models. Additionally, as shown in
Table 5, we also try a sequential pre-trained BERT
model for initialization, i.e., DeBERTa_v3 (He
et al., 2021a), Medical-NER (Clinical-AI-Apollo,
2023), BioMedBERT (Chakraborty et al., 2020),
BlueBERT (Peng et al., 2019), MedCPT-Q-
Enc. (Jin et al.,, 2023), and BioLORD-2023-
C (Remy et al., 2024). Detailed introduction for
each model can be found in Appendix A.8. We
apply various models in different training schemes
based on their pre-training tasks. For example,
Medical-NER is pre-trained with IOB-based NER
tasks on other tasks thus we still finetune it in the
same setting. Comparing Medical-NER and De-
BERTa_v3, pretraining on other NER datasets does
not improve much. Different types of BERT also
perform fairly for the Span-based method.

Based on the results, our final scores are all based
on the IOB scheme with DeBERTa_v3.

Initialized BERT Pre Recall F1 Acc

IOB. DeBERTa_v3 0.567 0.575 0.571 0.754
Medical-NER 0.559 0.572 0.565 0.759
BiomedBERT 0.556 0.676 0.610 0.730
SapBERT 0.560 0.658 0.605 0.731

Span. BlueBERT 0.554 0.657 0.601 0.726
MedCPT-Q-Enc.  0.470 0.682 0.556 0.678
BioLORD-2023-C  0.555 0.664 0.605 0.727

Table 5: Ablation Study on NER Model Schemes.

Training Data Pre Recall F1 Acc
R. 0.525 0.558 0.541 0.727
M. 0.515 0.550 0.531 0.744
R.+ M. 0.567 0.575 0.571 0.754

Table 6: Ablation Study on NER Training Data. R.
denotes data from Radiopaedia and M. denotes data
from MIMIC-IV.

Data Ablation. Our RaTE-NER data is composed



of two distinct parts, and we conducted experi-
ments to highlight the necessity of both. As shown
in Table 6, ‘R.” represents data from Radiopaedia,
while ‘M.’ denotes data from MIMIC-IV. By com-
bining these two parts (denoted as ‘R.+M."), we
observe a significant improvement in the final NER
performance, with an increase of 0.030 in F1 and
0.010 in ACC. This underscores the importance of
incorporating each dataset component.

4.4.2 Entity Encoding Module Discussion

In our entity encoding evaluation, we compare
two off-the-shelf entity encoding models on the
sentence-level correlation task of RaTE-Eval. The
first model, BioLORD-2023-C, is trained on
medical entity-definition pairs, while the second,
MedCPT-Query-Encoder, is trained on PubMed
user click search logs. The models achieved Pear-
son correlation coefficients of 0.54 and 0.52, re-
spectively. BioLORD outperforms MedCPT with
0.02 in Pearson Consistency, which is given that it
18 a more recent model. Based on these results, we
selected BioLORD-2023-C as the base model for
our Entity Encoding Module.

5 Related Work
5.1 General Text Evaluation Metric

Automated scoring methods allow for a fair evalua-
tion of the quality of generated text. BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004) was origi-
nally designed for machine translation tasks, focus-
ing on word-level accuracy. METEOR (Banerjee
and Lavie, 2005) adopts a similar design, taking
into account synonym matching and word order.
SPICE (Anderson et al., 2016) uses the key objects,
attributes, and their relationships to compute the
metric. BERTScore (Zhang et al., 2019), a model-
based method, assigns scores to individual words
and averages these scores to evaluate the text’s over-
all quality, facilitating a more detailed analysis of
each word’s contribution.

5.2 Radiological Text Evaluation Metric

With the advancement of medical image analy-
sis, researchers have recognized the importance of
evaluating the quality of radiology text generation.
Metrics such as CheXbert F1 (Smit et al., 2020)
and RadGraph F1 (Yu et al., 2023a) are based
on medical entity extraction models. However,
CheXbert can only annotate 14 chest abnormal-
ities, and RadGraph F1 (Jain et al., 2021) is only
trained on chest X-ray modality. MEDCON (Yim

et al., 2023) expands the extraction range by Quick-
UMLS package (Soldaini and Goharian, 2016),
which relies on a string match algorithm that is
not flexible. RadCliQ (Yu et al., 2023a) performs
ensembling with BLEU, BERTScore, CheXbert
vector similarity, and RadGraph F1 for a compre-
hensive yet less interpretable evaluation. These
metrics calculate the overlap between reference
and candidate sentences while overlooking the is-
sue of synonymy. Recently, metrics using Large
Language Models (LLMs) such as GPT-4, such as
G-Eval (Liu et al., 2023), LLM-as-a-Judge (Zheng
et al., 2024), and LLM-RadJudge (Wang et al.,
2024) have emerged, closely mimic human eval-
uation levels. However, these methods are unex-
plainable and may have potential subjective bias.
Besides, their high computational cost also limits
them for statistic robust large-scale evaluation.

5.3 Medical Named-Entity Recognition

The MedNER task targets extracting medical-
related entities from given contexts. Great efforts
have been made in this domain (Jin et al., 2023;
Monajatipoor et al., 2024; Keloth et al., 2024; Li
and Zhang, 2023; Chen et al., 2023). Inspired by
the success of this work, we believe MedNER mod-
els are strong enough to simplify complex clini-
cal texts, thus reducing the difficulty of automat-
ically comparing two clinical texts. The most re-
lated work to ours is RadGraph (Jain et al., 2021)
which trained an NER model for Chest X-ray re-
ports while we are targeting the general clinical
report regardless of their type.

6 Conclusion

In this work, we propose a new lightweight
explainable medical free-text evaluation metric,
RaTEScore, via comparing two medical reports on
the entity level. In detail, first, we build up a new
medical NER dataset, RaTE-NER targeting a wide
range of radiological report types and train a NER
model on it. Then, we adopt this model to simplify
the complex radiological reports and compare two
cases on the entity embedding level leveraging an
extra synonyms disambiguation encoding model,
thus getting rid of the confusion of complex med-
ical synonyms. Our final RaTEScore correlates
strongly with clinicians’ true preferences, signifi-
cantly outperforming previous metrics both on the
former existing benchmark and our new proposed
RaTE-Eval while maintaining computational effi-
ciency and interpretability.



Limitations

Although our proposed metric, RaTEScore, has
performed well across various datasets, there are
still some limitations. First, in the synonym disam-
biguation module, we evaluated the performance
of several existing models and directly ultilized
them without fine-tuning specifically for the evalu-
ation scenario, which could be enhanced in the
future. Furthermore, while we expanded from
single-modality radiological report evaluation to
multimodal whole-body imaging, we still only con-
sidered the issues within the radiological report
scenario and did not extend to other medical con-
texts beyond radiology, nor to the evaluation of
other medical tasks, like medical QA, summarisa-
tion task. These areas require ongoing research and
exploration.
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A Appendix
A.1 Scoring Example

Here is an example of how to calculate
RaTEScore.Given a reference radiology case as:

Referenced z: A Foley catheter is in situ.
Candidate z: A Foley catheter is not in
place.

For simplicity, we will only describe the cal-
culation procedure for S(z,) in text, and the
calculation procedure for S(Z, z) is similar. We
first conduct Medical Named Entity Recognition
to decompose the natural text into entities. For
the reference report, the entities list is: {(“Foley
catheter”, Anatomy), (“in situ”, Non-Abnormality)
} and for the candidate report is {(‘“Foley catheter”,
Anatomy), (“not in place”, Abnormality) }. Sub-
sequently, these extracted entities are processed
through the Synonym Disambiguation Encoding
Module, which encodes the “Foley catheter” and
“in situ” into feature embedding. Finally, during
the Scoring Procedure, we pick out the most sim-
ilar entity in the candidate report for each entity
in the reference, i.e., “Foley catheter” paired with
“Foley catheter” in the reference, and “in place”
with “in situ”. Then, we get two cosine similarity
scores based on the text embedding, 1.0 for “Foley
catheter” and 0.83 for “in place”. The similarity
score between (“in situ”, Non-Abnormality) and
(“not in place”, Abnormality) will be further mul-
tiplied with a penalty factor p as 0.37 while the
other similarity will be maintained since they have
the same entity type. At Last, we calculate the
weighted combination of these two type groups,
where the weights are derived from a learnable
attribution matrix W corresponding to these type
combinations, as 0.91 and 0.94 respectively. The
calculation formulation is as follows:

091 x 1+0.94 x 0.83 x 0.36
- 0.91 +0.94

S(z, &)
= 0.644.

Similarly, we can get the other similarity:

~0.91x1+0.83x%0.83x%0.36
- 0.91 4+ 0.83

S(z,x)
= 0.666

Notably, the only difference between the two
similarity scores in this case lies in the

weight matrics W between (“in situ”, Non-
Abnormality) and (“not in place”, Abnormality).
In S(xz,z), W (Non-Abnormality, Abnormality)
as 0.94 is adopted and in the other hand,
W (Abnormality, Non-Abnormality) as 0.83 is
adopted. The final score is computed as follows:

)
)

A.2 Automatic Annotation Approach

S(z, &) x 8(4,

RaTEScore = 2 X
S(xz,z)+ S(z,

= 0.676.

T
T

Here, we introduce our automatic approach to con-
struct a part of our RaTE-NER dataset, sourced
from 19,263 original reports obtained from Ra-
diopaedia (Rad) and covering 9 modalities and 11
anatomies. As shown in Figure 4, leveraging the
latest LLM GPT-4 combined with other robust med-
ical knowledge bases, we develop a new automated
medical NER and relation extraction dataset con-
struction pipeline.

Specifically, we manually annotated several re-
ports at the required granularity and used few-shot
learning with GPT-4 to initially establish an NER
dataset. Following this, we built a robust medi-
cal entity library, integrating UMLS (Bodenreider,
2004), Snomed CT (Donnelly et al., 2006), ICD-
10 (ICD), and other knowledge bases, and com-
pared all extracted entities using the MedCPT (Jin
et al., 2023) model for similarity. Here, MedCPT is
a transformer model used for zero-shot biomedical
information retrieval, trained on PubMed’s (Canese
and Weis, 2013) retrieval data. During the compar-
ison process, entities with cosine similarity lower
than 0.83 were filtered out. Through practical ob-
servation, most entities below this threshold did not
meet our requirements. Subsequently, we removed
sentences with an entity annotation density lower
than 0.7 at the sentence level. Finally, we used
medspaCy (Eyre et al., 2021) and rule-based meth-
ods to determine the positive or negative polarity
of each word in the sentence.

A.3 Involving Anatomies and Modalities in
MIMIC-IV Data

In this section, we detail the imaging modalities
and anatomies involved in MIMIC-IV Dataset.

Anatomy List: NECK, TEETH, BRAIN,
HEAD, CHEST, PELVIS, ABDOMEN, CAR-
DIAC, HEAD-NECK, SOFT TISSUE, UP-EXT,
OB, EXT, HIP, BREAST, SPINE, MAMMO,
BRAIN-FACE-NECK, LOW-EXT, BONE, VAS-
CULAR, BLADDER.



I. Structure the Radiology Reports by GPT-4

Radiology Reports

Single pulmonary nodule is seen in the medial left
upper zone projecting over the left first rib end.
Remainder of the lungs and pleural spaces are
clear. Cardiomediastinal contour is normal. No
destructive bone lesion identified.

l GPT4

Generated Text Examples:

[single pulmonary nodule; left upper zone]
[clear; remainder of the lungs and pleural spaces]
[normal; cardiomediastinal contour]

[no destructive bone lesion identified]

l Rule-based Methods to Structure the Data

Structured Pairs Examples:

Entity:

single pulmonary nodule - Abnormality
left upper zone - Anatomy

destructive bone lesion - Disease

Compare the extracted pairs with medical corpus and
drop if cosine similarity < 0.83,and delete sentences that
entity annotation < 70%

Medical Corpus
T

Modify the Structured Data by Medical Corpus

ICD-10

2

41k Anatomy Entities 280k Disease Entities

. Judge Entity Negativity.

... No [destructive bone lesion|identified. ...

Disease mmm) Non-Disease

Positive Labels:  Dijsease Abnormality Anatomy

Negative Labels: Non-Disease ~ Non-Abnormality

Change the label by context keywords ( clear, normal,
intact ... ) and medspaCy detection.

Figure 4: Data Curation Procedure.

Modality List: CT, CTA, Fluoroscopy, Mammog-
raphy, MRA, MRI, MRV, Ultrasound, X-Ray.

A.4 Guidelines for Radiologists

Referencing RadPEER (Goldberg-Stein et al.,
2017), we set up a five-point scoring criteria, as
shown in Table 7. During the annotation process,
each report is compensated with $1 per report, with
five reference reports separately.

A.5 Example for Simulation Reports

In this section, we give an example for the simula-
tion report generation:

GT: The appendix is well visualized and air-
filled.

REWRITE: The appendix is seen and con-
tains gas.

OPPOSITE: The appendix is poorly visual-
ized and not air-filled.

\

A.6 Baselines

Herein, we will introduce the considered baselines:

e BLEU (Papineni et al., 2002): measures the
precision of generated text by comparing n-
gram overlap between the generated report
and reference reports.

* ROUGE (Lin, 2004): focuses on recall by
measuring the overlap of n-grams.
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METEOR (Banerjee and Lavie, 2005): com-
bines precision, recall, and a penalty for frag-
mented alignments, while also considering

words order and synonyms through Word-
Net (Fellbaum, 2010).

CheXbert (Smit et al., 2020; Yu et al.,
2023a): computes the cosine similarity be-
tween CheXbert model embeddings of the ref-
erence report and candidate report.

BERTScore (Zhang et al., 2019): utilizes pre-
trained model to calculate the similarity of
word embeddings between candidate and ref-
erence texts.

SPICE (Anderson et al., 2016): extracts key
objects, attributes, and their relationships from
descriptions to build scene graph, and com-
pares the scene graph.

RadGraph F1 (Yu et al., 2023a): extracts the
entities and relations that trained on Chest X-
rays modality and computes F1 score.

RadCliQ (Yu et al., 2023a): is a combined
metrics that incorporates BLEU, BERTScore,
CheXbert.

A.7 Failure Cases in ReXVal Dataset

In this section, in order to better demonstrate the
drawbacks of ReXVal dataset, we will give a fail-
ure case where two reports with different lengths
achieve the same scores (Total number of errors).



Score Meaning Explaination

Most of the diagnosis results are correct. Most descriptions are the same. Some

75% of the diagnosis results are correct. Most descriptions are the same. Some

Incorrect diagnosis. Maybe some negative descriptions are the same.

5  Correct
wrong description unlikely to be clinically significant.
4 Almost Correct
wrong description likely to be clinically significant.
3 Partly Correct 50% of the diagnosis results are correct.
2 Partly Incorrect 25% of the diagnosis results are correct
1 Major Errors Present
0  Total Different No overlap for the descripted information.

Table 7: 5-point scoring system For Radiologists to Rate in Paragraph-level Human Rating of RaTE-Eval Benchmark

Report Pair 1:

GT: ET tube within 1 cm of the carina.
This was discussed with Dr. ___ at4 p.m.
on___ byDr. ___ attime of interpretation.
Pred: ET tube terminates approximately 3 .
5 cm from the carina.

Total Errors: 1.33

\

Report Pair 2:

GT: In comparison with the study of xxx,
there is again enlargement of the cardiac
silhouette with elevation of pulmonary ve-
nous pressure. Opacification at the right
base again is consistent with collapse of the
right middle and lower lobes RECOMMEN-
DATION(S): The tip of the right 1J catheter
is in the mid to lower SVC.

Pred: In comparison with the study xxx,
there is little change in the appearance of
the monitoring and support devices. Con-
tinued substantial enlargement of the car-
diac silhouette with relatively mild elevation
of pulmonary venous pressure. Opacifica-
tion at the right base silhouettes the hemidi-
aphragm and is consistent with collapse of
the right middle and lower lobes.

Total Errors: 1.33

As shown in the examples, it can be seen that the
report with only two entity errors scores 1.3, and
the report that describes more than ten different en-
tity errors also scores 1.3. Moreover, reports length
less than 10 words all had zero errors, whereas
reports longer than 25 words had an average er-
ror count greater than 3. Therefore, ignoring the
correct count and directly using the total number
as the basis for scoring conclusions is unreason-
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able. This approach would lead to longer sentences
scoring lower and shorter sentences scoring higher,
inflating the correlation.

A.8 Pretrained BERT Model Introduction

In this section, we will introduce our considered
pre-trained BERT models in detail:

* DeBERTa_v3 (He et al., 2021a): is an ad-
vanced version of the DeBERTa (He et al.,
2021b) model, which improves upon the
BERT and RoBERTa models by incorporating
disentangled attention mechanisms, enhanc-
ing performance on a wide range of natural
language processing tasks.

* Medical-NER (Clinical-Al-Apollo, 2023): is
a fine-tuned version of DeBERTa to recognize
41 medical entities. The specific training data
is not public available.

* BioMedBERT (Chakraborty et al., 2020): pre-
viously named "PubMedBERT", pretrained
from scratch using abstracts and full-text arti-
cles from PubMed (Canese and Weis, 2013).

* BlueBERT (Peng et al., 2019): is a BERT
model pre-trained on PubMed abstracts and
clinical notes (MIMIC-III) (Johnson et al.,
2016).

* MedCPT-Q-Enc. (Jin et al., 2023): is pre-
trained by 255M query-article pairs from
PubMed search logs, and achieve SOTA per-
formance on several zero-shot biomedical IR
datasets.

* BioLORD-2023-C (Remy et al., 2024): is
based on a sentence-transformers model and
further finetuned on the entity-concept pairs.

A.9 NER Module Implementation Details

In the Medical Named Entity Recognition Mod-
ule training scheme, We all train the model on one



NVIDIA GeForce GTX 3090 GPU with a batch
size of 96 for 10 epochs while with different learn-
ing rate for each training scheme. Regarding the
hyperparameters, for the Span-based method, we
follow the setting of PURE entity model (Zhong
and Chen, 2020), which uses a pre-trained BERT
model to obtain contextualized representations and
then fed into a feedforward network to predict the
probability distribution of the entity. It combines
a BERT (Devlin et al., 2018) model and a 3-layer
MLP with head hidden dimension of 3096 for span
classification. The span max length is 8. We use
different pre-trained BERT to initialize. In the train-
ing stage, we use a learning rate of 6e-6. For the
IOB-based method, each token is labeled as 'B-’
(beginning of an entity), 'I-’ (inside an entity), or
O’ (outside of any entity). We directly fine-tune
the pre-trained BERT as a token classification task.
Specifically, we add a linear layer to the output
embedding of a BERT-liked model, which is fine-
tuned utilizing a corpus of annotated entity data
to predict the entity label for each token. In the
training stage, we use a learning rate of le-5.
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