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Abstract

We study the problem of preconditioning in sequential prediction. From the theoret-
ical lens of linear dynamical systems, we show that convolving the input sequence
corresponds to applying a polynomial to the hidden transition matrix. Building on
this insight, we propose a universal preconditioning method that convolves the input
with coefficients from orthogonal polynomials such as Chebyshev or Legendre. We
prove that this approach reduces regret for two distinct prediction algorithms and
yields the first ever sublinear and hidden-dimension–independent regret bounds (up
to logarithmic factors) that hold for systems with marginally stable and asymmetric
transition matrices. Finally, extensive synthetic and real-world experiments show
that this simple preconditioning strategy improves the performance of a diverse
range of algorithms, including recurrent neural networks, and generalizes to signals
beyond linear dynamical systems.

1 Introduction

In sequence prediction the goal of the learner is to predict the next token accurately according to a
specified loss function, such as the mean square error or cross-entropy. This fundamental problem
in machine learning has gained increased importance with the rise of large language models, which
perform sequence prediction on tokens using cross entropy. The focus of this paper is preconditioning,
i.e. modifying the target sequence to make it easier to learn. A classic example is differencing,
introduced by Box and Jenkins in the 1970s [14], which transforms observations y1,y2, . . . into
successive differences,

y1 → y0, y2 → y1, ..., yt → yt↑1, ...

It is widely acknowledged that learning this sequence can be “easier" than learning the original
sequence for a large number of modalities. In this work we seek a more general framework for
sequence preconditioning that captures the same intuition behind differencing and extends it to a
broader class of transformations. The question we ask is

What is the general form of sequence preconditioning that enables provably accurate learning?

We address this question by introducing a preconditioning method which takes in n fixed coefficients
c0, . . . , cn and converts the sequence of observations y1, . . . ,yt, . . . to the sequence of convolved
observations1

c0y0, c0y1 + c1y0, . . . ,

n∑

i=0

ciyt↑i, . . .

From an information-theoretic perspective, approaches of this kind seem futile—predicting yt or∑
i ciyt↑i seems equally hard in an adversarial setting. Yet we show that when the data arises from

*Google Deepmind
†Princeton University
1This recovers differencing when n = 2, c0 = 1, and c1 = →1.
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a linear dynamical system (LDS), there exists a universal form of preconditioning that provably
improves learnability, independent of the specific system.

In LDS setting, we show that preconditioning significantly strengthens existing prediction methods,
leading to new regret bounds. Here, preconditioning has an elegant effect: the preconditioning filter
forms coefficients of an n degree polynomial, and the hidden system transition matrix is evaluated on
this polynomial– potentially shrinking the domain. In this setting, shrinking the learnable domain is
akin to making the problem “easier to learn”, a relationship that is formalized by [28]. This allows us
to prove the first dimension-independent sublinear regret bounds for asymmetric linear dynamical
systems that are marginally stable.

1.1 Our results

Our main contribution is Universal Sequence Preconditioning, a novel method of sequence precon-
ditioning which convolves the target sequence with the coefficients of the n-th monic Chebyshev
polynomial. We give a more general form of preconditioning, allowing arbitrary user-specified
coefficients, in Algorithm 1 and an online version in Algorithm 4 (Appendix C). We analyze the
effect of Universal Sequence Preconditioning on two canonical sequence prediction algorithms in
the online setting: (1) convex regression and (2) spectral filtering. In either case, the results are
impressive– yielding the first known sublinear regret bounds as compared to the optimal ground-truth
predictor that are simultaneously (1) applicable to marginally stable systems, (2) independent of
hidden dimension (up to logarithmic factors), and (3) applicable to systems whose transition matrix
is asymmetric2 (see Table 1 ).

Algorithm 1 General Sequence Preconditioning (Offline Version)
1: Training
2: Input: training data (u1:N

1:T ,y1:N
1:T ) where (ui

t,y
i
t) is the t-th input/output pair in the i-th sequence;

coefficients c0:n; prediction algorithm A.
3: Assert c0 = 1.
4: for i = 1 to N do
5: ypreconditioned,i

1:T ↑ convolution(yi
1:T , c0:n) ! ypreconditioned,i

t = yi
t +

∑n
j=1 cjy

i
t↑j

6: end for
7: Train A on preconditioned data

(
u1:N
1:T ,ypreconditioned,1:N

1:T

)
.

8: Test Time
9: for t = 1 to T do

10: Receive ut.
11: Predict ŷt ↑ A

(
u1:t,y1:(t↑1)

)
→
∑n

i=1 ciyt↑i.
12: Receive yt.
13: end for

First, applying USP to standard convex regression results in regret Õ(T↑2/13), which holds simul-
taneously across the three settings above and remains dimension-independent. For comparison, a
naive analysis of regression yields a vacuous regret bound of O(T 5/2) on marginally stable systems.
Second, combining USP with a variant of spectral filtering [29] that uses novel filters, the algorithm is
able learn a broader class of linear dynamical systems– in particular systems whose hidden transition
matrix may be asymmetric. The enhanced method achieves regret Õ(T↑3/13), the best known
rate under the joint conditions of conditions (1)-(3) discussed above: marginal stability, dimension
independence, and asymmetry.

Both results require that the transition matrix eigenvalues have imaginary parts bounded by
O(1/ log T )—a near-tight condition for achieving dimension-free regret. Further discussion on
this appears in Appendix B.

Empirical results in Section 4 demonstrate that USP consistently improves performance across diverse
algorithms—including regression, spectral filtering, and neural networks—and across data types
extending beyond linear dynamical systems.

2Our results only hold for asymmetric matrices whose eigenvalues have imaginary component bounded
above by O(1/ log(T )). This is somewhat tight, see Section B.
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Method Marginally stable dhidden-free Asymmetric
Sys-ID ↓ ↓ ↭

Regression (open-loop) ↓ ↭ ↭
Regression (closed-loop) ↭ ↓ ↭

Spectral Filtering ↭ ↭ ↓
USP + Regression ↭ ↭ ↔ ↭

USP + Spectral Filtering ↭ ↭ ↔ ↭
Table 1: Comparison of methods for learning LDS. USP extends learning to mildly asymmetric
matrices with bounded complex eigenvalues.

1.2 Intuition for Universal Sequence Preconditioning

We now give some brief intuition for the result. Linear dynamical systems (LDS) are perhaps the
most basic and well studied dynamical systems in engineering and control science. Given input
vectors u1, . . . ,uT ↗ Cdin , the system generates a sequence of output vectors y1, . . .yT ↗ Cdout

according to the law

xt+1 = Axt +But, yt = Cxt +Dut, (1)

where x0, . . . ,xT ↗ Cdhidden is a sequence of hidden states and (A,B,C,D) are matrices which
parameterize the LDS. We assume w.l.o.g. that D = 0. We can factor out the hidden state xt so that
the observation at time t is

yt =
t∑

s=1

CAt↑sBus.

Given coefficients c0:n = (c0, . . . , cn) let

p
c
n(x)

def
=

n∑

i=0

cix
n↑i

. (2)

Consider a “preconditioned” target at time t to be a linear combination of yt:t↑n with coefficients
c0:n. A key insight is the following identity,

n∑

i=0

ciyt↑i =
n↑1∑

s=0

(
s∑

i=0

ciCAs↑iB

)
ut↑s +

t↑n↑1∑

s=0

Cp
c
n(A)AsBut↑n↑s.

If we take c0 = 1 (i.e. a monic polynomial), we can re-write yt as

yt = →
n∑

i=1

ciyt↑i

︸ ︷︷ ︸
↓0

+
n↑1∑

s=0

s∑

i=0

ciCAs↑iBut↑s

︸ ︷︷ ︸
↓1

+
t↑n↑1∑

s=0

Cp
c
n(A)AsBut↑n↑s

︸ ︷︷ ︸
↓2

. (3)

This expression highlights our approach as a balance of three terms:

↘0 The universal preconditioning term: it depends only on the coefficients c0:nand not on any
learning algorithm.

↘1 A term learnable via convex relaxation and regression, for example by denoting

Qlearned
s =

s∑

i=0

ciCAs↑iB.

The diameter of the coefficient Qs depends on the magnitude of the coefficients c0:n.
↘2 The residual term with polynomial pcn(A). By a careful choice of coefficients c0:n, we can

force this term to be very small.

The main insight we derive from this expression is the inherent tension between two terms ↘1,↘2.
The polynomial pcn(x) and its coefficients c0, . . . , cn control two competing effects:
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1. The preconditioning coefficients grow larger with the degree n of the polynomial and the
magnitude of the coefficients ci. A higher degree polynomial and larger coefficients increase
the diameter of the search space over the preconditioning coefficients, and therefore increase
the regret bound stemming from the ↘1 component learning.

2. On the other hand, a larger search space can allow a broader class of polynomials pn(·)
which can better control of the magnitude of pn(A), and therefore reduce the search space
of the ↘2 component.

What choice of polynomial is best? This work considers the Chebyshev polynomial. The reason is
the following property of the n-th monic Chebyshev polynomial:

max
ω↔[↑1,1]

|pn(ω)| ≃ 2↑(n↑1)
.

As an example, consider any LDS whose hidden transition matrix A is diagonalizable and has
eigenvalues in [→1, 1]3. By the above property, observe that ⇐pn(A)⇐↗ ≃ 2 · 2↑n, therefore
shrinking the ↘2 term at a rate exponential with the number of preconditioning coefficients. We
pause to remark on the universality of this choice of polynomial. Indeed, one could instead have
chosen the preconditioning coefficients to depend on A so that pcn(·) is the characteristic polynomial
of A. By the Cayley-Hamilton theorem, pn(A) = 0. This means that ↘2 term is canceled out
completely. However this would have required knowledge of the spectrum of A. The Chebyshev
polynomial, on the other hand, is agnostic to the particular hidden transition matrix. Moreover, even
if the spectrum of A were known, choosing the preconditioning coefficients to form the characteristic
polynomial would result in an algorithm which must learn hidden dimension many parameters, which
is prohibitive. Instead, the degree of the Chebyshev polynomial must only grow logarithmically with
the hidden dimension.

1.3 Related work

Our manuscript is technically involved and incorporates linear dynamical systems, spectral filtering,
complex Chebyshev and Legendre polynomials, Hankel and Toeplitz matrix eigendecay, Gaussian
quadrature and other techniques. The related work is thus expansive, and due to space limitations we
give a detailed treatment in Appendix A.

Preconditioning in the context of time series analysis has roots in the classical work of Box and
Jenkins [14]. In their foundational text they propose differencing as a method for making the time
series stationary, and thus amenable to statistical learning techniques such as ARMA (auto-regressive
moving average) [10]. The differencing operator can be applied numerous times, and for different
lags, giving rise to the ARIMA family of forecasting models. Identifying the order of an ARIMA
model, and in particular the types of differencing needed to make a series stationary, is a hard problem
This is a special case of the problem we consider: differencing corresponds to certain coefficients of
preconditioning the time series, whereas we consider arbitrary coefficients.

For a thorough introduction to modern control theory and exposition on open loop / closed loop
predictors, learning via regression, and spectral filtering, see [28].

The fundamental problem of learning in linear dynamical systems has been studied for many decades,
and we highlight several key approaches below:

1. System identification refers to the method of recovering A,B,C from the data. This is a
non-convex problem and while many methods have been considered in this setting, they
depend polynomially on the hidden dimension.

2. The (auto) regression method predicts according to ŷt =
∑h

i=1 Miut↑i. The coefficients
Mi can be learned using convex regression. The downside of this approach is that if the
spectral radius of A is 1→ ε, it can be seen that ↔ 1

ε terms are needed.
3. The regression method can be further enhanced with “closed loop" components, that regress

on prior observations yt↑1:1. It can be shown using the Cayley-Hamilton theorem that
using this method, dh components are needed to learn the system, where dh is the hidden
dimension of A.

3This work considers a broader class of hidden transition matrices.
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4. Filtering involves recovering the state xt from observations. While Kalman filtering is
optimal under specific noise conditions, it generally fails in the presence of marginal stability
and adversarial noise.

5. Finally, spectral filtering combines the advantages of all methods above. It is an efficient
method, its complexity does not depend on the hidden dimension, and works for marginally
stable systems. However, spectral filtering requires A to be symmetric, or diagonalizable
under the real numbers.

2 Main Results

In this section we formally state our main algorithms and theorems. We show that the Universal
Sequence Preconditioning method provides significantly improved regret bounds for learning linear
dynamical systems than previously known when used in conjunction with two distinct methods. The
first method is simple convex regression, and the second is spectral filtering.

Both algorithms allow for learning in the case of marginally stable linear dynamical systems and
allow for certain asymmetric transition matrices of arbitrary high hidden dimension. The regret
bounds are free of the hidden dimension (up to logarithmic factors) – which significantly extends the
state of the art.

2.1 Universal Sequence Preconditioning Applied to Regression

Algorithm 2 is an instantiation of Algorithm 4 for the method of convex regression. We set the
preconditioning coefficients to be the coefficients of the n-th degree (monic) Chebyshev polynomial.

Algorithm 2 Universal Sequence Preconditioning for Regression

1: Input: initial parameter Q0; preconditioning coefficients c0:n from the n-th degree (monic)
Chebyshev polynomial; convex constraints K = {(Q0, . . . ,Qn↑1) s.t. ⇐Qj⇐ ≃ Cdomain⇐c⇐1}

2: Assert that c0 = 1.
3: for t = 1 to T do
4: Receive ut.
5: Predict ŷt(Qt) = →

∑n
i=1 ciyt↑i +

∑n
j=0 Q

t
jut↑j .

6: Observe true output yt and suffer loss ϑt(Qt) = ⇐ŷt(Qt)→ yt⇐1.
7: Update and project:

Qt+1 ↑ projK
(
Qt → ϖt⇒Qϑt(Q

t)
)
.

8: end for

Theorem 2.1 shows that vanishing loss compared to the optimal ground-truth predictor, at a rate that
is independent of the hidden dimension of the system.

Theorem 2.1. Let {ut}Tt=1 ↗ Cdin be any sequence of inputs which satisfy ⇐ut⇐2 ≃ 1 and let
{yt}Tt=1 ↗ Cdout be the corresponding output coming from some linear dynamical system (A,B,C)
as defined per Eq. 1. Let P diagonalize A (note P exists w.l.o.g.) and let ϱ = ⇐P⇐⇐P↑1⇐. Assume
that ⇐B⇐⇐C⇐ϱ ≃ Cdomain. Let ω1, . . . ,ωdh denote the spectrum of A. If

max
j↔[dh]

| arg(ωj)| ≃ 1/(32 log2(2T
3
/dout))

2

then the predictions ŷ1, . . . , ŷT from Algorithm 2 where the preconditioning coefficients c0:n are
chosen to be the coefficients of the n-th monic Chebyshev polynomial satisfy

1

T

T∑

t=1

⇐ŷt → yt⇐1 ≃ Õ

(
⇐B⇐⇐C⇐ϱ

⇑
dout

T 2/13

)
,

where Õ(·) hides polylogarithmic factors in T .

The proof of Theorem 2.1 is in Appendix D. For a simple baseline comparison, the regret achieved
(via the same proof technique) by the vanilla regression algorithm without preconditioning is
O
(
Cdomain

⇑
doutT

5/2
)

which is not sublinear in T .
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2.2 Universal Sequence Preconditioning Applied to Spectral Filtering

Our second main result is the application of Universal Sequence Preconditioning to the spectral
filtering algorithm [29]. In addition to applying USP to spectral filtering, we also propose a novel
spectral filtering basis. Both changes to the vanilla spectral filtering algorithm are necessary to extend
its sublinear regret bounds to the case of underlying systems with asymmetric hidden transition
matrices. First we define two key quantities. Given horizon T and ς ↗ C let

µT (ς)
def
=

[
1 ς . . . ς

T↑1
↘

, (4)

and
ZT

def
=



ϑ↔Cω

µT (ς)µT (ς)
↘
dς, (5)

where ς ↗ C denotes the complex conjugate. The novel spectral filters are the eigenvectors of
ZT↑n↑1, which we denote as φ1, . . . ,φT↑n↑1. Note that in the standard spectral filtering literature,
the spectral filtering matrix is an integral over the real line and does not involve the complex conjugate.
Our new matrix has an entirely different structure and although it looks quite similar, it surprisingly
upends the proof techniques to ensure exponential spectral decay, a critical property for the method.
We therefore introduce a novel proof of spectral decay in Theorem E.6 found in Section E.1.1.

Algorithm 3 Universal Sequence Preconditioning for Spectral Filtering

1: Input: initial Q1
1:n,M

1
1:k, horizon T , convex constraints K =

{(Q0, . . . ,Qn↑1,M1, . . . ,Mk s.t. ⇐Qj⇐ ≃ RQ and ⇐Mj⇐ ≃ RM}, parameter n, coef-
ficients c1:n.

2: Let pcn(x) = c0x
n + c1x

n↑1 + · · ·+ cn.
3: Let φ1, ...,φn be the top n eigenvectors of ZT↑n↑1.
4: Assert c0 = 1.
5: for t = 1 to T do
6: Let ũt↑n↑1:1 be ut↑n↑1:1 padded with zeros so it has dimension T → n→ 1↓ din.
7: Predict ŷt(Qt

,Mt) = →
∑n

i=1 ciyt↑i +
∑n

j=0 Q
t
jut↑j +

1≃
T

∑k
j=1 M

t
jφ

↘
j ũt↑n↑1:1.

8: Observe true yt, define loss ϑt(ŷt) = ⇐ŷt(Qt
,Mt)→ yt⇐1.

9: Update and project: (Qt+1
,Mt+1) = projK (Qt

,Mt)→ ϖt⇒ϑt(Qt
,Mt))

10: end for

Theorem 2.2. Let {ut}Tt=1 ↗ Rdin be any sequence of inputs which satisfy ⇐ut⇐2 ≃ 1 and let
{yt}Tt=1 be the corresponding output coming from some linear dynamical system (A,B,C) as
defined per Eq. 1. Let P diagonalize A (note P exists w.l.o.g.) and let ϱ = ⇐P⇐⇐P↑1⇐. If RQ, RM ,
and k are chosen to be sufficiently large and

max
j↔[dh]

| arg(ωj)| ≃ 1/(32 log2(2T
3
/dout))

2
,

then the predictions ŷ1, . . . , ŷT from Algorithm 3 where the preconditioning coefficients c0:n are
chosen to be the coefficients of the n-th monic Chebyshev polynomial satisfy

1

T

T∑

t=1

⇐ŷt → yt⇐1 ≃ Õ

(
⇐C⇐⇐B⇐ϱ

⇑
dout

T 3/13

)
.

For comparison, vanilla spectral filtering without Universal Sequence Preconditioning requires that
maxj↔[dh] |arg(ωj)| ≃ 1/T , which is essentially the same as requiring that the matrix be symmetric
since the horizon T can become arbitrarily large.

3 Proof Overview

In this section we give a high level overview of the proofs for Theorem 2.1 and Theorem 2.2. We start
by recalling the intuition for Universal Sequence Preconditioning developed in Section 1.2 which
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shows that if {yt}Tt=1 evolves as a linear dynamical system parameterized by matrices (A,B,C)

with inputs {ut}Tt=1 then by Equation 3,

yt = →
n∑

i=1

ciyt↑i

︸ ︷︷ ︸
↓0

+
n↑1∑

s=0

s∑

i=0

ciCAs↑iBut↑s

︸ ︷︷ ︸
↓1

+
t↑n↑1∑

s=0

Cp
c
n(A)AsBut↑n↑s

︸ ︷︷ ︸
↓2

.

Recall that ↘0 is the universal preconditioning component, ↘1 is the term that can easily be learned
by convex relaxation and regression, and ↘2 is the critical term that contains pcn(A).

Both Theorem 2.1 and Theorem 2.2 use the standard result from online convex optimization (Theorem
3.1 from [26]) that online gradient descent over convex domain K achieves regret 3

2GD
⇑
T as

compared to the best point in K, where D denotes the diameter of K and G denotes the maximum
gradient norm.

Regression: Proof of Theorem 2.1 In the case of regression, the domain is chosen so that ↘2 may
be learned and the proof proceeds by bounding the diameter of such a domain and its corresponding
maximum gradient norm to get regret Cn

2
⇑
dout⇐c⇐1

⇑
T for a universal constant C > 0 which

depends on the norms of matrices B and C from the underlying system. Then ↘3 is treated as an
un-learnable error term. Let ω(A) denote the set of eigenvalues of A. By the simple magnitude
bound of

⇐
t↑n↑1∑

s=0

Cpn(A)AsBut↑n↑s⇐ ≃ max
ω↔ω(A)

|pn(ω)| · T · ⇐C⇐ · ⇐B⇐,

the error of ignoring this term can be very small if maxω(A) |pn(ω(A))| is small. In the proof
of Theorem 2.1 in Appendix D we show that the regret for a generic polynomial pcn defined by
coefficients c0:n is

T∑

t=1

⇐yt → ŷt⇐1 ≃ Cn
2

dout⇐c⇐1

⇑
T︸ ︷︷ ︸

Regret from learning ↓2

+Cmax
ω↔D

|pcn(ω)|T 2

︸ ︷︷ ︸
Unlearnable Error Term

,

where D is the region where A is allowed to have eigenvalues (see Theorem D.1). Therefore, to get
sublinear regret, we must choose a polynomial which has bounded ϑ1 norm of its coefficients, while
also exhibits very small infinity norm on the domain of A’s eigenvalues.

Spectral Filtering: Proof of Theorem 2.2 In the case of spectral filtering, the domain is chosen so
that both ↘2 and ↘3 may be learned. Because spectral filtering learns ↘3, it is able to accumulate less
error and hence achieves a better regret bound of O(T↑3/13) as compared to regression’s O(T↑2/13).
At a high level, the proof proceeds by exploiting the fact that pn(A) shrinks the size of the learnable
domain. However this is not enough, in order to extend the result to systems where A may have
complex eigenvalues, the spectral filters must be eigenvalues of a new matrix, defined in Eq. 5,
whose domain of integration includes the possibly complex eigenvalues of A. To get the dimension-
independent regret bounds enjoyed by spectral filtering in this new setting where complex eigenvalues
may occur, the exponential decay of ZT from Eq. 5 must be established. This is nontrivial and
requires several novel techniques inspired by [12]. The details are in Appendix E.1.1.

Theorem 2.2 gives the main guarantee for the spectral filtering algorithm, which states that Algo-
rithm 3 instantiated with some choice of polynomial pcn(·) achieves regret

Õ

((
n⇐c⇐1 + T

7/6 max
ϑ↔Cω

|pcn(ς)|
)
(n+ k)


dout

⇑
T

)
.

Both this theorem, as well as our new guarantee for convex regression, leads us to the following
question: Is there a universal choice of polynomial pn(x), where n is independent of hidden
dimension, which guarantees sublinear regret?
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3.1 Using the Chebyshev Polynomial over the Complex Plane

For the real line, the answer to this question is known to be positive using the Chebyshev poly-
nomials of the first kind. In general, the n

th (monic) Chebyshev polynomial Mn(x) satisfies
maxx↔[↑1,1] |Mn(x)| ≃ 2↑(n↑1). However, we are interested in a more general question over the
complex plane. Since we care about linear dynamical systems that evolve according to a general
asymetric matrix, we need to extending our analysis to Cϖ . This is a nontrivial extension since, in
general, functions that are bounded on the real line can grow exponentially on the complex plane.
Indeed, 2n↑1

Mn(x) = cos(n arccos(x)) and while cos(x) is bounded within [→1, 1] for any x ↗ R,
over the complex numbers we have cos(z) = 1

2 (e
iz + e

↑iz), which is unbounded. Thus, we analyze
the Chebyshev polynomial on the complex plane and provide the following bound.
Lemma 3.1. Let z ↗ C be some complex number with magnitude |ς| ≃ 1. Let Mn(·) denote the
n-th monic Chebyshev polynomial. If | arg(z)| ≃ 1/64n2, then |Mn(z)| ≃ 1/2n↑2.

We provide the proof in Appendix F. We also must analyze the magnitude of the coefficients of the
Chebyshev polynomial, which can grow exponentially with n. We provide the following result.
Lemma 3.2. Let Mn(·) have coefficients c0, . . . , cn. Then maxk=0,...,n |ck| ≃ 20.3n.

The proof of Lemma 3.2 is in Appendix F. Together, these two lemmas are the fundamental building
block for universal sequence preconditioning and for obtaining our new regret bounds.

4 Experimental Evaluation

We empirically validate that convolutional preconditioning with Chebyshev or Legendre coefficients
yields significant online regret improvements across various learning algorithms and data types.
Below we summarize our data generation, algorithm variants, hyperparameter tuning, and evaluation
metrics.

4.1 Synthetic Data Generation

We generate N = 200 sequences of length T = 2000 via three mechanisms: (i) a noisy linear
dynamical system, (ii) a noisy nonlinear dynamical system, and (iii) a noisy deep RNN. Inputs
u1:T ↔ N (0, I).

Linear Dynamical System. Sample (A,B,C) with A ↗ R300⇐300 having eigenvalues {zj} drawn
uniformly in the complex plane subject to Im(zj) ≃ ↼thresh and L ≃ |zj | ≃ U , and B,C ↗ R300.
Then

xt = Axt↑1 +But, yt = Cxt + ↽t, ↽t ↔ N (0,⇀2
I).

Nonlinear Dynamical System. Similarly sample (A1,B1,C) and (A2,B2) with Ai ↗ R10⇐10,
Bi,C ↗ R10. Then

x(0)
t = A1xt↑1 +B1ut, x

(1)
t = ⇀

(
x(0)
t

)
, xt = A2x

(1)
t +B2ut, yt = Cxt + ↽t.

Deep RNN. We randomly initialize a sparse 10-layer stack of LSTMs with hidden dimension 100
and ReLU nonlinear activations. Given u1:T we use this network to generate y1:T .

4.2 Algorithms and Preconditioning Variants

We evaluate the following methods: (1) Regression (Alg. 2) , (2) Spectral Filtering (Alg. 3) , (3)
DNN Predictor: n-layer LSTM with dims [d1, . . . , dn], ReLU.

Each method is applied with one of:

1. Baseline: no preconditioning
2. Chebyshev: c0:n are the coefficients for the nth-Chebyshev polynomial. Note that when

n = 2 we have c0 = 1 and c1 = →1 and therefore this is the method of differencing
discussed in the introduction.
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3. Legendre: c0:n are the coefficients for the nth-Legendre polynomial

4. Learned: c0:n is a parameter learned jointly with the model parameters

We test polynomial degrees n ↗ {2, 5, 10, 20}. This choice of degrees shows a rough picture of the
impact of n.

Hyperparameter Tuning. To ensure fair comparison, for each algorithm and conditioning c variant
we perform a grid search over learning rates ϖ ↗ {10↑3

, 10↑2
, 10↑1}, selecting the one minimizing

average regret across the N sequences. In the case of the learned coefficients, we sweep over the 9
pairs of learning rates (ϖmodel, ϖcoefficients) ↗ {10↑3

, 10↑2
, 10↑1}↓ {10↑3

, 10↑2
, 10↑1}.

4.3 Results

Tables 2–4 report the mean ± std of the absolute error over the final 200 predictions, averaged
across 200 runs. In the linear and nonlinear cases we train a 2-layer DNN (dims (64, 128)); for
RNN-generated data we match the 10-layer (100-dim) generator.

Key observations:

• Preconditioning drastically reduces baseline errors for all algorithms and data types.

• Chebyshev and Legendre yield nearly identical gains.

• For Chebyshev and Legendre, once the degree is higher than 5→10 the performance degrades
since ⇐c⇐1 gets very large (see our Lemma 3.2 which shows that these coefficients grow
exponentially fast).

• Improvements decay as the complex threshold ↼thresh increases, consistent with our theoret-
ical results which must bound Im(zj).

• Learned coefficients excel with regression and spectral filtering but destabilize the DNN on
nonlinear and RNN-generated data.

Setting Baseline Chebyshev Legendre Learned

Deg. 2 Deg. 5 Deg. 10 Deg. 2 Deg. 5 Deg. 10 Deg. 2 Deg. 5 Deg. 10 Deg. 20

Regression

↼thresh = 0.01 0.74 ± 0.28 0.25 ± 0.09 0.15 ± 0.07 0.77 ± 0.31 0.36 ± 0.13 0.14 ± 0.06 0.64 ± 0.26 0.52 ± 0.19 0.27 ± 0.11 0.17 ± 0.07 0.24 ± 0.09

↼thresh = 0.1 1.92 ± 0.81 0.84 ± 0.27 0.66 ± 0.18 1.90 ± 0.67 1.10 ± 0.40 0.63 ± 0.17 1.66 ± 0.58 1.34 ± 0.43 0.57 ± 0.14 0.55 ± 0.14 0.56 ± 0.14 s

↼thresh = 0.9 2.47 ± 0.89 1.59 ± 0.56 2.18 ± 0.79 2.68 ± 0.48 1.64 ± 0.58 1.94 ± 0.70 2.63 ± 0.45 1.73 ± 0.59 0.83 ± 0.25 0.68 ± 0.27 0.63 ± 0.26

Spectral Filtering

↼thresh = 0.01 5.94 ± 3.37 1.72 ± 0.95 0.69 ± 0.38 3.25 ± 1.79 2.78 ± 1.56 0.66± 0.36 2.74 ± 1.51 1.99 ± 0.94 0.54± 0.29 0.55 ± 0.25 0.61 ± 0.25

↼thresh = 0.1 0.89 ± 0.34 0.42 ± 0.11 0.34 ± 0.07 0.86 ± 0.28 0.54 ± 0.17 0.33 ± 0.07 0.76 ± 0.24 0.69 ± 0.28 0.31 ± 0.06 0.37 ± 0.08 0.45 ± 0.28

↼thresh = 0.9 10.17 ± 8.80 9.87 ± 8.90 12.66 ± 8.18 32.90 ± 22.02 9.42 ± 8.39 11.53 ± 7.46 28.83 ± 19.24 7.93 ± 4.42 6.31 ± 4.19 5.73 ± 3.80 5.86 ± 4.02

2-layer DNN

↼thresh = 0.01 4.49 ± 2.02 2.31 ± 1.18 2.62 ± 1.52 10.36± 6.05 2.79 ± 1.34 2.35 ± 1.35 8.92 ± 5.20 2.89 ± 1.24 1.56 ± 0.64 0.79 ± 0.25 0.40 ± 0.16

↼thresh = 0.1 9.41 ± 7.34 2.66 ± 1.76 1.52 ± 0.72 4.65 ± 3.03 4.24± 3.06 1.44 ± 0.71 4.03 ± 2.64 6.54 ± 4.32 3.22 ± 1.93 1.59 ± 0.95 0.80± 0.48

↼thresh = 0.9 2.45 ± 1.31 2.24 ± 1.34 3.49 ± 2.27 11.48 ± 8.15 2.17 ± 1.25 3.10 ± 2.00 9.97 ± 7.05 1.29 ± 0.66 0.71 ± 0.34 0.43 ± 0.18 0.24 ± 0.11

Table 2: Linear dynamical system data (detailed in Sec. 4.1) across varying complex threshold ↼thres.

Setting Baseline Chebyshev Legendre Learned
Deg. 2 Deg. 5 Deg. 10 Deg. 2 Deg. 5 Deg. 10 Deg. 2 Deg. 5 Deg. 10 Deg. 20

Spectral Filtering
↼thresh = 0.01 153.8 ± 15.7 43.7± 19.4 0.92± 0.31 0.26± 0.15 78.4± 34.7 2.82± 1.17 0.34± 0.19 1.04± 0.29 0.07± 0.03 0.05± 0.03 0.07± 0.03
↼thresh = 0.01 124.1± 68.4 33.4± 17.3 2.02± 1.23 0.36± 0.31 56.7± 30.5 3.81± 1.67 0.35± 0.26 2.85± 1.13 0.04± 0.01 0.02± 0.01 0.07± 0.02
↼thresh = 0.9 165.5± 84.5 43.41± 16.39 1.27± 0.37 1.90± 0.80 76.9± 29.1 3.32± 1.09 1.64± 0.69 1.79± 0.61 0.10± 0.04 0.12± 0.05 0.17± 0.07

2-layer DNN
↼thresh = 0.01 10.46± 5.10 3.45± 1.19 0.19± 0.16 0.43± 0.22 3.55± 1.56 0.18± 0.14 0.37± 0.19 45.40± 11.35 25.34± 9.06 12.73± 4.60 6.43± 2.32
↼thresh = 0.1 4.20± 1.10 3.38± 0.79 0.14± 0.05 0.41± 0.16 3.42± 0.79 0.25± 0.14 0.36± 0.13 67.70± 28.40 31.99± 11.78 15.95± 5.87 8.01± 2.95
↼thresh = 0.9 6.72± 2.35 2.45± 1.12 0.08± 0.03 0.28± 0.15 3.35± 0.98 0.20± 0.07 0.24± 0.13 58.65± 17.09 28.74± 8.07 14.39± 4.06 7.26± 2.05

Table 3: Nonlinear data (detailed in Sec. 4.1) across varying complex threshold ↼thres.
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Setting Baseline Chebyshev Legendre Learned
Deg. 2 Deg. 5 Deg. 10 Deg. 2 Deg. 5 Deg. 10 Deg. 2 Deg. 5 Deg. 10 Deg. 20

10-layer DNN 0.54 ± 0.23 0.29 ± 0.10 0.08± 0.03 0.13 ± 0.05 0.37 ± 0.14 0.09± 0.03 0.12± 0.04 1.49± 0.93 2.13± 1.05 1.04± 0.51 0.5 ± 0.24

Table 4: Performance (average absolute error of the last 200 predictions) of a 10-layer DNN (detailed
in Sec. 4.2) on data generated from the same model (detailed in Sec. 4.1).

4.4 ETTh1 Dataset

To evaluate whether our proposed preconditioning approach generalizes to real-world time series,
we conduct experiments on the well-established ETTh1 dataset from the Electricity Transformer
Temperature (ETT) benchmark [41]. The ETTh1 dataset consists of continuous hourly measurements
of load and oil temperature collected from electricity transformers and has been used in several recent
works [41, 39, 35, 24, 25, 40, 34].

We study the effect of preconditioning on a 10-layer LSTM with hidden dimension 100 per layer
using the Adam optimizer. We set the horizon to be T = 5000 and we sweep over a broader range of
learning rates ϖ ↗ {10↑j}j=0,1,2,3,4,5. As before we consider (i) no preconditioning (baseline), (ii)
fixed Chebyshev coefficients, (iii) fixed Legendre coefficients, and (iv) coefficients learned jointly
with model parameters.

As seen in Figure 1, preconditioning with Chebyshev and Legendre for degree 5 the best performance
after only the first 1000 iterations, while the performance of jointly learning the coefficients is worse
at this stage. The performance of all three preconditioning methods are roughly on par with each
other by 2500 iterations and by the full horizon T = 5000, jointly learning the coefficients results in
the best average prediction error.

(a) Early Stage: T = 1000 (b) Middle Stage: T = 2500 (c) Final Stage: T = 5000

Figure 1: Absolute prediction error on final 200 predictions averaged over 10 independent runs for
10-layer LSTM with layer dimension 100 using Adam optimizer and sweeping over learning rates for
each run.

5 Discussion

There are many settings in machine learning where universal, rather than learned, rules have proven
very efficient. For example, physical laws of motion can be learned directly from observation data.
However, Newton’s laws of motion succinctly crystallize very general phenomenon, and have proven
very useful for large scale physics simulation engines. Similarly, in the theory of mathematical
optimization, adaptive gradient methods have revolutionized deep learning. Their derivation as a
consequence of regularization in online regret minimization is particularly simple [21], and thousands
of research papers have not dramatically improved the initial basic ideas. These optimizers are, at the
very least, a great way to initialize learned optimizers [38].

By analogy, our thesis in this paper is that universal preconditioning based on the solid theory of
dynamical systems can be applicable to many domains or, at the very least, an initialization for other
learning methods.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim a rigorous new method for sequence preconditioning that improves
upon the classical differencing method in theory and practice.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Throughout we demonstrate understanding of the limitations of our approach,
such as restricting our results to linear dynamical systems with bounded imaginary part of
the transition matrix.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Our main theoretical results are Theorems 2.1 and 2.2, in which the assump-
tions made are stated. We give only proof overview in main paper, but complete one in
appendix.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we describe our algorithms completely in 2 and 3. Our code repository
will also be open sourced.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: A link to the code will be provided in the final version. However, we omit the
GitHub repository with all of our code at the moment in order not to violated the double
blind policy and keep the paper anonymous.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experiment details are expansively explained in section 4 and the appendix.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: all our graphs include error bars and statistical significance.

8. Experiments compute resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification:

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms simply in every respect with the NeurIPS Code of Ethics
as explained.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [NA]

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All previous work is fully credited and cited throughout.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our new assets are well documented and the documentation is provided.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
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